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Power law hopping of single particles in one-dimensional non-Hermitian quasicrystals
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In this paper, a non-Hermitian Aubry-André-Harper model with power law hoppings (1/sa) and quasiperiodic
parameter β is studied, where a is the power law index, s is the hopping distance, and β is a member of the
metallic mean family. We find that the number of the quasiperiodic parameter β-dependent regimes depends on
the strength of the non-Hermiticity. Under a particularly weak non-Hermitian effect, there preserves P�=1,2,3,4

regimes where the fraction of ergodic eigenstates is β dependent as β�L (L is the system size), similar to those in
the Hermitian case. However, P� regimes are ruined by the strong non-Hermitian effect. Moreover, by analyzing
the fractal dimension, we find that there are two types of edges aroused by the power law index a in the single-
particle spectrum, i.e., an ergodic-to-multifractal edge for the long-range hopping case (a < 1), and an ergodic-
to-localized edge for the short-range hopping case (a > 1). Meanwhile, the existence of these two types of edges
is found to be robust against the non-Hermitian effect. By employing the Simon-Spence theory, we analyzed the
absence of the localized states for a < 1. For the short-range hopping case, with the Avila’s global theory and
the Sarnak method, we consider a specific example with a = 2 to reveal the presence of the intermediate phase
and to analytically locate the intermediate regime and the ergodic-to-localized edge, which are self-consistent
with the numerically results.

DOI: 10.1103/PhysRevB.107.174205

I. INTRODUCTION

In 1958, P. W. Anderson pointed out that free particles
will present localized behavior due to random disorders.
The absence of diffusion is known as Anderson localization
[1]. The scaling theory shows [2–4] that systems change
from the fully ergodic phase to fully the localized phase
with the arbitrarily weak disorder in the one- and two-
dimensional (1D and 2D) Anderson model. However, for
three-dimensional (3D) case, an energy threshold, i.e., the
mobility edge, appears in the single-particle spectrum and
separates the ergodic eigenstates from the localized eigen-
states. Beyond the Anderson-like model, the mobility edge
appears in a class of generalized Aubry-André-Harper (AAH)
models as well. It is known that there is no mobility edge in
the standard AAH model [5–7], but the mobility edges can
be induced by breaking the self-duality [8–12], such as in-
troducing next-nearest-neighbor hopping [13], exponentially
long-range hopping [8,14], off-diagonal incommensurate hop-
ping [9,14–17], power law hopping [10,11,13,18], slowly
varying potentials [19,20], and the generalized incommen-
surate potentials [17,21–27]. The studies on single-particle
mobility edge [12,22,28–36] help us understand the roles that
mobility edge plays on the thermalization and many-body lo-
calization in interacting quasidisordered extensions [37–39].

Recently, there has been growing interest in studying the
mobility edges in a class of generalized AAH models with
power law hoppings [10,11,13,40], which can be induced by
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power law interactions [13,40]. Deng et al. found that, when
the power law index a < 1, there are ergodic-to-multifractal
(EM) edges in the intermediate regimes, and when a > 1,
there are ergodic-to-localized (EL) edges [10]. Particularly,
the intermediate regimes are subdivided into P� regimes,
where the fraction of the ergodic states are of β�L (β is a
quasiperiodic parameter measuring the member of the metal-
lic mean family, L is the system size, and � = 1, 2, 3, . . .).
Roy and Sharma discussed the influence of the metallic mean
family on the intermediate regime, and a generalized phase
diagram based on the irrational diophantine numbers and
their sequences are charted out [11]. Xu et al. studied the
non-Hermitian effect on the power law hopping system [41]
and found that the aforementioned P� regimes are destroyed
by the non-Hermitian effect and the EM and EL edges are
independent of the quasiperiodic parameter β. Besides, the
localization transition points and the exact expression of the
EL edge are derived, which are self-consistent with numerical
results. In this work, we are motivated to study whether the
β-dependent P� regimes are robust against the non-Hermitian
transition effect. In addition, we will try to understand the
absence of the localized states in the long-range hopping
regime and analytically obtain the EL edges in the short-range
hopping regime (such as a = 2).

