
PHYSICAL REVIEW B 107, 165418 (2023)

Light-induced shear phonon splitting and instability in bilayer graphene
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Coherent engineering of landscape potential in crystalline materials is a rapidly evolving research field.
Ultrafast optical pulses can manipulate low-frequency shear phonons in van der Waals layered materials through
the dynamical dressing of electronic structure and photoexcited carrier density. In this work, we provide a
diagrammatic formalism for nonlinear Raman force and implement it to shear phonon dynamics in bilayer
graphene. We predict a controllable splitting of double degenerate shear phonon modes due to light-induced
phonon mixing and renormalization according to a coherent nonlinear Raman force mechanism. Intriguingly,
we obtain a light-induced shear phonon softening that facilitates structural instability at a critical field amplitude
for which the shear phonon frequency vanishes. The phonon splitting and instability strongly depend on the laser
intensity, frequency, chemical potential, and temperature of photoexcited electrons. This study motivates future
experimental investigation of the optical fine tuning and regulation of shear phonons and layer stacking order in
layered van der Waals materials.
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I. INTRODUCTION

Exotic emergent phenomena in quantum systems can be
generated via photoexcitation by ultrafast optical drives [1–5].
Depending on the intensity of the pump laser, we can excite
and disentangle collective modes, switch the macroscopic
phase of the system, dynamically engineer critical phe-
nomena, and render robust nonlinear couplings among the
different degrees of freedom in the quantum materials [6–8].
Optical switching and photoinduced transitions correspond
to the dynamical modification of the free energy landscape
that is not accessible in thermal equilibrium. Photoinduced
nonthermal and coherent control of correlated and topolog-
ical quantum materials [9] is being under investigation in
multiple ways, such as Floquet-Bloch dressed single-particle
states [10] and optical dressing of many-body interaction
couplings [11,12]. Manipulating and fine tuning the struc-
tural phase of quantum materials by ultrashort laser pulses
opens a pathway to regulate quantum devices. For instance,
substantial lattice deformations are reported induced by in-
tense midinfrared optical pulse irradiation, e.g., dynamically
generated ferroelectricity and shear strain [13,14]. Large
photoinduced deformations are due to resonance with a vi-
bration mode, strong Raman force, and nonlinear phonon
couplings [8,13–17].
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Shear phonons in bilayer [see Fig. 1(a)] and multi-
layer of two-dimensional (2D) materials, such as the family
of graphene, transition-metal dichalcogenides (TMDs), and
hexagonal boron nitride (hBN), correspond to the lateral slid-
ing of atomic layers on each other [18–26]. Shear phonon

FIG. 1. Schematic picture of the setup and the shear potential.
(a) Light-indued shear phonon displacement in a bilayer system
induced. (b) Modification of the landscape shear potential due to the
incident light, where initially degenerate shear modes along the x and
y directions in the absence of the light field (E = 0) can be split at
an electric field amplitude of E = E1, or a more dramatic change can
occur in one of the modes, leading to instability at a stronger electric
field amplitude of E2 > E1. (c) A saddlelike shear potential at the
origin exhibits both stable and unstable modes polarized along the
y and x directions, while a pair of stable modes emerge along the x
direction.
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excitation can coherently alter the staking order of lay-
ers [27,28], and the electronic topology [29]. Light-induced
displacive dynamics [30–41] of coherent shear phonons in
van der Waals (vdW) layered materials such as multilayer
graphene, WTe2, and MoTe2 [27–29,42–45] is a promis-
ing nondestructive mechanism for controlling 2D materials
properties. The shear mode in bilayer graphene is a dou-
ble degenerate Raman-active optical mode and it has a low
frequency h̄�0 ≈ 3.9 meV due to the weak vdW interlayer
force [18]. The energy and the intensity of the Raman
peak for the shear mode (the C peak) strongly depend on
the number of layers and interlayer coupling. Accordingly,
the spectroscopy of interlayer Raman modes is an effec-
tive method for determining layer numbers and stacking
configurations, and it provides a unique opportunity to ex-
plore interlayer couplings. Driving coherent shear phonon
in MoTe2 causes a first-order phase transition from an in-
version symmetric 1T′ structure to the noncentrosymmetric
1Td phase [27,44]. Time- and angle-resolved photoemission
spectroscopy (tr-ARPES) of the Weyl semimetal Td -WTe2,
indicates coherent shear phonon-mediated control of the elec-
tronic structure [45]. An optical switching from an ABA to
ABC stacking is experimentally obtained by laser irradiation
on trilayer graphene [42] that might be because of the coherent
shear phonon excitation.

This paper studies the dynamical engineering of lattice
potential for the shear dynamics in vdW layered materials
caused by a linear polarized light field E(t ). The impact of
second- and third-order Raman susceptibilities gives rise to
light-induced corrections to the lattice potential:

