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Effects of orientational and positional randomness of particles on photonic band gap

Zichen Qin, Tao Liu , and Duanduan Wan *

School of Physics and Technology, Wuhan University, Wuhan 430072, China

(Received 13 February 2023; revised 3 May 2023; accepted 5 May 2023; published 17 May 2023)

A recent work [Phys. Rev. Lett. 126, 208002 (2021)] has explored how thermal noise-induced randomness
in a self-assembled photonic crystal affects photonic band gaps (PBGs). For the system of a two-dimensional
photonic crystal composed of a self-assembled array of rods with square cross sections, it was found that
its PBGs can exist over an extensive range of packing densities. Counterintuitively, at intermediate packing
densities, the transverse magnetic (TM) band gap of the self-assembled system can be larger than that of its
corresponding perfect system (rods arranged in a perfect square lattice and having identical orientations). Due
to shape anisotropicity, the randomness in the self-assembled system contains two kinds of randomness, i.e.,
positional and orientational randomness of the particles. In this paper, we further investigate how PBGs are
influenced solely by positional or orientational randomness. We find that compared to the perfect situation, the
introduction of only orientational randomness decreases the transverse electric (TE) band gap whereas having
no obvious effects on the TM band gap. In contrast, the introduction of only positional randomness decreases the
TE band gap significantly, whereas it can widen or narrow the TM band gap, depending on the packing density.
We also discuss the thermal (i.e., self-assembled) system where two kinds of randomness are present. Our paper
contributes to a better understanding of the role orientational randomness and positional randomness play on
PBGs and may benefit the PBG engineering of photonic crystals through self-assembly approaches.
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I. INTRODUCTION

The self-assembly feature of colloids, i.e., colloidal parti-
cles arrange themselves into an ordered structure, has intrinsic
physical meaning and potential application in engineering
functional materials [1,2]. Recent advances in synthesis have
allowed the realization of various anisotropic particles [3–11],
which leads to a diverse range of self-assembled super-
lattices. Simulations of hard colloids (e.g., Refs. [12–23])
predict complex structures from an even larger variety of
anisotropic shapes. When interparticle distances commen-
surate with wavelengths of light, colloidal self-assembly
has been explored as a route to fabricate photonic crystals
with photonic band gaps (PBGs) (e.g., Refs. [6,7,24–26]).
This bottom-up method has advantages, such as low cost,
low-energy consumption, adjustable PBG frequency through
particle size, and crystals can be produced over large ar-
eas [27–29]. Photonic crystals from self-assembly approaches
have been realized experimentally and proposed theoretically
(e.g., Refs. [30–36]).

An inevitable question about self-assembly approaches
is how “randomness” arising from thermal noise in a self-
assembled colloidal structure affects its PBGs. A recent study
explores two-dimensional (2D) self-assembled structures, i.e.,
parallel dielectric rods of infinitely long length with circu-
lar or square cross section, and finds that, in general, the
randomness in the self-assembled (i.e., thermal) structure de-
creases the PBGs, compared to the system of rods arranged
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in its corresponding perfect lattice [37]. However, for rods
with square cross sections at intermediate packing densities,
interestingly, the transverse magnetic (TM, the magnetic field
is in the plane perpendicular to the rod axes) band gap of
the self-assembled system can be larger than that of rods
arranged in a perfect square lattice. As this counterintuitive
observation only exists for rods with square cross sections but
not for rods with circular cross sections, we expect it can be
related to the shape anisotropicity of the square cross sections.
As shape anisotropicity leads to the existence of two kinds
of randomness (i.e., orientational randomness and positional
randomness) of the particles in the self-assembled system, it
remains unclear how orientational or positional randomness
alone will affect PBGs.

To pursue an answer to this question, in this paper, we
do a further investigation on the rods with square cross sec-
tions system. In particular, we consider four situations: the
perfect situation where rods are arranged in a perfect square
lattice and have no rotations, the random orientation situation
where rods are in the perfect square lattice as well but are
random in orientations, the random position situation where
rods are random in position whereas having identical orien-
tations, and the thermal situation where rods random in both
orientations and positions (see examples in Fig. 1). We find
that compared to the perfect situation, the introduction of
only orientational randomness decreases the transverse elec-
tric (TE, the electric field is in the plane perpendicular to
the rod axes) band gap whereas having no apparent effects
on the TM. In contrast, the introduction of only positional
randomness decreases the TE band gap significantly, whereas
it can widen or narrow the TM band gap, depending on
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FIG. 1. Snapshots of equilibrium configurations of N = 196 rods
with square cross sections in the four situations. Blue squares rep-
resent the cross sections of the dielectric rods, whereas white is
air. (a) The perfect situation. (b) The random orientation situation.
(c) The random position situation. (d) The thermal situation. Packing
densities are φ = 0.1, 0.5, and 0.9 (from left to right).

the parameter range. We also discuss the thermal (i.e., self-
assembled) system where both two kinds of randomness are
present. This paper contributes to a better understanding of the
role orientational and positional randomness play on PBGs
and may further benefit the PBG engineering of photonic
crystals through self-assembly approaches.

