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Irregular Bloch-Zener oscillations in two-dimensional flat-band Dirac materials
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When a static electrical field is applied to a two-dimensional (2D) Dirac material, Landau-Zener transition
(LZT) and Bloch-Zener oscillations can occur. Employing α-T3 lattices as a paradigm for a broad class of 2D
Dirac materials, we uncover two phenomena. First, due to the arbitrarily small energy gaps near a Dirac point that
make it more likely for LZTs to occur than in other regions of the Brillouin zone, the distribution of differential
LZT probability in the momentum space can form a complicated morphological pattern. Second, a change in
the LZT morphology as induced by a mutual switching of the two distinct Dirac points can lead to irregular
Bloch-Zener oscillations characterized by a nonsmooth behavior in the time evolution of the electrical current
density associated with the oscillation. These phenomena are due to mixed interference of quantum states in
multiple bands modulated by the geometric and dynamic phases. We demonstrate that the adiabatic-impulse
model describing Landau-Zener-Stückelberg interferometry can be exploited to calculate the phases, due to the
equivalence between the α-T3 lattice subject to a constant electrical field and strongly periodically driven two-
or three-level systems. The degree of irregularity of Bloch-Zener oscillations can be harnessed by selecting the
morphology pattern, which is potentially experimentally realizable.
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I. INTRODUCTION

The Landau-Zener transition (LZT) [1,2] is a fundamen-
tal phenomenon in time-dependent quantum systems. The
paradigmatic setting for LZT is a two-level system in which
the two energy levels do not cross each other and vary adi-
abatically with time. When the energy gap between the two
levels is sufficiently small, a nonadiabatic transition from one
energy level to another can occur—leading to an LZT. The
phenomenon of LZT is relevant to quantum information sci-
ence and technology, because qubits are essentially two-level
systems [3–5]. In addition to quantum systems, LZTs can
arise in other physical situations such as optical lattices [6–8]
and electromechanical systems [9,10]. When a two-band sys-
tem is periodically driven by an electric field, the transition
probability will depend on the phase accumulated by the two
energy bands between subsequent crossings, leading to the
so-called Landau-Zener-Stückelberg interferometry [11]. In
general, interference among the quantum states in different
energy bands is determined by two phases: geometric and dy-
namic, which correspond to the adiabatic and Stokes phases,
respectively, in the adiabatic-impulse model [11,12] underly-
ing the Landau-Zener-Stückelberg interferometry, where the
sum of the adiabatic and Stokes phases gives the Stückelberg
phase—a concept originated from strongly periodically driven
two-level systems. A generalization from the two-level setting
is the three-level LZT model [13] with an additional flat band
[14,15].

*Ying-Cheng.Lai@asu.edu

In solid state physics, Bloch oscillations [16,17] are a fun-
damental phenomenon closely related to LZT, which occur
when a static electric field is applied to a periodic lattice, lead-
ing to a linear increase with time in the electron momentum
and generating a time-dependent quantum system. The basic
periodicity of the momentum space stipulates that the electron
must execute oscillatory motions in the physical space at a fre-
quency determined by the lattice constant and the electric field
strength (typically in the terahertz regime). In fact, insofar as
the electron moves in a periodic potential, Bloch oscillations
can occur, rendering them a common quantum phenomenon
beyond solid-state lattices. In the past, the oscillations have
been observed in diverse systems such as semiconductor su-
perlattices [18], photonic structures [19–22] and plasmonic
waveguide arrays [23]. The phenomenon provides a vi-
able way to convert a direct current to a high-frequency
signal [24,25].

Bloch oscillations arise from the time evolution of the
electron in a single energy band. When there are multi-
ple energy bands, LZTs can occur at the avoided crossing
points between the bands. Driven by the static electric field,
a quantum state initialized in the lower energy band evolves
with time. At certain time, the state will reach an avoided
crossing point between distinct energy bands and possibly
experience an LZT. Thus, in systems with multiple energy
bands, a combination of LZTs and Bloch oscillations can oc-
cur, leading to the so-called Bloch-Zener oscillations [15,26–
28], which have applications in, e.g., matter-wave beam split-
ters and Mach-Zender interferometry [29,30]. In the past,
Bloch-Zener oscillations were extensively studied for one-
dimensional (1D) gapped periodic lattices [29–32] and were
demonstrated to be sensitive to the size of the energy gap. In
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particular, if the gap is relatively large, LZTs are inhibited so
the Bloch-Zener oscillations are restricted to within a single
energy band. For a smaller gap, interband LZTs can occur,
which destroys the periodicity of the Bloch-Zener oscillations
[29–31,33,34]. In a 2D lattice with multiple energy bands,
in the first Brillouin zone, different subregions can arise that
can inhibit or excite LZTs, resulting in irregular Bloch-Zener
oscillations [35,36]. For example, in pure graphene, when a
constant electric field is applied in a lattice-rational direction,
the oscillation amplitude can decay with time rapidly in a
nonadiabatic fashion [37]. When the electric field is in an
irrational direction with respect to the lattice structure, Bloch
oscillations of complicated patterns can arise [38].

In this paper, we study the effects of a constant and uniform
electric field on a broad class of 2D Dirac materials, the α-T3

lattice [39,40], which has an additional atom at the center of
each unit cell of the honeycomb graphene lattice. The interac-
tion between the central atom and any of its nearest neighbors
is characterized by the parameter 0 � α � 1—effectively the
strength relative to that between two neighboring atoms at the
vertices of the graphene cell. For α = 0, the lattice reduces
to that of graphene with quasiparticles being pseudospin-1/2
Dirac fermions. As α increases from zero, a flat band through
the conic interaction of the two Dirac cones emerges [39,40].
The maximal value α = 1 gives a pseudospin-1 lattice where,
because of the extra atom, the low energy excitations need to
be described by the pseudospin-1 Dirac-Weyl equation with a
three-component spinor [41]. A feature of the entire spectrum
of α-T3 lattices is the existence of two distinct valleys centered
about the two nonequivalent Dirac points of the backbone
hexagonal lattice, denoted as +K and −K .

Depending on the direction and magnitude of the elec-
tric field, electrons initiated from distinct valleys can exhibit
characteristically different LZTs. As the dynamic phases as-
sociated with different valleys can cancel each other exactly,
the distinct LZTs are due to the different adiabatic phases of
the quantum states in the energy bands between consecutive
crossings. This can be understood by considering the recip-
rocal periodic momentum space with the hexagonal Brillouin
zone, as shown in Fig. 1. Now apply an electric field in the
x direction. The x component of the momentum will then
increase linearly with time under the premise of the same
energy value. As a result, in the moving frame with the
electron wave vector the Dirac points +K and −K will shift
towards the right. At an original Dirac point (+K or −K), the
energy will increase from zero, reach a maximum, and then
decrease to zero when the next Dirac point arrives, generating
a time-periodic behavior. Because of the hexagonal structure
of the momentum space, the energy variations associated with
+K and −K are distinct, as indicated in Fig. 1(b). The LZT
probability depends on the accumulated phase between sub-
sequent crossings, where the adiabatic phase is the integral
of the energy variation over time. In the specific setting of
Figs. 1(a) and 1(b), the integral associated with the Dirac point
+K will have a much larger value than that associated with
the other Dirac point −K . As a result, if an electron initiates
with a momentum value near +K , the adiabatic phase will be
nearly constant for a large range of energy gaps determined by
the momentum deviation from the trajectory of Dirac points
±K in the k̃y direction. However, if an electron starts with a

(a)

(b)

FIG. 1. Illustration of the α-T3 lattice and its positive energy
band structure. (a) The lattice structure [39,42] as defined by the
three base atoms (A, B, and C) in physical space spanned by the
two primitive translation vectors a1 and a2. The nearest-neighbor
hopping energy between A and B sites is tε and that between B and
C sites is αtε , where 0 � α � 1 characterizes the coupling strength.
(b) Zero-field energy-band structure [39] of the positive dispersion
band as a function of the wave vector k for an arbitrary value of α in
the hexagonal Brillouin zone. The zero energy points correspond to
two classes of nonequivalent contact points at the corners ξK with
the valley index ξ = ±1. A reference rectangular region (dashed
line) for numerical integration is indicated, with the boundaries of
the hexagonal Brillouin zone specified by the red solid lines.

momentum value near −K , the adiabatic phase will depend
sensitively on the energy gap. Based on this property, it is
possible to generate specific destructive or constructive inter-
ference for a large range of momentum deviation from the
trace of the Dirac point +K , whereas there is mixed inter-
ference associated with all possible phases for electrons with
initial momentum near −K .

Our first finding is the emergence of complicated LZT
morphological patterns in the vicinity of distinct Dirac points,
which is associated with mixed quantum interference among
the quantum states in multiple bands. Say we apply an elec-
tric field in the x direction, initialize electrons in the lower
Dirac cone (the lower band), and calculate the differential
LZT probability, defined as the difference between the prob-
ability that an electron is in the upper band and that in
the lower band. Different momentum values about a Dirac
point and the magnitudes of the electric field give distinct
interference phases. As a result, in the momentum plane, the
differential LZT probability displays different values, giving
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rise to some morphological pattern that can be complex.
During its temporal evolution, the pattern can be maintained
for some time but it can change from time to time due
to the switching of two distinct Dirac points ±K in the
Brillouin zone as caused by the external electric field and
the periodic structure of the momentum space. Specifically,
during one period of the Bloch-Zener oscillation, the two
valleys go through a complete cycle in the sense that they
are switched and then returned to their respective original
positions.