The organization of the paper is as follows: In Sec. II, we
describe the Hamiltonian of the non-Hermitian AAH model
with power law hopping and introduce the metallic mean
family. In Sec. III, we study the localization properties un-
der the weak non-Hermitian effect. In Sec. IV, we study the
localization properties under the strong non-Hermitian effect.
We studied the relationship between the localization transition
of the eigenstates and the breaking of the PT symmetry in the
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case of both a < 1 and a > 1 in Sec. V. We summarize in
Sec. VI.

II. MODEL AND HAMILTONIAN

A one-dimensional non-Hermitian AAH model that we
considered consists of power law hoppings and complex on-
site potentials and reads

H = −J
∑

j,s

1

sa
(c†

j c j+s + H.c.) +
∑

j

� jc
†
j c j, (1)

where J is set as the unit of energy, a is the power law
index, J/sa is the power law hopping strength between site
j and site j + s, and � j = � cos(2πβ j + ik) denotes the
non-Hermitian on-site potential. The non-Hermitian effect is
introduced by an imaginary term ik. When k = 0, the model
goes back to the Hermitian case [10,11], where EM edges
are uncovered. � j satisfies the relation �− j = �∗

j , therefore
the Hamiltonian H is PT symmetric [26,41]. β is chosen at
the metallic mean family, which can be derived from a gen-
eralized u-Fibonacci recurrence relation Fv+1 = uFv + Fv−1

with F0 = 0 and F1 = 1. The golden mean β = βg is obtained
by the limit βg = limv→∞ Fv−1/Fv when u = 1. Besides, this
recurrence can yield another metallic mean, such as the silver
mean β = βs = √

2 − 1 when u = 2 and the bronze mean
β = βb = (

√
13 − 3)/2 when u = 3. βg and βs will be used

in following numerical calculations.
With the basis |ψn〉 = ∑

j φ
n
j | j〉 = ∑

j φ
n
j c

†
j |0〉, we obtain

the following eigenfunction:

−J
∑

s

1

sa

(
φn

j−s + φn
j+s

) + � jφ
n
j = Enφ

n
j , (2)

where φn
j is the amplitude at the jth site of the nth wave

function, and En is the corresponding eigenenergy. Here the
eigenenergy levels with ascending order are sorted according
to the real part of En.

III. LOCALIZATION PROPERTIES UNDER WEAK
NON-HERMITIAN EFFECT

As mentioned before, the parameter k dominates the non-
Hermitian effect. When k is small, the non-Hermitian effect
is weak, whereas it is strong when k is large. In this section,
we mainly study the weak non-Hermitian case with k = 0.8
and β = βg. The phase diagram of the model in Eq. (1) with
β = βg has been presented in Fig. 1. We find that the non-
Hermitian system preserves similar features as the Hermitian
one. For a � 1, we recover the non-Hermitian AAH model
[26] with nearest-neighbor hoppings, and therefore all eigen-
states are either ergodic (the purple regime with the fraction of
ergodic eigenstates λ = 1) for � < 2e−kJ or localized (black
regime with the fraction of ergodic eigenstates λ = 0) for
� > 2e−kJ (see the derivation in Appendix A). As can be
seen from the phase diagram in addition to ergodic (purple
regime) and localized (black regime) phases with the fraction
of ergodic eigenstates λ = 1 and λ = 0, respectively, there is
an intermediate phase with 0 < λ < 1. In particular, in the
intermediate phase, there are four P�=1,2,3,4 regimes where
the lowest β�L eigenstates are ergodic with fractions λ = βg

