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Crystal structure prediction of quasi-two-dimensional lead halide perovskites
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Two-dimensional lead halide perovskites are promising materials for optoelectronics due to the tunability of
their properties with the number of lead halide layers and the choice of an organic spacer. Physical understanding
for the rational design of materials primarily requires knowledge of crystal structure. Two-dimensional lead
halide perovskites are usually prepared in the form of films, complicating the experimental determination of
structure. To enable theoretical studies of experimentally unresolvable structures as well as high-throughput
virtual screening, we present an algorithm for crystal structure prediction of lead halide perovskites. Using an
automatically prepared classical potential we show that our algorithm enables fast access to a structure that can
be used for further first-principles studies.
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I. INTRODUCTION

In recent years, metal halide perovskites (MHPs) have
proven to be promising candidates for the future materials of
choice for manufacturing light-emitting diodes (LEDs) and
solar cells [1,2]. A subclass of MHPs of particular inter-
est for LED applications are the quasi-two-dimensional (2D)
layered perovskites (Q2DPs) due to larger exciton binding
energies, improved stability, and wider tunability of prop-
erties compared to three-dimensional (3D) perovskites [3].
Particularly, the Ruddlesden-Popper and Dion-Jacobson MHP
phases have gained significant attention [4,5]. The general
chemical formula of Ruddlesden-Popper perovskites (RPPs)
is R2An−1BnX3n+1, where R+ is a large amine spacer cation,
A+ is a smaller organic cation or Cs+, B2+ is a divalent metal
cation, X − is a halide anion, and n is the number of layers of
BX6 octahedra separated by a bilayer of R+ spacer cations (3D
perovskite ABX3 is obtained in the limit n → ∞). Similarly,
the chemical formula of Dion-Jacobson perovskites (DJPs) is
RAn−1BnX3n+1, with the difference compared to RPPs being
that R2+ is a diammonium cation. This generality of compo-
sition offers a great variety of possibilities in choosing n as
well as the particular chemicals involved in the synthesis of
the layered perovskites, allowing for the characteristic wide
tunability of the RPP and DJP physical properties [3].

Knowledge of the crystal structure of a material is the start-
ing point for understanding its physical properties. Despite
constant advances in methodologies [6–9], crystal structure
determination from powder-diffraction data cannot be yet
considered a trivial task because the information from 3D
reciprocal space collapses into its one-dimensional (1D) pro-
jection. Although not as straightforward as the structure
solution from single crystals, a huge number of crystalline
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phases have been successfully solved from the powder-
diffraction data over the years [10]. On the other hand,
when the sample is prepared in the form of a thin film,
as almost always is the case in Q2DP-based LED and/or
solar cell research, the determination of structure becomes
close to impossible not only due to the strong influence of
crystalline texture on the diffracted intensities but also due
to the limited and inadequate methodologies. There have
been some rare attempts to utilize a grazing incidence X-
ray diffraction (GIXRD) with molecular modeling aiming to
determine purely organic structures prepared in the form of
thin films [11], but, on the practical side, the implementation
in everyday laboratory work is restricted due to the require-
ment that data must be collected using synchrotron radiation.
Even if the equipment is readily accessible, due to currently
underdeveloped methodology that would properly deal with
texture-related issues of thin films, such an approach certainly
is not efficient enough to elucidate the immense number of
novel Q2DP structures that emerge on a daily basis. Consid-
ering the inability to solve the structures from the thin-film
diffraction data, one way to deal with unknown structures
in Q2DP films would be to prepare them in the form of a
single crystal or powders. However, there are experimental
difficulties when growing materials in the form of a single
crystal [12], for example, due to limitations in the stability. In
this scenario, many structures of large technological potential
remain unknown.

Moreover, it would be greatly valuable to know the struc-
ture even before the materials are synthesized. It is, therefore,
desirable to use a computational tool to find, understand, and
predict stable Q2DP crystal structures as well as their physi-
cal properties. Different computational approaches have been
proposed to explore the possibility of formation of various
3D perovskites [13–15]. Similar computational explorations
of Q2DPs have been scarce [16,17] and did not aim to find
the global minimum energy structure, most likely due to the
prohibitively vast compositional phase space and large system
sizes.
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FIG. 1. Flowchart of the procedure of generating an input LAMMPS file containing information on the structure and interatomic interactions
of a Q2DP.

Generally, density functional theory (DFT) is utilized
abundantly due to its well-known good balance between ac-
curacy and low computational cost. However, in the case of
Q2DPs, the approach to crystal structure prediction via DFT
suffers from several drawbacks. Optimizing an initial-guess
structure using a local structural relaxation algorithm gives
no guarantee that the final structure is the global minimum.
This may be resolved by exploring a sufficiently large part of
the potential energy surface (PES), but this is computation-
ally unfeasible, as in the case where Q2DPs unit cells may
contain several hundreds of atoms, giving rise to complex
PESs [18].