II. METHODS

We perform Monte Carlo (MC) simulations with periodic
boundary conditions to generate the two-dimensional struc-
ture of N = 196 rods with square cross sections, using the
hard-particle Monte Carlo module in HOOMD-BLUE [38,39].
For the random orientation situation, at a given packing den-
sity, we placed the centers of the rods in a perfect square
lattice, and then randomly rotated the rods using MC steps.
For the random position situation and the thermal situation,
we initialized the system at a low packing density, slowly
compressed it to a target packing density using MC steps,
and then equilibrated it. The difference is that for the random
position situation, only translational MC moves were needed.
See Refs. [13,37] for more simulation details. We used the
supercell method implemented in the open source code MIT

PHOTONIC BANDS [40] to obtain the photonic band structure
of equilibrated snapshots. We also used the finite element
package COMSOL MULTIPHYSICS to calculate the band struc-
ture of a few samples for a double check. In practice, to take
into consideration of the existence of possible defect modes,
instead of the band gap between the N th and the (N + 1)th
bands, we report the band-gap �ω which has the largest size

among all gaps between the (N − 5)th and the (N + 6)th
bands, where N is the particle number.

III. RESULTS AND DISCUSSION

Figure 1 shows equilibrium configurations of N = 196
rods with square cross sections at a few selected packing
densities in the four above-mentioned situations. In the perfect
situation, rods have no positional or orientational randomness
[Fig. 1(a)]. In the random orientation/position situation, rods
have only orientational/positional randomness [Figs. 1(b) and
1(c)]. In the thermal situation, rods have two kinds of random-
ness [Fig. 1(d)].

In order to study the influence of positional and orienta-
tional randomness on PBGs, we first plot the packing density
dependence of relative gap size (defined as �ω/ω0, with �ω

as the width of the PBG and ω0 as the central frequency) at
dielectric constant ε = 20 in the four situations (see Fig. 2).
We choose ε = 20 to be consistent with the previous study
[37]. We see that the four curves are basically divided into two
groups: The upper two curves represent the perfect situation
and the random orientation situation, whereas the lower two
curves represent the random position situation and the thermal
situation. For TE polarization, the perfect situation always has
the largest PBG. On the basis of the perfect situation, the intro-
duction of orientational randomness, which gives the random
orientation situation, is represented by the curve just below
the perfect situation’s. As we turn to see the lower two curves,
we find that the random position situation has a smaller PBG,
and when we again added orientational randomness and got
the thermal situation, it gives a larger PBG, represented by the
curve just above the random position situation’s. It is interest-
ing to see that when the rods are placed in a perfect lattice,
the introduction of orientational randomness may cause a loss
of PBG. However, when it comes to a system with positional
randomness, the introduction of orientational randomness can
always give rise to an increase in PBG.

For TM polarization, the situation is similar to the TE
polarization with another intriguing fact that the perfect sit-
uation and the random orientation situation have almost the
same PBGs at all packing densities where the differences
are comparable to numerical precisions. They look like two
overlapped lines in Fig. 2(d). Besides, although at most pack-
ing densities the perfect situation has the largest band-gap
size, at packing densities near φ = 0.6, it can be smaller than
the thermal situation and even the random position situation,
consistent with the previous finding [37].

To gain insight into why the perfect and random position
situations have almost the same gap size for TM polarization
whereas not for TE polarization, we plot the electric-field
magnitude of modes near the PBG in these two situations in
Fig. 3. For TM polarization, we observe in the perfect situa-
tion, below the PBG, the electric field is more concentrated
in a circle inside the square cross section of the particle and
decreases gradually as it goes away from the center [Fig. 3(a),
left]. The electric-field distribution around a particle is similar
for modes below the band gap in the random orientation
situation, and the rotation of particles has little effect on the
overall field distribution as the electric field is continuous
across the rod boundary [Fig. 3(b), left]. For modes above
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FIG. 2. Photonic band structure and band gap for arrays of par-
allel dielectric rods of square cross sections with side length a (a
is also the length unit) embedded in air (ε = 1). (a) An example of
the band structure of the TE and TM modes in the perfect situation
with ε = 20 and φ = 0.3. The inset shows the first Brillouin zone
for the periodic structure with the symmetry points indicated. The
light blue area represents the band gap observed. (b) Parallel results
for snapshots of N = 196 rods in the random orientation situation
with parameters the same as those in (a). The red lines indicate
the (N − 5)th and the (N + 6)th bands. The band gap (light blue
area) reported is the largest gap among all the gaps between these
two bands. The central frequency of the gap is denoted as ω0, and
the width of the gap is �ω (blue labels). (c) and (d) Gap size
�ω/ω0 as a function of φ for the TE mode (c) and TM mode
(d) with ε = 20. The inset in (d) is a zoomed plot. Except for
the perfect situation, the gap size is obtained by averaging over five
independent simulation snapshots. Error bars indicate the standard
deviation.