The second finding is that changes in the LZT morphology
can lead to irregularities in Bloch-Zener oscillations in α-T3

lattice. To explain this, we recall the two typical cases where
periodic Bloch oscillations are generated. One case is a single-
band material, such as a normal conductor, where the Bloch
oscillations are characterized by a perfect temporally periodic
behavior in the electrical current density. Another case is
where an LZT causes all electrons initialized in one band
to transition completely to another band, i.e., the transition
probability is one—the so-called ideal LZT. In this case, the
resulting Bloch-Zener oscillations behave as if the electrons
were in a single band. In the three-band α-T3 lattice, LZTs are
typically not ideal. The mutual switchings of the two Dirac
points ±K in the Brillouin zone changes the LZT morphol-
ogy, which can produce an abrupt, nonsmooth change in the
current density, thereby leading to aperiodic, irregular Bloch-
Zener oscillations. More specifically, the coexistence of a
variety of LZT possibilities in the momentum space generates
complex, mixed quantum interference between the states in
the upper, lower, and flat bands, disrupting the originally pe-
riodic Bloch-Zener oscillation rhythm before the Dirac point
switch. While aperiodic Bloch oscillations [29–31,33,34] and
irregular Bloch-Zener oscillations [35,36] have been noted be-
fore, to our knowledge, the physical mechanisms underlying
these irregular behaviors were not clear. Especially, it has not
been reported previously that LZTs can form a complicated
morphology in α-T3 lattice and a change in the morphology
can lead to irregular Bloch-Zener oscillations.

In Sec. II, we describe the α-T3 lattice model and de-
rive the current density associated with the Bloch-Zener
oscillations from the adiabatic basis in the hexagonal Bril-
louin zone. In Sec. III, we present a general treatment
of LZTs in the α-T3 lattice, display the LZTs morphol-
ogy in the long time, and analyze the relationship between
morphology and irregular Bloch-Zener oscillations. In par-
ticular, in Sec. III A, we linearize the Hamiltonian about the
Dirac points to obtain the effective Landau-Zener Hamil-
tonian for the two limiting cases: α = 0 and α = 1. For
0 < α < 1, we numerically demonstrate the occurrence of
LZT. In Sec. III B, we elucidate the interplay between LZT
morphological changes and irregular Bloch-Zener oscilla-
tions (additional results are presented in Appendix A). In
Sec. IV, we focus on the Landau-Zener-Stückelberg inter-
ferometry in α-T3 lattice, where in Sec. IV A, we establish
the equivalence of the α-T3 lattice to two- or three-level
time-dependent systems and provide an understanding of the
LZT based on the Stückelberg phase (details are provided
in Appendices B-D). In Sec. IV B, we address the prob-
lem of harnessing irregular Bloch-Zener oscillations through
selection of the LZT morphology and discuss the experi-

mental feasibility of this scheme. A discussion is offered in
Sec. V.

II. BASICS OF α-T3 LATTICE, LANDAU-ZENER
TRANSITION, AND BLOCH-ZENER OSCILLATIONS

The α-T3 lattice interpolates between the graphene hon-
eycomb lattice (α = 0) and the dice lattice (α = 1) with the
parametrization tan ϕ = α ∈ [0, 1] with the duality [39] α →
1/α. The tight-binding Hamiltonian is given by

H =
⎡⎣ 0 fk cos ϕ 0

f ∗
k cos ϕ 0 fk sin ϕ

0 f ∗
k sin ϕ 0

⎤⎦, (1)

where

fk = −tε (1 + e−ik·a1 + e−ik·a2 ), (2)

k = (kx, ky), and tε is the nearest-neighbor hopping energy
between A and B sites, as shown in Fig. 1(a). The prim-
itive translation vectors are a1 = a(

√
3/2, 3/2) and a2 =

a(−√
3/2, 3/2) with a being the lattice constant. The corre-

sponding primitive translation vectors in the hexagonal Bril-
louin zone of the reciprocal lattice are b1 = (

√
3/3, 1/3)2π/a

and b2 = (−√
3/3, 1/3)2π/a. The eigenenergy spectrum of

the α-T3 lattice is independent of α, which consists of two
conic dispersive bands ελ = λ| fk| distinguished by the band
index λ = ± and a zero energy flat band ε0 = 0. The eigen-
states of the α-T3 lattice in the whole hexagonal Brillouin zone
can be obtained through effective Hamiltonian about the Dirac
points as:

|ψ0〉 =
⎡⎣ sin ϕ eiθk

0
− cos ϕ e−iθk

⎤⎦, |ψλ〉 = 1√
2

⎡⎣ cos ϕ eiθk

λ

sin ϕ e−iθk

⎤⎦, (3)

where θk is the angle of fk associated with the specific mo-
mentum.

We describe the Hamiltonian responsible for Bloch-Zener
oscillations. Apply a uniform and constant electric field to the
α-T3 lattice in the +x direction, which is switched on at t =
0. With the time-dependent vector potential [43,44] A(t ) =
[A(t ), 0, 0], where A(t ) = Et
(t )/h̄, with 
(t ) being a unit
step function of time, the Hamiltonian becomes

H (t ) =
⎡⎣ 0 fk (t ) cos ϕ 0

f ∗
k (t ) cos ϕ 0 fk (t ) sin ϕ

0 f ∗
k (t ) sin ϕ 0

⎤⎦, (4)

where fk (t ) is given by

fk (t ) = −tε

(
1 + 2e−i 3

2 k̃y cos

(√
3

2
k̃x(t )

))
, (5)

with kx(t ) ≡ kx − eEt/h̄. For convenience, we have defined in
Eq. (5) the dimensionless quantities

k̃x(t ) ≡ kx(t )a, (6)

k̃y ≡ kya, (7)

so that fk (t ) has the same dimension as the hopping energy tε .
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In the presence of the electric field, the eigenenergy spec-
trum of the positive dispersion band in the whole hexagonal
Brillouin zone is determined by

εk (t ) = | fk (t )|
= tε

√
1 + 4 cos Xk (t )(cosYk + cos Xk (t )), (8)

where Xk (t ) = k̃x(t )
√

3/2 and Yk = k̃y3/2. Because the func-
tion fk (t ) includes cos(L(t )), where L(t ) is a linear function
of time, the Hamiltonian becomes time-periodic. Consider the
special case of α = 0 (graphene). Expanding the Hamiltonian
around the Dirac points yields the standard Landau-Zener
Hamiltonian [45]. That is, when the electrons are near the
Dirac points, LZTs between distinct energy bands can arise.

The quantum dynamics are governed by

ih̄∂tψk (t ) = H (t )ψk (t ). (9)

In the adiabatic basis, the evolution of a quantum state is under
an infinitesimal electric field [43,46]:

U †(t )H (t )U (t ) = Szεk (t ), (10)

where Sz is the z component of the vector of spin-1 matrices.
The transformed quantum dynamics are governed by

ih̄∂t�k (t ) =
[

Szεk (t ) − S̃x
at2

ε eE

ε2
k (t )

C0(t )

]
�k (t ), (11)

through the time-dependent unitary transformation U (t )
given by⎡⎢⎣

1√
2

cos ϕ eiθk (t ) sin ϕ eiθk (t ) 1√
2

cos ϕ eiθk (t )

1√
2

0 − 1√
2

1√
2

sin ϕ e−iθk (t ) − cos ϕ e−iθk (t ) 1√
2

sin ϕ e−iθk (t )

⎤⎥⎦,

(12)

where �k (t ) = U †(t )ψk (t ) and the term incorporating C0(t )
contributes to the time dependence of U (t ) through
−ih̄U †∂tU . Specifically, we have

C0(t ) =
√

3 sin Yk sin Xk (t ), (13)

S̃x = Sx sin 2ϕ − SL cos 2ϕ, (14)

where

Sx = 1√
2

⎡⎣0 1 0
1 0 1
0 1 0

⎤⎦, SL ≡
⎡⎣− 1

2 0 − 1
2

0 1 0
− 1

2 0 − 1
2

⎤⎦. (15)

For α = 1, S̃x reduces to Sx, the x component of the spin-1
matrix and Eq. (11) becomes the quantum evolution equa-
tion for a dice lattice. This form of Eq. (11) is consistent with
that reported in a previous work [44] except for the periodic
factor in C0(t ) due to the intrinsic lattice structure. For α = 0,
S̃x become −SL and Eq. (11) describes the graphene lattice,
which is consistent with a previous work [43] except for the
scalar factor exp [−iθk (t )/2]∂t exp [iθk (t )/2]/2, where θk (t ) is
the phase of fk (t ). Overall, S̃x reflects the different coupling
strength among the three bands and the periodic term in C0(t )
originates from the intrinsic property of the α-T3 lattice.

