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We propose an analytical Landau-Ginzburg (LG) theory of the charge density waves coupled with lattice
and electronic long-range order parameters. Examples of long-range order include the electronic wave function
of superconducting Cooper pairs, structural distortions, electric polarization, and magnetization. We formulate
the LG free energy density as a power expansion with respect to the charge density and other long-range
order parameters as well as their spatial gradients and biquadratic coupling terms. We introduced a biquadratic
coupling between the charge density gradient and long-range order parameters as well as nonlinear higher
gradients of the long-range order parameters. The biquadratic gradient coupling is critical to the appearance
of different spatially modulated phases in charge-ordered ferroics and high-temperature superconductors. We
derived the thermodynamic conditions for the stability of the spatially modulated phases, which are the in-
tertwined spatial waves of charge density and lattice/electronic long-range order. The analytical expressions
for the energies of different phases, corresponding order parameters, charge density waves amplitudes, and
modulation periods obtained in this paper can be employed to guide the comprehensive physical explanation,
deconvolution, and Bayesian analysis of experimental data on quantum materials ranging from charge-ordered
ferroics to high-temperature superconductors.
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I. INTRODUCTION

The formation of charge density waves may lead to
anomalies in the electrophysical properties of bulk and two-
dimensional (2D) transition metal dichalcogenides [1–3];
high-temperature superconducting cuprates [4,5]; resistive
switching materials [6,7]; ferroics and multiferroics [8,9]
exhibiting long-range structural, magnetic [10], antiferrodis-
tortive, and/or polar [11,12] orders; and electric charge
ordering. In many cases, superconductivity; spin, structural,
orbital, or polar ordering; and charge density waves are
competing orders [13], which can coexist and often become
coupled or intertwined [14–16], manifesting a complex inter-
play arising from strong intraorder correlations. For instance,
Beaud et al. [17] revealed that the relaxation of orbital or-
dering (pseudo-Jahn-Teller mode) and charge ordering are
coupled in a perovskite manganite. Hamidian et al. [18]
demonstrated the existence of spatial modulation of the den-
sity of Cooper pairs in a superconductor naturally coupled
with phonon modes.

Incommensurate charge density waves, which are periodic
spatial modulations of the electronic density uncorrelated with
the lattice period, are ubiquitous in multiferroics [11] and
superconducting cuprates [5]. Nie et al. [19] proposed an
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effective field theory of a layered system with incommensu-
rate spin- and/or charge-density wave orders in hole-doped
cuprates. Wang et al. [20] also analyzed the interplay be-
tween a uniform superconducting and a pair-density-wave
order parameter in the neighborhood of a vortex and, using
a phenomenological nonlinear sigma model, revealed that the
intertwining of the two superconducting orders leads to a
charge density modulation with the same periodicity as the
pair-density wave. Using the Landau-Ginzburg-Wilson theory
of competing orders, Yu and Kivelson [21] demonstrated the
generic occurrence of a fragile superconducting phase at low
temperatures in the presence of weak charge-density-wave
disorder and proposed an explanation of the discovered re-
silient superconducting phase at high fields in underdoped
YBa2Cu3O6+x.

In this regard, ferroics and high-temperature supercon-
ductors in the presence of charge density waves are very
sensitive to the spatial gradients of long-range order pa-
rameters [22,23]. Among many theoretical approaches (see,
e.g., Ref. [24]), the Landau-Ginzburg (LG)-type models
[1,2,5,13,17,18,25], which account for the spatial gradients of
order parameters, have played a central role in understand-
ing the formation of incommensurate charge density waves
and their dynamics and interaction with lattice and electronic
long-range order parameters, such as (anti)ferromagnetic,
(anti)ferroelectric, (anti)ferrodistortive, and/or superconduct-
ing orders. In the general case, LG models that include
implicit expressions for depolarization (demagnetization)
fields are self-consistent. Also, LG models allow analytical
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descriptions of complex coupled problems, including phase
diagrams and incommensurate modulation periods. Analytical
LG models significantly simplify physical explanation. They
can provide a comprehensive deconvolution of experimental
data and are suitable for their Bayesian analysis [26,27] and
complex machine learning.

In this paper, we aim to propose an analytical LG theory
of the coupled charge density waves and lattice/electronic
long-range ordering in ferroics and high-temperature su-
perconductors. We formulate the LG free energy power
expansion with respect to the charge density and other
long-range order parameter(s), e.g., a wave function of su-
perconducting Cooper pairs, structural distortion, electric
polarization, magnetization, their spatial gradients, and bi-
quadratic coupling terms [1,2,5,13]. The structure of gradient
terms in the free energy functional used in this paper is
different from earlier LG models [1,2,5,13]. We introduced
a biquadratic coupling between the charge density gradient
and lattice/electronic long-range order and nonlinear higher
gradients of the long-range orders. Our primary interests are
the determination of the appearance and stability conditions
of the spatially modulated phases [28], which are the coupled
spatial waves of charge density and spontaneous (e.g., super-
conductive, polar, or magnetic) long-range order. The gradient
terms introduced in this paper are critical to the appearance of
the spatially modulated phases.

We formulate the LG model in Sec. II. The phase diagrams,
including the analytical expressions for stability conditions,
amplitudes, and modulation periods for the spatially modu-
lated phases, are presented in Secs. III and IV. Section V
provides the conclusions.

II. PROBLEM FORMULATION

Following McMillan [1,2] and Wandel et al. [5], we con-
sider complex order parameters to be vectorial and/or scalar,
and use ψC and ψS to denote the charge density (C) and
spontaneous (S) long-range orders, respectively. The primary
purpose of this paper is to analyze the spatially modulated
phases in a system described by the LG free energy functional
of the ψC and ψS orders. These include the spatial waves
of the charge density (CW), which is a ψC spatial modula-
tion; spatial waves of the spontaneous long-range order (SW),
which is a ψS spatial modulation; and intertwined spatial
waves of charge density and spontaneous long-range order
(SCW), which are coupled spatial modulation of both ψC and
ψS. The total free energy of a system is then expressed as a
functional of ψC and ψS:

F [ψC, ψS] =
∫

( fint[ψC,ψS] + fC0[ψC] + fS0[ψS])d3�r.