In this work, we introduce a workflow for predicting
candidate Q2DP crystal structures using classical model po-
tentials combined with DFT. The potentials are constructed
in an automated fashion and then employed to find a global
minimum structure via a minima hopping algorithm in the
vein of Goedecker [19], Amsler and Goedecker [20], and
Peterson [21]. In this work, we will refer to the developed
algorithm as GO-MHALP (global optimization via minima
hopping algorithm for layered perovskites). We aim to de-
velop a method which is generalizable, but specialized to
work for Q2DP structures with well-defined general structural
features, such as the alternating organic/inorganic layered
structure. Therefore, we expect to start from structures not
too far from a global minimum so that minima hopping is
a well-suited technique, as opposed to methods which work

well when starting far away from the global minimum, such as
particle swarm optimization [22] or genetic algorithms [23].
Our method works in principle for any candidate Q2DP whose
R+/R2+ and A+ compounds are organic cations consisting
of N, C, and H and whose inorganic perovskite octahedra
are PbBr6. The complete methodology is described in Sec. II
while validations of the model on RPPs containing buty-
lammonium (BA) and methylammonium (MA) and a DJP
containing 4-(aminomethyl)-piperidinium (4AMP) are pre-
sented in Sec. III. Additionally, we have extended the method
to predict an unknown Q2DP structure containing mixed-
halide perovskite octahedra PbBr3I3 [24].

II. METHODOLOGY

In the following two sections, we describe the procedure
of generating structures and the accompanying classical po-
tentials which are used as inputs for GO-MHALP. A visual
aid in the form of a flowchart of the procedure can be viewed
in Fig. 1. In the third section, we describe the GO-MHALP
algorithm itself with an accompanying flowchart in Fig. 2.

A. Initial structures generation

One of the advantages of structure prediction using global
optimization algorithms is that the final set of found structures
should not depend strongly on the starting structure inputted
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FIG. 2. Flowchart of the full GO-MHALP algorithm. Dashed lines indicate parameter changes at certain steps.

to the algorithm. However, in the particular case of minima
hopping, it is necessary to start from a region in configuration
space for which the potential has a physical meaning, i.e., in
our case, the starting structure should resemble a Q2DP. To
this end, we developed an automatized procedure for the gen-
eration of idealized Q2DP structures for a given R molecule.

We investigated three types of initially tetragonal cell
geometries with parallel or offset interlayer configurations,
making a total of six different types of input structures as
shown in Fig. 3. These cell types were chosen because
known Q2DP structures often form these geometries [25].
Furthermore, in the various cell types, the supercells can
be rearranged to produce equivalent structures, providing an
additional check of the independence of the found global
minimum on the initial guess structure. The parallel and offset
structures are related by a layer shift, while the 1 × 1 and√

2 × √
2 are subcells of the 2 × 2 cell type.

We prepared multiple template structures by arranging the
inorganic layers in ideal aforementioned configurations and
(for n > 1) placing MA molecules at the centers of inorganic
cages. The R+/R2+ organic cations are first added to the
template structures so that the NH3 groups of the cations are
placed approximately at the centers of the inorganic pockets.
For RPPs, the cations are reoriented in such a way so that
the vector from the N atom towards the respective cation’s
center of mass points in a predefined direction towards the
neighboring inorganic sheet. The interlayer spacing between
the inorganic sheets can be adjusted as needed to accommo-
date spacers of various lengths. We advise the reader to see

the code in Ref. [26] as well as Sec. 3 in the Supplemental
Material [27] for further details. All generated initial guess
structures are given in the Supplemental Material in CIF for-
mat as well.

Since we are ultimately interested in global structure op-
timizations in which the starting structure should not be of
decisive importance, this simple way of generating structures
works very well for our intentions since it is automatic and
fast.

B. Construction of classical potentials

Following previous work [28–32], and in particular the
idea behind the methylammonium lead halide (MAPI) family
of potentials developed by Mattoni et al. [30,31], we under-
take an approach where the total classical potential is modeled
as a sum of (i) nonbonding potential that depends only on
the interatomic distances with only two-body terms taken into
account and (ii) a bonding potential including bonds, dihe-
drals, and angles as described by general Amber force field
(GAFF) [33], a generalization of the assisted model building
with energy refinement (AMBER) [34] force field.

Denoting the list of positions of the nuclei with {R} :=
(R1, R2, . . . , RN ), the general form of the total potential en-
ergy can be written as

U ({R}) = 1

2

N∑
i, j

Ui j (Ri j ) + U bonding, (1)
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(a)

(b)

FIG. 3. Types of initial cell configurations. (a) Cross sec-
tions perpendicular to the long cell axis with the cell dimensions
labeled in units of Pb-Pb distance dPb-Pb = 6.080 Å. (b) Interlayer
configurations shown for the 2 × 2 cell type. The long cell axis is
shortened and organic molecules are removed for clarity. In the offset
configuration the layers are shifted by a quarter of the unit cell length
in the x and y directions.

where Ri j := |Ri − R j |. As in all effective-potential ap-
proaches, the electronic degrees of freedom do not enter the
calculation explicitly but are rather absorbed into the effective
interactions of the nuclei [35].

Ui j is separated into three parts, dealing with the non-
bonding inorganic-inorganic (II), inorganic-organic (IO), and
organic-organic (OO) interatomic interactions, respectively:

Ui j = U II
i j + U IO

i j + U OO
i j . (2)

The explicit form of the inorganic-inorganic interaction is

U II
i j (Ri j ) = Ai j exp(−Ri j/ρi j ) − ci j

R6
i j

+ qiq j

4πε0Ri j
, (3)

where the first two terms comprise the Buckingham poten-
tial [36] with the first term describing the Pauli repulsion
at small nuclei distance and the second term describing the
van der Waals interaction with Ai j , ρi j , and ci j as model
parameters. The final term is the Coulomb interaction between
two (possibly partial) ionic charges. This choice of the form
of the inorganic-inorganic interaction follows the approach
originally undertaken by Matsui et al. [28] to model MgSiO3
ilmenite and MgSiO3 perovskite. This simplified approach re-
gards the interactions within the inorganic layer as prevalently
ionic and cannot fully describe the covalent effects of lead-
halide interactions present in hybrid lead halide perovskites
[37–39]. Nonetheless, we choose this simplification for the
sake of the transferability of the potential. The limitations of
the Buckingham-Coulomb potential in describing lead-halide

interactions and more complex models which could possibly
resolve these shortcomings are discussed by Mattoni, Filip-
petti, and Caddeo [40]. The inorganic-organic interaction is
modeled as follows:

U IO
i j (Ri j ) = Ai j exp(−Ri j/ρi j ) − ci j

R6
i j

+ qiq j

4πε0Ri j

+ 4εi j

[
−

(
σi j

Ri j

)6

+
(

σi j

Ri j

)12]
, (4)

i.e., besides the Buckingham and Coulomb terms a Lennard-
Jones term is added with additional parameters εi j and σi j .
For (Pb, Br)-(C, N) interactions only the Buckingham and
Coulomb terms are used, while only Coulomb and Lennard-
Jones terms are used for (Pb, Br)-H interactions. This form
of the inorganic-organic interactions is appropriate due to the
fact that the inorganic (Pb, halide) and organic orbitals are
electronically separated [40]. Similarly, nonbonding organic-
organic interactions are described only by Lennard-Jones and
Coulomb terms:

U OO
i j (Ri j ) = 4εi j

[
−

(
σi j

Ri j

)6

+
(

σi j

Ri j

)12]
+ qiq j

4πε0Ri j
. (5)

For U II
i j , U IO

i j , and U OO
i j a cutoff parameter rc is used so that

for Ri j > rc only the long-range Coulomb interaction is cal-
culated using the P3M algorithm [41]. The bonding potential,
which, of course, concerns only interactions within organic
molecules, has the following form:

U bonding =
N∑
i j

Kb
i j

(
Ri j − R0

i j

)2 +
N∑

i jk

Ka
i jk

(
θi jk − θ0

i jk

)2

+
N∑

i jkl

Kd
i jkl

(
1 + cos

(
ni jklφi jkl − φ0

i jkl

))
, (6)

expressing bonds, angles, and dihedrals, respectively. Ri j are
two-body distances, θi jk are three-body angles, and φi jkl are
four-body dihedrals while the other factors are GAFF pa-
rameters. The main advantage of the GAFF force field is
its capability to describe a very large number of organic
molecules with an acceptable level of accuracy. Besides, its
standard working frame allows in principle an automatic atom
type assignment for any given organic molecule in its (reli-
ably) relaxed geometry.

The idea of GO-MHALP is to have a general and flexible
tool that can be applied to any organic molecule R in a can-
didate Q2DP structure. If the particular molecule is not found
in the local database of organic cations the potential can be
generated in the very first step provided a starting geometry
along with the GAFF philosophy. Shortly, to obtain GAFF pa-
rameters the geometry of the R+ molecule is optimized using
the Gaussian [42] program with the B3LYP [43–46] hybrid
DFT functional and 6-311G* basis set [47–49]. Consistently
with previous work [30], the electrostatic potential (ESP) of
the optimized isolated cation with +1 total charge is obtained
via the BP86 [43,50–52] generalized gradient approximation
(GGA) functional and the Def2TZVP [53,54] basis set. Partial
atomic charges are then obtained by directly fitting this ab
initio ESP using the restrained electrostatic potential (RESP)
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[55] method as implemented in the Antechamber [56] pro-
gram from the Amber16 suite [57,58]. Complete molecular
topology and GAFF parameters are generated and translated
to LAMMPS [59] format and added to the local database of
organic cations.

The parameters for the C-C, N-N, and H-H nonbond-
ing Lennard-Jones interactions are obtained from GAFF
parametrization as described above. As for the nonbonding
parameters concerning Pb-Pb and Br-Br interactions, the val-
ues of these are taken to be the same as the ones obtained
by Hata et al. [31] for MAPbBr3, barring the charges qi,
which for organic molecules we set to the partial charges
obtained by RESP fitting and for the atoms comprising the
inorganic perovskite structure we set qPb = +2 and qBr = −1.
The reason for this is that the charges from Hata et al. were
set by rescaling of charges obtained by Mattoni et al. [30] for
MAPbI3 and in both of these works the obtained charges of the
inorganic lattice PbBr3 do not sum up to 1. In Ref. [30] system
neutrality was then ensured by refitting the charge parameters
of the whole model (including MA) to data obtained via DFT.
The main physical shortcoming of setting integer charges is
the loss of the ability to describe a part of the covalency effects
in the lead-halide interactions [28]. However, for this work, by
setting integer charges we avoid the need for expensive DFT
calculations and refitting procedures, thus greatly increasing
the transferability of this method for construction of classical
potentials.

A benchmark of the accuracy of the potentials may be
found in the Supplemental Material [27].

C. Minima hopping

Minima hopping (MH) is an efficient and simple global
optimization method first developed by Goedecker [19]. The
general idea is to alternate between molecular dynamics (MD)
simulations and local structure optimizations (relaxations) af-
ter which some criteria are used to determine whether the
optimized structure will be accepted as a newfound local mini-
mum. A system may gain enough kinetic energy during MD to
overcome a potential barrier and, in this way, a complex PES
may be traversed to arrive at different potential energy basins.