U = 1

2

∑
αβ

[
�2

0δαβ − Gαβ (E)
]
QαQβ −

∑
α

F (2)
α (E)Qα, (1)

where Q = (Qx, Qy) is the shear phonon displacement with
�0 being the unperturbed phonon frequency. Displacive
Raman shear force described as a second-order effect
F (2) ∝ EE∗ in bilayer graphene has been previously inves-
tigated [46]. Here, we define the third-order Raman shear

force as F (3) = ↔
G · Q ∝ QEE∗, which can renormalize shear

phonons and lead to a mode splitting. In particular, it can
cause the instability of atomic layers to slide and form sta-
ble or metastable phases with different layer-stacking orders
due to the softening of shear phonon frequency under the
influence of the light field. The Gαβ coupling can be inter-
preted as a light-induced self-energy correction �αβ (E) =
−Gαβ (E)/2�0 to the phonon’s dynamical matrix. As the
central result, here, we develop a diagrammatic formalism
to model the impact of third-order Raman force (or light-
induced phonon self-energy) on the displacive dynamics of
shear phonons in layered materials. We obtain a dynami-
cal renormalization of the shear phonons by incident light
intensity leading to the splitting of the double degenerate
shear phonons. We predict a lattice instability where the shear
phonon frequency vanishes at a critical field amplitude, see
schematic illustration of the optically modified shear potential
in Figs. 1(b), and 1(c). We show that the field-induced phonon
splitting and instability are highly tunable by the incident
laser intensity, frequency at given electronic doping, and tem-
perature. Our theoretical model based on the nonequilibrium

Green’s function can be systematically employed in ab initio
computations to study the optical engineering of shear phonon
in layered materials.

The rest of the paper is structured in four sections. In
Sec. II, we provide details of the diagrammatic method for
the third-order Raman force and develop a perturbative theory
for optically dressed phonon’s dynamical matrix. In Sec. III,
we summarize the mixed couplings of electrons, phonons,
and photons in addition to light-matter and electron-phonon
couplings in bilayer graphene. In Sec. IV, we discuss numer-
ical results for the light-induced phonon renormalization and,
thus, its effect on the optical modulation of the shear phonon
spectral function, shear mode splitting, and the light-induced
shear instability. Finally, we summarize our theoretical find-
ing, discuss it in connection with experiments, and highlight
the implication of light-induced phonon renormalization in
other heterostructures of 2D materials.

II. METHOD

Stimulated Raman effect is an efficient mechanism to ex-
cite Raman-active vibrational modes [47]. The dipole moment
of Raman-active phonon is linearly proportional to the light
field μb = αbcEc where the polarizability tensor αbc depends
on the phonon displacement vector Q. The electromagnetic
potential energy thus follows U = −μbEb = −αbcEbEc. The
corresponding Raman force driving atoms to oscillate follows
a second-order nonlinear process [47]

F (2)
a = −

[
∂U

∂Qa

]
Q→0

=
∑

bc

[
∂αbc

∂Qa

]
Q→0

EbEc. (2)

Therefore the lowest-order Raman force is finite as long as the
Raman susceptibility is nonvanishing, i.e., σ

(2)
abc=∂αbc/∂Qa �=

0. For large displacement, the higher-order Raman force
should also be considered, which can dramatically impact
phonon renormalization and lattice dynamics. The leading
higher-order Raman force depends linearly on the phonon
displacement and quadratically on the light field. Therefore,
it is described by a third-order nonlinear mechanism

F (3)
a =

∑
bcd

[
∂2αcd

∂Qa∂Qb

]
Q→0

QbEcEd . (3)

Formally, we have F (3)
a = GabQb in which Gab generates

a phonon self-energy in terms of a third-order Raman
susceptibility σ

(3)
abcd = ∂2αcd/∂Qa∂Qb and the incident

light intensity. An anisotropic Gab breaks the degeneracy
of Cartesian shear modes and renormalizes the phonon’s
frequency and linewidth.

To model coherent shear phonons in bilayer systems, we
first provide a general theory for the Raman force and phonon
self-energy using the Green’s function method and diagram-
matic framework. We decompose the total Hamiltonian of
the system in different parts H = He + Hp + He−p + Hlm

which consists of electronic kinetic Hamiltonian He, har-
monic phonon Hamiltonian Hp, electron-phonon interaction
Hep, and finally the light-matter interaction Hlm. The elec-
tronic kinetic Hamiltonian reads Ĥe = ∑

p ψ̂†
pĤ(p)ψ̂p where

ψ̂p is the fermion annihilation spinor field at momentum p.
The harmonic shear phonon Hamiltonian with zero momen-
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tum q = 0 can be written in terms of ladder operators Ĥp =∑
λ h̄�0b̂†

λb̂λ where b̂λ is the phonon annihilation operator.
We only consider the zone center phonon modes with a van-
ishing wave vector q = 0, and thus the phonon displacement
vector is defined as

Q̂λ =
√

h̄

ρS�0
(b̂λ + b̂†

λ) (4)

in which λ = x, y indicates two Cartesian mode components.
Note that S stands for the area of 2D material, and ρ is the
mass density. Including both one-phonon and two-phonon
couplings to electrons, the electron-phonon interaction Hamil-
tonian follows

Ĥe−p =
∑

p

∑
a

ψ̂†
pM̂(1)

a (p)ψ̂pQ̂a

+
∑

p

∑
ab

ψ̂†
pM̂

(2)
ab (p)ψ̂pQ̂aQ̂b. (5)

Note that M̂(1)
a and M̂(2)

ab stand for the one- and two-phonon-
electron coupling’s matrix elements, respectively. Utilizing
this effective lattice potential and the Heisenberg equation of
motion, we obtain the equation of motion for coherent phonon
displacement amplitude Qa:

∂2Qa(t )

∂t2
+ �p

∂Qa(t )

∂t
+ �2

0Qa(t )

= F (2)
a (t )

ρ
+ 1

ρ

∑
b

G ins.
ab (t )Qb(t )

+ 1

ρ

∑
b

∫
dt ′Gret .

ab (t, t ′)Qb(t ′), (6)

where �0 is the shear phonons frequency, �p stands for
the phenomenological damping frequency of phonons. The
leading-order Raman force is given as the expectation value
of the one-phonon coupling to electrons:

F (2)
a (t ) = −1

S

∑
p

〈
ψ̂†

pM̂(1)
a (p)ψ̂p

〉∣∣
Q→0. (7)

The nonlinear force reveals two different dynamical forms
of the light-induced phonon self-energy term Gab that we label
as instantaneous G ins.

ab (t ) and retarded Gret .
ab (t, t ′) couplings.