(1a)

Following She et al. [13], we assume that the interac-
tion energy fint[ψC,ψS] has the simplest form of biquadratic
coupling of the order parameters fint ∼ ηi j |ψCi|2|ψS j |2 in-
troduced by Haun et al. [29], Houchmanzadeh et al. [30], and
Balashova and Tagantsev [31]. Since the interactions between
the order parameter gradients are very important, we also add
the biquadratic gradient-coupling terms to fint[ψC,ψS], which

acquires the form:

fint[ψC,ψS] = ηi j |ψCi|2|ψS j |2

+ ξi jk

(
|ψSi|2

∣∣∣∣∂ψC j

∂xk

∣∣∣∣
2

+ |ψCi|2
∣∣∣∣∂ψS j

∂xk

∣∣∣∣
2
)

+ χi jkl

∣∣∣∣∂ψCi

∂x j

∣∣∣∣
2∣∣∣∣∂ψSk

∂xl

∣∣∣∣
2

. (1b)

Hereinafter, the summation takes place over all repeated sub-
scripts, i i, j, k = 1, 2, or 3 for vectorial order parameter(s).

Note that the flexo-type bilinear gradient-coupling
terms, such as γi jk (ψCi

∂
∂x j

ψSk − ψSk
∂

∂x j
ψCi ), can exist

for observable real quantities (see, e.g., Ref. [11] and
Table I therein). The presence of a nonzero flexo-coupling
tensor γi jk strongly depends on the material spatial
symmetry and tensorial and time-reversal properties
of the order parameters [11]. Since the absolute value
|ψCi

∂
∂x j

ψSk − ψSk
∂

∂x j
ψCi| is incompatible with minimization

over ψ∗
C and ψ∗

S, one should consider the complex
form of the flexo-type bilinear gradient-coupling, e.g.,
γi jk

2 [(ψ∗
Ci

∂
∂x j

ψSk − ψSk
∂

∂x j
ψ∗

Ci ) + (ψCi
∂

∂x j
ψ∗

Sk − ψ∗
Sk

∂
∂x j

ψCi )],
where the tensor γi jk is very sensitive to the sym-
metry and tensorial and time-reversal properties of
ψC and ψS. For instance, in a one-dimensional (1D)
approximation for scalar functions ψC and ψS, the term
γ

2 [(ψ∗
C

∂
∂x ψS − ψS

∂
∂x ψ

∗
C) + (ψC

∂
∂x ψ

∗
S − ψ∗

S
∂
∂x ψC)] changes its

sign under the x-inversion operation x → −x. Since the free
energy of the parent (disordered) phase should be invariant
with respect to the spatial inversion, the flexo-coupling
coefficient γ = 0. The coefficient γ can be nonzero when,
e.g., ψC is a scalar and ψS is an x component of a polar
vector, ψC is a scalar and ψS is a pseudoscalar, or ψC

is an x component of an axial vector and ψS is an x
component of a polar vector. These specific cases will
be considered elsewhere; below, we consider only the
biquadratic gradient-coupling terms in fint, which are nonzero
for arbitrary symmetry and tensorial and time-reversal
properties of ψC and ψS.

As suggested by She et al. [13], the contributions fCO and
fSO have the following form:

fCO[ψC] = aCi|ψCi|2 + bCi j |ψCi|2|ψC j |2 + gCi j

∣∣∣∣∂ψCi

∂x j

∣∣∣∣
2

+
⎛
⎝wCi j

∣∣∣∣∂ψCi

∂x j

∣∣∣∣
2

+ vCi j

∣∣∣∣∣∂
2ψCi

∂x2
j

∣∣∣∣∣
2
⎞
⎠|ψCi|2, (1c)

fSO[ψS] = aSi|ψSi|2 + bSi j |ψSi|2
∣∣ψS j

∣∣2 + gSi j

∣∣∣∣∂ψSi

∂x j

∣∣∣∣
2

+
⎛
⎝wSi j

∣∣∣∣∂ψSi

∂x j

∣∣∣∣
2

+ vSi j

∣∣∣∣∣∂
2ψSi

∂x2
j

∣∣∣∣∣
2
⎞
⎠|ψSi|2. (1d)

Due to the presence of biquadratic gradient-coupling terms
in Eq. (1b), we need to add the higher gradient terms in
Eq. (1c) and (1d), too. Note that the structure of gradient terms
in Eqs. (1b)–(1d) is a principal difference of this paper in
comparison with McMillan [1,2], Wandel et al. [5], and She
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et al. [13]. They did not consider gradient-coupling terms and
higher gradients, both of which, as it will be shown below,
can have a critical influence on the appearance and stability of
separated and coupled spatially modulated phases.

As usual in the Landau approach, the coefficients aSi and
aCi are assumed to depend linearly on the temperature T and
change their signs at critical temperatures TS and TC:

aSi(T ) = αSi

(
T

TS
− 1

)
, aCi(T ) = αCi

(
T

TC
− 1

)
, (2)

where the coefficients αSi > 0 and αCi > 0.
For the thermodynamic stability of a system described by

the functional in Eqs. (1a)–(1d), the matrix of coefficients bCi j

and bSi j are positively defined; the matrices of higher gradient
coefficients vCi j and vSi j should be positively defined, too,
because the correlation energy of each subsystem C and S
must be positive at high values of each order parameter.

The symmetry of vectors and tensors in Eqs. (1a)–(1d) is
defined by the point group symmetry of the high-temperature
state of a material. Note that, according to McMillan [1,2],
they can be coordinate dependent to reflect the microstructure
of the studied material. However, such a spatial dependence is
contradictory to the space isotropy in the continuous Landau
theory.

Following McMillan [1,2], the variation of a CW electron
density ρ can be introduced as

ρ(�r, t ) = ρ0(1 + Re[ψC1 + ψC2 + ψC3]), (3)

where the subscripts 1, 2, and 3 are the orthogonal crystal
axes.

Note that Eq. (3) is specific to the CW, and it shows
that an observable physical quantity, namely, a positive elec-
tron density ρ, is proportional to the real part of a complex
function ψC. The relative variation of the electron density
δρ = ρ(�r,t )

ρ0
− 1 is equal to Re[ψC1 + ψC2 + ψC3]. Equation

(3) is like the concentration wave representation of atomic
densities. At the same time, the free energy functional in
Eqs. (1a)–(1d) is much more general since the complex order
parameters ψC and ψS can describe many physical variables,
such as the vectorial concentration wave representation of
atomic densities; the scalar charge density; the vector of spon-
taneous electric polarization in multiaxial ferroelectrics or its
component in uniaxial ferroelectrics; polar and antipolar order
parameters in ferrielectrics and/or antiferroelectrics; the axial
vector of spontaneous magnetization and/or antiferromagnetic
long-range order parameter(s) in ferromagnets, ferrimagnets,
and/or antiferromagnets; and the axial vector(s) of aniferrodis-
tortive long-range order in ferroic and multiferroic materials
with spatially modulated phases. We treated the long-range
orders as complex variables because this representation allows
for a much easier and convenient way to find corresponding
wave periods and amplitudes in the spatially modulated SW,
CW, and SCW phases.