FIG. 1. The phase diagram of the non-Hermitian AAH model
with power law hopping index a and the strength of the complex
potential � for βg = 610/987, k = 0.8 and the system size L = 987.
In addition to ergodic (purple regime) and localized (black regime)
phases with the fraction of ergodic eigenstates λ = 1 and λ = 0,
respectively, there is an intermediate phase with 0 < λ < 1. In par-
ticular, in the intermediate phase, there are four P�=1,2,3,4 regimes
with fractions λ = βg (orange regime, marked by P1), β2

g (red regime,
marked by P2), β3

g (blue regime, marked by P3), and β4
g (green

regime, marked by P4). The vertical yellow dashed line separates
the long-range (a < 1) and short-range (a > 1) hopping cases. The
white dashed line represents the boundary between the localized
phase and the intermediate phase. The light blue and white regimes
both represent the normal intermediate phase, where the fraction of
ergodic eigenstates λ does not depend on the quasiperiodic parameter
β. Meanwhile, the white regime can be viewed as a transition regime
between two adjacent P� regimes.

(orange regime, marked by P1), β2
g (red regime, marked by

P2), β3
g (blue regime, marked by P3), and β4

g (green regime,
marked by P4). Compared with the Hermitian cases [10],
the remarkable differences are reflected in the fact that the
four regimes are suppressed by the non-Hermitian effect and
are separated by the normal intermediate regimes, where the
fraction of ergodic states are β independent. Meanwhile, the
original P�>4 regimes no longer exist. In the following, we
clarify the similarities and differences between the P� regimes
and the normal intermediate regime by investigating the frac-
tal dimension.

The fractal dimension D f is defined based on the box-
counting procedure [42–45] and is expressed as

D f = lim
Ld →∞

1

1 − f

ln
∑Ld

m=1 (Im) f

ln Ld
, (3)

where Ld = L/d is the number of the box with L being the
system size and d being the box counting index, f is the scale
index, and Im = ∑

j∈m |ψn( j)|2 corresponds to the probabil-
ity of detecting inside the mth box for the nth normalized
eigenstate |ψn( j)〉. Without loss of generality, we study the
fractal dimension D2. Considering the system size L = 2584,
and the box counting index d = 4, as well as the golden
mean βg = 1597/2584, we plot D2 of full eigenstates as a
function of the strength of the complex potential � for a = 0.5
(long-range hopping) in Fig. 2(a) and for a = 2.0 (short-range
hopping) in Fig. 2(b), respectively. It is readily seen that, in
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FIG. 2. Fractal dimension D2 (shown in color) of different eigen-
states as a function of � with k = 0.8, L = 2584, d = 4, and βg =
1597/2584 for (a) a = 0.5 and (b) a = 2, and with k = 0.8, L =
2378, d = 2, and βs = 985/2378 for (c) a = 0.5 and (d) a = 2. In
panels (b) and (d), the blue and white dashed lines correspond to
�c1 ≈ 0.6J and �c2 ≈ 2.4J , respectively.

the P�=1,2,3,4 regimes, two types of edges present a step-wise
dependence on �, equaling λ = β�

g . Out of the four regimes,
λ smoothly changes as � increases. In fact, the absence of
P�>4 regimes is related to the non-Hermitian effect. When the
complex phase disappears, the system returns to the Hermitian
case, where there are complete P� regimes. As k increases,
higher-P� regimes gradually vanish. When k → ∞, there is no
P� regime. The system with k = 0.8 is one of the intermediate
cases within the two limits, which reflects that the lower
P� regimes are robust against the weak non-Hermiticity. For
other proper complex phases, we can see the similar results as
well. In other words, when k < 0.8, we can observe more P�

regimes (see the case of k = 0.3 in Appendix B).
In fact, similar phenomena appear in the β = βs case as

well. For systems size L = 2378 and different box counting
index d = 2, as well as the silver mean βs = 985/2378, we
plot D2 as a function of � for a = 0.5 (long-range hopping)
in Fig. 2(c) and for a = 2.0 (short-range hopping) in Fig. 2(d),
respectively. Compared with Figs. 2(a) and 2(b), the two
types of edges display a different step-wise dependence on
the � in the P�=1,2,3,4 regimes [λ = βs + β2

s (P1), βs (P2),
β2

s + β3
s (P3), 2β3

s + β4
s (P4), respectively] and a same smooth

changing of λ out of the P� regimes still exist. It implies that
the step-wise dependence on the � in the P�=1,2,3,4 regimes
depends on the quasiperiodic parameter β.