The instantaneous coupling is obtained as the expectation
value of the two-phonon coupling matrix element

G ins.
ab (t ) = −1

S

⎡
⎣∑

p

〈
ψ̂†

pM̂
(2)
ab (p)ψ̂p

〉⎤⎦
Q→0

. (8)

While the retarded coupling is given by the variational deriva-
tive of the Raman force versus the phonon displacement field:

Gret .
ab (t, t ′) = −1

S

⎡
⎣ δ

δQb(t ′)

∑
p

〈
ψ̂†

pM̂(1)
a (p)ψ̂p

〉⎤⎦
Q→0

. (9)

Note that 〈. . . 〉 indicates quantum statistical averaging. In cen-
trosymmetric systems, Raman-active phonons are infrared-
inactive; therefore, they couple to light indirectly. The direct

light-matter interaction is only through the coupling to elec-
trons. The coupling of incident light field to electrons can be
modeled by Peierls substitution p → p + eA(t ) in the kinetic
and the electron-phonon interaction Hamiltonian terms. Con-
sidering the homogeneous vector potential A(t ), the electric
field reads E(t ) = −∂t A(t ) and thus E(ω) = iωA(ω). For-
mally, the light-matter interaction Hamiltonian consists of two
parts: Photon-electron term and photon-electron-phonon term
Ĥlm = Ĥph−e + Ĥph−e−p. The photon-electron term follows

Hph−e = −
∑

p

ψ̂†
p

{∑
a

ĵa(p)Aa(t )

+ 1

2

∑
ab

γ̂ab(p)Aa(t )Ab(t ) + . . .

}
ψ̂p, (10)

where ĵa is called the paramagnetic current operator, and
γ̂ab is known as the diamagnetic current operator as well
as the Raman vertex [48,49]. The photon-electron-phonon
interaction Hamiltonian is given by the light-field depen-
dence of the electron-phonon interaction, M(1)

a [p + eA(t )]
and M(2)

ab [p + eA(t )]. By expanding electron-phonon matrix
elements up to second-order in A(t ), we obtain the photon-
electron-phonon (PEP) interaction Hamiltonian Ĥph−e−p =∑

p ψ̂†
p�̂pψ̂p, where

�̂p =
∑

ab

Aa(t )Qb(t )

{
�̂

(1)
ab (p) +

∑
c

�̂
(2)
abc(p)Qc(t )

}

+ 1

2

∑
abc

Aa(t )Ab(t )Qc(t )

×
{

�̂
(1)
abc(p) +

∑
d

�̂
(2)
abcd (p)Qd (t )

}
. (11)

Having defined all vertex couplings, we are equipped to
evaluate the Raman force and the light-induced phonon self-
energy. Because the Raman phonon is even under parity, the
leading contribution to the Raman force is second order in the
light field, which follows

F (2)
a (t ) =

∑
bc

∑
ω1,ω2

ei(ω1+ω2 )tσ
(2)
abc(ω1, ω2)Eb(ω1)Ec(ω2).

(12)
Similarly, the light-induced instantaneous coupling is given
by

G ins.
ab (t ) =

∑
cd

∑
ω1,ω2

ei(ω1+ω2 )t�ins.
abcd (ω1, ω2)Ec(ω1)Ed (ω2).

(13)

Finally, one can evaluate the light-induced retarded coupling
as follows:

Gret .
ab (t, t ′) =

∑
cd

∑
ω1,ω2

ei(ω1+ω2 )t�ret .
abcd (ω1, ω2, t − t ′)

× Ec(ω1)Ed (ω2). (14)

Notice that �ret .
abcd (ω1, ω2, τ ) = ∑

ω3
eiω3τ�ret .

abcd (ω1, ω2, ω3)
where ω3 is the phonon frequency. Response function �ins.

abcd
contributes to the instantaneous phonon self-energy since it
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FIG. 2. Feynman diagrams for light-induced phonon self-energy. Diagrams given in (a)–(e) and (f)–(i) for G ins. and Gret . couplings,
respectively. Dashed and wave lines represent external phonon and photon fields, respectively. The solid lines represent electron propagators.

originates from the simultaneous coupling of two phonons to
electrons. On the other hand, the retarded response function
�ret .

abcd contains memory effects where the past dynamics of
phonons can influence their future motion.

The light-induced rigid displacement directly depends on
the displacive Raman force that is the rectified part of the
force in a second-order nonlinear process [46]. We consider
monochromatic incident light field E(t ) = E0ε̂e−iωt + c.c.
with ε̂ being the linear polarization unit vector. The dis-
placive force is thus given by the rectification process (i.e.,
ω1 = −ω2 = ω) that leads to the following time-independent
Raman force:

FD
a =

∑
bc

σ
(2)
abc(ω,−ω)Eb(ω)E∗

c (ω). (15)

Similarly, the rectified component of the instantaneous
phonon-phonon coupling reads

G ins.
ab =

∑
cd

�ins.
abcd (ω,−ω)Ec(ω)E∗

d (ω), (16)

and the retarded light-induced phonon-phonon coupling fol-
lows

Gret .
ab (t − t ′) =

∑
cd

�ret .
abcd (ω,−ω, t − t ′)Ec(ω)E∗

d (ω). (17)