We set the initial state as one corresponding fully occupied
lower band:

�k (t = 0) = [0, 0, 1]T . (16)

The average current density associated with the momentum
〈Jx〉k (t ) in the hexagonal Brillouin zone is given by

〈Jx〉k (t ) ≡ �
†
k (t )Jx, k (t )�k (t ), (17)

where the current density matrix with the definite
momentum is

Jx, k (t ) = −eU †(t )∂kx (t )H (t )U (t ) (18)

and �k (t ) in the adiabatic basis can be written as

�k (t ) = [αk (t ), γk (t ), βk (t )]T . (19)

Due to the periodic structure of the energy band (referred to
as the Bloch band), the average current density will exhibit
Bloch oscillations.

The average current density 〈Jx〉k (t ) can be decomposed
into two components, the intraband and interband currents
[43]:

〈Jx〉k (t ) = 〈Jx〉intra
k (t ) + 〈Jx〉inter

k (t ), (20)

which can be written, respectively, as

〈Jx〉intra
k (t ) = J11

x, k (t )(|αk (t )|2 − |βk (t )|2), (21)

〈Jx〉inter
k (t ) = 2	[

J13
x, k (t )α∗

k (t )βk (t )
]

+ 2	[
J12

x, k (t )α∗
k (t )γk (t ) + J23

x, k (t )γ ∗
k (t )βk (t )

]
.

(22)

The matrix Jx,k (t ) provides insights into the current density
〈Jx〉k (t ). In particular, the intraband component consists of
both electrons and holes, corresponding to

J11
x, k (t ) ≡ J0

x, k (t ) cos 
k (t ), (23)

J33
x, k (t ) = −J11

x, k (t ), (24)

respectively, where the minus sign comes from the opposite
sign of the equivalent charge in the electron-hole pair [see
Eq. (27) below for a definition of 
k (t )]. The zero group
velocity of the flat band results in zero intraband contribu-
tion. The interband contribution arises from the interference
between the transition from the lower to the flat band or the
upper band and that from the flat to the upper band, corre-
sponding to J23

x, k (t ), J13
x, k (t ), and J12

x, k (t ), respectively, which
are given by

J13
x, k (t ) ≡ iJ0

x, k (t ) cos 2ϕ sin 
k (t ), (25)

J12
x, k (t ) = J23

x, k (t ) ≡ iJ0
x, k (t )/

√
2 sin 2ϕ sin 
k (t ), (26)

where


k (t ) ≡ θk (t ) + Yk (27)

and J0
x, k (t ) is the common factor with the dimension of the

current density:

J0
x, k (t ) = −

√
3eatε sin Xk (t ). (28)
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To facilitate numerical calculations, we define the dimension-
less quantities:

t̃ = t/t0, (29)

Ẽ = E/E0, (30)

ε̃k (t ) = εk (t )/ε0, (31)

J̃x, k (t ) = Jx, k (t )/J0. (32)

where t0 ≡ h̄/tε , E0 ≡ tε/(ea), ε0 = tε , and J0 = eatε . We use
the fourth-order Runge-Kutta method to calculate the adia-
batic evolution of the particle. The discrete step sizes in time
and momentum are chosen for Eq. (11) with the error toler-
ance 10−2 and normalized wave-function error within 10−4.
Figure 1(b) indicates that the ±K Dirac points correspond to
zero energy, which results in numerical divergence of Eq. (11),
so we set a minimum energy cutoff to be ε̃k � 10−5.

The dimensionless current density J̃ is the result of inte-
grating 〈Jx〉k (t )/J0 over the rectangular reference area in the
hexagonal Brillouin zone, as shown in Fig. 1(b), which con-
tains three Dirac points and is 3/2 times larger than the first
Brillouin zone. In addition, we divide the current density J̃ by
the electric field Ẽ and a constant 3π2/4, which normalizes
the current density in the weak field regime [37] for α = 0.

III. MORPHOLOGICAL CHANGES IN LZTs AND
IRREGULAR BLOCH-ZENER OSCILLATIONS

A. Landau-Zener transition

To gain insights, we first consider the special case α = 0
(graphene), where the Hamiltonian of the α-T3 lattice lin-
earized about the Dirac points ±K corresponds to that of a
standard two-level system. Using the unitary transformation

U = exp(−iπ/4σy) exp (−iπ/4σz ), (33)

we can write the linearized Hamiltonian as (Appendix C)

U †H̃U ≈ 3δk̃y

2
σx ∓ 3Ẽ t̃ ′

2
σz (34)

where δk̃y is an infinitesimal deviation from a Dirac point
and t̃ ′ = 0 denotes the starting time from the Dirac point.
Recall the standard Landau-Zener Hamiltonian for a two-level
system [45]:

HLZ = (g/2)σx + (st )σz, (35)

with the two underlying adiabatic energy levels

ε̃± = ±1

2

√
(2st )2 + g2, (36)

where g is the energy gap and s is the slope of the two-level
band about the LZT point. The linearized Hamiltonian for
graphene in Eq. (34) can thus be cast in the standard two-level
LZT Hamiltonian with the following parameter correspon-
dences:

α = 0, g = 3δk̃y, and s = 3Ẽ/2. (37)

For a finite �k̃y in α-T3 lattice, the exact energy gap is

g = 2

√
1 − cos2

(
3

2
�k̃y

)
. (38)

The gap size increases monotonically with the momentum
deviation �k̃y from a Dirac point. [For α 
= 0 (a flat band),
the gap between the lower band and the flat one is half of the
gap between the lower and the upper bands.] For �k̃y = π/3,
the gap size g reaches the maximum value of two in the energy
unit ε0 in the hexagonal Brillouin zone.

In a two-level quantum system, for electrons initialized in
the lower band, after the electric field is turned on, the first
LZT to the upper band occurs with the probability [45]

PLZ ≡ |αk|2 = exp (−πr), (39)

and the one remaining in the lower band is 1 − PLZ, where r is
the ratio between the energy gap and the slope (in the standard
unit h̄ ≡ 1) given by

r ≡ (g/2)2/s = 3

2

δk̃2
y

Ẽ
, (40)

which can be treated as a parameter characterizing the possi-
ble occurrence of LZTs. Note that PLZ ≈ 4% for r = 1, so this
provides a numerical criterion for determining if an LZT can
occur: 0 < r � 1.

We next consider the opposite extreme case of the α-T3

lattice: α = 1 (pseudospin-1 lattice). Because of the presence
of the flat band, the Hamiltonian linearized about a Dirac
point can be related to that of the standard LZT model [13]
with three distinct energy levels. In particular, employing the
unitary transformation

U = exp

(
− i

h̄

π

2
Sy

)
exp

(
− i

h̄

π

2
Sz

)
, (41)

we obtain the pseudospin-1 Hamiltonian as (Appendix C)

U †H̃U ≈ 3δk̃y

2
Sx ∓ 3Ẽ t̃ ′

2
Sz, (42)

where Sx and Sy are the components of the vector of spin-
1 matrices. The eigenenergy spectra of the upper and lower
bands have the same form as Eq. (36), with the addition of the
extra flat band in the middle of the lower and upper bands. For
an electron initialized in the lower band, the LZT probabilities
for it to transition to the upper band, transition to the flat band
and remain in the lower band are given by [13]

|αk|2 = 1 − 2
√

PLZ + PLZ, (43)

|γk|2 = 2(1 − √
PLZ)

√
PLZ, (44)

|βk|2 = PLZ, (45)

respectively. To appreciate the flat band contribution to the
transitions, we set PLZ = 1/4 so that |αk|2 = PLZ holds for
both two- and three-level systems because 1 − 2

√
PLZ = 0.
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FIG. 2. LZT probabilities in the α-T3 lattice. For electrons initiated from the lower band, there are two LZT probabilities: |αk |2 - the
transition probability from the lower band to the upper band, and |γk |2 - the transition probability from the lower to the flat bands. (a) Color-
coded sum of |αk |2 and |γk |2 in the (�k̃y, α) plane for Ẽ = 0.0336. The initial momenta are k̃x = 3 and k̃y = �k̃y about +K , and the integration
time step is dt̃ = 0.01. (b) Time evolution of the LZT probabilities for �k̃y and α values taken from the location of the pentagram in (a) with
|αk |2 + |γk |2 + |βk |2 = 1. (c) LZT probabilities versus �k̃y for α = 1, where the arrow indicates the flat-band induced change in the LZT
probability. (d) LZT probabilities vs α for �k̃y = 0.1. (e) LZT in the three-level system. If the initial state is in the lower band, after an LZT
about the avoided crossing point, the state is a superposition of the eigenstates associated with all three bands.

Figure 2 shows the numerical result for 0 � α � 1, where
it can be seen that [Fig. 2(d)], in this special case, |αk|2 is
independent of the coupling strength between the flat and
positive/negative bands.

