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We theoretically consider the problem of doping induced insulator to metal transition in bulk semiconductors
by obtaining the transition density as a function of compensation, assuming that the transition is an Anderson
localization transition controlled by the Ioffe-Regel-Mott (IRM) criterion. We calculate the mean free path,
on the highly doped metallic side, arising from carrier scattering by the ionized dopants, which we model as
quenched random charged impurities. The Coulomb disorder of the charged dopants is screened by the carriers
themselves, leading to an integral equation for localization, defined by the density-dependent mean free path
being equal to the inverse of the Fermi wave number, as dictated by the IRM criterion. Solving this integral
equation approximately analytically and exactly numerically, we provide detailed results for the localization
critical density for the doping induced metal-insulator transition.

DOI: 10.1103/PhysRevB.107.174204

I. INTRODUCTION

Semiconductors (e.g., Si, Ge, GaAs, InAs, InSb, and oth-
ers) are small band-gap insulators, which can be doped by
suitable dopant atoms to produce metallic free carriers in
the conduction or valence band, depending respectively on
whether the dopants are donors or acceptors [1–5]. In the
current paper, we discuss the metallicity of (donor-) doped
semiconductors in terms of conduction band electrons as
the carriers in a generic sense, but our work should apply
equally well to valence band hole doping by acceptors. At fi-
nite (e.g., room) temperatures, electrons are thermally excited
from the dopants to the conduction band to act as free carriers,
and the rather low conduction band carrier density (∼1018 −
1021 cm−3) enables controlling their electrical properties with
external gate voltages leading to the modern microelectronics
industry based on semiconductor (mostly Si) transistors. Our
paper focuses on low temperatures, specifically T = 0, where
increased doping could lead to a doping-induced insulator
(at low or no doping) to metal (at high doping) transition,
which has been extensively studied both experimentally and
theoretically over the years [4,5]. Thermal carrier excitations
from the dopants do not play any role in such a T = 0 metal-
insulator transition (MIT), with the metal (insulator) occurring
at high (low) density, and this doping induced MIT is thought
to be a quantum phase transition of paradigmatic importance
in condensed matter physics, which has been studied a great
deal over the years [6–10].

In spite of extensive research, the key issue of the fun-
damental nature of the actual experimental low-temperature
MIT in doped semiconductors is not settled. There are (at
least) three possible mechanisms, which could lead to the dop-
ing induced MIT in semiconductors: Interaction-induced Mott
transition in the impurity band, Coulomb disorder induced
percolation transition, and random disorder induced Anderson
localization. (There are in fact other theoretical possibilities
such as structural transitions leading to MIT [11–14] among

others [15], which we ignore because they are unlikely to
be operational in simple doped semiconductors of interest
in our paper.) In the Mott transition scenario, the preferred
scenario in most modern discussions on the doping induced
MIT, the dopant electrons form an impurity band close to
the conduction band, and increasing doping density leads
to an electron-electron interaction induced insulator-to-metal
transition as envisioned by Mott long time ago [4,16] as the
Coulomb interaction between the electrons gets screened out.
The critical density for the Mott transition nM is universally
accepted to be roughly given by [5,17,18]

nM ∼ 0.02/a3
B, (1)

where aB is the effective Bohr radius for the host semicon-
ductor. The percolation transition, which is semiclassical (and
essentially a carrier “trapping” mechanism by the disorder
potential fluctuations, and is in fact a classical version of
Anderson localization in smooth long-range disorder), arises
from the smooth background disorder potential due to the ran-
dom ionized dopants leading to an inhomogeneous “mountain
and lake” landscape consisting of spatial puddles of con-
ducting electrons within a disordered insulating background.
In such a scenario, electron transport occurs through per-
colating conducting paths between different puddles in the
inhomogeneous system. As a result, the electrons can conduct
through the bulk only if the Fermi level is high enough for
a percolation path to exist through the whole sample in the
inhomogeneous disorder landscape [5,19]. The actual percola-
tion critical density is nonuniversal, being dependent on many
details of the system, and can only be numerically calcu-
lated approximately [20–23]. Many doped two-dimensional
semiconductor systems have been shown to manifest the per-
colation MIT because of the dominance of Coulomb disorder
[24–29]. For 3D doped semiconductors, an approximate esti-
mate for the percolation critical MIT density np is given by
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[5,30,31]

np ∼ 0.7n2/3
i /aB, (2)

where ni is the random charged impurity density (i.e., ion-
ized dopant density). This expression for np is valid in the
strongly doped regime, with nia3

B � 1. Finally, the Ander-
son localization transition is purely quantum, and arises from
the destructive interference of electron waves induced by the
disorder potential created by the random quenched ionized
dopant impurities, provided that the random disorder is strong
enough [4,5,32]. The Anderson localization critical density
for doped semiconductors is neither universal nor easy to
calculate accurately as it depends on the microscopic details
of the random disorder (which would vary from sample to
sample). But a reasonable estimate for the localization sets
in when the electron loses coherence because of momentum
scattering, leading to the disorder induced broadening of the
electron momentum itself becoming equal to the Fermi mo-
mentum. Thus, nc for localization is defined implicitly by the
following equation:

kF · lMFP = 1. (3)

Since both kF and lMFP depend on the carrier density n, Eq. (3)
provides nc directly if lMFP is known. Equation (3) defines
the well-established IRM criterion for Anderson localization,
where the loss of coherence due to disorder scattering is iden-
tified as the localization transition from a metal to an insulator.

There is considerable debate on whether the MIT in a
particular sample proceeds through a Mott or an Ander-
son mechanism. In many uncompensated semiconductors, the
critical density apparently agrees with the condition for Mott
transition [Eq. (1)], signifying that electron-electron correla-
tions presumably play an important role in the MIT [9,18,33–
35]. On the other hand, theoretical and optical studies of
the same systems often show that the transition may be of
Anderson type, since the impurity band is separated from
the conduction band, and there is no Hubbard gap formation
[36,37]. This implies that in most systems the MIT is caused
by a combination of Mott and Anderson mechanisms, making
the theoretical problem complicated as disorder and correla-
tion are most likely equally important. One key problem is
that the disorder usually cannot be controlled effectively, and
significant amount of disorder is required to overcome the
Coulomb energy responsible for the Mott transition mech-
anism. However, recently, phase-change materials (PCM)
like GeSb2Te4 and LixFe7Se8 have been studied extensively,
where the MIT is shown to be entirely caused by Anderson
localization [38–43]. The disorder in PCM systems can be
controlled by varying the annealing temperature, enabling
the tuning of the system across the MIT at high disorder.
Additionally, an Anderson-type MIT was also reported in
SrNbO3−xNx, where the disorder is controlled by the added
nitrogen in the system [44]. The study of the PCM materials
[38–43] unambiguously establishes the principle that Ander-
son localization by itself could drive the doping-induced MIT
in semiconductors without Mott correlation effects playing a
major role. In addition, carrier density-tuned MIT in 2D semi-
conductors has been interpreted as an Anderson localization
induced crossover phenomenon [45].