It is worth highlighting that the second harmonic parts of
G ins.

ab and Gret .
ab ∼ ei2ωt do not contribute noticeably due to its

convolution with the slow oscillation of the ion displacement
Qa ∼ ei�0t since ω � �0. In this regard, the rectified parts of
G ins.

ab and Gret .
ab play the dominant role. Eventually, the phonon

equation of motion coherently dressed by the light field is
given by

∂2Qa(t )

∂t2
+ �p

∂Qa(t )

∂t
+ �2

0Qa(t )

= FD
a

ρ
+ 1

ρ

∑
b

G ins.
ab Qb(t )

+ 1

ρ

∑
b

∫
dt ′Gret .

ab (t − t ′)Qb(t ′). (18)

We employ a diagrammatic formalism to estimate numeri-
cal values of the Raman force [46] and phonon self-energy.
Here, the main focus is on the light-induced renormalization
and mixing of shear phonons. The Feynman diagrams for
the instantaneous and retarded couplings thus are given in
Figs. 2(a)–2(d) and Figs. 2(e)–2(i), respectively. To quantita-
tively analyze the spectral function and the splitting of shear
phonons, we microscopically explore the coherent dynamics
of shear modes in bilayer graphene in the remaining part of
the paper.

III. LIGHT-MATTER AND ELECTRON-
PHONON COUPLINGS

Bilayer graphene consists of two single layers of graphene
sheets offset from each other in the xy plane. The low-energy
quasiparticles follow a two-band Hamiltonian around the cor-
ners of the hexagonal Brillouin zone [50]

Ĥp = − 1

2m

{(
p2

x − p2
y

)
σ̂x + 2τ px pyσ̂y

} − μÎ. (19)

Note that p = h̄k is the momentum vector, τ = ± indicates
two K and K′ valley points, the identity matrix Î and Pauli ma-
trices σ̂x and σ̂y are in the layer pseudospin basis, and μ is the
chemical potential. In our convention, the x direction shows
a zigzag orientation of the honeycomb lattice [51]. The effec-
tive mass is given by 1/2m ≈ v2/|γ1| with v ≈ 106 m/s and
vertical interlayer hopping energy γ1 ≈ −0.4 eV [52]. Having
the in-plane displacement Q(�)(r) of two layers � = 1, 2, the
shear phonon displacement is the asymmetric component:

Q = Q(1) − Q(2)

√
2

. (20)

The shear displacement vector is even under parity P since
P{Q(1), Q(2)}P−1 = −{Q(2), Q(1)} leading to PQP−1 = Q.
Therefore, the shear mode is a Raman-active but IR-inactive
phonon. We consider the coupling of electrons to one and two
photons given by ĵα = −e∂pα

Ĥp and γ̂αβ = −e2∂pα
∂pβ

Ĥp, re-
spectively. The coupling of electrons to one and two photons
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are thus given by

( ĵx, ĵy) = e

m
(pxσ̂x + τ pyσ̂y,−pyσ̂x + τ pxσy),

(γ̂xx = −γ̂yy, γ̂xy = γ̂yx ) = e2

m
(σ̂x, τ σ̂y). (21)

The electron-phonon couplings are obtained using a four-
band tight-binding model following the approach developed in
Ref. [46] providing the detailed analysis of electron coupling
to shear phonons in bilayer graphene using tight-binding and
k · p models, see also Refs. [53–55]. Accordingly, the cou-
plings of electrons to shear phonons in the low-energy model
read [46] (

M̂(1)
x ,M̂(1)

y

) ≈ M(1)(τ σ̂y, σ̂x ),(
M̂(2)

xx = −M̂(2)
yy ,M̂(2)

xy = M̂(2)
yx

) ≈ M(2)(σ̂x, τ σ̂y). (22)

Electron-phonon coupling can depend on the light field, and
this leads to mixed PEP couplings, which are obtained after
neglecting electron momentum p [46](

�̂(1)
xy = �̂(1)

yx

�̂(1)
yy = −�̂(1)

xx

)
≈ −�(1)

(
τ σ̂x

σ̂y

)
, (23)(

�(2)
yyx = �(2)

yxy = �(2)
xyy = �(2)

xxx/3

�(2)
xyx = �(2)

xxy = �(2)
yxx = �(2)

yyy/3

)
≈ �(2)

(
τ σ̂x

−σ̂y

)
, (24)(

�(1)
xxy = �(1)

xyx = �(1)
yxx = �(1)

yyy/3

�(1)
yxy = �(1)

yyx = �(1)
xyy = �(1)

xxx/3

)
≈ �(1)

(
σ̂x

τ σ̂y

)
. (25)

The expression for �
(2)
abcd coupling, representing the coupling

of two-photon and two-phonon fields with an electron field,
has yet to be specified. However, we can include its contribu-
tion using a gauge invariance argument, and therefore there
is no need to explicitly calculate �

(2)
abcd coupling constants.

This gauge invariance issue is discussed more explicitly in the
following sections.