We can now analyze the general α-T3 lattice as an interpo-
lation between the idealized two-level and three-level systems,
where the coupling between the flat band and the other two
bands varies in the range 0 < α < 1. For convenience, we
again initialize electrons in the lower band and examine two
transition probabilities: that from the lower to the upper band
denoted as |αk|2 and that from the lower to the flat band
denoted as |γk|2. To unveil the effect of increasing the value of
α from zero, we calculate the two probabilities for 0 � α � 1
and the range of momentum deviation �k̃y from the +K Dirac
point in the hexagonal Brillouin zone. Figure 2(a) shows the
color-coded sum of the two probabilities in the parameter
plane (�k̃y, α), where the range of �k̃y to generate a high
LZT probability increases monotonically with α and reaches
maximum at α = 1, suggesting that the flat band enhances
LZT. The time evolution of the two probabilities and their
sum is shown in Fig. 2(b). Note that, for α = 1, the LZT
probabilities |αk|2 and |γk|2 can be determined from Eqs. (43)
and (44), respectively. Figure 2(c) shows, for α = 1, these
two probabilities, together with their sum, versus �k̃y, where
the horizontal dashed line specifies P = 0.8 and the arrow
indicates the enhancement of the LZT by the flat band. As �k̃y

increases, the value of the characteristic parameter r increases,
leading to a decrease in the LZT probability to the upper
band. However, even when the LZT probability from the lower

to the upper bands is effectively zero, there can still be an
appreciable transition probability from the lower to the flat
band. For example, for �k̃y = 0.2, we have r ≈ 1.8. In this
case, we have |αk|2 ≈ 0 but |γk|2 ≈ 0.25. Figure 2(d) shows,
for fixed �k̃y = 0.1, the two probabilities versus α. Note that
the probability |γk|2 increases monotonically with α.

B. Morphology and irregular Bloch-Zener oscillations

Under a static electric field, the intraband current den-
sity will exhibit periodic-like Bloch-Zener oscillations, where
the interband contribution can be neglected in the long time
limit [43]. Figure 3 provides a schematic picture to explain
the origin of the oscillations. Driven by a constant electric
field in the positive k̃x direction, after t̃ = 0+, the two Dirac
points ±K in the hexagonal Brillouin zone start to move in
the same direction, where the gray rectangular region de-
notes a periodic region in the momentum space, as shown in
Fig. 3(a). The edge length of the hexagonal Brillouin zone
is k̃0 = 4π/(3

√
3) in units of 1/a, the inverse of the lattice

constant. After the time �̃t = k̃0/Ẽ , the +K valley reaches
the original location of the −K valley, as shown in Fig. 3(b).
The −K reaches the original location of the +K after the
time �̃t = 2̃k0/Ẽ , as shown in Fig. 3(c). The occurrences of
the LZTs associated with the ±K valleys are indicated by
the orange and blue horizontal strips, respectively, where the
width of excitation zone depends on both the gap size and the
magnitude of electric field. At the time t̃B = 3̃k0/Ẽ , both Dirac
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(a) (b)

(c) (d)

FIG. 3. Schematic illustration of Bloch-Zener oscillations.
(a) Two nonequivalent Dirac points ±K in the hexagonal Brillouin
zone at t̃ = 0, corresponding to two distinct valleys. Driven by a
static electric field in the positive k̃x direction, both Dirac points start
to move in the same direction, where the two vertical sides of the
gray rectangle denote the periodic boundaries in k̃x . When the electric
field is applied to the α-T3 lattice, in the laboratory frame we have
k̃x (t ) = k̃x − Ẽ t̃ , for fixed k̃x . In this “static” momentum space, an
electron will move toward the left with the momentum k̃x (t ) ∝ −Ẽ t̃ .
In the moving frame with k̃x (t ), the zero energy or Dirac points will
move toward the right with the momentum k̃x ∝ Ẽ t̃ , as shown here
based on the energy form in Eq. (8). Since LZTs occur around the
Dirac points, it is convenient to follow the movements of the Dirac
points. [(b)–(d)] The locations of ±K after �̃t = k̃0/Ẽ , 2̃k0/Ẽ , and
3̃k0/Ẽ , respectively. For �̃t = 3̃k0/Ẽ , the two Dirac points return to
their respective initial starting locations, completing one cycle. The
period of the Bloch-Zener oscillations is thus t̃B = 3̃k0/Ẽ . During the
Bloch period, the Landau-Zener transition occurs twice about ±K , as
indicated by the double horizontal color bars.

points return to their original starting locations, completing
one cycle of oscillation during which LZT occurs twice.

In the vicinity of a Dirac point (+K or −K) in the mo-
mentum space, an infinite set of energy gaps exists where,
for different momentum deviations �k̃y from the Dirac point,
the sizes of the energy gap can be quite distinct from the
exact energy gap in Eq. (38). As the static electric field
in the x direction is turned on, the momentum in the +k̃x

direction increases linearly with time, sweeping through all
possible values of the x component of the momentum in the
Brillouin zone, effectively eliminating all the original dif-
ferences in k̃x for different points in the momentum space.
However, the various deviations in the y component of the
momentum, i.e., the different �k̃y values, still matter and

FIG. 4. Emergence of distinct LZT morphology and irregulari-
ties in the Bloch-Zener oscillations. (a) Morphology of LZT after
t = 0+ (immediately after the electric field in the k̃x direction is
turned on). Shown is the color-coded values of the differential LZT
probability, defined as �Pαβ (t ) ≡ |αk (t )|2 − |βk (t )|2, in the entire
Brillouin zone. [(b)–(d)] Color-coded values of the differential LZT
probability �Pαβ (t ) at three instants of time after which a morpho-
logical change in the LZTs occurs: �̃t = k̃0/Ẽ , 2̃k0/Ẽ , and 3̃k0/Ẽ .
(e) Evolution of the intraband current density within one Bloch
period. At the three time instants indicated by the vertical dashed
lines and arrows, the curve is nonsmooth, which correspond to the
LZT morphology in (b)–(d), respectively, and signify irregularities
in the Bloch-Zener oscillations. [(f) and (g)] Morphology of LZT
after 20 periods of Bloch-Zener oscillations with magnification about
+K , −K , respectively. Simulation parameter values are α = 0, Ẽ =
0.1200, dt̃ ≈ 0.01, and dk̃x ≈ dk̃y ≈ 0.012.

in fact persist because they correspond to different energy
gaps. As a result, different values of �k̃y will lead to dif-
ferent probabilities of LZT, creating a distinct morphology
with respect to the LZT probability in the k̃y direction of the
momentum space at any given time, as shown in Figs. 4(a)–
4(g). For example, Figs. 4(f) and 4(g) present such a
morphology after 20 periods of Bloch-Zener oscillations
magnified about the ±K Dirac points, respectively, where
the color-coded values of the differential LZT probability
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�Pαβ (t ) ≡ |αk (t )|2 − |βk (t )|2 are shown in the (̃kx, k̃y) plane.
An observation is that the LZT morphology, as exemplified in
Figs. 4(f) and 4(g), can undergo changes due to the compli-
cated interference pattern between quantum states in different
energy bands in the long time, due to the nondeterministic
nature of the LZTs with respect to the size of the energy gap.

More systematically, Fig. 4(a) presents such a morphology
after time t = 0+ (immediately after the electric field is turned
on) within one period of the Bloch-Zener oscillation. Three
examples are illustrated in Figs. 4(b)–4(d), where the color-
coded values of �Pαβ (t ) at three time instants: �̃t = k̃0/Ẽ ≈
20, 2̃k0/Ẽ ≈ 40, and 3̃k0/Ẽ ≈ 60, are displayed. The morpho-
logical changes in the LZTs are concentrated in the vertical
neighborhoods of the Dirac points, whereas the values of
�Pαβ (t ) in most of the momentum space remain unchanged.

A remarkable phenomenon is that, when a change in the
LZT morphology occurs, some experimentally measurable
quantities such as the current density can undergo a sudden
change as well. To be concrete, we focus on the current
density associated with Bloch-Zener oscillations, which is
dominantly determined by the intraband behaviors [43]. Sup-
pose that, initially, the electrons are prepared in the lower
band. Due to the change in the LZT morphology and the mu-
tual switching between the Dirac points ±K , the dependence
of the probabilities for the electrons to be in the upper band
on the momentum will change, and this will lead to a sudden
change in the current density that is contributed to by all the
momenta in the Brillouin zone. Note from Figs. 4(b)–4(d) that
the changes in the LZT morphology are pronounced only near
the original Dirac points where an LZT is most likely to occur,
while there are no such changes for most of the momentum
space. Since the current density is the integration over the en-
tire Brillouin zone, the resulting change in the current density
will be quite “subtle” in the sense that it will not be a discon-
tinuous change in the current density itself but a nonsmooth
change (or, equivalently, a discontinuous change in the time
derivative of the current density). Such nonsmooth changes
have indeed been numerically observed, as shown in Fig. 4(e),
where the arrows and the vertical dashed lines indicate the
three time instants at which such a change occurs, corre-
sponding to the distinct LZT morphology in Figs. 4(b)–4(d),
respectively. To compare irregular and periodic Bloch-Zener
oscillations, we also study the oscillations resulting from near
ideal LZTs in the momentum space (Appendix A).