In the current paper, we make the uncritical assumption of
the doped semiconductor MIT to be arising from the Anderson
localization at the bottom of the semiconductor conduction
band (or in the impurity band), and obtain nc as a function of
compensation K , which assumes that only a fraction (1 − K )
of the donor (acceptor) atoms are actually ionized with the
rest being compensated by the presence of random accep-
tors (donors) in the environment. Compensation introduces
considerable random disorder into doped semiconductors, fa-
cilitating the Anderson localization driven MIT. Sometimes
the compensation is deliberately introduced in the system by
doping the sample simultaneously with both donors and ac-
ceptors, but often compensation happens unknowingly simply
because the sample would typically have both donors and
acceptors. Note that for K = 1, the sample is fully compen-
sated, and in principle, there are no free carriers, leading to
a nonconducting insulating phase independent of the doping
level.

Our model for Anderson localization is noninteracting in
a direct sense as the problem of localization in the presence
of both interaction and disorder is intractable, but screen-
ing of the charged disorder by the electrons themselves is
included nonperturbatively in the theory through the static
random phase approximation (RPA) using the finite momen-
tum Lindhard function [46,47]. Thus, the effects of interaction
are included indirectly in the theory through the screening
mechanism of disorder, which arises strictly from the mutual
electron-electron Coulomb interaction. The physical picture
addressed in our theory is simple: We calculate the carrier
mean free path (assuming metallic electrons in the high-
doping limit) due to the screened Coulomb disorder scattering
by random charged impurities, and then equate the mean free
path to the inverse Fermi momentum to obtain the critical MIT
density nc. Our theory is valid only in the metallic regime
for carrier density n > nc, but we extend it all the way to
n = nc (from above) in order to estimate the critical density.
The theory is obviously approximate as we use the Boltzmann
transport theory assuming Born approximation and employ
the Lindhard-RPA screening in order to obtain the effec-
tive Coulomb disorder. We emphasize that the inclusion of
screening is essential in the theory since unscreened Coulomb
disorder gives a logarithmically divergent scattering rate in
three dimensions and screening regularizes the singular bare
scattering in a parameter free manner.

One sharp experimentally testable difference between our
Anderson localization scenario and the Mott transition sce-
nario is that the Mott transition implies a universal critical
density defined by Eq. (1), which is determined entirely by
the host semiconductor effective Bohr radius whereas the
localization critical density is nonuniversal, and should show
sample to sample variations depending on the (often un-
known) level of intrinsic compensation. Experimentally, the
MIT critical density is sample dependent, arguing against
a pure Mott transition picture for the doping induced MIT.
This is understandable as the Mott transition considers an un-
physical perfectly ordered lattice arrangement of the dopants
assuming the full ionization of all dopants. In reality, the
ionization is unlikely to be complete and certainly there is
considerable spatial randomness in the dopant locations, both
aspects of physics ignored in the Mott transition scenario. Our

174204-2



ANDERSON LOCALIZATION IN DOPED SEMICONDUCTORS PHYSICAL REVIEW B 107, 174204 (2023)

paper focuses entirely on the localization scenario as defined
by the IRM criterion in Eq. (3), and we obtain the critical
transition density defined by Eq. (3) as a function of system
parameters.

The rest of this article is organized as follows. In Sec. II,
we provide the basic theory and the model we use. Then, in
Sec. III, we provide approximate analytical results for the rela-
tionship between nc and the impurity density ni in the high and
low-density limit, along with exact numerical results, to un-
derstand the dependence of nc on various model parameters.
In Sec. IV, we provide the corresponding analytical results for
nc as a function of compensation K , alongside a comparison
with numerical results. We then compare the critical density
from Anderson localization with the critical density from Mott
criterion and the percolation criterion, to predict the range of
compensations where we expect the MIT to be primarily of
Anderson type. We conclude in Sec. VI with a summary and
discussion of the open questions.

II. MODEL AND THEORY

We consider a 3D electron (or hole) system at T = 0
modeled by a parabolic band structure εk = h̄2k2/2m, where
k is the 3D wavevector. The system is characterized by the
effective mass m, the 3D carrier density n, the background
dielectric constant κ for the screened 3D Coulomb interaction,
and the average density of the random charged impurity ni. In
addition to these parameters, we also have the degeneracy of
the band g = gsgv , where gs is the spin degeneracy and gv is
the valley degeneracy. We will show all the analytic results
for a generic degeneracy; however, our numerical results will
be for gs = 2 and gv = 1 unless mentioned otherwise. We
will also use m = 0.4me and κ = 12 as the typical system pa-
rameters for numerical results (with Si being the appropriate
semiconductor).

The Coulomb interaction in 3D is given by Vq = 4πe2

κq2 ,
and the resulting screened electron-impurity interaction is
given by

uq = Vq

ε(q)
= 4πe2

ε(q)κq2
, (4)

where ε(q) is the static RPA screening function in 3D, which
is given by

ε(q) = 1 + 4πe2

κq2
�(q), (5)

where �(q) is the 3D static polarizability function given by
[48]

�(q) = gmkF

2π2h̄2 F (q/2kF ), (6)

where F (x) is

F (x) = 1

4x

(
(1 − x2) ln

∣∣∣∣x + 1

x − 1

∣∣∣∣
)

+ 1

2
. (7)

Combining these expressions, the static RPA screening func-
tion is written as

ε(q) = 1 +
(

qT F

q

)2

F (q/2kF ), (8)

where qT F is the 3D Thomas-Fermi vector given by

qT F =
√

2gmkF e2

πκ h̄2 . (9)

The key variable to estimate in the IRM criterion is the
mean free path lMFP. The mean free path lMFP is defined by
the Fermi velocity and a characteristic scattering time scale τ

as lMFP = vF τ . Traditionally, τ is defined to be the transport
scattering time of the carriers. However, recently, an alter-
native choice for τ as the quantum scattering time has been
proposed [49]. The quantum scattering time is the momentum
lifetime of the carrier, defined via the imaginary part of the
self energy. Since it relates to the coherence of the carriers
themselves, it is a natural choice to define the scattering time.
For low carrier density, strong-screening limit, using either
the quantum or transport scattering time gives consistent re-
sults; however, they differ in the high-density limit due to the
vertex corrections that enter the transport scattering time. We
will show our results using both the quantum and transport
scattering time, and discuss how they affect the corresponding
Anderson localization critical density.

The transport scattering time τt is given by

1

τt
= 2πni

h̄

∫
d3k

(2π )3
|uq|2

(
1 − cos θk,kF

)
δ(εk − εF ), (10)

where θk,kF is the angle between k and kF and q = k − kF .
We call the corresponding IRM criterion as the transport IRM
criterion. Alternatively, we also consider τ to be the single
particle quantum scattering time τq, given by

1

τq
= 2πni

h̄

∫
d3k

(2π )3
|uq|2δ(εk − εF ). (11)

We call the corresponding IRM criterion as the quantum IRM
criterion, which uses the quantum scattering time to define the
mean free path.