The values of electron-phonon couplings strength are given
in terms of microscopic parameters of the system [46]

M(1) = −
(

3a0√
2b

)(
∂γ3

∂b

)
=
(

3a0γ3√
2b2

)
β3, (26)

M(2) =
(

3a2
0

4b2

)(
∂2γ3

∂b2

)
=
(

3a2
0γ3

4b4

)
β3(1 + β3). (27)

where γ3 ≈ 0.3eV [52] is an interlayer hopping energy cor-
responding to the hopping of electrons from sublattice A
of bottom layer one to sublattice A of the top layer in
a Bernal stack bilayer system. The Gruneisen parameter
follows β3 = −∂ ln γ3/∂ ln b. The mixed PEP coupling con-
stants are thus obtained as �(1) = (ea0/2h̄)M(1), �(1) =
(ea0/2h̄)2M(1) and �(2) = −(ea0/4h̄)M(2). Accordingly,
the only coupling parameter is β3. In the second equal-
ity of the above relation, we assume the power-law rule
γ3 ∼ 1/bβ3 for the dependence of γ3 on the corresponding
bond length b =

√
a2

0 + c2 ≈ 0.38 nm with intralayer carbon-
carbon bond length a0 = 0.142 nm and the interlayer distance
c = 0.34 nm. An analysis based on the density functional
calculation estimates the dependence of γ3 on the bond length
as ∂γ3/∂b ≈ −0.54 eV/Å [54] and therefore one can obtain
the Gruneisen parameter β3 = −(b/γ3)∂γ3/∂b ≈ 6.84. The

vertical hopping derivative ∂γ1/∂c does not contribute to the
leading-order electron-phonon interaction.

IV. NUMERICAL RESULTS AND DISCUSSION

The phonon self-energy terms depend on �ins.
abcd and �ret .

abcd ,
which are given in terms of corresponding susceptibilities
χ ins.

abcd and χ ret .
abcd in response to the vector potentials Ac(ω1) and

Ad (ω2). Therefore, we have

�ins.
abcd (ω1, ω2) = −χ ins.

abcd (ω1, ω2)

(iω1)(iω2)
, (28)

�ret .
abcd (ω1, ω2, ω3) = −χ ret .

abcd (ω1, ω2, ω3)

(iω1)(iω2)
, (29)

where ω3 is the phonon frequency. The overall minus sign
in the above relations by definition, given in Eq. (8) and
Eq. (9). Utilizing Feynman diagrams given in Figs. 2(a)–2(d)
and Figs. 2(e)–2(i) we calculate χ ins.

abcd and χ ret .
abcd response

functions, respectively. Before reporting the numerical results,
it is necessary to mention that the contribution of the mixed
PEP coupling �

(2)
abcd , depicted in the diagram in Fig. 2(d),

is frequency independent. One can incorporate this diagram
by enforcing the gauge invariance, implying a vanishing
system response to a static homogeneous gauge field. Accord-
ingly, we have χ ins.

abcd (ω1 = 0, ω2 = 0) + χ ret .
abcd (ω1 = 0, ω2 =

0, ω3) = 0 so that the impact of �
(2)
abcd can be taken into

account by subtracting the static value of each diagram.

χ ret .
abcd (ω1, ω2, ω3) → χ ret .

abcd (ω1, ω2, ω3) − χ ret .
abcd (0, 0, ω3),

χ ins.
abcd (ω1, ω2) → χ ins.

abcd (ω1, ω2) − χ ins.
abcd (0, 0). (30)

The rest of the section summarizes our analytical and numer-
ical results for the light-induced instantaneous and retarded
couplings and the resulting renormalization of shear phonon
frequency in bilayer graphene. Afterward, we quantitatively
analyze the splitting of shear phonon modes and phonon
instability which are coherently controllable by altering the
incident laser intensity, frequency, and polarization. We also
investigate the impact of finite electronic temperature on our
numerical results.

A. Light-induced instantaneous self-energy

Light-induced instantaneous phonon self-energy is calcu-
lated following the Feynman diagrams depicted in Figs. 2(a)–
2(d) employing the effective low-energy description of
electrons and the couplings to phonons and photons. For
a linearly polarized incident light field E(t ) = E0(x̂ cos θ +
ŷ sin θ )e−iωt + c.c., the symmetry of the system enforces
the following constraints for the only nonvanishing tensor
elements as −�ins.

xxxx = −�ins.
yyyy = �ins.

xxyy = �ins.
yyxx = �ins.

xyxy =
�ins.

yxyx = �ins.
xyyx = �ins.

yxxy = �ins.. In accordance with this sym-

metry constraint, we find the dependence of Ĝ ins. on the light
field polarization angle θ :

Ĝ ins. = �ins.(ω̄1, ω̄2)E2
0

[
− cos(2θ ) sin(2θ )

sin(2θ ) cos(2θ )

]
, (31)

where ω̄ j = h̄(ω j + i�e)/|μ| with ω1 = −ω2 = ω and h̄�e is
the electron scattering rate. The functional dependence of the
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FIG. 3. Light-induced retarded self-energy coupling versus the laser frequency. (a) indicates the imaginary and real parts of �ret .
I versus

the incident laser frequency at zero electronic temperature Te = 0 and h̄�e = 0.001 meV. (b) and (c), respectively, illustrate the imaginary and
real parts of �ret .

I at h̄�e = 1 meV and different values of electronic temperature Te. We set μ = 200 meV, and h̄�0 = 3.9 meV in this figure.

instantaneous coupling is obtained analytically using the ef-
fective low-energy Hamiltonian, and it reads �ins.(ω̄1, ω̄2) =
�ins.