The original MH method conceived by Goedecker con-
cerned only nonperiodic systems and therefore employed only
local optimizations of atomic positions. However, the ground
state of a crystalline system is fully determined not only by
atomic positions but also by the unit cell parameters. There-
fore, by using variable cell shape MD, Amsler and Goedecker
generalized the MH method to be functional for periodic sys-
tems as well [20]. Another variant of MH, dubbed constrained
minima hopping, was developed by Peterson [21]. Peterson
introduced a simple constraint, based on Hooke’s law, in order
to prevent dissociation of molecules adsorbed on a surface
during the MD portion of MH, thereby effectively reduc-
ing the configurational space to be explored by MH only to
configurations of interest (namely, those where the adsorbate
identity is preserved).

In this work, we combine and modify the approaches
introduced above to develop an MH algorithm suitable for
Q2DP global structure optimization: GO-MHALP. We sim-
ulate MD in the isothermal-isobaric (NPT) ensemble and

optimize the unit cell as well as atomic positions during lo-
cal optimizations. Additionally, we developed a scheme for
detailed exploration of local energy basins and on-the-fly se-
lection of the lowest energy structures found in them.

We implemented our algorithm based on an MH algo-
rithm already existing within the ASE [60] package using
the LAMMPSlib interface to read in the classical potential
described in Sec. II B. Now we present an outline of the
algorithm. A list of initial parameters and their descriptions
and values can found in Table I.

The input structure is fed into the algorithm and its cell
and atomic positions are optimized. This optimized structure
is the first entry in the list of found local minima. The initial
optimization is performed with a looser force convergence
threshold than following optimizations to avoid a long opti-
mization step since the initial structure may be far away from
a local minimum. For ease of writing, from now on we will
label the physical properties of the entries in the list of found
local minima with the subscript i, where i = 1, . . . , N so that
N labels the last found minimum. At this point, there is only
one structure in the list of found minima, i.e., N = 1.

An NPT [61–63] molecular dynamics simulation is per-
formed starting from the locally optimized structure at
temperature T = T0 and with other parameter values being as
listed in Table I. The values of the NPT related parameters
were chosen to ensure that the molecular dynamics is long
enough for the system to completely thermalize. Generally,
the starting NPT configuration is the last (N th) minimum in
the list of found minima and T varies during GO-MHALP
as described below. Ions are given random initial velocities
corresponding to a Maxwell-Boltzmann distribution of tem-
perature T . NPT is stopped after mdmin local minima have
been passed over with one pass counted if a sequence of
potential energies calculated at each MD step ends with two
downward points followed by two upward points.

The atomic positions and cell parameters of the last con-
figuration obtained by NPT dynamics are optimized. We label
the physical properties of this candidate structure with the
subscript c. After optimization, energy and structure similar-
ity checks are performed to determine whether the candidate
structure will be added to the list of local minima. First, Ec is
compared to EN ; if Ec > EN + Ediff, the structure is discarded
as being too high in energy, NPT temperature is increased, i.e.,
T → βT , and a new NPT or optimization cycle is started from
the N th minimum in the list of found minima. Otherwise, a
structure similarity check is performed. For structure compari-
son we use Oganov fingerprints [64,65], which were first used
in the context of MH by Amsler and Goedecker [20]. With
this method, for every structure a unique “fingerprint” may be
calculated and represented as a matrix in an abstract vector
space. The components of the matrix are sums of Gaussian-
smeared δ functions:

FAB(R) =
∑
Ak ,Bl

δ(R − Rkl )

4πR2
kl

NANB
V 


− 1, (7)

where the sum runs over all pairs of atoms of types A and
B found within the cutoff distance Rkl < Rc, with NA and NB

being the number of atoms of the respective type A and B in
the unit cell and V being the unit cell volume. Each fingerprint
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TABLE I. List of parameters used in the MH algorithm.

Outer loop Value Description

MHsteps 170 Algorithm stops after completing MHsteps minima hopping cycles
mdmin 4000 Number of local minima to be passed through before stopping NPT dynamics
T0 (K) 50 Initial temperature of NPT dynamics; temperature is reset to T0 if a minimum is accepted
β 1.1 Factor by which the temperature of the NPT thermostat is multiplied if a candidate

minimum is rejected
Ediff (eV) 1.1 If a candidate structure is greater in energy compared to the last found minimum by Ediff, the

candidate is rejected
NPT


t (fs) 0.5 Time step of NPT dynamics
P0 (eVÅ−3) 0.0 Pressure exerted on the system during NPT dynamics
τ (fs) 25.0 Characteristic timescale of the thermostat
W (eVfs2Å−3) 337.5 A constant in the barostat differential equation
Local optimizations

Optimizer BFGS The local optimization algorithm
Finit (eV Å−1) 0.05 Total force convergence threshold for the initial cell optimization
Fgeo (eV Å−1) 0.1 Total force convergence threshold for geometry optimizations
Fcell (eV Å−1) 0.01 Total force convergence threshold for cell optimizations
Oganov fingerprints

χ 0 0.005 Maximum cosine distance between two structures below which they are considered
to be the same structure


 (Å) 0.05 Width of the bins into which the Oganov fingerprint components are discretized
σ (Å) 0.1 Standard deviation of the Gaussian smearing of fingerprints
Nσ 5 Number of standard deviations σ at which the Gaussian smearing is cut off
Rc (Å) lmin Cutoff radius in angstrom for the fingerprints. At every MH step, the shortest cell length lmin is used

component FAB(R) is discretized into bins of width 
 so it
can be represented as a vector with the mth vector coordinate
being the value of the fingerprint component FAB(m). A cosine
distance χi, j may then be defined as a measure of dissimilarity
of structures i and j:

χi, j = 1

2

(
1 −

∑
AB

∑
m F i

AB(m)F j
AB(m)wAB√

W iW j

)
, (8)

where the importance weight wAB is defined as

wAB = NANB∑
cell NANB

(9)

and W i is the norm

W i =
∑
AB

∑
m

[
F i

AB(m)
]2

wAB. (10)

To reduce noise, we excluded hydrogen atoms from the
calculation of cosine distances. The cosine distance χc,i is
calculated as a measure of dissimilarity between the candi-
date structure and a structure i from the list of found local
minima. If χc,i > χ0 for every i and the threshold parameter
χ0, the candidate structure is added to the local minima list
and the NPT temperature is reset to the initial temperature
T0. Otherwise, the candidate structure is considered not to
be a unique minimum and the NPT temperature is increased,
i.e., T → βT . The candidate structure replaces the N th min-
imum if the following three conditions are met: Ec < EN ,
min{χc,1, . . . , χc,N } = χc,N , and χc,N−1 > χ0. With this re-
placement scheme and the choice of parameters as listed in
Table I, we found that the algorithm correctly explores local

potential energy basins while preserving structural dissimilar-
ity of the found minima.

This concludes a complete MH cycle in our GO-MHALP
frame. If the number of cycles is less than the given MHsteps

parameter the algorithm will start a new NPT simulation from
the last found minimum and otherwise the algorithm stops.

D. DFT calculations

On specific structures (see below), DFT relaxations were
additionally performed in order to validate and refine the
results. All DFT relaxations were performed using the
plane-wave basis set code QUANTUM ESPRESSO [66,67] with
the plane-wave basis set cutoff being 816 eV. Garrity-
Bennet-Rabe-Vanderbilt (GBRV) pseudopotentials [68] were
employed together with the vdW-DF-cx exchange-correlation
functional [69]. A Monkhorst-Pack k-point mesh [70] with a
density of 5 Å was used for Brillouin zone integration. The
atomic positions and the unit cell parameters were relaxed
until the pressure, the forces on each atom, and the total
energy change were smaller than 0.5 kbar, 0.02 eV Å−1, and
1 meV, respectively.

E. Similarity measures of simulated powder XRD patterns

In order to assess the validity of the predicted structures
with our protocol, we quantified the similarity of structures
obtained with GO-MHALP to structures solved from single-
crystal X-ray diffraction (XRD) data by simulating their
powder XRD (PXRD) patterns and calculating a similarity
measure based on cross-correlation functions [71,72] as im-
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FIG. 4. Comparison of simulated PXRDs of experimentally
solved and one of the structures predicted with GO-MHALP of
BA2PbBr4. PXRD intensity is scaled so that the highest peak has
the value 1.0. In this example the similarity measure amounts to
s = 0.636.

plemented in the PyXtal [73] PYTHON library. Explicitly, the
similarity measure s12 of two powder diagrams y1(θ ) and
y2(θ ), invariant against scaling of the PXRD intensities, is
calculated as

s12 =
∫

w(r)c12(r)dr[ ∫
w(r)c11dr

∫
w(r)c22(r)dr

]1/2 , (11)

where c12 is the cross-correlation function,

c12(r) =
∫

y1(θ )y2(θ + r)dθ, (12)

with the autocorrelation functions c11 and c22 defined analo-
gously. We used the cosine weighting function

w(r) =
{

0.5
(

cos
(
π r

l

) + 1
)
, |r| < l

0, |r| > l
(13)

with the cutoff l = 1.0◦. The similarity measure adopts val-
ues between 0 and 1, where s12 = 1 corresponds to identical
PXRDs. An example of a comparison of PXRDs simulated
from an experimentally solved structure and a minimum ob-
tained with GO-MHALP is shown in Fig. 4.

F. Potentials for iodine and mixed-halide systems

GO-MHALP is a general procedure which can in principle,
given a suitable classical potential, be used for any systems.
For example, classical potentials for Q2DPs containing io-
dine instead of bromide can be constructed in a completely
analogous manner as described in Sec. II B, but using the
parameters for MAPbI3 [30,32]. As detailed in an another
work [24], we employed GO-MHALP to predict a mixed-
halide structure. We use the Berthelot rule to calculate the
Buckingham parameters for Pb-Pb and Br-I interactions:

Amixed =
√

ABrAI, (14)

FIG. 5. Summary of a GO-MHALP run for BA2PbBr4 with the
2 × 2 cell type and initially offset layers. Top: NPT thermostat
temperature and the average kinetic energy of the last 20 ps of
MD across MH cycles. Bottom: Classical potential energies of the
candidate structures across the run (blue) and the experimentally
solved structure relaxed with the classical potential (dashed black).
Identified local minima are marked with circles.

where ABr and AI denote Buckingham parameters used for
pure halide structures and Amixed are Buckingham parameters
used for the mixed-halide structures.

III. RESULTS AND DISCUSSION

We first validate GO-MHALP on the well-known case
of R+ = BA+ (butylammonium) cation as spacer. Both
BA2PbBr4 and BA2MAPb2Br7 have been successfully
prepared and their crystal structures were solved [74,75].
Following the tests on RPPs with BA we continue the
validation of GO-MHALP on a DJP structure containing
4-(aminomethyl)-piperidinium (4AMP) [3]. We use the exper-
imentally obtained structures as reference points for validation
of GO-MHALP predictions. Radial distribution functions
and simulated PXRD patterns for relevant (predicted and
experimental) structures may be found in the Supplemental
Material [27], as well as the CIF files of these structures.