FIG. 3. Electric field magnitude for TM [(a) and (b)] and TE [(c)
and (d)] polarization, with ε = 20 and φ = 0.3. As an example, the
arrows show the polarization direction for the M point. (a) At the M
point of the first band (left), and the X point of the second band (right)
in the perfect situation [Fig. 2(a), right]. It shows 3 × 3 periods for a
better view. (b) Examples of modes below (left) and above (right)
the gap in the random orientation situation with N = 196 [Fig. 2(b),
right]. (c) and (d) Same as (a) and (b) for TE polarization.

the PBG, the field distribution in these two situations also
shows similar characters, i.e., the field distribution on every
particle is dipolelike and the overall distribution shows stripes
of strong and weak areas [Figs. 3(a) and 3(b), right]. In con-
trast, for TE polarization, the electric field is not continuous
in the direction perpendicular to the rod boundary, and, thus,
the orientation of particles has more significant influence on
the overall field distribution, e.g., when two particles are more
vertex-to-vertex aligned, the field in between is enhanced
[Fig. 3(d), right].

For the random position and the thermal situations [the
lower two curves in Figs. 2(c) and 2(d)], to confirm the
existence of the band gap, we show the electric-field distri-
bution of some TM modes around the PBGs in Figs. 4(a) and
4(b), and the magnetic-field distribution of some TE modes
around the PBGs in Figs. 4(c) and 4(d), respectively. The
existence of localized and extended modes around a PBG
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FIG. 4. Electromagnetic field distribution of the random position and the thermal situation in a system of N = 500 rods. The figures from
left to right are extended mode below the PBG, localized mode below the PBG, localized mode above the PBG, and extended mode above the
PBG, respectively. (a) The random position situation with φ = 0.3. (b) The thermal situation with φ = 0.3. (c) The random position situation
with φ = 0.5. (d) The thermal situation with φ = 0.6.

helps to demonstrate the PBG. Localized and extended modes
around a PBG have also been observed in other 2D systems
(e.g., Refs. [41,42]).

To better understand the random orientation and the ran-
dom position situations, we investigate a wider range of ε.
Figure 5 plots the relative gap size as a function of φ and
ε in the four situations with φ ∈ [0.1, 0.9] as that in Fig. 2,
and ε ∈ [2, 20]. As can be seen from the figure, at a same
φ value, the gap size increases as ε increases, and ε = 20
gives the largest gap size. A detailed comparison of the gap
sizes shows that the results are similar to that for ε = 20. For
TE polarization, the introduction of positional randomness
and orientational randomness always causes a reduction of
PBG, and when we together introduce these two kinds of
randomness, its gap size will always be larger than the one
of positional randomness, and at some packing densities may
be beyond the one of orientational randomness, however, will
still be below the gap size of the perfect situation. For TM

polarization, the random orientation and the perfect situation
have almost the same band gap size at all studied parameter
values. The random position situation at most packing den-
sities has a smaller PBG than the perfect one, but at some
intermediate packing densities can be larger than it. For the
thermal situation, just like what we find in TE polarization, its
PBG is always larger than the random position situation.

IV. CONCLUSIONS

To summarize, we studied photonic band gaps in disor-
dered 2D photonic crystals of dielectric rods with square cross
sections with two kinds of typical randomness of particle
position and orientation. We find that the band-gap size is
far more sensitive to disorder with positional randomness than
with orientational randomness. On this basis, we may consider
the orientational randomness as a perturbation. However, this
perturbation can lead to different effects, which may even

174110-4



EFFECTS OF ORIENTATIONAL AND POSITIONAL … PHYSICAL REVIEW B 107, 174110 (2023)

FIG. 5. Band-gap size (the percentage of �ω/ω0) as a function of φ and ε for the TE and TM modes. (a) The perfect situation. (b) The
random orientation situation. (c) The random position situation. (d) The thermal situation.

be quite the opposite, under diverse conditions. For TE po-
larization of the perfect situation, this perturbation can give
rise to a reduction of the PBG, whereas for both TE and
TM polarizations of the random position situation, it always
results in an expansion. And for TM polarization of the perfect
situation, this perturbation has no apparent impact on the gap
size. As positional and orientational randomness is present
for systems with any anisotropic particle shape, studies on
other particle shapes can be carried out in the future. We
hope our paper provides insight into understanding the PBG

dependence on positional and orientational randomness and
may further benefit the PBG engineering of photonic crystals
through self-assembly approaches.
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