Next, we further study the different localization phenom-
ena in the long-range hopping and the short-range hopping
cases and the differences between the P� regimes and the
normal intermediate regimes. We fix L = 2584 and βg =
1597/2584 in the calculations. For the long-range hopping
case (a = 0.5) and � = 0.3J chosen in the P1 regime, we
can see that, in Fig. 3(a1), below n/L = βg, D2 tends to 1,
corresponding to the ergodic eigenstates, and above n/L = βg,
D2 tends to a finite value, corresponding to the multifractal
eigenstates. In this case, the abrupt change of D2 from 1 to a
nonzero value presents an EM transition at n/L = βg. In con-
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FIG. 3. (a1)–(a3) D2 versus the index n/L for k = 0.8 and a =
0.5 with � = 0.3J , 0.5J , and 2J , respectively. (b1)–(b3) D2 versus
the index n/L for k = 0.8 and a = 2.0 with � = 0.73, 0.9, and 1.6,
respectively. The dashed lines represent the energy indexes of the lo-
calization transitions. Here, for L = 2584, we take βg = 1597/2584
and d = 4, and for L = 6765, we choose βg = 4181/6765, d = 5,
respectively. For βs = 985/2378, we take L = 2378 and d = 2.

trast with the long-range case, we can see that, for short-range
hopping [Fig. 3(b1)], D2 changes from 1 to zero, showing an
EL transition at n/L = βg. For higher-P� regimes, the simi-
lar phenomena still exists. We take � = 0.5J and � = 0.9J
from the P2 regime, the corresponding D2 for a = 0.5 and
a = 2 are plotted in Figs. 3(a2) and 3(b2), respectively. The
two diagrams present an EM transition and an EL transition
at n/L = β2

g , respectively. As shown in Figs. 3(a1), 3(a2),
3(b1), and 3(b2), we can see the fractal dimensions D2 are
independent of system size L. From the above analysis, we
can see that, in the P� regimes, the two types of edges show
dependence on β. In fact, the two types of transitions appear in
the normal intermediate regimes as well [see the EM transition
in Fig. 3(a3) and the EL transition in Fig. 3(b3), respectively],
where the EL edge and EM edge are visibly β independent.
Meanwhile, the results suggest that the features aroused by the
hopping types (controlled by a) are robust against the weak
non-Hermitian effect.

In the above analysis, we have used the special fractal
dimension D2 to determine the localization properties of the
system. To further clarify the existence of multifractality in
the regime a < 1, we plot the average of D f over the target
eigenstates, i.e., D f , as a function of f for the P2 regime
(λ = β2

g ) for a = 0.5 [in Fig. 4(a)] and a = 2 [in Fig. 4(b)]
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FIG. 4. (a) Averaged fractal dimension Df as a function of f for
k = 0.8, βg = 1597/2584, � = 0.4J , and a = 0.5 for the system in
the P2 regime with an EM edge. (b) Averaged fractal dimension Df as
a function of f for k = 0.8, βg = 1597/2584, � = 0.9J , and a = 2
for the system in the P2 regime with an EL edge. Df is calculated
by averaging over β2

g fraction of ergodic states and (1 − β2
g ) fraction

of multifractal or localized states. Here, for L = 2584, we take βg =
1597/2584 and d = 4, and for L = 6765, we take βg = 4181/6765,
d = 5.

in the system with β = βg. In Figs. 4(a) and 4(b), D f shown
with the solid red and blue curves are the average of D f over
the lowest β2

g L eigenstates and are close to 1 for different
f , indicating the ergodic states, and are almost independent
of the system sizes. D f shown with the blue and red dashed
curves are the average of D f over the highest (1 − β2

g )L eigen-
states. Intuitively, for various f and system sizes, D f show a
weak dependence on f for a = 0.5, whereas D f approach to
0 and is almost independent of f for a = 2. It indicates that
these eigenstates are multifractal for a = 0.5 and localized for
a = 2.