Finally, we show performance of GO-MHALP to pre-
dict a structure of a mixed-halide Q2DP t-BA2PbBr2I2. This
structure was experimentally solved after the prediction with
GO-MHALP.

A. BA2PbBr4

We first applied GO-MHALP to BA2PbBr4 RPP. The six
types of unit cells described in Sec. II A were used as inputs.
A summary of a GO-MHALP run is shown in Fig. 5. First,
the top panel shows that during MD the system is well ther-
malized to the set thermostat temperature. Potential energy
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FIG. 6. Similarity measures and potential energies of minima obtained with GO-MHALP for BA2PbBr4. The vertical dashed lines labeled
in legend as X/Y show similarity measures of structures X relaxed with Y level of theory (see text). Different markers indicate different cell
types, where P (O) indicates an initially parallel (offset) structure (see Sec. II A). Diamonds (�) indicate the starting GO-MHALP points after
initial relaxation. The star (�) indicates the similarity measure and energy of the experimental structure relaxed with the classical potential.
The order of the accepted minima for the optimal cell type is shown in the inset with the global GO-MHALP minimum emphasized with
a bolded edge. Energies are shown per formula unit with the zero of the potential energy chosen as the energy of the global GO-MHALP
minimum.

barriers are overcome by gradually increasing the temperature
and newfound minima are accepted upon entrance into a local
energy basin. After each restart of the NPT temperature to
T0, GO-MHALP explores the surrounding configuration space
in detail and the replacement scheme described in Sec. II C
selects the lowest energy structure found in a basin. The global
minimum for this run, i.e., the lowest energy local minimum,
is found in a distinct basin that lies very close in energy to the
experimentally solved structure whose atomic positions and
cell parameters were optimized with the classical potential
(dashed line). This is an indication that the global minimum
of the model potential is connected to the true (experimental)
global minimum by a local optimization, a point to which we
will return below.

For a complete test and validation of GO-MHALP, we
calculated similarity measures of PXRDs between the exper-
imental structure and (a) each of the final minima predicted
with six GO-MHALP runs for the six different cell types; (b)
experimental structure, relaxed with the classical potential;
(c) experimental structure, relaxed with DFT; (d) lowest en-
ergy (global) minimum found with GO-MHALP, relaxed with
DFT; and (e) the GO-MHALP initial structure from which the
global minimum was found, relaxed with DFT.

Similarity measures (a) and (b) are plotted against classical
potential energies in Fig. 6 as scatter points and similarity
measures (b)–(e) are plotted as vertical dashed lines. In partic-
ular, the line corresponding to case (b) sets the practical limit
of the similarity measure that can be reached by this version
of GO-MHALP.

First of all, we can notice that the energies of the best
(lowest energy) minima of 1 × 1 cell types are noticeably

higher than the larger cell types, meaning that GO-MHALP
predicts that 1 × 1 unit cells are too small to capture all
experimentally realized degrees of freedom, which is indeed
correct as the experimental structure is of the

√
2 × √

2 type.
The best minima of

√
2 × √

2 and 2 × 2 cell types cluster near
the experimental structure relaxed with the classical potential
(marked with a star) regardless of the initially parallel or offset
interlayers, showing that in these cases GO-MHALP reliably
finds the global minimum of the potential regardless of the
details of the input structures. While GO-MHALP finds the
experimental structure relaxed with the classical potential,
agreement of these structures with the true experimental struc-
ture is not completely satisfactory (similarity of around 0.7).
On the other hand, relaxing the experimental structure with
DFT achieves a similarity of 0.95. Clearly, GO-MHALP has
the ability to find the global minimum, but the model potential
should be improved.

The global minimum itself is found for the initially O:
2 × 2 cell type, with the best P: 2 × 2 and the

√
2 × √

2
minima being slightly higher in energy. The O: 2 × 2 input
structure after initial relaxation shows already a good sim-
ilarity of 0.515 which is further improved by GO-MHALP
to score 0.635 at the global minimum. Relaxing the global
minimum with DFT significantly improves this value to a
similarity measure of 0.915. This final step suggests that an
extra DFT relaxation of the global minimum found by GO-
MHALP renders final structures that can be highly accurate.
The small inset in Fig. 6 depicts how the PES exploration
works in GO-MHALP in the case of the O:

√
2 × √

2 unit cell.
The system goes through a couple of minima before locating
the basin containing the global minimum.
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FIG. 7. Summary of a GO-MHALP run for BA2MAPb2Br7 with
the

√
2 × √

2 cell type and initially parallel interlayer configuration.
Top: NPT thermostat temperature and the average kinetic energy of
the last 20 ps of MD across MH cycles. Bottom: Classical potential
energies of the candidate structures across the run (blue) and the
experimentally solved structure relaxed with the classical potential
(dashed black). Identified local minima are marked with circles.

B. BA2MAPb2Br7

We continue the validation of GO-MHALP on a similar
n = 2 RPP: BA2MAPb2Br7. The obtained similarity measures
are summarized in Fig. S10 [27]. As is the case for BA2PbBr4,
the global minimum of the potential is near the experimental
structure relaxed with the classical potential with a higher
similarity measure compared to the n = 1 case. A possible
rationalization of this fact is that the accuracy of the potential
is expected to grow with the number of layers, n, as the
potential is constructed using parameters for a 3D perovskite.