For the sake of simplicity, below, we consider the one-
component 1D case: ψC(�r) ≡ ψC(x) and ψS(�r) ≡ ψS(x),
which allows us to omit all subscripts in Eqs. (1a)–(1d), (2),
and (3) and significantly simplify the analysis of the thermo-
dynamic stability conditions. In the one-component 1D, the
free energy in Eqs. (1a)–(1d) is stable at high values of the

order parameters under the conditions:

bC > 0, bS > 0, η > −2
√

bSbC. (4a)

Under these conditions, the free energy in Eqs. (1a)–(1d) can
describe several spatially homogeneous phases, namely, the
disordered (D) phase, spontaneous long-range (S) and charge
density (C) orderings, their coexistence (S/C), and the mixed
(SC) state.

For a correct description of the spatially modulated phases,
CW, SW, and SCW, the free energy in Eqs. (1a)–(1d) should
be stable at high values of the order parameter gradients,
which is possible if the parameters simultaneously satisfy the
following conditions:

vS > 0, wS > 0, vC > 0, wC > 0,

χ > −2
√

vSvC, ξ > −2
√

wSwC. (4b)

The conditions

gS > 0, gC > 0 (4c)

make the appearance of the decoupled CW or SW waves less
favorable in comparison with homogeneous C or S phases.
The set of the stable phases that satisfy the condition in
Eqs. (4a)–(4c) are described in Table I.

Analytical description of the order parameter and charge
density modulation in the SW-C, CW-S, and SCW phases
is possible within a harmonic approximation for the spatial
profile of the wave:

ψS = δψS0 + δψS exp (±ikx),

ψC = δψC0 + δψC exp (±iqx). (5)

Here, the expressions for the bases δψS0 and δψC0, modulation
amplitudes δψS and δψC, wave vectors k and q, and energies
of the modulated phase follow from the minimization of the
free energy in Eqs. (1a)–(1d), which acquires a simple form
given by Eq. (A.1b) in Appendix S1 in the Supplemental
Material [32]. The minimization conditions δF

δq = 0 and δF
δk =

0 lead to the system of equations for k and q, which in addition
to the trivial solution q = 0 and/or k = 0 can have nontrivial
solutions q �= 0 and/or k �= 0.

Note that the wave phases are decoupled in the harmonic
approximation in Eq. (5); their coupling can appear when
one accounts for anharmonicity. The decoupling leads to the
virtual independence of the different modulation periods k and
q. Also, we did not find ripples in this paper, corresponding to
the simultaneous validity of inequalities δψS0 �= 0 and δψS �=
0 (and/or δψC0 �= 0 and δψC �= 0) in Eq. (5). We conclude that
such states exist for very narrow ranges of parameters which
do not allow analytical description and are rarely observable.
Due to the absence of ripples, and in accordance with Eq. (3)
and Table I, the observable density of CW is proportional to
|δψC|cos(qx). The observable quantity corresponding to the S
order is determined by its physical nature, e.g., the density of
the Cooper pairs is proportional to the wave function density
|ψS|2, while a spatial modulation of a specific antiferrodistor-
tion can be proportional to |δψS|cos(kx).
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TABLE I. Possible thermodynamically stable phases of the free energy in Eq. (7).

Phase/order Order parameters values or/and amplitudes Free energy density Stability conditions

Disordered (D) ϕC = ϕS = 0 0 θC > 0, θS > 0

Homogeneous
spontaneous order (S)

ϕS = ±√−θS, ϕC = 0 fS0 = −ϑ
θ2

S
4 fS0 = min, θS < 0

Homogeneous charge
ordering (C)

ϕC = ±√−θC, ϕS = 0 fC0 = − θ2
C
4 fC0 = min, θC < 0

Mixed homogeneous S
and C orderings (SC)

ϕC = ±
√

ϑ
η∗θS−θC
ϑ−η∗2 , ϕS = ±

√
η∗θC−ϑθS

ϑ−η∗2 fSC = −ϑ
θ2

C−2η∗θCθS+ϑθ2
S

4(ϑ−η∗2 )
fSC = min, η∗θS−θC

ϑ−η∗2 > 0,
η∗θC−ϑθS

ϑ−η∗2 > 0

Spontaneous
(superconductive, polar or
magnetic) long-range
order waves (SW)

ϕC = 0, ϕS = ±
√

2(w∗
S−2v∗

SθS )

4v∗
S−w∗2

S
, kS =

√ −2+w∗
SθS

w∗
S−2v∗

SθS
. fSW = ϑ

θS(w∗
S−v∗

SθS )−1

4v∗
S−w∗2

S
, where

θS = T
TS

− 1

fSW = min,
w∗

S−2v∗
SθS

4v∗
S−w∗2

S
> 0,

−2+w∗
SθS

w∗
S−2v∗

SθS
> 0

Charge density waves
(CW)

ϕC = ±
√

2
w∗

C−2v∗
CθC

4v∗
C−w∗2

C
, qC =

√
w∗

CθC−2

w∗
C−2v∗

CθC
, ϕS = 0 fCW = θC(w∗

C−v∗
CθC )−1

4v∗
C−w∗2

C
, where

θC = T
TC

− 1

fCW = min,
w∗

C−2v∗
CθC

4v∗
C−w∗2

C
> 0,

w∗
CθC−2

w∗
C−2v∗

CθC
> 0

Mixed charge density
waves and homogeneous
S-order (CW-S)

ϕC =
±

√
4ϑv∗

C(θC−η∗θS )+4ξ∗
S (η∗−θCξ∗

S )+2ϑw∗
C(−1+θSξ∗

S )

4(η∗2−ϑ )v∗
C+ϑw∗2

C −4η∗w∗
Cξ∗

S +4ξ∗2
S

,

qC =
√

−ϑw∗
C(θC−η∗θS )+2[ϑ−η∗2+(η∗θC−ϑθS )ξ∗

S ]