Now we first discuss the absence of localized states for
a < 1. After performing the Fourier transformation g(θ̃ ) =

1√
L

∑
j φ jeiθ̃ j where θ̃ = 2πθ , we have the following dual

equation of Eq. (2):

�ek

2
g(θ̃ − ω̃) + �e−k

2
g(θ̃ + ω̃)

=
(

E +
∑

s

2

sa
cos(sθ̃ )

)
g(θ̃ ), (4)

where ω̃ = 2πβ and the index n has been suppressed. For
a < 1, the dual potential

∑
s 2 cos(sθ̃ )/sa is divergent. Ac-

cording to Simon-Spencer theorem [46,47] and its application
[41], the spectrum E of the dual eigenfunction is not abso-
lutely continuous. Thus, for our model, there is no localized
state in the 0 < a < 1 regime.

Next, we analyze the location of the intermediate regime
and the critical point of the EL transition for a > 1. Here, we
take a = 2 as a specific example. According to the Avila’s
global theory [48] and its application [49], we first make an
analytical continuation on � j , i.e., ik → i(k + δ). Thus, in the
limit δ → ∞, the dual equation in Eq. (4) reduces to

�ek+δ

2
g(θ̃ − ω̃) =

(
E +

∑
s

2

sa
cos(sθ̃ )

)
g(θ̃ ). (5)

Reference [41] tells us that we can analytically extract the
localization properties when the analytical continuation δ re-
covers to zero. Meanwhile, the infinite series

∑
s 2 cos(sθ̃ )/s2

converges to θ̃2/2 − πθ̃ + π2/3 [41]. Therefore, we finally
obtain the following dual equation

�ek

2
g(θ̃ − ω̃) = (E + θ̃2/2 − πθ̃ + π2/3)g(θ̃ ). (6)

The Sarnak method [50] and its application [51] tells us
that the location of the intermediate regime and the EL edge
are related to the following characteristic function:

G(E ) = 1

2π

∫ 2π

0
ln

∣∣∣∣E + θ̃2

2
− πθ̃ + π2

3

∣∣∣∣
= − ln 2 + 1

2π

∫ 2π

0
ln

∣∣∣∣(θ̃ − π )2 −
(

π2

3
− 2E

)∣∣∣∣
= −2 − ln 2 + ε+ ln ε+ + ε− ln ε−

π
, (7)

where ε± = π ± (π2/3 − 2E )1/2. By {G(E ) > ln |�ek

2 |} ∩
εE , where the set of spectrum εE = [−π2/3, π2/6] guaran-
tees the existence of the solution to the equation E + θ̃2/2 −
πθ̃ + π2/3 = 0 with E being a real value, we can locate
the intermediate regime. Within εE , we have G ∈ [2 ln π −
ln 2 − 2, 2 ln π + ln 2 − 2]. Therefore, the lower bound of
the intermediate regime satisfies �c1 = 2e−ke2 ln π−ln 2−2, and
the upper bound satisfies �c2 = 2e−ke2 ln π+ln 2−2. When � <

�c1, all the eigenstates are ergodic, and when � > �c2, all
the eigenstates are localized. From the expressions of �c1 and
�c1, we can see that the bounds �c1 and �c1 exponentially
decay with the increase of the non-Hermiticity strength k,
which means that the ergodic phase will vanish when k → ∞.
For the k = 0.8 case, �c1 ≈ 0.6J and �c2 ≈ 2.4J , which are
shown in Figs. 2(b) and 2(d), labeled by blue and white dashed
lines, respectively.