GO-MHALP correctly predicts that BA2MAPb2Br7 crys-
tallizes in the

√
2 × √

2 cell type. The low-energy region of
the PES is not as rich as is the case for BA2PbBr4 and is
surrounded by higher potential barriers. This can be seen in
Fig. 7: the first local basin that GO-MHALP found was the
one containing the global minimum and higher NPT temper-
atures were needed to overcome basin barriers. The relative
flatness of the PES going from the input to the global mini-
mum is the reason why relaxations of input structures, both by
using DFT and classical potentials, resulted in structures near
the global minimum with an already large similarity measure.
Relaxing the found global minimum with DFT again achieves
a slightly better similarity (0.940) compared to relaxing the
initial structure with DFT (0.930).

C. (4AMP)PbBr4

To validate the GO-MHALP workflow on a Q2DP
containing a different spacer, we select the Dion-

(a) (b) (c)

FIG. 8. Organic spacers for which the Q2DP structure was
predicted with GO-MHALP: (a) butylammonium (BA), (b) 4-
(aminomethyl)-piperidinium (4AMP), and (c) tert-butylammonium
(t-BA).

Jacobson-type perovskite (4AMP)PbBr4 [76]. The
1-(4-piperidinyl)methanamine (4AMP) structure is shown
in Fig. 8. At one molecular end, one nitrogen atom belongs
to the aminomethyl unit, while the other is within the
piperidinyl ring on the opposite side. In a Dion-Jacobson
perovskite, these two nitrogens connect to the inorganic
perovskite layers. Therefore, neighboring organic 4AMP
molecules may differently connect to the same layer;
i.e., one 4AMP may connect via the aminomethyl unit
and its neighbor via the piperidinium unit. To account
for this possibility, we considered the following initial
configurations: non-alternating (na), i.e., all neighboring
4AMP molecules connect to a perovskite layer in the same
manner; all-alternating (a1), i.e., all neighboring 4AMP
molecules connect to a perovskite layer in the opposite
manner; and half-alternating (a2), i.e., two neighboring
4AMP molecules connect to a perovskite layer in the same
manner, while the other two connect in the opposite manner.
Note that configuration (a1) is possible for

√
2 × √

2 and
2 × 2 cell types, while (a2) is possible only for 2 × 2. It is
necessary to explicitly include all these configurations in
the initial structures since it is extremely unlikely for the
molecules to completely reorient during MD. This gives a
total number of 12 types of initial structures for GO-MHALP.

A summary of a GO-MHALP run is shown in Fig. 9. After
locating ten Q2DP local minima (including the minimum ob-
tained with initial relaxation), GO-MHALP is unable to find
a new unique minimum, which results in the MD temperature
rising to about 600 K. This high-temperature MD “melts” the
inorganic perovskite structure, resulting in the newfound local
minimum losing its Q2DP character. We deem these “melted”
types of structures unphysical predictions as the classical po-
tential is, by construction, well defined only for Q2DPs and
we exclude them from following analysis.

The second point to be noted in Fig. 9 is that the energy
of the experimentally solved structure relaxed with the clas-
sical potential is significantly lower than any of the structures
explored by GO-MHALP. The reason for this is that the exper-
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FIG. 9. Summary of a GO-MHALP run for (4AMP)PbBr4 with
the

√
2 × √

2 cell type, initially parallel interlayer configuration,
and alternating 4AMP molecules configuration. Top: NPT thermostat
temperature and the average kinetic energy of the last 20 ps of
MD across MH cycles. Bottom: Classical potential energies of the
candidate structures across the run (blue) and the experimentally
solved structure relaxed with the classical potential (dashed black).
Identified local minima are marked with circles.

imentally resolved structure has more degrees of freedom than
the ones describable by configurations in Fig. 9. Specifically,
in the notation established in this paper, the experimentally
obtained cell is of the 2

√
2 × √

2 type [76]. This cell type al-
lows for an intricate pattern of alternating 4AMP orientations:
along the shorter cell axis, the manner of connection does not
change, while it is altered for every second neighbor along the
long cell axis.

The summary of GO-MHALP runs for all cell types is
shown in Fig. S11 [27]. As explained in the last paragraph,
all structure types lack the necessary number of degrees of
freedom to find the experimental structure relaxed with the
classical potential. Relaxing the lowest energy minimum of
the O(a2): 2 × 2 cell type with DFT actually results in worse
similarity (0.715) compared to simply relaxing the initial
guess structure with DFT (0.776). However, the energy (as
calculated with DFT) of the relaxed O(a2): 2 × 2 minimum
is significantly lower than the energy of the relaxed initial
guess structure [0.15 eV per formula unit (f.u.)], meaning that,
while it is not close to the experimental structure in a sense, it
is a lower energy local minimum.

To allow GO-MHALP to find the true global minimum,
we prepared three input structures with the same cell type
as the experimental structure by first removing the one
redundant inorganic layer from the

√
2 × √

2 cell type,
followed by an extension to a 2

√
2 × √

2 supercell. We con-
sidered three 4AMP configurations: nonalternating, where
all 4AMP molecules connect to the perovskite layer in the
same manner; alternating, where the 4AMP molecules alter-

nate the manner of connection to the perovskite layer along
the long cell axis; and experimental-like, where the manner of
connection of the 4AMP molecules to the perovskite layer is
alternated for every second neighbor. The results of the GO-
MHALP run with these structure types are shown in Fig. 10.
The global minimum of the potential (the experimental struc-
ture relaxed with the classical potential) is found exclusively
for the experimental-like connection pattern. Relaxing the
initial guess structure of the experimental cell type with DFT
achieves a similarity of 0.74, while relaxing the found global
minimum achieves a remarkable similarity of 0.968, almost
perfectly overlapping the similarity of the experimental struc-
ture relaxed with DFT.