2ϑv∗
C(θC−η∗θS )+2ξ∗

S (η∗−θCξ∗
S )+ϑw∗

C(θSξ∗
S −1) ,

ϕS =
±

√
−ϑw∗2

C θS−4[v∗
C(η∗θC−ϑθS )+ξ∗

S ]+2w∗
C(η∗+θCξ∗

S )

4(η∗2−ϑ )v∗
C+ϑw∗2

C −4η∗w∗
Cξ∗

S +4ξ∗2
S

,

kS = 0

Expression for fCW−S is given
by Eq. (S.8)a

fCW−S = min, qC > 0,
ϕ2

C > 0, ϕ2
S > 0

Mixed spontaneous
long-range order waves
and homogeneous C-order
(SW-C)

ϕC = ±
√

ϑ
−w∗2

S θC+4v∗
S (θC−η∗θS )−4ξ∗

C+2w∗
S(η∗+θSξ∗

C )

4(η∗2−ϑ )v∗
S+ϑw∗2

S −4η∗w∗
Sξ∗

C+4ξ∗2
C

,

qC = 0, ϕS =
±

√
v∗

S (−4η∗θC+4ϑθS )−2w∗
S(ϑ−θCξ∗

C )+4ξC(η∗−θSξ∗
C )

4(η∗2−ϑ )v∗
S+ϑw∗2

S −4η∗w∗
Sξ∗

C+4ξ∗2
C

,

kS =
√

w∗
S(η∗θC−ϑθS )+2[ϑ−η∗2+(η∗θS−θC )ξ∗

C]

2v∗
S (ϑθS−η∗θC )−w∗

S(ϑ−θCξ∗
C )+2ξC(η∗−θSξ∗

C )

Expression for fSW−C is
given by Eq. (S.9)a

fSW−C = min, kS > 0,
ϕ2

C > 0, ϕ2
S > 0

Intertwined or coupled
waves of S and C orders
(SCW)

ϕC = ±
√

�C
�

, qC =
√

�q

�C
, ϕS = ±

√
�S
�

,

kS =
√

�k
�S

.

Expressions for fSCW, �, �C,
�q, �S, and �k are given by

Eq. (S.10)a

fSCW = min,
�C
�

> 0,
�S
�

> 0,
�C
�

> 0,
�S
�

> 0

aIn the Supplemental Material [32].

III. PHASE DIAGRAM OF THE CONSIDERED SYSTEM

Let us analyze the phase diagram. First, we introduce the
dimensionless order parameter amplitudes and wave numbers
in the free energy in Eqs. (1a)–(1d):

ϕ2
C = |ψC|2

ψ2
C0

, ϕ2
S = |ψS|2

ψ2
S0

, qC =
√

gC

αC
q, kS =

√
gS

αS
k,

(6a)
where ψ2

C0 = αC
2bC

and ψ2
S0 = αS

2bS
. Also, we introduce the fol-

lowing dimensionless parameters, gradient coefficients, and
biquadratic coupling constants:

fC = α2
C

bC
, fS = α2

S

bS
, ϑ = fS

fC
, (6b)

v∗
C = vC

bC

(
αC

gC

)2

, v∗
S = vS

bS

(
αS

gS

)2

,

w∗
C = wC

bC

αC

gC
, w∗

S = wS

bS

αS

gS
, (6c)

η∗ = αCαS

2bCbS

η

fC
, ξ ∗

S = αCαS

2bCbS

ξ

fC

αS

gS
,

ξ ∗
C = αCαS

2bCbS

ξ

fC

αC

gC
, χ∗ = χ

(αCαS)2

2bCbS

ξ

fC

1

gCgS
. (6d)

Using the dimensionless variables and order parameters in
Eqs. (6a)–(6d), we rewrite Eqs. (1a)–(1d) as

f

fC
=

[
θC(T, qC)

ϕ2
C

2
+ βC(qC)

ϕ4
C

4

]

+ ϑ

[
θS(T, kS)

ϕ2
S

2
+ βS(kS)

ϕ4
S

4

]
+ μ(kS, qC)

ϕ2
Cϕ2

S

2
,

(7)
where we introduced the temperature- and wave-number-
dependent dimensionless functions:

θC(T, qC) = T

TC
− 1 + q2

C,

θS(T, kS) = T

TS
− 1 + k2

S, (8a)
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βC(qC) = 1 + w∗
Cq2

C + v∗
Cq4

C,

βS(kS) = 1 + w∗
Sk2

S + v∗
Sk4

S, (8b)

μ(kS, qC) = η∗ + ξ ∗
S k2

S + ξ ∗
Cq2

C + χ∗k2
Sq2

C. (8c)

The free energy in Eq. (7) depends on the S to C subsystem
energy ratio ϑ , whose magnitude can be arbitrary: small, close
to unity, or large; and these cases are analyzed below. The
functions θC(T, qC) and θS(T, kS) are the reduced tempera-
tures of C and S subsystems renormalized by the gradient
energy of each order parameter. Positive functions βC(qC) and
βS(kS) are fourth-order nonlinearity of C and S subsystems
renormalized by the gradient energy of each order parameter.
The function μ(kS, qC) is the biquadratic coupling of S and C
subsystems renormalized by the gradient coupling parameters
ξ ∗

S , ξ ∗
C, and χ∗, and wave numbers k2

S and q2
C.

The free energy in Eq. (7) is stable at high values of order
parameters and wave numbers if the following conditions are
simultaneously satisfied:

η∗ > −
√

ϑ, ξ ∗
C > −√

v∗
C, ξ ∗

S > −√
ϑv∗

S,

χ∗ > −√
ϑv∗

Cv∗
S, w∗

C > −√
4v∗

S, w∗
C > −√

4v∗
C. (9)

Since the conditions in Eqs. (4a)–(4c) are satisfied, the last
three inequalities are valid, too.

The free energy in Eq. (7) allows us to derive analytical ex-
pressions for the energies of different phases, the amplitudes
of the corresponding order parameters and charge density
waves, and modulation periods. Thermodynamically stable
homogeneous phases and spatially modulated states of the
energy in Eq. (7), corresponding absolute values of the order
parameters, phase energies, and stability conditions are listed
in Table I.

Using analytical expressions from Table I, one can cal-
culate the phase diagrams of various ferroics and high-Tc

superconductors with charge order, lattice/electronic long-
range order parameters, CW amplitudes, and modulation
periods. Note that the relative density δρ of CW is propor-
tional to |ϕC|cos(qx) in accordance with Eq. (3).