Note that Eqs. (10) and (11) differ by the vertex correc-
tion factor (1 − cos θ ), indicating that forward scattering is
suppressed for the transport scattering rate. The expression
for the two quantities, τt and τq, differ by the 1 − cos θ term
in τt , which arises from the vertex corrections in transport
quantities. The 1 − cos θ term takes into account backward
scattering with a higher weight as compared to forward scat-
tering, however, for isotropic s − wave scattering processes
the transport time and quantum time are equal, since the
vertex correction for s − wave scattering becomes just unity.
The simplified expression for the scattering times is given by,
following some straightforward algebra,

1

τt,q
= nim

8π h̄3k3
F

(
4πe2

κ

)2 ∫ 1

0

γt,qx2γt,q−1(
x2 + q2

s F (x)
)2 dx, (12)

where γt = 2, γq = 1, and

qs = qT F

2kF
= eδn− 1

6 , δ = ln

⎛
⎝

√
gme2

2πκ h̄2

(
g

6π2

) 1
6

⎞
⎠. (13)

In the limit of strong screening (qs � 1), τt and τq are
approximately equal, since the strongly screened Coulomb
interaction is approximately s − wave. However, the 3D RPA
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screening function is in reality modulated by the Friedel
oscillation form factor F (x), where x = 2kF sin θ

2 and θ is
the scattering angle [50]. The value of F (x) ranges from
F (x) = 1 at x = 0 to F (x) = 0.5 at x = 1. Since the scat-
tering integral is inversely related to F (x)2, back scattering
at large x ∼ 1 (θ ∼ π ) is enhanced over forward scatter-
ing at small x ∼ 0 (θ ∼ 0). Due to this enhancement, and
since 1/τt takes into account back scattering with a higher
weight than forward scattering, τq is larger than τt in the
low density, high-screening limit. Numerically, we find
τq/τt � 1.2, and this ratio remains constant when qs � 1. We
note that in 2D semiconductors, on the other hand, τq/τt = 1
holds exactly for strong screening at T = 0, because the 2D
RPA screening function is exactly s − wave for scattering that
occurs on the Fermi surface [49–51]. In the opposite limit of
qs � 1, the ratio between τt and τq for 3D semiconductors
is approximately calculated by keeping F (x) = 1 in Eq. (12),
to get

τq

τt
=

∫ 1
0

2x3

(x2+q2
s )2 dx∫ 1

0
x

(x2+q2
s )2 dx

� −4q2
s ln qs. (14)

Considering band parameters for Si with gs = 2, gv = 1, m =
0.4me, κ = 12, the value of τq/τt for n ∼ 1018 − 1021 cm−3 is
correspondingly τq/τt ∼ 0.1 − 0.005. Thus, in general, τt �
τq except in the extreme strong-screening limit of qT F � kF

where τq ∼ 1.2τt .
Having established our model of screened Coulomb dis-

order, in the next section we proceed to provide numerical
results for the critical density, and the corresponding analyt-
ical results for the critical density as a function of impurity
density in the high-density and low-density limit, character-
ized by weak screening and strong screening respectively.

III. RESULTS FOR THE CRITICAL DENSITY

In this section, we use the IRM criterion to derive the
critical MIT density nc as a function of the random charged
impurity density ni. The corresponding equation to solve is
an integral equation, and can only be solved numerically for a
general density. Nevertheless, we do provide analytical results
for nc as a function of ni in various limits, and study the
dependence of nc on the model semiconductor parameters
g, κ, and m.

Using the expression for τq,t , we find the critical density
nc for a given ni using the IRM criterion, which is restated in
terms of the scattering transport time as

τt,qεF = h̄, (15)

where εF = h̄2k2
F /2m is the Fermi energy. We call the IRM

criterion that uses τt and τq as the transport and quantum IRM
respectively. Additionally, we also calculate the exponent α

defined by α = ∂ ln nc/∂ ln ni (such that nc ∼ nα
i ). The ex-

ponent α will be a precise theoretical prediction that can be
compared with experimental results. Moreover, α will be dif-
ferent for the nc calculated via the quantum scattering time and
the transport scattering time, and can be used to distinguish
between the two IRM mechanisms. Qualitatively, the value of
α is a direct measure of the strength of the screening in the
system, since the screening parameter qs is related to nc as

FIG. 1. (a) nc as a function of ni using the quantum IRM and
transport IRM criterion. There is a value of ni below which nc >

ni, and is in the region of unphysical compensation. The differ-
ence between the quantum IRM and transport IRM grows as ni

increases, with the nc from quantum IRM being much greater than
nc from transport IRM for large ni (b) Evolution of α(nc ), where
α = ∂ ln nc/∂ ln ni. For small nc, α = 1, while for large nc, α = 3/4
and 3/5 for quantum and transport IRM respectively.

qs ∼ n
− 1

6
c , and nc increases monotonically with ni. In the low-

density limit of nc � eδ , the screening parameter qs � 1, and
thus the corresponding impurity density will be approximately
equal for both the quantum IRM and the transport IRM, since
the quantum scattering time and transport scattering time
are approximately equal in the strong-screening limit. In this
limit, α is equal for both quantum IRM and transport IRM. In
the limit of qs � 1, we have

h̄ = τtεF ∼ k3
F q4

s εF /ni ∼ nc/ni, (16)

and thus we get nc ∼ ni, which gives α = 1 for ni � eδ (qs �
1). In the opposite limit of qs � 1, α is different for transport
IRM and quantum IRM. This is because τt ∼ −1/ ln qs, while
τq ∼ q2

s , when qs � 1. For the transport IRM, we have (for
qs � 1)

h̄ = τtεF ∼ −k3
F εF / ln qsni ∼ n

5
3
c /ni, (17)

which gives nc ∼ n
3
5
i for transport IRM in the weak screening

limit. Correspondingly, for the quantum IRM, we have

h̄ = τqεF ∼ k3
F εF q2

s /ni ∼ n
4
3
c /ni, (18)

which gives us nc ∼ n
3
4
i for quantum IRM. Thus, the depen-

dence of the MIT density on the impurity density is weaker for
the transport IRM approximation compared with the quantum
IRM approximation.

In Fig. 1(a), we show the numerically calculated nc as a
function of ni for the Si band parameters using both transport
and quantum IRM. Indeed, as expected, for small ni (qs � 1),
the value of nc is linearly proportional to ni for both the
transport and quantum IRM. Due to the form factor of the
RPA screening function F (x), the nc calculated from transport
IRM is greater than the nc calculated from quantum IRM. In
the other limit of large ni (qs � 1), the nc calculated from
quantum IRM is greater than the nc calculated from trans-
port IRM. Moreover, the nc calculated from quantum and
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FIG. 2. nc vs ni for different degeneracy g calculated using
(a) quantum IRM and (b) transport IRM. In the case of quantum
IRM, when g > 7, the relation nc < ni is true for all ni, while for
g < 7, there is a density n∗ when nc = ni = n∗, and below which
nc > ni holds. Similarly, in the case of transport IRM, when g > 8,
then the relation nc < ni holds for all ni.

transport IRM scale with different power laws with respect
to ni. Figure 1(b) shows the corresponding evolution of α,
which monotonically decreases with increasing nc. For both
the quantum and transport IRM, α is bounded from above by
α = 1. As we increase ni, α decreases towards α = 0.75 for
quantum IRM, while for transport IRM it decreases to α = 0.6
for large ni.