D. t-BA2PbBr2I2

We have employed GO-MHALP to predict a previously
unknown Q2DP structure and verified its prediction by single-
crystal XRD measurements. We used tert-butylammonium
(t-BA) as the organic spacer. While this is detailed in a
separate work [24], we here deepen the discussion of the ap-
plication of GO-MHALP to that challenging case. The optical
measurements indicated that synthesis starting from a one-to-
one iodide-bromide stoichiometry results in t-BA2PbBr2I2, a
crystallized n = 1 RP phase, while syntheses starting from
pure bromide or pure iodide stoichiometries do not yield
Q2DP structures [24]. We confirmed the instability of the
pure-halide Q2DPs by calculating the formation energies of
the global minima found with GO-MHALP as well as by XRD
measurements.

To predict the structure of the mixed-halide t-BA2PbBr2I2,
we prepared three types of input structures for GO-MHALP
as shown in Fig. 11 with the corresponding GO-MHALP runs
shown in Fig. S12 [27]. We see that the minimum correspond-
ing to the experimental structure relaxed with the classical
potential is found exclusively starting from the equatorial
(axial) bromide (iodine) initial configuration, consistent with
the specific halide distribution we found in the structure we
resolved experimentally with single-crystal XRD. Relaxing
the global minimum with DFT results in a remarkable sim-
ilarity of 0.967. The relaxed global minimum structure is a
local DFT minimum almost isoenergetic to the experimental
structure relaxed with DFT (its energy as calculated with DFT
is higher by ≈4 meV/f.u.), but it is closer to the experimental
structure by ≈0.02 similarity points.

IV. CONCLUSION

In this work, we have introduced a workflow for auto-
matic crystal structure prediction of Q2DP structures. To
achieve this, we have developed an automatized initial struc-
ture guess and classical potential generation and combined
them with a variant of the minima hopping algorithm dubbed
GO-MHALP. We tested GO-MHALP on well-known Q2DP
structures: BA2PbBr4, BA2MAPb2Br7, and (4AMP)PbBr4.
We have shown that the global minimum is reliably found by
GO-MHALP with a weak dependence on the input structure.

The case of (4AMP)PbBr4 suggests that it is necessary to
start from a structure with the minimum necessary number of
degrees of freedom. We have also shown how GO-MHALP
can be used to predict the structure of a mixed-halide Q2DP:
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FIG. 10. Similarity measures and (classical) potential energies of (4AMP)PbBr4 starting from the experimental-like 2
√

2 × √
2 cell type.

The vertical dashed lines indicated as X/Y show similarity measures of structures X relaxed with Y level of theory (see text). Different markers
indicate different patterns of connection of 4AMP molecules to the inorganic perovskite layer (see text). Diamonds (�) indicate the starting
GO-MHALP points after initial relaxation. The star (�) indicates the similarity measure and energy of the experimental structure relaxed
with the classical potential. Energies are shown per formula unit with the zero of the potential energy chosen as the energy of the global
GO-MHALP minimum.

t-BA2PbBr2I2. We confirmed that not only was the specific
halide distribution correctly predicted by GO-MHALP, but
also that the structural details were predicted very precisely
[24].

While the accuracy of the classical potential itself can be
significantly improved, within our method it is not necessary

(a) (b) (c)

FIG. 11. Starting GO-MHALP structures for t-BA2PbBr2I2. The
cell type is 2 × 2. The vectors from the nitrogen atoms of the t-BA
molecules towards the respective centers of mass are aligned with
the z axis. The structures differ in the halide distribution, with the
bromides (iodides) occupying (a) equatorial (axial), (b) axial (equa-
torial), and (c) alternating positions.

for it to be extremely precise. We have shown that the suf-
ficient condition for a very accurate prediction is only that
the global minimum of the potential is connected to the DFT
global minimum by a DFT local relaxation. However, the
potential should be improved in general to provide reliable
predictions for any Q2DP.

We also note that our approach provides physically re-
alistic predictions at a low computational price. Assuming
one evaluation of energy and forces with a classical potential
is 106 times faster than a single self-consistent field (SCF)
calculation, 200 GO-MHALP cycles of 25 ps NPT simulations
take about as long as 5 SCF calculations. This is much less
than the number of SCF calculations performed in a typical
DFT structural relaxation. Therefore, an unbiased structure
prediction may be obtained in less time than necessary for
two DFT structural relaxations. Since this computational cost
is negligible, GO-MHALP may be further improved by using
DFT to relax a larger number of predicted structures around
the found global minimum.

Compared to previously available minima hopping
algorithms, we implemented several improvements: (i)
the MD temperature is restarted after a structurally unique
minimum is found; (ii) the replacement scheme, which in
combination with (i) ensures detailed exploration of local
PES basins; (iii) employment of an NPT ensemble for the
MD part of minima hopping; and (iv) inclusion of both cell
and atomic coordinate relaxations. We believe that these
improvements could be employed in structure prediction
problems generally whenever multiple kinds of degrees of
freedom (configurational, conformational, combinatorial,
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etc.) render the exploration of PESs particularly difficult, e.g.,
in soft matter and molecular crystals.

The complete code for generating initial structures, cor-
responding model potentials, and running GO-MHALP is
available free of charge [26]. Using this code all presented
data can be regenerated. Derived data are also available from
the corresponding author upon reasonable request.
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Low, S. Wang, P.-Y. You, H. Ahn, I. Lončarić, A. Djurišić, and
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