A concrete view of phase diagrams and related properties
are determined by 11 dimensionless parameters: a constant
of the S-C biquadratic coupling strength η∗; three constants
of the biquadratic gradient-coupling strength ξ ∗

S , ξ ∗
C, and χ∗;

four gradient coefficients of S and C subsystems v∗
C, v∗

S, w∗
C,

and w∗
S; their energy ratio ϑ ; and two temperature ratios T

TC

and T
TS

, respectively. Since we are mostly interested in the
conditions of the spatially modulated phase stability at corre-
sponding equilibrium wave numbers, we can take all possible
measures to reduce the number of dimensionless parameters
in the energy in Eq. (7). For further reduction of the number of
independent parameters up to eight, we analyzed the realistic
case:

ξ ∗
S = ξ ∗

C = ξ ∗, v∗
C = v∗

S = v∗, and w∗
C = w∗

S = w∗.

(10)

Putting T → 0, we can exclude two transition temper-
atures TS and TC from our consideration. As a result, the
obtained six-parametric LG model is not much more complex
than earlier LG models for two coupled long-range orders
with respect to the number of fitting parameters.

The remaining six parameters η∗, ξ ∗, ϑ , χ∗, v∗, and w∗
can provide a comprehensive deconvolution of versatile ex-
perimental data and are suitable for their Bayesian analysis
and machine learning. The phase diagram, order parameter
amplitudes, and modulation periods are most sensitive to the
parameters η∗ and ξ ∗ (which can change their sign) and ϑ ,
and less sensitive to the positive parameters χ∗, v∗, and w∗.
Several cases are presented and analyzed below.

Typical dependence of the free energy in Eq. (7) on the
order parameter amplitudes ϕC and ϕS, shown in Figs. 1(a)–
1(d), is the appearance of the stable mixed SC phase at μ � 0
independently on ϑ values. The coexistence of the S and C
phases with relatively deep energy minima is possible only
for ϑ = 1 and μ > 1; the stable S or C phase with deep energy
minima appears at μ > 0, and ϑ 	 1 or ϑ 
 1, respectively
(see also Figs. S1–S3 in the Supplemental Material [32]).

A typical phase diagram as a function of η∗ and ϑ , cal-
culated from the free energy in Eq. (7) for T = 0, χ∗ = 1,
v∗ = 10, w∗ = 0.1, and ξ ∗ = −1, is shown in Fig. 1(e). Sta-
ble ordered phases are absent in the white region, where the
inequality η∗ > −√

ϑ is invalid, and a system described by
the free energy in Eq. (7) is unstable. A relatively narrow
stripe-shaped dark green region of the SCW phase is located
inside the largest light green region of the SC state. Note that
the area of the spatially modulated CW-S, SW-C, and SCW
phases for η∗ � 0 decreases monotonically with decrease in
|ξ ∗|, and the phases almost disappear at ξ ∗ ≈ −0.20 (see
Fig. S4 in Appendix S3 in the Supplemental Material [32]).
The area of the homogeneous SC phase increases monoton-
ically with ξ ∗ increase from −1 to −0.25; and the phase
occupies the regions of the modulated phases at more negative
ξ ∗. The location and area of the homogeneous S and C phase
regions are independent of ξ ∗. The S phase is stable at ϑ > 1;
the C phase is stable at ϑ < 1, and the boundary between them
is a horizonal line ϑ = 1, as anticipated from Table I.

Dimensionless wave numbers qC and kS, corresponding to
the diagram in Fig. 1(e), are shown in Figs. 1(g)–1(h), as
a function of η∗ and ϑ . The wave numbers can be nonzero
in the spatially modulated phases and are different qC �= kS

wherever ϑ �= 1. The wave number qC is nonzero in the SCW
and CW-S phases, and kS is nonzero in the SCW and SW-C
phases. The wave number qC tends to zero at the boundary
between the CW-S and SC phases and between the SCW and
SW-C phases; it continuously changes across the CW-S and
SCW border, increases strongly, and reaches maxima at the
boundary of the SCW phase with the unstable white region.
The wave number kS tends to zero at the border between the
SCW and CW-S phases; it continuously changes across the
boundary between the SW-C and SCW phases and increases
strongly approaching the boundary between the SW-C and SC
phases.

Normalized order parameters (or their amplitudes in the
spatially modulated phases) ϕC and ϕS are shown in Figs. 1(k)
and 1(l) as a function of η∗ and ϑ . As anticipated, the param-
eter ϕC is zero in the S phase, and ϕS is zero in the C phase.
Both parameters are nonzero in the SCW, CW-S, SW-C, and
SC phases, where their amplitudes are relatively small in com-
parison with the values near the boundary with the unstable
region, where the order parameters formally diverge (see also
Fig. S5 in the Supplemental Material [32]).
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FIG. 1. (a)–(d) The free energy in Eq. (7), as a function of order parameter amplitudes ϕC and ϕS , calculated for different values of
dimensionless parameters ϑ and μ listed near the plots. Red color denotes zero energy, while violet color is its minimal density in relative
units. (e) and (f) Phase diagrams, corresponding dimensionless wave numbers (g) and (i) qC and (h) and (j) kS, and normalized order parameters
(or/and their amplitudes in the modulated phases) (k) and (m) ϕC and (l) and (n) ϕS, as a function of coupling constants ξ ∗ or η∗ and ϑ ,
calculated for T = 0, χ∗ = 1, v∗ = 10, w∗ = 0.1, and ξ ∗ = −1 for plots (e), (g), and (h) and η∗ = −0.1 for plots (f), (i), and (j). Capital letters
in the plots (a)–(d), (e), and (f) denote the mixed spontaneous long-range order charge order state (SC), their coexistence (S/C), spontaneous
long-range order (S) and its waves (SW), charge ordered (C) states and charge density waves (CW), and intertwined long-range order charge
density waves (SCW), respectively.
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A typical phase diagram, as a function of ξ ∗ and ϑ , cal-
culated from the free energy in Eq. (7) for T = 0, χ∗ = 1,
v∗ = 10, w∗ = 0.1, and η∗ = −0.1, is shown in Fig. 1(f).
Stable phases are absent in the white region, where the in-
equality ξ ∗ > −√

ϑv∗ is invalid, and so a system described
by the free energy in Eq. (7) is unstable. The dark green
region of the SCW phase is largest for higher negative η∗;
it decreases monotonically with increase in η∗ from negative
values to zero; and at the same time, the relatively small
region of SW-C phase appears with η∗ increase from negative
values to zero (see Fig. S6 in the Supplemental Material [32]).
The regions of the SC, CW-S, and SW-C phases disappear at
η∗ � 1, being adsorbed by the regions of the S and C phases.
A very small triangular region of the SCW phase, located at
the S-C boundary ϑ = 1, remains at η∗ = 1 (see Fig. S6(g) in
the Supplemental Material [32]).