Unlike 2D semiconductors, the carrier density of 3D semi-
conductors cannot be easily independently tuned from the
impurity density (since gating is typically ineffective in 3D),
and since the carrier density arises from ionized dopants
(which act as impurities), we have the constraint n � ni. In
terms of the compensation K , defined via n = (1 − K )ni, in
3D semiconductors we always have K � 0 since, in general,
there are always unintentional random donors and acceptors
in the environment even when the semiconductor is deliber-
ately doped by just one type of dopants. As we can see from
Fig. 1(a), the K = 0 point is at the intersection of the nc(ni )
curve with the nc = ni curve, which gives us a characteristic
density n∗ satisfying nc(n∗) = n∗. Thus, the physically valid
regime is ni � n∗. In the low-density limit (qs � 1), since
the critical density goes as nc ∼ ni, we can have a situation
where ni > nc is true for all ni, and the Anderson localiza-
tion always occurs at finite compensation. Analytically, this
can be understood by evaluating the constant of proportional-
ity between nc and ni, and we find

nc = 8πCt,q

3g
ni, (qs � 1) (19)

where

Ct,q =
∫ 1

0

γt,qx2γt,q−1

F (x)2
dx. (20)

From this expression, we find that for the quantum (transport)
IRM, when g > 7 (g > 8), the Anderson localization always
occurs at finite compensation because nc < ni is true for all ni.
The corresponding minimum value of the critical compensa-

FIG. 3. nc vs ni for different κ while keeping m = 0.4me con-
stant, calculated using (a) quantum IRM and (b) transport IRM.
(c) and (d) are the same as (a) and (b), but with m varied (shown in
units of me) while κ = 12 is kept fixed. In the case of transport IRM,
the critical density goes as nc ∼ g((m2/κ2)ni )3/5, for quantum IRM it
goes as nc ∼ (g1/3(m/κ )nc )3/4. As a result, in both the quantum and
transport IRM, the critical density increases with increasing m, and
decreases with increasing κ .

tion is given by

Kc = 1 − nc

ni
= 1 − 8πCt,q

3g
. (21)

When g � 7 (g � 8), the minimum compensation at which the
Anderson localization occurs is Kc = 0 for quantum (trans-
port) IRM. In Fig. 2, we show the nc(ni ) curve for various
degeneracy using the quantum IRM, and as expected we see
that nc < ni is true for all ni above a certain value of degener-
acy g. Nominally, the conduction band in Si has gv = 6, and
therefore, g = 12 within the effective mass approximation,
implying that any doping-induced MIT in strictly uncompen-
sated Si conduction band (with K = 0) cannot be an Anderson
localization transition, assuming that the valley degeneracy
is not lifted by random strain or other effects beyond the
effective mass approximation.

For completeness, we also analyze the low-density and
high-density dependence of nc on the effective mass m and
the dielectric constant κ , and the corresponding results are
shown in Fig. 3. At low density and strong screening, as we
have noted before, nc is independent of m and κ , and depends
only on g with nc = 8πCt,qni/3g. As expected, in Fig. 3, in
the small nc limit there is little variation seen in nc as κ and
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m are varied. At high density and weak screening, nc depends
on g and m as

nc ∼
(

g
1
3

m

κ
nc

) 3
4
, (22)

for quantum IRM, while for transport IRM nc varies as

nc ∼ g

(
m2

κ2
ni

) 3
5

. (23)

In the quantum IRM, nc is inversely proportional to κ , while
for the transport IRM it is inversely proportional to κ1.2. As
expected, in Figs. 3(a) and 3(b), nc does decrease with increas-
ing κ . Similarly, in the quantum IRM, nc is proportional to m,
while for the transport IRM it is proportional to m1.2, and as
shown in Figs. 3(c) and 3(d), nc increases with increasing m.

We note that, by contrast, the critical MIT doping densities
for the Mott and percolation transitions [defined by Eqs. (1)
and (2)] go respectively as (m/κ )3 and m/κ through the de-
pendence of the Bohr radius on the effective mass. In addition,
the Mott transition critical density is independent of K or

ni whereas the percolation transition density goes as ∼n
2
3
i in

Eq. (2). Also, both Mott and percolation critical densities are
manifestly independent of the valley or spin degeneracy.

To summarize, we have analyzed the various high-density
and low-density limits of the Anderson localization criti-
cal density using the quantum and transport IRM criterion.
Experimentally, bulk semiconductors are always at a finite
compensation where the carrier density is lower than the im-
purity density (n < ni). To make a realistic connection with
experiments, in the next section, we provide analytical results
for the critical density as a function of the compensation K
and analyze the high compensation and low compensation
behaviors of the critical density.

IV. CRITICAL DENSITY AS A FUNCTION
OF COMPENSATION

Having described the behavior of the critical density as a
function of impurity density in various regimes of density,
we now provide analytical results for the critical density as
a function of compensation K , and compare the analytical
results with the exact numerically calculated nc. Finally, we
compare the critical densities from various mechanisms—
Mott, Anderson, and percolation—to predict the regions of
compensation where we expect the MIT to be primarily of
the Anderson localization type. We emphasize that the Mott
transition critical density is completely independent of com-
pensation since it depends only on the Bohr radius.

We first calculate nc as a function of K using the quantum
IRM, because the analytical results are tractable as compared
with transport IRM, since τt is log-singular in qs for small qs.
From the quantum IRM criterion τqεF = h̄, we find ni as a
function of nc to be

ni = h̄k2
F /2m

m
8π h̄3k3

F

(
4πe2

κ2

)2 ∫ 1
0 dx x

(x2+q2
s F (x))2

= fq(nc). (24)

We first focus on the small-K limit. The zero compensation
K = 0 critical density is defined by the fixed point of f ,
fq(nc) = ni = nc, which we call n∗. Slightly away from n∗,

we define ni = n∗ + δni and nc = n∗ + δnc satisfying ni =
fq(nc). Series expanding fq(nc) to first order in δnc gives

δni � ∂n fq(n)|n=n∗δnc = Dqδnc, (25)

where we define Dq = ∂n fq(n)n=n∗ , which is given by

Dq = 5

3
− 2

3
q2

s

1∫ 1
0 dx x

(x2+q2
s F (x))2

∫ 1

0
dx

xF (x)(
x2 + q2

s F (x)
)3 ,

(26)

where the expression for Dq is evaluated at n = n∗. Using
δni = Dqδnc, and ni = nc/(1 − K ), we write nc in terms of
K to find

nc = n∗(1 − K )

1 + Dq

1−Dq
K

� n∗
(

1 − 1

1 − Dq
K

)
� n∗e− 1

1−Dq
K
. (27)

In the above equation, we presented nc as a linear function
of K , and as an exponential function of K . Although both of
the expressions are consistent with each other in the limit of
K → 0, we find that the exponential function agrees better
with the numerical calculation of nc for larger ranges of K .