0 �(ω̄1, ω̄2) with (see Appendix A)

�(ω̄1, ω̄2) =
{

(ω̄1 + 2ω̄2)

ω̄2
2(ω̄1 + ω̄2)

ln

[
4 − ω̄2

1

4 − (ω1 + ω2)2

]

+ (ω̄2 + 2ω̄1)

ω̄2
1(ω̄1 + ω̄2)

ln

[
4 − ω̄2

2

4 − (ω̄1 + ω̄2)2

]

− 3

2ω̄1ω̄2
ln

[
1 − (ω1 + ω2)2

4

]}
, (32)

and the dimensionful constant prefactor reads

�ins.
0 = Nf e2M(2)

4πμ2
. (33)

in which Nf = 4 stands for the spin-valley degeneracy. The
properties of universal function �(ω1, ω2) are explored in
Ref. [46] at zero and finite electronic temperature Te.

B. Light-induced retarded self-energy

For the retarded coupling, we have the Feynman dia-
grams depicted in Figs. 2(e)–2(i), among which only diagrams
shown in Figs. 2(e), 2(h), and 2(i) are nonzero in our effec-
tive model analysis. The symmetry of our low-energy model
results in constraints for the nonvanishing elements of �ret .

abcd
as �ret .

xxxx = �ret .
yyyy, �ret .

xxyy = �ret .
yyxx, �ret .

xyxy = �ret .
yxyx, and �ret .

xyyx =
�ret .

yxxy. Accordingly, the polarization dependence of the re-
tarded coupling reads

Ĝret .(�) = E2
0 �ret .

I Î + E2
0

[
�ret .

Z cos(2θ ) �ret .
X sin(2θ )

�ret .
X sin(2θ ) −�ret .

Z cos(2θ )

]
,

(34)

where for a given light field frequency ω and at phonon
frequency �, we define

�ret .
I,Z (ω,−ω,�) = �ret .

xxxx ± �ret .
xxyy

2
,

�ret .
X (ω,−ω,�) = �ret .

xyyx + �ret .
xyxy

2
. (35)

The + and − signs in the above relation refer to �ret .
I and

�ret .
Z , respectively. The three contributions from three dia-

grams Figs. 3(a), 3(d), and 3(e) can be collected as follows:

�ret .
ξ=I,Z,X (ω1, ω2, ω3) = �ret .

0

{
�

square
ξ (ω1, ω2, ω3)

+ α
[
�bubble−�

ξ (ω1, ω2, ω3)

+ �bubble−�
ξ (ω1, ω2, ω3)

]}
. (36)

In the low-energy model, we obtain vanishing contributions
for the triangle diagrams shown in Figs. 2(f) and 2(g). The
detailed derivation and analytical expressions of the above
nonlinear response functions at zero electronic temperature
are given in Appendix B. Notice the constant factors

�ret .
0 = Nf (eM(1) )2

24π (h̄�e)μ2
, α = h̄�e

(18γ 2
0 /γ1)

. (37)

Since 18γ 2
0 /γ1 ≈ 102 eV and h̄�e is usually less than tens of

meV, we have α � 1 for realistic value of scattering rate h̄�e.
Therefore, we safely neglect the contribution of bubble dia-
grams relative to the square diagram. Considering the square
diagram, our microscopic calculation gives �ret .

xxxx = �ret .
xxyy and

�ret .
xyxy = −�ret .

xyyx. Consequently, we obtain

�ret .
I = �ret .

xxxx ≈ �
square
I and �ret .

Z = �ret .
X = 0. (38)

In Fig. 3, we illustrate real and imaginary parts of �ret .
I

at zero and finite electronic temperature Te. At very low
temperatures, the imaginary part is finite only in a narrow
frequency window close to the interband optical transition gap
2|μ| where the width of the frequency window is given by
the shear phonon frequency 2�0. The real part of �ret .

I shows
logarithmic cusps at optical transition edges for h̄ω = 2μ and
h̄ω = 2μ ± h̄�.

We generalize the zero temperature response function
�abcd (εF , Te = 0, . . . ) to finite electronic temperature using
the Maldague’s formula [46,56], by integrating over the Fermi
energy as follows:

�abcd |μ,Te =
∫ ∞

−∞
dy

�abcd |εF →y,Te=0

4kBTe cosh2
( y−μ

2kBTe

) . (39)
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FIG. 4. Adiabatic and nonadiabatic spectral functions of optically dressed shear phonons. (a) and (b) illustrate the results obtained within
the adiabatic and nonadiabatic models, respectively. In (c), we depict the spectral function obtained after neglecting the imaginary part of
�ret

I (�). The shear phonons’ splitting is depicted at different values of the light field amplitude in the unit of V/nm. The splitting is almost the
same in both adiabatic and nonadiabatic models. However, the linewidth and peak values are different in the two models. We set μ = 200 meV,
h̄�e = 5 meV, h̄�p = 0.5 meV, Te = 100 K, h̄�0 = 3.9 meV, and θ = 0 in this figure.

The electronic temperature can reach thousands of Kelvin due
to intense and ultrashort laser pulses [57–61]. The imaginary
part of �ret .

I is always positive at zero and finite temperatures.
We investigate the impact of the electronic temperature, and
the result shows an expected reduction of the response for
frequencies in the range |h̄ω − 2|μ|| < h̄�0 while outside this
range, the response function increases by raising the tempera-
ture.