Dimensionless wave numbers qC and kS, corresponding to
the diagram in Fig. 1(f), are shown in Figs. 1(i) and 1(j) as
a function of ξ ∗ and ϑ . The wave number qC is nonzero in
the SCW and CW-S phases, and kS is nonzero in the SCW
and SW-C phases. The wave number qC tends to zero at the
boundaries between the CW-S and SC phases and/or between
the SCW and SW-C phases; it continuously changes across
the CW-S and SCW boundary and increases approaching the
boundary of the SCW phase with the unstable white region.
The wave number kS tends to zero at the boundary between

the SCW and CW-S phases and/or at the boundary between
the SW-C and SC phases; it continuously changes at the SCW
and SW-C boundary and increases strongly approaching the
boundary between the SW-C phase and the white unstable
region (see also Figs. S4(c), S4(f), S4(i) and S6(c), S6(f), S6(i)
in the Supplemental Material [32]).

Normalized order parameters (or/and their amplitudes in
the spatially modulated phases) ϕC and ϕS are shown in
Figs. 1(m) and 1(n) as a function of ξ ∗ and ϑ (see also
the middle and bottom rows of Fig. S7 in the Supplemental
Material [32]). As anticipated, the parameter ϕC is zero in the
S phase, and ϕS is zero in the C phase. Both parameters are
nonzero in the SCW, CW-S, SW-C, and SC phases, where
their amplitudes are relatively small in comparison with the
values near the boundary of the SCW and/or SW-C phases
with the unstable white region, where the order parameters
formally diverge. Since the order parameters strongly increase
when approaching the boundary with the unstable region,
here, the accuracy of harmonic approximation, used by us
for the description of the long-range order in the spatially
modulated phases SCW, SW-C, and CW-S, becomes very low,
and this questions its applicability. Therefore, a very narrow
region of the SW-C phase, which exists between the SCW
phase and the white unstable region in Figs. 1(e) and 1(f), not
being a numerical error, is rather an artifact related with the
overestimation of model applicability limits.
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Results presented above correspond to very low tempera-
tures 0 � T 
 min[TC, TS]. The values of TC and/or TS can
play a very significant role when the temperature T rises and
becomes comparable with min[TC, TS]. We hope to consider
this question in detail in the near future. Preliminary calcu-
lations for higher temperatures, some results of which are
presented in Figs. 2 and 3, show that the ratio TC/ TS has a
principal influence on the form of the phase diagrams. The
temperature dependence of phases is very sensitive to the
parameters η∗ and ϑ , relatively sensitive to the parameter ξ ∗,
and almost insensitive to the positive parameter χ∗ for given
values of v∗ and w∗.

IV. NONLINEAR CHARGE DENSITY WAVES AND
COMPLEX TOPOLOGICAL STRUCTURES

Note that the phase boundaries of the spatially modulated
phases, shown in Fig. 1 and Figs. S4–S7 in Appendix S3
in the Supplemental Material [32], are calculated within
the harmonic approximation in Eq. (5), which is valid
near the boundaries of the second-order phase transitions,
where the CW profiles are sinusoidal or soft. When one
moves deeper into the spatially modulated phase region,
the harmonic approximation becomes invalid, and the wave
profiles become anharmonic. In the simplest 1D case, a si-
nusoidal wave profile becomes harder and transforms into

nonlinear elliptic functions, e.g., in an elliptic sine (snoid). In
more complex 2D and three-dimensional (3D) cases, versa-
tile topological structures (e.g., vortices, merons, skyrmions,
and labyrinths) and other topological defects (e.g., ribbons,
random spots, and bubbles) can appear spontaneously near
impurity atoms and/or vacancies, surfaces, and/or interfaces.
They are long-living metastable configurations, which mini-
mize the system electrostatic energy. Within the framework
of the proposed LG model, the appearance of the topologi-
cal features is controlled by the structure and magnitude of
the gradient terms in Eqs. (1b)–(1d), often being a gradient-
induced morphological phase transition [33].

Let us underline that the structure of gradient terms in
Eqs. (1b)–(1d) is more complete in comparison with earlier
Landau-type models [1,2,13] because corresponding gradient
terms in the expressions in Eqs. (1b) and (1c) include the
same as well as additional terms. Due to the additions, which
have critical influence on the appearance and stability of sep-
arated and coupled spatially modulated phases, the proposed
LG model describes more scenarios of the CW coexistence,
competition, or spatial separation with the other long-range
order S in comparison with the models [1,2,13], and so it can
potentially describe more experimental data.

Wandel et al. [5] consider a different gradient term
1

2mQ2 |Q · (∇α − iQ)|2, which includes the gradient of the
real dimensionless order parameter α and the wave vector
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Q related to the wavelength of incommensurate CW. The
expression may be a particular case of more general expres-
sions gCi j | ∂ψCi

∂x j
|2 and gSi j | ∂ψSi

∂x j
|2 included in Eqs. (1c) and

(1d) [34]. Wandel et al. [5] observe the enhancement of the
CW spatial coherence in the high-Tc superconducting cuprate
YBa2Cu3O6+x triggered by the laser-driven quench of the
superconducting state and discussed three possible scenarios
of the superconductivity-CW interaction. As the first sce-
nario, they consider the time-dependent LG (TDLG) model
to interpret the dynamical interplay between interacting or-
ders, assuming locally coexisting orders. In their formulation,
which predicts homogenous and competitive superconductive
and charge orders, the CW order parameter amplitude would
increase on a picosecond timescale, driven by the quench
of superconductivity. The result was in principal disagree-
ment with their observations, where the signal was dominated
by a change of correlation length. They conclude that a
simple competition model is incompatible with experimen-
tal results. Their second scenario considers phase-separated
strongly competitive orders using modified McMillan [1,2]
formalism. In this case, well-separated CW and superconduct-
ing domains, with an average spacing between neighboring
CW domains larger than the CW periodicity, also remains in-
compatible with the experimental data. The third hypothesis,
which explained their observations well, is a superconductive

region acting as a topological defect (e.g., dislocation) inside
the CW region before photoexcitation. The topological defect
induces a phase shift of the CW pattern, which propagates
from the core of the defect, until the sudden photo-quench of
superconductivity removes the defect.