IV. LANDAU-ZENER-STÜCKELBERG
INTERFEROMETRY IN α-T3 LATTICE

A. Two- and three-level models

The dynamical evolution of the wave function in the α-T3

lattice for α = 0 (1) driven by a static electric field can be
described by the Hamiltonian of a strongly periodically driven
two- or three-level system, as demonstrated in Appendices B
and C. According to the adiabatic-impulse theory [11,12], the
quantum evolution can be decomposed into adiabatic evolu-
tion and nonadiabatic LZTs, where the former occurs most
of the time but the latter occur on a short time scale. For
0 < α < 1, under the adiabatic impulse approximation, this
physical picture still applies. Specifically, for the adiabatic

FIG. 5. Landau-Zener transitions in α-T3 lattice for α = 0.
Shown in (a) and (b) is the time evolution of |αk |2, the probability
of LZT from the lower to the upper band, for four different initial
momentum values. The orange traces correspond to the case where
the momentum is initiated in the vicinity of the +K valley and
within one Bloch period, an LZT is required for |αk |2 to reach
zero. The purple traces are for the case where the momentum is
initiated in the vicinity of the −K valley. In (a), the initial momentum
values for the orange and purple traces are k̃y = 0.07 about +K and
2π/3 + 0.07 around −K , respectively. In (b), the corresponding or-
ange and purple traces are the results of setting the initial momentum
values to k̃y = 0.065 (about +K) and 2π/3 + 0.065 (around −K),
respectively. The transition behaviors displayed can be understood
in terms of the Stückelberg phase (to be analyzed below) that tends
to be approximately constant when the initial momentum is near the
+K valley but exhibits large variations when the initial momentum is
near the −K valley. Other parameter values are Ẽ = 0.0317, k̃x = 3,
and dt̃ = 0.01.

evolution, the eigenenergy spectrum is independent of the
value of the lattice coupling parameter α, so the adiabatic
phase for 0 < α < 1 is similar to that for α = 1. Insights into
the LZTs can be gained by numerically calculating the time
evolution of the transition probability |αk|2 and |γk|2 in α-T3

lattice, as exemplified in the Fig. 2.
The adiabatic evolution of the wave function generates

an adiabatic phase, while the LZTs lead to a nonadiabatic
phase. To gain insights, consider the double passage case in
a strongly periodically driven two-level system, where two
successive transitions are required for a particle initiated from
an eigenstate in the lower band to reach the upper band with
probability one, as exemplified in Figs. 5(a) and 5(b). In this
case, after two successive LZTs, the transition probability to
the upper band is given by [11,47] (Appendix B 1)

P+ = 4PLZ(1 − PLZ) sin2(�st ), (46)

�st = ζ + ϕs, (47)

where PLZ is the first-time LZT probability given by Eq. (39)
and �st is the Stückelberg phase that consists of two compo-
nents: the adiabatic phase ζ between two consecutive LZTs
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and the nonadiabatic phase, i.e., the Stokes phase ϕS at the
transition. There are two distinct cases. The first is

�st = π/2 + nπ, n ∈ Z, (48)

corresponding to constructive interference [11] because, after
one driving period, the maximum transition probability to the
upper band is P+ = 4PLZ(1 − PLZ), which is twice the average
transition probability 〈P+〉 = 2PLZ(1 − PLZ) over one period.
The second case is

�st = nπ, (49)

giving rise to destructive interference [11] as P+ = 0 after one
driving period.

Our equivalence analysis in Appendix C and the treat-
ment of the strongly periodically driven two-level system in
Appendix B 1 give that, for α = 0 in the α-T3 lattice, the
adiabatic phase is given by

ζ =
∫

εk (t )dt, (50)

where εk (t ) is defined in Eq. (8) and depends on the electric
field Ẽ and the momentum deviation �k̃y from ±K . The
nonadiabatic phase ϕs is determined by the linearized LZT
Hamiltonian about the Dirac points ±K :

ϕs = π/4 + δ(ln δ − 1) + arg �(1 − iδ), (51)

where δ is determined by the LZT characteristic parameter
as 2δ = r, as given by Eq. (40). It can be seen that the
Stückelberg phase also depends on the electric field Ẽ and the
momentum deviation �k̃y from ±K .

Figure 6(a) shows the Stückelberg phase for two types
of initial momentum values for Ẽ = 0.03. For LZTs starting
near the Dirac point +K , the Stückelberg phase is approxi-
mately independent of the momentum deviation �k̃y, while
for −K , the phase depends on the momentum deviation. The
main factor is the adiabatic phase as the nonadiabatic phase
is insensitive to the momentum deviation [Eq. (51)]. More
specifically, for LZTs starting from the Dirac points ±K , the
adiabatic phase between two successive LZTs is

ζ+K =
∫ 4π

3

0
f+K (x)dx, (52)

ζ−K =
∫ 2π

3

0
f−K (x)dx, (53)

where the functions f+K (x) and f−K (x) are given by

f+K = 2√
3Ẽ

√
1 + 4a+ cos

(
2π

3
− x

)
+ 4 cos2

(
2π

3
− x

)
,

f−K = 2√
3Ẽ

√
1 + 4a− cos

(π

3
− x

)
+ 4 cos2

(π

3
− x

)
(54)

with a+ ≡ cos(3�k̃y/2), a− = −a+, �k̃y measured from ±K ,
and x ≡ Ẽ t̃

√
3/2. Figure 6(b) shows the function f (x) that

determines the adiabatic phase measured from the Dirac
points ±K . Since the integration of f+K has a relatively large
value, the adiabatic phase ζ+K is nearly constant for different

FIG. 6. Stückelberg phase in α-T3 lattice for α = 0. (a) The
Stückelberg phase versus the momentum deviation from +K
(orange) and −K (purple) valleys. The range of the momentum
deviation is determined by the empirical criterion: 0 < r � 1, which
is �k̃y ∈ [0.01, (2Ẽ/3)1/2] for Ẽ = 0.03 and d�k̃y = 0.0001. The
integration time step is dt̃ = 0.01. (b) Shown is the function f (x),
where the adiabatic phase measured from the Dirac points ±K as
determined by the integral of f (x) over x ∈ [0, 2π/3](−K ), x ∈
[0, 4π/3](+K ) with �k̃y = 0.7.

momentum deviation �k̃y for 0 < r � 1, whereas ζ−K is sen-
sitive to �k̃y. The adiabatic phase also depends on the electric
field Ẽ . (More elaborate details can be found in Appendix D.)

For α > 0, a flat band arises in addition to the two Dirac
cone bands. Figure 7 shows the representative time evolu-
tion of the transition probabilities |αk|2 and |γk|2 for α =
1. Exploiting the equivalence of the dice lattice driven by
a constant electric field to a strongly periodically driven
three-level system (Appendix C), we have that, after one
Bloch-Zener oscillation period (two successive LZTs), the
occupation probability of the upper, flat and lower bands are
given by (Appendix B 2)

P+ = 16P̃2
LZ sin4(ζ/2), (55)

P0 = 2P̃LZ((1 − 4P̃LZ)(1 − cos ζ )2 + sin2 ζ ), (56)

P− = (2P̃LZ cos ζ + (1 − 2P̃LZ))2 (57)

with the normalization constraint P+ + P0 + P− = 1, where

P̃LZ ≡ P1/2
LZ

(
1 − P1/2

LZ

)
. (58)

For the upper band, ζ = π + 2kπ, k ∈ Z corresponds to
constructive interference and ζ = 2kπ leads to destructive in-
terference [Eq. (55)]. For the flat band, ζ = 2kπ gives P0 = 0
[Eq. (56)]. For ζ = π + 2kπ , we have P0 
= 0 with P̃LZ =
1/4. Note that the Stokes phase disappears in this case based
on the nonadiabatic transition matrix [13]. From Eq. (51),
for 0 < r = 2δ < 1, the Stokes phase is a small constant:
ϕs ≈ 0.5. As a result, we have �st ≈ ζ .
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FIG. 7. Landau-Zener transitions in α-T3 lattice for α = 1. Be-
cause of the presence of a flat band, the time evolution of two
quantities is displayed: (a) |γk |2 and (b) |αk |2, the transition probabil-
ity from the lower to the flat band and that from the lower to the upper
band, respectively. For the orange traces, the initial momentum is
k̃y = 0.135 around +K . For the purple traces, the initial momentum
is k̃y = 2π/3 + 0.135 around −K . Other parameters are Ẽ = 0.03,
k̃x = 3, and dt̃ = 0.01.

B. Morphology selection

So far, we have numerically observed the complex LZT
morphology and found a relationship between morphological
changes and irregular Bloch-Zener oscillations. In addition,
we have analyzed the interference phases in α-T3 lattice based
on the equivalence between the lattice subject to a constant
electric field and strongly periodically driven two- or three
level systems. We have found that the Stückelberg phase of
LZTs starting from the Dirac point +K is nearly independent
of the momentum deviation �k̃y, i.e., the energy gap, while

the phase starting from −K is sensitive to �k̃y. For �st =
0, π , destructive interference among the quantum states from
different bands arises for α = 0. For α = 1, only �st = 0 cor-
responds to destructive interference. These findings suggest
a principle of morphology selection for 0 � α � 1: setting
�st = 0 or �st = π for LZT starting from the +K valley will
result in two distinct types of LZT morphology, as illustrated
in Figs. 8 and 9, respectively. As analyzed in Appendix A,
ideal LZTs in the Brillouin zone lead to periodic and regular
Bloch-Zener oscillations. The destructive interference has a
similar effect to that of ideal LZTs. As a result, the resulting
morphology pattern can improve the regularity of Bloch-
Zener oscillations.