Next, we consider the limit of K ∼ 1 (qs � 1). In this
regime, we approximate the integral inside the expression for
τq by setting F (x) = 1. The integral reduces to∫ 1

0
dx

x(
x2 + q2

aF (x)
)2 � 1

2

1

q2
s

(
q2

s + 1
) . (28)

Thus, the expression for ni becomes

ni = h̄2k2
F /2m

m
8π h̄3k3

F

(
4πe2

κ2

)2 ∫ 1
0 dx x

(x2+q2
s F (x))2

= ηn
4
3
c
(
ζn

− 1
3

c + 1
)
,

(29)

where we define

η = 4h̄2ge2

mκ
(

4πe2

κ

)2

(
6π2

g

) 4
3

, ζ = gme2

2πκ h̄2

( g

6π2

) 1
3
. (30)

Using ni = nc/(1 − K ), we simplify the expression for ni(nc)
to get

nc =
(

1

η(1 − K )
− ζ

)3

� 1

η3(1 − K )3
. (31)

We repeat the same analysis for the transport IRM case
to derive the large K and small K analytic behavior. The
corresponding definition of ft (nc) is given by

ni = h̄k2
F /2m

m
8π h̄3k3

F

(
4πe2

κ2

)2 ∫ 1
0 dx 2x3

(x2+q2
s F (x))2

= ft (nc). (32)

The analysis of the low-K behavior proceeds similarly to the
quantum IRM case, which gives us

nc = n∗(1 − K )

1 + Dt
1−Dt

K
� n∗

(
1 − 1

1 − Dt
K

)
� n∗e− 1

1−Dt
K
, (33)

where we define

Dt = 5

3
− 2

3
q2

s

1∫ 1
0 dx x3

(x2+q2
s F (x))2

∫ 1

0
dx

x3F (x)(
x2 + q2

s F (x)
)3 . (34)
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The large-K behavior, on the other hand, is not as straight-
forward as in the quantum IRM case. This is because in
the qs � 1 limit, the integral in the expression defining τt

reduces to ∫ 1

0
dx

x3(
x2 + q2

s F (x)
)2 � − ln qs, (35)

which contains a ln qs singularity. The corresponding expres-
sion for ni becomes

ni =
2π h̄4

(
6π2

g

) 5
3

m2
(

4πe2

κ

)2

n
5
3
c

−δ + 1
6 ln nc

, (36)

and using ni = nc/(1 − K ), the expression simplifies to

1 − K = γ

1
6 ln nc − δ

n
2
3
c

, (37)

where we define

γ = m2
(

4πe2

κ

)2

2π h̄4
(

6π2

g

) 5
3

. (38)

The expression for nc cannot be analytically inverted due to
the ln nc term; however, we can perform an iterative approxi-
mate inversion as follows:

nc =
(

γ

1
6 ln nc − δ

1 − K

) 3
2

�
(

γ

1
4 ln

(
γ

1−K

) − δ

1 − K

) 3
2

. (39)

In performing the approximate analytical inversion to find nc

as a function of K , we ignored terms of the order ln ln nc.
With the analytic dependence of nc as a function of K , we

proceed to provide a comparison of the analytic results with
the numerically calculated exact values of nc. In Fig. 4(a), we
show the comparison of the small K numerically calculated
nc from quantum IRM as a function of K , with the analytic
formula in Eq. (27). We see that the exponential analytic for-
mula agrees better with the numerical result for a larger range
of compensation as compared to the linearized function. In
Fig. 4(b), we show the comparison of the corresponding large
K analytic formula Eq. (31) with the corresponding numerical
result. We see that the agreement of the analytic result is very
good with the numerical result, all the way up to small K . In
Figs. 4(c) and 4(d), we show the comparison of the small K
and large K numerical result using transport IRM, with the
corresponding analytic results based on Eq. (33) and Eq. (39)
respectively. In the regime of low compensation, we find that
the agreement of the exponential formula is almost exact up
to compensation of K ∼ 0.25. The large-K analytical formula,
on the other hand, overestimates nc by a factor of about ∼√

10
as compared to the numerical result. This disagreement is
caused by ignoring the ln ln n corrections in Eq. (39); however,
the disagreement vanishes if we look at the close vicinity of
K ∼ 1. We also calculate the minimum critical conductivity,
σc = σ (n = nc), at the Anderson localization point, defined
by [52]

σc = nce2τt (nc)/m. (40)

FIG. 4. (a) Comparison of analytic formulas from Eq. (27) with
numerically calculated nc as a function of compensation K for quan-
tum IRM. We see that for small K , the exponential formula agrees
well with the numerically calculated result. (b) Comparison of large
K analytic formula Eq. (31) for nc(K ) with the numerical result for
quantum IRM. We see that the analytic formula agrees well with
the numerical result all the way down to K = 0. (c) Same as (a),
for transport IRM with the analytic formula from Eq. (33), we see
that the exponential formula is in good agreement with the numerical
result. (d) Same as (b), with transport IRM using the analytic formula
from Eq. (39). While the analytic result matches the numerical result
for large K , the agreement is not very good for small K since we
ignored the ln ln nc terms in the analytical formula.

Note that conductivity is always defined using the transport
scattering time. Using the transport IRM, at the Anderson
localization point, the transport scattering time is given by
τt = h̄/εF , and the critical conductivity becomes

σc,t = nce2h̄/(mεF ) = e2

h̄

π

(6π2/g)
2
3

n
1
3
c . (41)

The corresponding formula for σc,q using the quantum IRM
is not straightforward, because the critical density nc should
be calculated using the quantum IRM, and then the calculated
value of nc should be used to find the transport scattering time
τt . In Figs. 5(a) and 5(b), we show the critical conductivity for
both the quantum and transport IRM as a function of nc and
compensation K respectively. While for low density (qs � 1)
σc,q and σc,t agree, they differ for large density (qs � 1) where

σc,q ∼ n
2
3

c
ln nc

.
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FIG. 5. Conductivity σc at the Anderson localization point as a
function of (a) nc and (b) compensation K . (a) We see that as a

function of nc, σc calculated from transport IRM follows σc,t ∼ n
1
3
c

for all nc. On the other hand, while σc calculated from quantum IRM

follows σc,q ∼ n
1
3
c for small nc, it increases at a faster rate for large nc

and follows σc,q ∼ n
2
3
c . (b) As a function of compensation K , we are

never in the small nc regime, and σc,q > σc,t is always true.