C. Light-induced phonon splitting and instability

Performing the Fourier transform of the shear phonon dis-
placement vector Qa(t ) = ∑

� Qa(�)e−i�t in Eq. (18) leads
to the equation of motion into the frequency domain

∑
b

{Kab(�) − (�2 + i�p�)δab}Qb(�) = FD
a

ρ
, (40)

where the dynamical matrix of shear modes is dressed by the
external light field and given by

Kab(�) = �2
0δab − G ins.

ab

ρ
− Gret .

ab (�)

ρ
. (41)

We write the light-induced phonon self-energy term in a com-
pact form in the unit of a characteristic frequency ν0 = √

g0/ρ

with g0 = γ3(eE0/bμ)2 and thus the dynamical matrix reads

K̂(�) = �2
0 Î − ν2

0

[
KI + KZ cos(2θ ) KX sin(2θ )

KX sin(2θ ) KI − KZ cos(2θ )

]
,

(42)

where for given driving field frequency ω, we have

KI (�) = r1�
square
I (ω,−ω,�),

KX = −KZ = r0�(ω,−ω). (43)

Notice that r0 = 3a2
0β3(1 + β3)/(4πb2) and r1 =

3a2
0β

2
3γ3/(4πb2h̄�e) are dimensionless parameters.

Considering numerical values of γ3 and β3 and lattice
parameters, we obtain r0 ≈ 1.738 and r1 ≈ 455/(h̄�e[meV]).

Utilizing the dynamical matrix, we introduce the phonon
Green’s function dressed by the light field

D̂(�) = [(�2 + i�p�)Î − K̂(�)]−1. (44)

Therefore, the spectral function of the shear mode is de-
fined as A(�) = −Im[Tr[D̂(�)]]/π . By defining ν2

0 K̃I (�) =
ν2

0 KI (�) + i�p� and considering KX = −KZ , we obtain a
θ -independent spectral function

A(�) = 2

π
Im

[
�2

0 − �2 − ν2
0 K̃I (�)[

�2
0 − �2 − ν2

0 K̃I (�)
]2 + ν4

0 K2
Z

]
. (45)

For displacive Raman force analysis and rigid shear displace-
ment, we only need to know the dynamical matrix at � = 0,
which corresponds to the adiabatic component of the spectral
function. In the adiabatic approximation [62], Green’s func-
tion is obtained by setting the phonon frequency to zero in the
dynamical matrix K(� = 0):

D̂ad(�) = [(�2 + i�p�)Î − K̂(� = 0)]−1. (46)

We calculate the spectral function for both adiabatic and
nonadiabatic models, and the results are depicted in Figs. 4(a)
and 4(b). Both models predict a splitting of degenerate shear
modes due to the impact light field based on the nonlinear
Raman mechanism. This comparison shows that the adiabatic
approximation nicely predicts the same value for splitting
phonon modes in the nonadiabatic formalism. However, the
two methods differ for the linewidth and the spectral weight
peak value. In particular, in Fig. 4(c), we neglect the imaginary
part of �ret

I (�), which results in sharper peaks coinciding
with the spectral peaks in the adiabatic model. According to
this analysis, we can safely consider an adiabatic approxima-
tion by setting � = 0 in the dynamical matrix K̂(� = 0) to
discuss the light-induced shear mode splitting and instability
at which phonon frequency vanishes. In this case, we diag-
onalize the adiabatic dynamical matrix and obtain the normal
shear phonon modes in a linear superposition of two Cartesian

165418-7



HABIB ROSTAMI PHYSICAL REVIEW B 107, 165418 (2023)

FIG. 5. Light-induced shear phonon splitting and instability. (a) and (b) shows the mode splitting as a function of the light field amplitude
at laser frequency h̄ω = 3μ and two different values of electronic temperature. (c) illustrates the frequency dependence of dynamically
renormalized shear modes at field amplitude E0 = 0.1 V/nm and Te = 300 K. (d) indicates the shear phonon frequencies versus the electronic
temperature at h̄ω = 2μ and E0 = 0.1 V/nm. (e) shows the field dependence of shear phonon linewidth at h̄ω = 3μ and Te = 300 K. (f)
manifests the laser frequency dependence of the critical field amplitude at which phonon modes become unstable. We set μ = 200 meV,
h̄�p = 0.1 meV, h̄�e = 5 meV, and h̄�0 = 3.9 meV in this figure.

modes. Eventually, the normal mode frequencies read(
�±
�0

)2

= 1 − ξ 2KI (0) ± ξ 2|KZ |. (47)

Note that ξ = ν0/�0 is a dimensionless parameter, and both
KI (0) and KZ are real numbers. Since KI (�) is a complex
number, its imaginary part induces a field-dependent renor-
malization of the phonon linewidth that follows

�±
�p

= 1 + ν2
0

�p�±
Im[KI (�±)]. (48)

There are some qualitative features in the field-dependent
phonon frequency and linewidth: (i) First, our perturbative
analysis is primarily valid for small enough ξ ; therefore, we
have �± > 0 in the best validity range of our formalism.
However, we can predict the case �± = 0 at critical field
amplitudes E± for which the shear mode becomes unsta-
ble that can facilitate an optically driven structural phase
transition of the vdW material via the change in the stak-
ing order. (ii) For KI (0) = 0 the splitting of two modes is
symmetric and �+ is always nonzero while �− vanishes
at ν0 = �0/

√|KZ |. (iii) For |KZ | � |KI (0)|, phonons remain
degenerate at a larger or smaller frequency relative to �0 for

KI (0) < 0 or KI (0) > 0, respectively. If KI (0) > 0, phonon
modes get soften (�± → 0) at a critical field amplitude lead-
ing to ν0 = �0/

√
KI (0). (iv) Since Im[KI (�±)] > 0 as shown

in Fig. 4(c), we obtain a field-induced broadening of spec-
tral function due to the optically enhanced electron-phonon
scattering.