Figure 8 shows, for Ẽ = 0.03 and four different types
of α-T3 lattices, the Bloch-Zener oscillations and the
corresponding representative LZT morphology at a given
time in the momentum space. It can be seen that the
Bloch-Zener oscillations shown in Figs. 8(a)–8(d) are mostly
regular. The destructive interference pattern of LZTs starting
from the +K valley in the momentum space, as characterized
by the small dark region inside the horizontal yellow strip
about k̃y = 0 on the right side of the Dirac point, is shown in
Figs. 8(e)–8(h) with �st = 0. For another type of morphology
with �st = π , the Bloch-Zener oscillations are more irregular.
For example, for α 
= 0, the oscillations can be strongly
irregular or “chaotic,” as exemplified in Figs. 9(b) and 9(c). In
this case, for 0 � α � 1, the interference pattern associated
with the LZTs starting from the +K valley changes from
destructive to nondestructive, as shown in Figs. 9(d)–9(f). In
both cases, the morphology of LZTs starting from the −K
valley changes little due to the sensitivity to the momentum
deviation.

V. DISCUSSION

Bloch or Bloch-Zener oscillations, in addition to being a
fundamental phenomenon in solid state physics, practically
provides the foundation to convert a direct current into an

FIG. 8. Mostly regular (or weakly irregular) Bloch-Zener oscillations in general α-T3 lattices. [(a)–(d)] Oscillations of the intraband current
density for α = 0.3, 0.5, 0.7, and 1.0, respectively. [(e)–(h)] The corresponding LZT morphology revealed by the color-coded differential LZT
probability �Pαβ (t ) in the momentum space at a specific time, where the Stückelberg phase �st = 0 for LZTs starts from +K valley. Simulation
parameter values are Ẽ = 0.03, dt̃ ≈ 0.001, and dk̃x ≈ dk̃y ≈ 0.012.
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FIG. 9. Strongly irregular (“chaotic”) Bloch-Zener oscillations. The static electric field strength is Ẽ = 0.0279. (a) Mostly regular
oscillations in the intraband current density for α = 0 (graphene). As α increases from zero, the oscillations become strongly irregular, as
shown in (b) and (c) for α = 0.5 and α = 1, respectively. [(d)–(f)] The corresponding LZT morphology at a particular time instant, where the
Stückelberg phase �st = π for LZTs starts from the +K valley. Integration parameter values are dt̃ ≈ 0.01 and dk̃x ≈ dk̃y ≈ 0.012.

oscillating current in the terahertz frequency regime [24].
Research in the past decade or so has suggested that, in 2D
multiband materials, Bloch-Zener oscillations can be vulner-
able to Landau-Zener transitions or tunneling [29,30,33–36].
Is this generally true? The question is important to physics
and our present work has provided twofold answers: yes LZTs
can indeed affect the Bloch oscillations but what is destroyed
is not the oscillations themselves but just the perfect time
periodicity of the oscillations; no because the irregular oscil-
lations can persist even with frequent occurrences of LZTs. In
fact, approximately periodic Bloch-Zener oscillations can be
maintained if the LZTs are near ideal such that they result in a
near-one probability for the electrons to switch into a different
band or when near destructive interference arises between
the quantum states in different energy bands. Nonsmooth or
irregular behaviors in the current density arise when the LZTs
are not ideal and the interference is partially destructive.

Our study encompasses the entire spectrum of a class of
2D Dirac materials modeled by α-T3 lattices. We have found
that the set of points in the 2D momentum space near a
Dirac point at which LZTs occur can possess a complex mor-
phology, and it is the change in the morphology that results
in irregular Bloch-Zener oscillations. Theoretically, when
driven by a static electric field, an α-T3 lattice is equivalent
to the Landau-Zener-Stückelberg interferometry. Specifically,
the α = 0 lattice (graphene) is effectively a two-level period-
ically driven quantum system while the general α-T3 lattice
for 0 < α � 1 is equivalent to a three-level periodically driven
system. For the three-level system, we have exploited the con-
cept of Stückelberg phase from the adiabatic impulse theory
to understand the LZTs that occur in the neighborhoods of the
Dirac points in distinct valleys.

In the α-T3 lattice, a nonzero coupling parameter α induces
a flat band in between the positive and negative energy bands,
effectively resulting a three-level system. After the first LZT

in Fig. 2, the quantum state is a superposition of the states
in the three energy bands and the LZT is enhanced by the
flat band (compared with the two-level case). For subsequent
LZTs (e.g., as shown in Figs. 8 and 9), the flat band modi-
fies the Stückelberg phase �st for destructive interference in
the three-band interferometry (compared with the two-band
one). More specifically, for α = 0, the destructive interfer-
ence corresponds to �st = 0, π from Eq. (46). For α = 1,
the destructive interference means �st = 0 only and the case
�st = π is excluded from Eqs. (55)–(57). For 0 < α < 1, the
behavior of destructive interference is obtained numerically,
as shown in Figs. 8 and 9, which is slightly different from
the α = 1 case, especially in Figs. 9(e) and 9(f). Taken to-
gether, a nonzero α modifies the physical picture from two-
to three-band quantum interference: it generates a flat band in
the original two-level system, creates three-band interferome-
try, enhances LZT in the momentum space around the Dirac
points, and modifies destructive interference.

Theoretically, the asymmetrical morphology pattern
around the ±K points results from the different characteristics
of the Stückelberg phases �st . As shown in Fig. 6(a), �st is
nearly constant with �k̃y starting from the +K Dirac point
after two LZTs and �st changes greatly with �k̃y starting
from −K . Different values of the interference phase �st give
distinct interference patterns, such as constructive, destruc-
tive, and mixed quantum interference (neither constructive nor
destructive) in the momentum space.

For ideal LZTs with a near unity transition probability,
which can occur for an infinitesimal energy gap, the ±K
points make the same contribution to the Bloch oscillations.
However, slightly away from the Dirac points where the en-
ergy gap is no longer infinitesimal, the contributions differ.
The reason why the Bloch oscillations around +K are more
prominent compared with those around the −K point lies
in the interference phase �st . In particular, the LZTs from
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the +K point with different momentum deviation �k̃y are in
phase with each other, as shown in Fig. 6(a). However, the
LZTs measured from the −K point are out of phase, so the
contributions to the Bloch oscillations cancel each other to
some degree.

The irregular Bloch-Zener oscillations in the average cur-
rent density integrated over the Brillouin zone arise from
the LZTs induced by different energy gaps associated with
the momentum deviation �k̃y measured from Dirac points.
In the α-T3 lattice, there is an alternative way to induce an
energy gap between the valence and conduction bands by
adding the positive (negative) onsite energy on the A (B)
sublattice [48,49]. Because of the sensitive dependence of the
LZT on the size of the momentum-dependent energy gap,
irregularities in the LZTs are anticipated, so are the irregular
Bloch-Zener oscillations.

Experimentally, it may be feasible to observe at least the
first peak of the Bloch-Zener oscillation in ballistic time [37].
To probe into the momentum-space morphology associated
with LZTs and to directly observe the irregular Bloch-Zener
oscillations in a longer time interval in Dirac material sys-
tems remain to be difficult at the present. Alternatively, it
may be possible to use quantum simulators [50,51] by ex-
ploring equivalent optical systems [20]. In the past, Bloch
oscillations have been experimentally studied in photonic
systems [21,23,35,52,53]. The observation of Bloch-Zener
oscillations and Landau-Zener tunneling in photonic graphene
[35] is particularly relevant to possible experimental checks of
our findings. In this artificial Dirac system, the wave packet of
light is driven by an index gradient on a nonadiabatic basis
and the two sublattices are subjected to a potential imbalance.
When the momentum deviation is zero from a Dirac point and
the index gradient is applied in a specific direction, perfect
(ideal) LZT with transition probability one can occur due to
the zero energy gap. However, when the index gradient is
applied in the orthogonal direction, the LZT becomes imper-
fect (nonideal) due to the nonzero gap. Our work suggests
that, if the time evolution of the wave function in photonic
graphene can be approximated as constituting two processes:
adiabatic evolution and nonadiabatic LZT, in principle the
Stückelberg phase can be calculated to choose the appropriate
index gradient value to create destructive interference between
the quantum states in the upper and lower energy bands.
It may thus be possible to generate destructive interference
to obtain a near-ideal LZT. Our work predicts that, in this
case, the resulting Bloch-Zener oscillations will become more
periodic. Photonic graphene may be a feasible experimental
testbed for these phenomena.
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APPENDIX A: LZT MORPHOLOGY AND IRREGULAR
BLOCH-ZENER OSCILLATIONS

To further appreciate the interplay between LZT mor-
phology and irregular Bloch-Zener oscillations, we consider

FIG. 10. LZTs and Bloch-Zener oscillations. [(a) and (b)] For
momentum integration width w = 0.5 about the ±K trace and dt̃ ≈
0.01, the LZT morphology and the resulting Bloch-Zener oscillation,
respectively. [(c) and (d)] Similar to (a) and (b) but for w = 0.05 and
dt̃ ≈ 0.002. The irregularities in the intraband current density are
indicated by arrows. Other parameter values are dk̃x ≈ dk̃y ≈ 0.012
and Ẽ = 0.1200.

two kinds of momentum integration regions about the Dirac
points, as shown in Figs. 10(a) and 10(c), respectively. The
resulting time evolution of the current density is shown in
Figs. 10(b) and 10(d), respectively. For the case in Fig. 10(c),
the LZTs are near ideal, generating less irregular Bloch-Zener
oscillations in Fig. 10(d).