While the above calculation for σc is done at the MIT
critical density nc, we additionally calculate the scaling form
of the conductivity for a generic carrier density n and impurity
density ni, on the metallic side of the MIT. In the low-density
limit (which is relevant close to the MIT), the transport scat-
tering time is asymptotically given by

τt ∼ k3
F q4

s /ni ∼ n1− 4
6 /ni ∼ n

1
3 /ni. (42)

Thus, the conductivity scales as

σ (n) = ne2τt/m ∼ n
4
3 /ni. (43)

We emphasize that the above expression is simply a power-
law exponent for the growth of the conductivity as a function
of carrier density, and not a critical exponent (if it exists)
for the MIT. On the other end of large carrier density, the
transport time is given by τt ∼ −k3

F / ln qsni ∼ n/ni ln n, and
the corresponding conductivity scales as σ (n) ∼ n2/ni ln n.
These power laws (with the conductivity exponent varying
from 4/3 at low density to 2 at high density) that we derive
is calculated using Boltzmann transport, which is valid only
on the metallic side of the metal-insulator transition. They are
valid in the regime n > nc, and are in agreement with some
experiments [53].

Finally, in Fig. 6, we show the comparison of nc (calculated
using the IRM criterion), nM (calculated using the Mott crite-
rion), and np (calculated using the percolation localization). In
terms of compensation, the expression for np is given by

np =
(

0.7

aB

)3 1

(1 − K )2
. (44)

Although we have shown np for all ranges of compensation,
the percolation mechanism for MIT is valid only at high com-
pensations. Figures 6(a) and 6(b) show the comparison with
nc calculated based on quantum IRM, with (b) showing the
comparison between nc and np at large K . Since nc ∼ 1

(1−K )3 ,
as expected the quantum IRM density becomes larger than

FIG. 6. Comparison of nc (for valley degeneracy gv = 1 and
gv = 2), Mott density nM and percolation transition density np (a) us-
ing quantum IRM, for all K , (b) using quantum IRM, zoomed into
large K region. (c) and (d) are the same as (a) and (b) respectively,
with the corresponding nc calculated using transport IRM. For very
small K , the Mott transition is the leading mechanism for both quan-
tum and transport IRM. Near K ∼ 0.2, the IRM mechanism becomes
relevant for the MIT. For large K > 0.8, there is close competition
between the percolation transition and IRM mechanism. At very
large K , as we see in (b), the quantum IRM mechanism wins over
the percolation transition as the leading mechanism, however, as we
see in (d) the percolation transition closely wins over the transport
IRM mechanism.

the percolation density. At small K , the Mott mechanism
dominates over the quantum IRM till K ∼ 0.2, after which
the IRM criterion becomes the main mechanism for the MIT.
Figures 6(c) and 6(d) show the same results as Figs. 6(a) and
6(b), but with nc calculated using the transport IRM instead
of the quantum IRM. At small K , the Mott transition remains
dominant till a larger value of compensation (as compared to
the quantum IRM). Increasing the valley degeneracy makes
the transport IRM criterion the dominant mechanism for lower
compensations. For large K ∼ 1, the percolation transition
prevails over the transport IRM nc, because for the transport
IRM, nc ∼ 1

(1−K )
3
2

near K ∼ 1, while the percolation transi-

tion density goes as np ∼ 1
(1−K )2 . As a result, near K ∼ 1,

np � nc. We mention, however, that the percolation transi-
tion is based on semiclassical arguments involving conducting
paths through the inhomogeneous puddle disorder landscape
of “lakes and mountains”, and it is likely that at T = 0,
once quantum tunneling through the “mountains” becomes
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dominant, the percolation transition crosses over to the Ander-
son localization transition since both are disorder-dominated
transition from a conductor to an insulator. Further discussion
of percolation is well beyond the scope of the current paper
where our focus is entirely on the crossover conductor-to-
insulator transition density arising from the IRM coherence
criterion.

V. ANDERSON LOCALIZATION FOR METALS

Before we conclude, we provide a brief discussion on
the existence of disordered induced Anderson localization in
metals. Regular metals have a large carrier density, with the
Fermi level inside the conduction band. The Fermi momentum
(wavelength) of metals is large (small). An important charac-
teristic of metals is that they completely screen the charged
impurity potential, strongly suppressing the effects of random
charged disorder. Effectively, the dielectric screening constant
becomes

ε(q) � (qT F /q)2F (q/2kF ), (45)

and the resulting screened impurity potential given by

uq = 4πe2

q2
T F F (q/2kF )

� 4πe2

q2
T F

, (46)

where we work in the small q limit, and additionally set
κ = 1 for metals. The resulting impurity density required for
localizing the electrons is given by the same as Eq. (19), with

ni ∼ nc/4. (47)

Figure 7(a) shows the numerically exact solution of the IRM
criterion [Eq. (3)] for the range of densities relevant to metals.
We note that the required impurity density to localize the
electrons is of the same order of magnitude as that of the
carrier density, and is larger than the carrier density for nc �
1022 cm−3. This is an unphysically high-impurity density (ap-
proximately one impurity per unit cell), making it essentially
impossible to Anderson localize regular metals, and indeed
the Anderson localization has never been observed in regular
high-density metals.

Due to the large carrier density, the Fermi wavelength in
metals is often very small, with k−1

F ∼ 10−8 cm. In such sit-
uations, the Fermi wavelength can end up being smaller than
the lattice constant a of the crystalline metal. For coherent
transport, however, the electron wavefunction needs to be co-
herent not just over the length scale of the Fermi wavelength,
but also over the length scale of the crystalline structure. As
a result, for regular metals, the IRM criterion is often restated
as [54–57]

lMFP = a a � k−1
F , (48)

lMFP = k−1
F a < k−1

F . (49)

With the IRM criterion lMFP = a, we plot the resulting im-
purity density as a function of lattice constant a for various
values of nc in Fig. 7(b). We show the required impurity den-
sity as a function of critical density for various values of lattice
constants in Fig. 7(c). The required impurity density is very
large (>1023 cm−3), and unphysical when n � 1023 cm−3. In
metals and semimetals that have relatively low carrier density

FIG. 7. (a) Impurity density ni as a function of critical carrier
density nc from the IRM criterion lMFP = k−1

F . (b) ni as a function of
lattice constant a for various values of nc, using the IRM criterion for
metals lMFP = a. (c) ni as a function of nc for various values of lattice
constant a, using the IRM criterion for metals.

(n ∼ 1020−21 cm−3), it is indeed possible to localize the elec-
trons with a very large amount of disorder. Such a situation has
been observed in iron compounds [39,58], cuprates [59–61],
and graphene [62] among others [8]. By contrast, regular
high-density metals cannot be localized by disorder since the
necessary amount of disorder is unphysical.