IV. THE LOCALIZATION PROPERTIES UNDER
THE STRONG NON-HERMITIAN EFFECT

In this section, we study the localization properties under
the strong non-Hermitian effect with k = 3. We find that
the long-range-hopping-induced EM edges and the short-
range-hopping-induced EL edges are robust against the strong
non-Hermitian effect, but the β-dependent P� regimes disap-
pear completely. Meanwhile, the fractions of the EM and EL
edges are completely independent of the value of β. To study
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FIG. 5. Fractal dimension D2 (shown in color) of different eigen-
states as a function of the strength of the complex potential � with
k = 3, L = 2584, d = 4, and βg = 1597/2584 for (a) a = 0.5 and
(b) a = 2, and with k = 3, L = 2378, d = 2, and βs = 985/2378 for
(c) a = 0.5 and (d) a = 2. In panels (b) and (d), the blue and white
dashed lines satisfy �c1 ≈ 0.066J and �c2 ≈ 0.266J , respectively,
and the black solid lines represent the EL edges Ec determined by
G(Ec ) = ln |�ek

2 |.

the localization properties under the strong non-Hermitian
effect with k = 3, we calculate the fractal dimension D2 of
different eigenstates as a function of �. As shown in Figs. 5(a)
and 5(c), for a = 0.5, no matter β is βg = 1597/2584 or
βs = 985/2378, the EM edge smoothly decreases as � in-
creases, and the EM edges are β independent. As shown in
Figs. 5(b) and 5(d), for a = 2, no matter β is βg = 1597/2584
or βs = 985/2378, the EL edges smoothly decay with the
increase of � and is independent of β, too. In addition, the
bounds of the intermediate regime for the short-range hopping
case (a = 2) can be analytically obtained as well. Employing
the same analytical methods as those done for the k = 0.8
case, here the lower bound of the intermediate regime satisfies
�c1 ≈ 0.066J and the upper bound satisfies �c2 ≈ 0.266J ,
which are shown in Figs. 5(b) and 5(d), labeled by blue and
white dashed lines, respectively. Meanwhile, according to the
above-mentioned Sarnak method, the critical point Ec of the
EL transition can be determined by G(Ec) = ln |�ek

2 |, which
are labeled by the black solid lines in Figs. 5(b) and 5(d).

To further explain the β-independent features, we calculate
single-parameter D2 curves for two different quasiperiodic
parameters β. For a = 0.5, Fig. 6(a) shows that, when β

are taken as βg = 1597/2584 and βs = 985/2378, the fractal
dimensions D2 both jump at n/L ≈ 0.201 under the same
parameter a = 2 and � = 0.1J . When n/L < 0.201, the cor-
responding eigenstates are ergodic with D2 ≈ 1. For n/L >

0.201, the corresponding eigenstates show the multifractal
feature with D2 being finite values. This indicates that there
are same EM edges at n/L ≈ 0.201 for different β. As shown
in Fig. 6(b), no matter β is equal to βg = 1597/2584 or equal
to βs = 985/2378, the fractal dimension D2 under k = 3,
� = 0.11J , and a = 2 both jump from D2 → 1 to D2 → 0 at
n/L ≈ 0.322. This indicates that there are the same EL edges
at n/L ≈ 0.322 for different β.

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

(a) (b)

FIG. 6. D2 versus the index n/L with different β and k = 3.
(a) a = 0.5 and � = 0.1J . (b) a = 2 and � = 0.11J . The dashed
lines represent the energy indexes of the localization transitions
Here, for βg = 1597/2584, we take L = 2584, d = 4, and for βs =
985/2378, we take L = 2378 and d = 2.

V. PT SYMMETRY BREAKING

Next, we study the PT symmetry breaking in the cases of
a < 1 and a > 1. Figures 7(a) and 7(b) present the behavior
of the maximum value of | Im(E )| and the fractal dimension
D2(L) of the Lth eigenstate as a function of � for a = 0.5 and
a = 2, respectively. As can be seen from Fig. 7(a), the PT
symmetry-breaking point coincides with the EM phase tran-
sition point at � ≈ 0.21J for a = 0.5 and coincides with the
EL phase-transition point at � ≈ 0.6J for a = 2 [in Fig. 7(b)].
The energy spectrum for � = 0.1J and � = 0.4J are shown
in Figs. 8(a) and 8(b), respectively, where all the eigenvalues
are real. In the intermediate regime, the complex energies
emerge. As shown in Fig. 8(c) with a = 0.5 and � = 0.5J ,
the real-complex transition of the energy spectrum is synchro-
nized with the EM transition [see Fig. 3(a2)]. Besides, we can
see that in Fig. 8(d) with a = 2 and � = 0.9J , there exist the