APPENDIX B: ADIABATIC IMPULSE THEORY

1. Two-level systems

The Hamiltonian under a periodic driving in the nonadia-
batic basis has the form [11]

H (t ) = −�

2
σx − ε(t )

2
σz, (B1)

where the driving ε(t ) = ε0 + A sin ωt produces a periodic
time evolution of the eigenenergy spectrum:

ε±(t ) = ± 1
2

√
�2 + ε(t )2. (B2)

If the bias of the driving is nonzero: ε0 
= 0, one period of
the evolution of the energy contains two peaks [11] that are
in the time intervals [t1, t2] and [t2, t1 + 2π/ω], respectively.
The quantum dynamical process can be understood by us-
ing the adiabatic impulse theory [11,12]. According to this
theory, the dynamical process can be approximated as the adi-
abatic evolution from t1 to t2 and from t2 to t1 + 2π/ω, which
are described by unitary transformation matrices U1 and U2,
respectively, and nonadiabatic transitions at t2 and t1 + 2π/ω

that are described by the same nonadiabatic transition matrix
N . After one period, the quantum state under the adiabatic
basis can be written as [11]

b(t1 + 2π/ω) = NU2NU1b(t1). (B3)
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When the driving signal is linearized about the transition
point as ε(t ) ≈ −vt , the nonadiabatic transition matrix in the
adiabatic basis is [11]

N =
(√

1 − PLZe−ĩϕs −√
PLZ√

PLZ
√

1 − PLZeĩϕs

)
, (B4)

where PLZ is the first LZT probability of the upper band de-
fined by Eq. (39), ϕ̃s = ϕs − π/2, and ϕs is the Stokes phase.
The adiabatic evolution matrix in the adiabatic basis is

U1 =
(

e−iζ1 0
0 eiζ1

)
, U2 =

(
e−iζ2 0

0 eiζ2

)
, (B5)

where ζ1 and ζ2 are the adiabatic phases given by

ζ1 =
∫ t2

t1

ε+dt,

ζ2 =
∫ t1+2π/ω

t2

ε+dt . (B6)

In the adiabatic basis, the total transform matrix after one
period is [11]

NU2NU1 =
(

α −γ ∗
γ α∗

)
, (B7)

where the matrix elements are

γ = 2
√

PLZ(1 − PLZ)e−iζ1 sin(�st ),

α = e−i(ζ1+ϕ̃s )[(1 − 2PLZ) sin(�st ) + i cos(�st )], (B8)

and �st = ζ2 + ϕs is the Stückelberg phase. If the initial
state is

b(t1) = (0, 1)T , (B9)

the quantum state after one period will be

b(t1 + 2π/ω) = (−γ ∗, α∗)T (B10)

with the transition probabilities

P+ = |γ |2 = 4PLZ(1 − PLZ) sin2(�st ), (B11)

P− = |α|2 = 1 − 4PLZ(1 − PLZ) sin2(�st ), (B12)

which satisfy the normalization constraint P+ + P− = 1.
From Eq. (B11), it can be seen that whether the transition
is complete depends only on the Stokes phase and the adi-
abatic phase between two consecutive LZTs. Specifically,
�st = kπ, k ∈ Z corresponds to destructive interference be-
tween the quantum states in the upper and lower bands while
�st = π/2 + kπ corresponds to constructive interference.

2. Three-level systems

A periodically driven three-level system is described by

H (t ) = −�

2
Sx − ε(t )

2
Sz, (B13)

where the time evolution of the positive and negative energy
is given by Eq. (B2) except for the extra flat band ε0 = 0. A
previous work [13] provided the nonadiabatic transition ma-
trix in the adiabatic basis when the driving signal is linearized

about the transition point as ε(t ) ≈ −vt :

N =
⎛⎝B + 1 A B

A C A
B A B + 1

⎞⎠, (B14)

where all A, B, and C are constants:

A ≡ −(2P̃LZ)1/2,

B ≡ P1/2
LZ − 1,

C ≡ 1 − 2P1/2
LZ , (B15)

and

P̃LZ ≡ P1/2
LZ

(
1 − P1/2

LZ

)
. (B16)

The adiabatic evolution matrix of the three-level system is

U1 =
⎛⎝e−iζ1 0 0

0 1 0
0 0 eiζ1

⎞⎠, U2 =
⎛⎝e−iζ2 0 0

0 1 0
0 0 eiζ2

⎞⎠. (B17)

The total transform matrix M ≡ NU2NU1 is

M =
⎛⎝M11 M12 M13

M∗
23 M22 M23

M∗
13 M∗

12 M∗
11

⎞⎠, (B18)

where

M11 = ˜(B1 + 1)
∗

˜(B2 + 1)
∗ + AÃ∗

1 + B̃∗
1B̃2,

M12 = A ˜(B2 + 1)
∗ + AC + AB̃2,

M13 = B̃1 ˜(B2 + 1)
∗ + AÃ1 + ˜(B1 + 1)B̃2,

M22 = AÃ∗
2 + C2 + AÃ2,

M23 = Ã∗
2B̃1 + Ã1C + Ã2 ˜(B1 + 1), (B19)

with

Ãi ≡ Aeiζi ,

B̃i ≡ Beiζi ,

˜(Bi + 1) ≡ (B + 1)eiζi , (B20)

for i = 1, 2. Suppose the initial quantum state is

b(t1) = (0, 0, 1)T . (B21)

After one period, the quantum state becomes

b(t1 + 2π/ω) = (M13, M23, M∗
11)T . (B22)

The occupied probabilities of the upper, flat, and lower bands
after one period are given by

P+ = 16P̃2
LZ sin4(ζ2/2), (B23)

P0 = 2P̃LZ((1 − 4P̃LZ)(1 − cos ζ2)2 + sin2 ζ2), (B24)

P− = (2P̃LZ cos ζ2 + (1 − 2P̃LZ))2, (B25)

respectively, where P+ = |M13|2, P0 = |M23|2, and P− =
|M11|2 with the constraint P+ + P0 + P− = 1. According to
Eq. (B23), for the upper band, we have that ζ2 = π +
2kπ, k ∈ Z corresponds to constructive interference and
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ζ2 = 2kπ to destructive interference. For the flat band, ζ2 =
2kπ corresponds to destructive interference, as stipulated by
Eq. (B24). For ζ2 = π + 2kπ , the flat band leads to an LZT
with probability away from zero except for P̃LZ = 1/4 The
Stokes phase defined by Eq. (51) depends only on the param-
eter δ (0 < r = 2δ < 1). Numerically, we obtain ϕs ≈ 0.5. In
spite of the small phase deviation due to the Stokes phase ϕs,
�st = ζ + ϕs = 2kπ corresponds approximately to destruc-
tive interference regardless of the existence of a flat band.
However, �st = π + 2kπ does not represent destructive in-
terference in the three-level system.

APPENDIX C: EQUIVALENCE OF α-T3 LATTICE TO
STRONGLY PERIODICALLY DRIVEN TWO- OR

THREE-LEVEL SYSTEMS

When a static electric field is applied to an α-T3 lattice, the
time evolution of the wave function can be obtained by using
the adiabatic impulse theory [11,12]. For graphene (α = 0)
and the dice lattice (α = 1), the tight-binding Hamiltonians
are, respectively,

H = 	[ fk (t )]σx − �[ fk (t )]σy (C1)

and

H = 	[ fk (t )]Sx − �[ fk (t )]Sy, (C2)

where σx and σy are the 2 × 2 Pauli matrices for pseudospin-
1/2 quasiparticles in graphene, Sx and Sy are the correspond-
ing 3 × 3 matrices from pseudospin-1 quasiparticles in the
dice lattice, and

	[ fk (t )] = −tε

[
1 + 2 cos

(
3

2
k̃y

)
cos

(√
3

2
k̃x(t )

)]
,

�[ fk (t )] = 2tε sin

(
3

2
k̃y

)
cos

(√
3

2
k̃x(t )

)
. (C3)

The eigenenergy spectrum of graphene is ε± = ±| fk|. For the
dice lattice, there is a flat band ε0 = 0. The time evolution of
nonzero energy band of both graphene and dice lattice has the
common form for the upper and lower bands:

ε̃±(t ) = ±1

2

√
�2

k̃y
+ (

ε0,̃ky
+ 4 sin

(
ωẼ t̃ + φk̃ x

))2
, (C4)

where

�k̃y
= 2 sin(3̃ky/2),

ε0,̃ky
≡ 2 cos(3̃ky/2),

ωẼ ≡
√

3Ẽ/2,

φk̃x
= π/2 −

√
3̃kx/2. (C5)

Equation (C4) has the same mathematical form as that for a
strongly periodically driven two-level system [Eq. (B2)].