VI. CONCLUSIONS

We develop a theory for the doping induced metal-insulator
transition in bulk semiconductors assuming the transition to
be a quantum Anderson localization, as defined by the IRM
criterion for the loss of coherent transport, due to carrier scat-
tering by screened Coulomb disorder associated with spatially
randomly localized quenched ionized dopant atoms. Our the-
ory provides specific analytical predictions for the dependence
of the critical density nc on the random charged impurity

density with nc ∼ ni and nc ∼ n
3
5
i in the low-(qs � 1) and

high-(qs � 1) density limit, respectively, using the transport
IRM. A key feature of our theory is a specific prediction on
how the critical density varies with compensation K : nc ∼

1

(1−K )
3
2

using the transport IRM. A summary of our analytic

results is shown in Table I. We note that nc diverges as K
approaches unity since the metallic phase is totally suppressed
for complete compensation, and the system is thus always a
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TABLE I. Summary of our analytical results results at the low
density (qs � 1) and high density (qs � 1) limits.

IRM Quantum IRM Transport IRM

nc(qs � 1) ∼ 8πCq

3g ni ∼ 8πCt
3g ni

nc(qs � 1) ∼(
g

1
3 m

κ
ni

) 3
4 ∼g

(
m2

κ2 ni

) 3
5

8πCt,q/3
∫ 1

0 dx x/F (x)2 ∼ 7.3
∫ 1

0 dx 2x3/F (x)2 ∼ 8.8
nc(K � 1) ∼n∗ exp

( − 1
1−Dq

K
) ∼n∗ exp

( − 1
1−Dt

K
)

nc(K ∼ 1) ∼1/η3(1 − K )3 ∼γ
3
2 /(1 − K )

3
2

σc(qs � 1) ∼g
2
3 n

1
3
c ∼g

2
3 n

1
3
c

σc(qs � 1) ∼ κ

mg2/3 n
2
3
c / ln nc ∼g

2
3 n

1
3
c

trivial insulator with no conducting carriers. Our predicted K
dependence of the MIT has been observed experimentally, es-
tablishing the relevance of the Anderson localization scenario
to the MIT phenomenon on semiconductors [63]. We mention
that the competing strict Mott transition scenario does not
predict any compensation dependence of the critical density,
which is universal in the Mott transition scenario independent
of K . We believe that the Anderson localization picture applies
increasingly more accurately with increasing compensation
whereas the Mott transition picture perhaps applies better to
strictly uncompensated systems [53,64–66]. There is no inde-
pendent way of ensuring a sample to be uncompensated since
the unintentional compensation due to the unknown presence
of both donors and acceptors is more likely generic. Since the
randomness is enhanced for higher compensation, it is likely
that the doping induced MIT crosses over from being more
Mott like for uncompensated semiconductors to being more
Anderson-like for compensated semiconductors.

Our theory uses Boltzmann transport to calculate the trans-
port scattering time and conductivity. However, Boltzmann
transport is valid only in the metallic regime, and the in-
sulating transition never shows up within this framework.
Instead, we approach the MIT from the metallic side, where
Boltzmann transport is valid, and operationally define the
MIT using the IRM criterion. Near the IRM point, Boltzmann
transport is not expected to be quantitatively valid. On the
other hand, the IRM criterion allows us to derive a large
collection of analytical results, trends and power laws, which
are expected to be qualitatively correct. Our theory is by no
means the complete theory of Anderson localization, but it
nonetheless provides a lot of insight about the behavior and
properties of the metal-insulator transition in semiconductors.
We emphasize that our MIT is synonymous with IRM, and we
uncritically assume that the IRM criterion gives the condition
for MIT. Our theory would not describe any MIT, which
happens far away from the IRM condition.

The theory is at T = 0. At finite, but low temperatures,
ignoring the exponentially small thermal carrier excitation,
the main effects would be a thermal weakening of screen-
ing and a thermal smearing of the Fermi surface, which
oppose each other in affecting the mean free path (and the
effective scattering rate). In three dimensional semiconduc-
tors, the thermal averaging effect wins out over reduced
screening, producing an O(T 2) increase in the effective mean
free path, consequently leading to a decreasing nc with

increasing temperature (keeping all other parameters fixed).
Of course, with further increase in temperature, thermal oc-
cupancy of ionized carriers complicates the picture as the
system becomes “trivially” metallic except the conductivity
is thermally activated akin to insulators. We note that for
the Mott transition, however, the only finite temperature ef-
fect would be a suppressed screening, leading consequently
to an increasing critical MIT density with increasing tem-
perature, again the increase is a weak O(T 2) effect. The
difference between the thermal effects on the critical density
between the Anderson localization and the Mott transition
can, in principle, be used to distinguish, which mechanism
may be operational in a particular observation of the doping
induced MIT.

We note that our theory can only obtain the critical density
for the MIT, and cannot predict the critical exponent since our
theory is not a critical (or scaling) theory, but is a theory for the
doping induced crossover between a metal and an insulator.
The IRM criterion describes a crossover and not a transition,
and is thus well suited to predict the transition or the crossover
density, but not any critical behavior of the conductivity near
the transition point. Our theory, being based on the Boltzmann
transport theory, predicts a finite resistivity at the crossover
point defined by nc, and the IRM criterion asserts that the
system is a metal (with increasing resistivity with increasing
temperature) for n > nc and an insulator (with decreasing
resistivity with increasing temperature) for n < nc [67]. There
is no obvious critical scaling behavior of the conductivity in
our theory since we use the Boltzmann transport formalism
to calculate the mean free path. By contrast, critical scaling
theories cannot predict the value of the critical density, which
is the focus of the current paper. It is possible to calculate the
critical point based on numerical scaling techniques for simple
models [68]; however, taking into account realistic Coulomb
disorder potential remains computationally challenging. Also,
calculating the critical density itself is well beyond the scope
of numerical scaling localization calculations, and the calcula-
tion of nc as a function of system parameters is the main point
addressed in our paper. Experimentally, nc is much easier to
determine than the scaling exponents [69,70], but our theory
is certainly limited, because of the use of the IRM criterion
in treating the MIT as a crossover at nc. The existence of a
minimal metallic conductivity at the MIT remains controver-
sial. Theories based on the scaling theory of localization find
that the MIT should be continuous, without a minimum value
of the conductivity [71], which has been verified by some
experiments [72,73]. However, a sharp MIT has also been ob-
served in semiconductor systems [74], including phase change
materials [38,40,44]. The challenge in distinguishing a sharp
MIT with a minimal conductivity from a continuous MIT is
in extrapolating the finite temperature conductivity to find
the corresponding T = 0 value, since there is no clear-cut
and universal way to perform the extrapolation. In fact, there
are double extrapolations involved in the study of the MIT
as a continuous transition: One must extrapolate σ (n, T ) to
T = 0 for each n, and then extrapolate the density to n =
nc in order to ascertain where σ (n = nc; T = 0) vanishes.
such extrapolations are inherently error prone, particularly
since σ (n) for n ∼ nc is extremely small. Recently, it has
also been noted that different methods of extrapolation can
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lead to differing conclusions with regard to the nature of the
transition [75].