0 0.5 1 1.5 2
0

0.5

1

0 0.5 1 1.5 2
0

0.5

1

(a)

(b)

FIG. 7. The behavior of the maximum value of |Im(E)| and the
fractal dimension of the Lth eigenstate D2(L) as the functions of �

with k = 0.8, βg = 1597/2584, and L = 2584 for (a) a = 0.5 and
(b) a = 2, respectively. The dashed lines denote the PT symmetry-
breaking point and the EM transition point in panel (a) and EL
transition point in panel (b), respectively.
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FIG. 8. Energy spectrum En with L = 2584, k = 0.8, and βg =
1597/2584 for (a) � = 0.1J , a = 0.5, (b) � = 0.4J , a = 2, (c) a =
0.5, � = 0.5J , and (d) a = 2, � = 0.9J , respectively. The color bar
shows the value of fractal dimension D2.

real-complex transition of the energy spectrum accompanied
by the EL transition [see Fig. 3(b2)].

VI. CONCLUSION

In conclusion, a non-Hermitian AAH model with power
law hoppings was studied. We uncover that the quasiperiodic
parameter β-dependent P� regimes are robust against the weak
non-Hermitian effect. When the non-Hermitian effect gets
stronger, the P� regimes disappear. However, we find that
localization properties, i.e., the long-range hopping induced
EM edge and the short-range hopping induced EL edge are
robust against the non-Hermitian effect and are well char-
acterized by the fractal dimension D2. We argued that the
absence of the localized states for the long-range hopping case
by the Simon-Spencer theorem. Meanwhile, by employing
the Sarnak method and Avila’s global theory, the boundaries
of the intermediate regime and the critical points of the EL
phase transition for the short-range hopping case (a = 2) are
analytically located, which are coincident with the numerical
results. Finally, we analyzed the relationship between the PT
symmetry breaking and the EM and EL phase transitions.
We found that the ergodic eigenstates correspond to the real
eigenenergies, whereas the multifractal and localized eigen-
states correspond to the complex eigenenergies.

FIG. 9. Fractal dimension D2 (shown in color) of different eigen-
states as a function of � with k = 0.3, L = 2584, d = 4, and βg =
1597/2584 for (a) a = 0.5 and (b) a = 2, respectively.
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APPENDIX A: THE DERIVATION OF THE PHASE
BOUNDARY IN THE LIMIT CASE a � 1

When a � 1, the Schrödinger equation can be rewritten in
the following transfer-matrix form:(

φ j+1

φ j

)
= Tj

(
φ j

φ j−1

)
, (A1)

with

Tj =
(

V cos (2πα j+ik)−E
J −1
1 0

)
. (A2)

Accordingly, the Lyapunov exponent γ can be obtained by

γ = lim
L→∞

1

L
ln

∥∥∥∥∥
L∏

j=1

Tj

∥∥∥∥∥. (A3)

We derive γ by employing the Avila’s global theory [48].
According to this theory, an analytical continuation on the
phase is necessary, i.e., ik → ik + iε. In the limit ε → ∞, we
have

Tj = e−i2πα j+δ

(
Vek

2J 0
0 0

)
, (A4)

which yields γε→∞ = |ε| + max{ln |Vek/2J|, 0}. According
to this Avila’s global theory, the Lyapunov exponent of the
system is determined when ε returns to zero, namely

γε=0 = max{ln |Vek/2J|, 0}. (A5)

Therefore, the phase boundary Vc is determined by
ln |Vcek/2J| = 0, i.e., Vc = 2e−kJ .

APPENDIX B: THE CASE OF k = 0.3

When k = 0.3, as shown in Fig. 9, we can observe the P5

regime.
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