Within harmonic approximation, the proposed LG model
describes coexisting CW and S order, abbreviated as the
CW-S phase and shown schematically in Fig. 4(a). The spa-
tially modulated S and C waves, in which phase and periods
are decoupled in the harmonic approximation, are shown
schematically in Fig. 4(b). The spatially separated S and C
domains, which may look like small S-phase regions inside
the CW phase (or vice versa), can appear at the morphotropic
boundary between the C and S phases [shown schematically in
Fig. 4(c)]. All these scenarios are possible at η∗ < 0, ξ ∗ < 0,
and ϑ > 1.

Anharmonicity and strong nonlinearity can change the sit-
uation, shown in Figs. 4(b) and 4(c), and the low-dimensional
spatially separated S domains can behave as 1D, 2D, or 3D
topological defects for CWs. To study the equilibrium states
of spatially inhomogeneous structures, such as the topological
defects, in materials with coupled long-range orders, numer-
ical modeling based on the minimization of the free energy
in Eqs. (1a)–(1d) is required. Allowing for the Khalatnikov
mechanism of the order parameter relaxation, minimization
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of the free energy in Eqs. (1a)–(1d) with respect to the order
parameters ψ∗

C and ψ∗
S leads to the coupled TDLG relaxation

equations:

−�
∂ψC

∂t
= δF [ψC, ψS]

δψ∗
C

, −�
∂ψS

∂t
= δF [ψC, ψS]

δψ∗
S

. (11)

Here, the dissipation constant � is the Landau-Khalatnikov
relaxation coefficient [35]. The TDGL Eq. (11) is used in the
finite element modeling (FEM) of the S and C order parameter
relaxation from a given initial distribution (e.g., from some
regular structure or, more often, randomly small fluctuations)
to equilibrium spatially inhomogeneous structures. FEM, as
well as more powerful phase-field modeling [36], based on
TDLG equations is a usual tool for numerical search of equi-
librium spatially inhomogeneous structures. The approach
is widely used for the description of 2D and 3D domain

structures of various morphology (stripes, vortices, labyrinths,
bubbles, halos, topological defects, etc.) in different materials
with coupled long-range orders [36].

Since we are interested in the form of equilibrium structure
only, the value of � does not play any role when the simulation
time t is much higher than the maximal of characteristic
relaxation times τS = �

|aS| and τC = �
|aC| because initial dis-

tributions of the C and S order parameters eventually relax
to the equilibrium state. The condition t 	 max[τS, τC] can
be fulfilled everywhere except for the immediate vicinity of
transition temperatures TS or TC, where aS or aC tends to zero.
Thus, at low temperatures considered in this paper, the dimen-
sionless machine time can be introduced as τ = t

τLK
, where

τLK = max[ �
|αSTS| ,

�
|αCTC| ]. The explicit form of the coupled

Eq. (11), written in the dimensionless variables, is listed in
Appendix S1 in the Supplemental Material [32].
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Using these equations, we analyzed different scenarios of
decoupled, coupled, and/or intertwined S and C orders; and a
schematical illustration some of them is shown in Figs. 5(a),
5(d), and 5(g). Results presented in Fig. 5 correspond to τ 	
102, ξ ∗

S = ξ ∗
C = ξ ∗, v∗

C = v∗
S = v∗, w∗

C = w∗
S = w∗, and T →

0. The top row are profiles calculated at y = 0, and the middle
and bottom rows are 2D contour maps in {x, y} coordinates.

The coexisting homogeneous S order and nonlinear anhar-
monic CW is shown in Figs. 5(a)–5(c). It appeared that the
profile of CW is described well by an elliptic sine function,
whose phase is apparently decoupled from the magnitude of
the S order. The anharmonic coupled waves of S and C orders
are shown in Figs. 5(b)–5(f). It appeared that their profiles,
which appeared antiphase, are described well by a combina-
tion of elliptic functions. The localized S spot, which disturbs
the phase of nonlinear CW, is shown in Figs. 5(g)–5(i). These
examples show that S waves and spots can act as 1D and 2D
topological defects for the CW.

V. CONCLUSIONS

We propose a LG description of the charge density waves
coupled with lattice and/or electronic long-range ordering in
ferroics and/or high-temperature superconductors. We derive
analytical expressions for the energies of different phases,
corresponding order parameters, wave amplitudes, and mod-
ulation periods. Using the analytical expressions listed in
Table I, one can calculate the phase diagrams of versatile
ferroics and high-T superconductors with the charge order
C and the spontaneous long-range (superconductive, polar,
or magnetic) order parameter S, corresponding amplitudes,
and modulation period of charge density waves. The order
parameter amplitudes and modulation periods are most sen-
sitive to the biquadratic and biquadratic gradient-coupling
strength, which can change their sign, and to the S/C energy
ratio and less sensitive to the positive gradient coefficients.
The analytical expressions obtained in this paper can be
employed to guide the comprehensive physical explanation,
deconvolution, and Bayesian analysis of experimental data on
quantum materials ranging from charge-ordered ferroics to
high-temperature superconductors.

Numerical results presented in this paper are obtained and
visualized using a specialized software Mathematica 13.1
[37], and the Mathematica notebook which contains the codes
is available per reasonable request.
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APPENDIX A: TEMPERATURE-DEPENDENT
PHASE DIAGRAMS

Results presented here correspond to very low tempera-
tures 0 � T 
 min[TC, TS]. The values of TC and/or TS can
play a very significant role when the temperature T rises and
becomes comparable with min[TC, TS]. We hope to consider
this question in detail in the near future. Preliminary calcu-
lations for higher temperatures, some results of which are
presented in Figs. 2 and 3, show that the ratio TC/ TS has a
principal influence on the form of the phase diagrams. The
phase diagrams are very sensitive to the parameters η∗ and ϑ

(see Fig. 2), relatively sensitive to the parameter ξ ∗ (see Fig. 3,
the top row), and almost insensitive to the positive parameter
χ∗ (see Fig. 3, the bottom row) for given values of v∗ and w∗.