A theoretical approach to dealing with a strongly period-
ically driven two-level system is the adiabatic and impulse
approximation [11,12], which is valid in the regime of strong
field

�2 + A2 � ω2(in units of h̄ = 1). (C6)

Equations (C4) and (B2) give A = 4 and |ω| = √
3Ẽ/2 <

0.1, rendering applicable the adiabatic and impulse approx-
imation. The idea of the analysis is to decompose the time
evolution of system into an adiabatic evolution when it is far
from the points of avoided-crossing and nonadiabatic process
in the vicinity of these points.

For adiabatic evolution in graphene, the adiabatic phase in
the wave function depends on the integral ζ = ∫

ε̃+(t )dt̃ . The
dice lattice has the same energy ε̃+ and the flat band corre-
sponds to a zero adiabatic phase ζ = 0. Thus, for the upper
and lower bands in both graphene and dice lattice, the adia-
batic phase has the same mathematical form as that for the
periodically driven two- and three-level systems, respectively.

For the nonadiabatic transition process in graphene or dice
lattice, the effective Hamiltonian about the Dirac points is the
standard or the three-level Landau-Zener Hamiltonian. Con-
cretely, we can show that the Hamiltonian for graphene and
dice lattice, given by Eqs. (C1) and (C2), can be written as the
standard Landau-Zener Hamiltonian for two- and three-level
systems, respectively, as

HLZ = (g/2)σx + (st )σz, (C7)

HLZ = (g/2)Sx + (st )Sz, (C8)

through some unitary transformation. In particular, the re-
quirement is to have σx → σz, σy → −σx for graphene and
Sx → Sz, Sy → −Sx for dice lattice. These transformations
can be realized by rotating the original Hamiltonian in two
steps since the physical observable does not change after a
unitary transformation. First, we rotate the Hamiltonian H
along the anticlockwise direction with π/2 around the axis
y to get H → H ′, where σx → σz, σy → σy for graphene
and Sx → Sz, Sy → Sy for dice lattice. Second, we rotate
the Hamiltonian H ′ along the anticlockwise direction with
π/2 around the z axis to obtain H ′ → H ′′, where σz →
σz, σy → −σx for graphene and Sz → Sz, Sy → −Sx for dice
lattice. The total unitary transformations for graphene and dice
lattice are

U = exp(−iπ/4σy) exp (−iπ/4σz ), (C9)

U = exp

(
− i

h̄

π

2
Sy

)
exp

(
− i

h̄

π

2
Sz

)
, (C10)

respectively.
As for Hamiltonian expansion about Dirac points, firstly,

we expand Hamiltonian in the k̃y direction about the Dirac
points with

+K : k̃y → δk̃y,

−K : k̃y → 2π/3 + δk̃y, (C11)

leading to

cos

(
3

2
k̃y

)
≈ ±1,

sin

(
3

2
k̃y

)
≈ ±3

2
δk̃y. (C12)

With the unitary transformation in Eq. (C9), we obtain the
approximate Hamiltonian as given by

U †H̃U ≈ −ε(t )/2σz − �(t )/2σx (C13)
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FIG. 11. Near zero or π Stückelberg phase. Shown is the av-
erage Stückelberg phase over the interval of the initial momentum
deviation �k̃y as determined by 0 < r � 1 from the +K valley for
41 values of the electric field, where the closed circles are for the
field values in Table I and the closed triangles correspond to the field
values in Table II. The integer index N denotes these 41 cases, with
the electric field ranging from small to large values for both sets of
data points. The integration time step is dt̃ = 0.01.

with

ε(t ) = 2

(
1 ± 2 cos

(√
3

2
k̃x(t )

))
,

�(t ) = ±6δk̃y cos

(√
3

2
k̃x(t )

)
. (C14)

For the dice lattice, with the total unitary transformation in
Eq. (C10), we have the approximate Hamiltonian as

U †H̃U ≈ −ε(t )/2Sz − �(t )/2Sx. (C15)

From Eqs. (C13) and (C15), we translate the momentum k̃x to
the Dirac points as

+K : k̃x → 4π/(3
√

3) + δk̃x,

−K : k̃x → 2π/(3
√

3) + δk̃x. (C16)

Setting δk̃x ≡ Ẽ t̃ ′ with t̃ ′ starting from origin, we obtain,
about ±K ,

cos

(√
3

2
k̃x(t )

)
≈

⎧⎨⎩cos
(

2π
3 −

√
3

2 Ẽ t̃ ′
)

cos
(

π
3 −

√
3

2 Ẽ t̃ ′
)⎫⎬⎭

≈ ∓1

2
+ 3

4
Ẽ t̃ ′, (C17)

where the second-order term δk̃xδk̃y has been neglected. For
graphene, the effective Hamiltonian about the Dirac points
±K is

H̃ ≈ 3δk̃y

2
σx ∓ 3Ẽ t̃ ′

2
σz, (C18)

which is the standard Landau-Zener Hamiltonian [44]. For the
dice lattice, the effective Hamiltonian is

H̃ ≈ 3δk̃y

2
Sx ∓ 3Ẽ t̃ ′

2
Sz, (C19)

which is the Hamiltonian of the three-level Landau-Zener
model [13]. In the vicinity of the Dirac points, the nona-
diabatic Landau-Zener transition in graphene (dice lattice)
induced by a constant electric field thus shares the same

TABLE I. Electric field values at which the Stückelberg phase is
about π in Fig. 11.

t̃B Ẽ t̃B Ẽ t̃B Ẽ Ẽ weaker

100 0.0725 141 0.0514 193 0.0376 0.0072
121 0.06 157 0.0462 198 0.0366 0.0065
126 0.0576 162 0.0448 219 0.0332 0.006
131 0.0554 167 0.0434 229 0.0317 0.0059
136 0.0533 188 0.0386 260 0.0279 0.0053

quantum dynamical law as that in the adiabatic impulse theory
[11,12].

For the general α-T3 lattice for α 
= 0, 1, the picture of
the quantum dynamical evolution as consisting of adiabatic
evolution and nonadiabatic LZTs is still applicable, because
the eigenenergy spectrum is independent of the lattice cou-
pling parameter α. In fact, adiabatic phase with 0 < α < 1 is
the same as that for α = 1. For the nonadiabatic process, the
first LZT has been numerically calculated, as shown in Fig. 2.
Consequently, under the adiabatic impulse approximation, the
dynamical evolution of the α-T3 lattice is identical to that of
the wave function of a strongly periodically driven two- or
three-level system.

APPENDIX D: STÜCKELBERG PHASE WITH
ELECTRIC FIELD

Because the Stückelberg phase is near constant for LZTs
starting from the +K valley, as exemplified in Fig. 6(a), we
define the average Stückelberg phase over the range of the mo-
mentum deviation as determined by 0 < r � 1. Although the
Stückelberg or adiabatic phase is sensitive to the magnitude of
the electric field [Eqs. (52) and (54)], we numerically test two
sets of electric fields to produce the average Stückelberg phase
from the +K valley around π or zero, as shown in Fig. 11 for
the electric field values listed in Tables I and II for α = 0:

〈ζ 〉 ≈ 〈�st 〉 ≈ π + 2kπ or 〈ζ 〉 ≈ 2kπ. (D1)

In Tables I and II, the field values are determined based on
the destructive interference pattern of LZTs starting from the
+K valley for α = 0 such as the orange traces in Figs. 5(a)
and 5(b) and are tested in the range of momentum deviation
determined by 0 < r � 1. For α 
= 0, two types of behaviors
can arise. In the first type, for α > 0, for the electric field
values from Table I, the LZT probability |αk|2 can no longer
reach zero after two successive LZTs, i.e., no destructive

TABLE II. Electric field values at which the Stückelberg phase
is about zero in Fig. 11.

t̃B Ẽ t̃B Ẽ Ẽ weaker

118 0.0614 175 0.0415 0.0069
144 0.0504 180 0.0403 0.0068
149 0.0487 185 0.0392 0.0067
154 0.0471 206 0.0352 0.0062
211 0.0344 247 0.0294 0.0042
216 0.0336 257 0.0282 0.0035
242 0.03 278 0.0261 0.003
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interference. In this case, the Stückelberg phase is 〈�st 〉 ≈ π ,
as shown by the filled circles in Fig. 11. The second type
occurs for field values from Table II, where |αk|2 still displays

a near-destructive interference pattern for any α > 0. In this
case, the Stückelberg phase is 〈�st 〉 ≈ 0, as shown by the
filled triangles in Fig. 11.
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