The critical density nc in our IRM-based theory has a phys-
ical explanation, which requires no extrapolation and is thus
experimentally more appealing. The conductivity σ (n, T )
does not vanish at the critical density nc we obtain, but dσ/dT
changes its sign at n = nc from being negative for n > nc to
being positive for n < nc at low enough temperatures. The
basic idea is that a metal (insulator) has a conductivity de-
creasing (increasing) with temperature since at T = 0 a metal
(insulator) has finite (zero) conductivity. In fact, the definition
of a metal versus an insulator in terms of the temperature
coefficient of the conductivity is well established, and oper-
ationally effective since it requires neither an extrapolation
to T = 0 nor an extrapolation in density (in extracting the
critical density). Accepting that the “critical” density we cal-
culate is the crossover density where the derivative of the
conductivity changes its sign sidesteps the controversial issue
of the existence or not of a minimum metallic conductivity
since nc now is a crossover density defining a crossover from
an effective insulator for n < nc (with dσ/dT > 0) to an
effective metal for n > nc (with dσ/dT < 0). The possibility
that the actual critical density for the MIT is lower than our
calculated nc cannot be ruled out, but our calculated nc is
certainly close to any putative transition density (if the MIT
is indeed a continuous transition with σ (n) vanishing at the
critical density) since σ (n) varies fast near n ∼ nc. If nc is
indeed the crossover density where dσ/dT changes the sign,
there is no conceptual problem with σ (n = nc) being finite
since it is only the conductivity at n = nc, which, if the transi-
tion is indeed continuous, slightly on the metallic side of the
transition.

Since our theory is not a critical theory for the localization
transition, the concept of a critical exponent ν, where σ (n) ∼
(n − nc)ν close to the localization transition, does not apply.
The value of the localization exponent and whether such an
exponent even exists (i.e., whether the transition is continuous
or not) have been much discussed in the literature, but we
have nothing to add to this debate since ours is a theory for
the crossover associated with the loss of metallic coherence
and not a theory for the scaling localization itself. We can,
however, calculate an exponent “ν” defined by σ (n) ∼ nν

where our ν simply defines the power law growth of the 3D
conductivity with carrier density. It is straightforward to show
that for Coulomb disorder at low density (where qs � 1),
the conductivity exponent is 1.33 [76]. Thus, we predict that
ν = 1.33, which is in agreement with some experiments [53],
but not with others [74]. We emphasize that our calculated
exponent is not a critical scaling exponent, but a power-law
exponent for the density dependence of the conductivity. It
may be interesting to note that our low-density conductivity
exponent (ν = 1.33) for Coulomb disorder is actually very
close to the theoretical critical exponent for the 3D Ander-
son localization in correlated disorder as calculated by direct
numerical diagonalization on a tight binding lattice, finding
ν ∼ 1.3 − 1.5 [77]. Whether this is a pure coincidence with
no significance or not is unknown, but we believe that the con-
ductivity σ (n) should scale as ∼n1.33 in the low-temperature
metallic doped semiconductors for n � nc. This prediction
should be experimentally tested. Note that our theory predicts

a density dependence of the crossover exponent ν(n), with ν

increasing from 1.33 for qs � 1 (low density) to ν = 2 for
qs � 1 (high density) [76].

Our theory uses many approximations, in addition to as-
suming the MIT to be strictly a localization phenomenon.
We use RPA for screening the bare Coulomb disorder, which
should be adequate, but by no means exact. We use the
Boltzmann transport theory to calculate the mean free path,
which is reasonable when the mean free path is much larger
than 1/kF , but fails in an unknown way close to the transi-
tion point where lMFP = 1/kF . Since the Boltzmann theory
remains well defined for all values of lMFP as long as n > nc,
the approximation of using it all the way to the IRM point
of lMFP · kF = 1 introduces quantitative, but not qualitative,
errors. Going beyond our approximation including higher or-
der scattering diagrams would not improve the situation much
since the scattering regime close to the transition is most likely
nonperturbative, necessitating a fully numerical localization
calculation, which is beyond the scope of the current paper
where our interest in understanding general theoretical trends,
and in particular, the behavior of the MIT density nc on system
parameters. In any case, such a fully numerical exact local-
ization calculation taking into account long-range correlated
Coulomb disorder is computationally challenging and has not
been attempted in the literature. The goal of the current paper
is analytical understanding of the critical density on Coulomb
disorder rather than numerical precision.

A relevant question is how one can ascertain whether a
particular doping induced MIT in an experiment is more Mott
like or more Anderson like since the two theories emphasize
complementary physical mechanisms for the MIT (interaction
for Mott and disorder for Anderson). In general, as already
stated above, we believe that with increasing compensation,
disorder is enhanced, and therefore, the MIT becomes more
like an Anderson localization at higher compensations [78]. In
reality, of course, both interaction and disorder are important,
and a sharp distinction between Mott and Anderson is not
meaningful with the MIT being an Anderson-Mott transition
[79,80]. One simple rule to discern the two mechanisms could
be that whichever has a higher critical density in a particular
situation should win out since at low densities the system is
insulating for both mechanisms [38,40,44]. This simple rule
could in principle distinguish if a particular observed MIT is
more Mott like or more Anderson like. Also, the Mott critical
density is universal for each semiconductor as it depends
only on the Bohr radius whereas the Anderson critical density
varies with all system parameters, particularly the compensa-
tion. Any compensation dependence of nc argues in favor of
the Anderson transition [63].

In principle, an Anderson localization type MIT can
also be defined for metals and semimetals. However, met-
als screen charged impurities completely, and therefore, the
effects of charged impurity disorder is strongly suppressed.
Moreover, in most metals (with a typical carrier density of
n ∼ 1023 cm−3), the Fermi momentum is of the order kF ∼
108 cm−1. If it were possible to localize the electrons in a
metal, then the corresponding mean free path required by the
IRM criterion is lMFP ∼ k−1

F ∼ 10−8 cm, necessitating a dis-
order concentration of about ni ∼ 2 × 1023 cm−3—twice as
much as the electron density, which is impossible to achieve!
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Even amorphous and liquid metals (which are in some sense
maximally disordered due to lack of a crystalline structure)
are still conducting. Thus, in practice, the amount of disorder
required to localize electrons in metals is unphysically large,
unless the metal has relatively a very low density. Such a
situation can occur, for example, in cuprates or semimetals,
which have low carrier density of n ∼ 1021 cm−3, and can be
localized with a large amount of disorder. Our theory provides
a reasonable description for such low-density metals, and also
explains why Anderson localization has never been observed
in regular high-density metals.

We conclude by emphasizing that a full theory for the
MIT must include both the interaction effects of interelectron
Coulomb correlations intrinsic to the Mott transition and the

localization effects of the random Coulomb impurity disorder
inherent to the Anderson transition. A theory including both
to obtain the critical density remains intractable and is one of
the long-lasting unsolved problems in physics. How to include
both disorder and interaction in a theory on a nonperturbative
equal footing when both are strong remains open, and our pa-
per shows that neglecting the localization effects uncritically
is a mistake, certainly for highly compensated samples with
strong Coulomb disorder effects.
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