APPENDIX B: ESTIMATES OF BIQUADRATIC
COUPLING COEFFICIENTS

Our model is still far from the quantitative description of
available experiments for SCW in high-temperature super-
conductors because too many LG parameters are unknown
and should be determined from microscopic, e.g., ab initio,
calculations. Our model may be suitable for the semiquan-
titative description of CW in ferroics, such as the electronic
ferroelectric LuFe2O4 [38], transition-metal dichalcogenide
TiSe2 [39,40] with charge density waves and antiferroelectric
instability, and rare-earth tritelluride LaTe3 with light-induced
crossed charge density waves along the a and c axes [41], as
well as for the description of strongly coupled elastic strain,
ferroelectric, and/or superconducting orderings in R-doped
incipient ferroelectric SrTiO3 [42,43] (R = Sm, La, Nb, …).
For ferroelectric and piezoelectric materials such as LuFe2O4,
low-dimensional TiSe2, and strained SrTiO3, the spontaneous
polar and/or antipolar order parameters are either measured
and/or calculated by density functional theory [44] or can
be estimated from, e.g., piezoelectric reaction. For rare-earth
tritellurides such as LaTe3, the transition temperatures TC1 and
TC2 and wave numbers qC1 and qC2 have been measured. Also,
the electronic properties of these materials are relatively well
known. The gradient coefficients gC and gS can be estimated
from the width of domain walls and/or CW modulation pe-
riods. Higher-order gradient coefficients wC and wS, vC and
vS can be estimated from the modulation period, and it is
reasonable for them to be pairwise equal. The biquadratic cou-
pling parameters η, ξ and χ are poorly known and should be
determined (or at least estimated) from available experiments
and/or microscopic calculations. Their direct measurements
are hardly possible for materials with CW, and we dare to
list our indirect estimates in Table II, where the ranges of
scattering of parameters are very high and overlap the ranges
of dimensionless parameters well, shown in Figs. 2 and 3.

Here, we regard that the long-range parameter ψS is a
spontaneous (or incipient) polarization PS, measured in C/m2.
The charge density ρ is normalized as ρ = ρ0Re[ψC] [1],
where ρ0 is a homogeneous carrier density (in C/m2) and
ψC is a dimensionless charge-order parameter. The estimates
of η, ξ , and χ are based on the linear relationship [45]
between the free change density variation δρ, deformation
potential [46] and/or Vegard strain [47] tensor �i j , and the
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TABLE II. Phenomenological parameters of the multiparametric LG model.

Magnitude range of a
dimension parametersa for a

Phenomenological Corresponding dimensionless parameter(s) in Actual range of reference materials SrTiO3

parameter in the free the free energy in Eq. (7) dimensionless parameter(s) and TiSe2

Coupling constant η η∗ −1.5 to +1.5 η = (1017 − 1019)·J · m/C2

Gradient coupling ξ ξ ∗
S and ξ ∗

C, which are assumed to be equal −3 to +3 ξ ∼= (10−1 − 10+1)J · m3/C2

Gradient coupling χ χ∗ −1 to +1 χ ∼= (10−19 − 10−17)
J · m5/C2

Gradient coefficients gC

and gS

Wave vectors qC =
√

gC
αC

q and ks =
√

gS
αS

k Variable

gS =
(10−10 − 10−11)·J m3/C2

Higher-order gradient
coefficients wC and wS

w∗
C and w∗

S, which are assumed to be equal 0–10 wS
∼= (10−8 − 10−10 )

J · m11/C2

Higher-order gradient
coefficients vC and vS

v∗
C and v∗

S, which are assumed to be equal 0–10 vS
∼= (10−27 − 10−29)

J · m5/C2

Expansion coefficients
aC(T ) = αC( T

TC
− 1) and

aS(T ) = αS( T
TS

− 1)

θC(T, qC) = T
TC

− 1 + q2
C and

θS(T, kS) = T
TS

− 1 + k2
S

Functions of temperature and
wave vectors; 0.1 � TS

TC
� 10

αS = (106 − 109) · J · m/C2,
TS = (30−400) · K,
TC = (0.4−200) · K

Higher-order expansion
coefficients bC and bS

βC(qC) = 1 + w∗
Cq2

C + v∗
Cq4

C and
βS(kS) = 1 + w∗

Sk2
S + v∗

Sk4
S

Functions of wave vectors bS =
(109 − 1012) · J · m5/C4

Energies fC = α2
C

bC
and

fS = α2
S

bS

Ratio ϑ = α2
SbC

α2
CbS

0–10 fS ∼(105 − 107) ·
J/(K2 · m3)

aUnfortunately, we did not find any reliable data for the values of αC and bC (and so for fC). Because of this, the order parameter ψC is selected
as dimensionless from the beginning and has an order of unity; its LG parameters αC and bC have the same dimension J/m3. The gradient
coefficients gC, wC, and vC have dimensions J/m, J/m, and J · m, respectively. The characteristic gradient scale is 1/qCW ∼ 10−9 m.

elastic stress variation δui j , whose role is principally im-
portant in ferroelastics like SrTiO3 (see, e.g., Ref [12].)
and transition-metal dichalcogenides (see, e.g., Refs [3,48].
and refs. therein). Namely, using the relations δui j

∼= �i j
δρ

e
[45] and δρ = ρ0Re[ψC] [1] in the biquadratic coupling
contribution Wi jklmnui jukl PmPn (also known as nonlinear elec-
trostriction coupling [49,50]), we can estimate that

Wi jklmnui jukl PmPn
∼= Wi jklss�

−1
i j �−1

kl e2δρ2P2
S

∼= Wi jklss�
−1
i j �−1

kl

e2

ρ2
0

|ψC|2|ψS|2. (B1a)

Thus,

η ∼= Wi jklss�
−1
i j �−1

kl

e2

ρ2
0

. (B1b)

Using the values of parameters |Wi jklss| ∼ 1011 J · m/C2

[49,50], � ∼= (10−29 − 10−30) m3 [46,47], ρ0

e
∼= 1026 m−3,

and e = 1.6 · 10−19 C, we obtained that η ∼= (1017 − 1019) ·J ·
m/C2. The higher-order gradient coupling coefficients ξ and
χ are estimated using the characteristic width or uncharged
domain walls d ∼ 10−9 m [12] and wave vector qCW ∼ 10+9

1/m [41].
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