We illustrate the normal mode frequency in Figs. 5(a) and
5(b) as a function of the incident field intensity at two dif-
ferent electronic temperature values manifesting the quadratic
dependence on the field amplitude. Figure 5(a) shows that
two normal modes conversely evolve where �+ (�−) in-
creases (decreases) by raising the field amplitude E0. The
diverging evolution of two phonon modes’ frequency in op-
posite directions becomes a converging trend with negative
renormalization and phonon softening at higher electronic
temperatures. This is because KI (0) enhances by raising the
temperature, and thus, it becomes larger than KZ leading to
a converging trend for both �± versus field amplitude E0.
Intriguingly, at a critical value of E0, we predict a vanishing
value for �± = 0, and by a further increase of E0 the phonon
frequency becomes imaginary �2

± < 0 indicating a structural
instability. As a result of this light-induced instability, atomic
layers can easily slide to emerge in other stable or metastable
staking orders.
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In Fig. 5(c), we show the frequency dependence of the
normal modes’ energies at room temperature showing the
nonmonotonic profile with a strong dependence on the light
frequency. In the subgap regime, the phonon frequency drops
to zero, then becomes unstable for a range of frequencies
around interband transition edge h̄ω = 2μ. This is because
the real part of �ret .

I is enhanced around h̄ω = 2μ as depicted
in Fig. 3(c). Further increasing the laser frequency makes �2

±
positive and thus stable again. The phonon modes’ splitting
is stronger at higher laser frequency where KI (0) becomes
less relevant than KZ . Figure 5(d) depicts the temperature
dependence of the normal mode frequencies at the interband
transition edge h̄ω = 2|μ| and for a field amplitude E0 =
0.1 V/nm. The real part of �ret .

I is larger at lower temper-
atures, making both shear modes unstable. By raising the
electronic temperature, phonon modes become stable again,
and by a further increase in temperature, the renormalization
of phonon frequency starts to converge. In addition to the
field-dependent phonon frequency, we obtain a robust en-
hancement of phonon linewidth shown in Fig. 5(e), due to the
photon-mediated amplification of electron-phonon scattering.
Finally, we investigate the frequency dependence of critical
electric fields E± at which phonon modes �± become unsta-
ble. Figure 5(f) shows that the critical fields E± increase by
raising the laser frequency.

Considering the nonlinear Raman force, one can further
manipulate shear phonon renormalization and its impact on
rigid shear displacement Q0 = 〈Q(t )〉time−average that reads

Q0 = − 1

ρ
D̂(� = 0) · FD, (49)

where FD is the displacive Raman shear force in bilayer
graphene [46]. One can transform to the normal mode basis
where the dynamical matrix is diagonal for which one finds
the rigid shift Q±

0 = FD
±/ρ�2

± for two normal shear phonon
modes where FD

± are the displacive Raman force components
along the normal mode vibrational directions. For the case of
θ = 0, two normal modes Q+ and Q− correspond to vibration
along x and y direction, respectively. Therefore, the nonlinear
Raman force mechanism modulates the light-induced rigid
shear displacement via the optically driven renormalization of
shear phonon frequency.

Finally, we note that the presented Kubo formalism in-
cludes all quantum effects, which can make it a more complex
and less intuitive approach. Therefore, it is useful to briefly
discuss the light-induced phonon self-energy in a semiclassi-
cal method. For example, the instantaneous coupling G ins.

ab (t )
is obtained by taking the expectation value of the two-phonon-
electron coupling in the presence of the light field, which can
be expressed as

∑
k

∑
mn M

(2)
ab;mn(k)δρmn(k, t ), where M (2)

ab;mn
and δρmn indicate the two-phonon-electron coupling and the
light-induced correction to the density matrix element in the
band basis labeled by m and n.

In a semiclassical model, we neglect interband effects
and focus only on the intraband density matrix, which is
described by the Boltzmann distribution function fm(k, t ).
Therefore, the semiclassical estimation reads G ins.

ab (t ) ∼∑
m M(2)

ab;mm

∑
k[ fm(k, t ) − f FD

m (k)], where f FD
m (k) is the

Fermi-Dirac distribution function, and the momentum

dependence of the intraband two-phonon-electron coupling
is neglected. Finally, we obtain G ins.

ab (t ) ∼ M(2)
ab;ccδnc(t ) +

M(2)
ab;vv

δnv (t ), in which δnc(t ) and δnv (t ) are the photoexcited
carrier densities in the conduction (c) and valence (v) bands.
Similar to the Raman force discussed in Ref. [46], G ins.

ab (t ) is
directly related to the photoexcited carrier density and thus
follows a similar frequency profile as shown in Eq. (32). The
case of G ins.

ab (t, t ′) is more complex and its semiclassical model
remains an area for future research.

V. CONCLUSION AND OUTLOOK

In conclusion, we present a complete quantum theory
incorporating coherent dressing of electrons and phonons
perturbatively. Unlike Floquet theory, the validity of our ap-
proach based on Green’s function method is for a wide range
of driving field frequencies. We apply the formal theory to
the coherent optical engineering of shear phonons in bi-
layer graphene. We obtained strong renormalization of shear
phonons’ frequency that time-resolved spectroscopy of shear
phonons can probe in pump-probe experiments [43,45,63–
65]. In particular, we predict a light-induced nonthermal
instability of shear vibration modes that can facilitate non-
destructive coherent engineering lattice structure in layered
materials. The removal of shear mode degeneracy can lead to
efficient coherent control of layer stacking and relative lateral
motion of graphene sheets by altering the pump laser intensity
and polarization. For instance, we can consider the case when
one of the normal modes is softened and the other one is
hardened due the indirect electron-mediated interaction with
the pump laser. This results in a larger shear displacement
along the softer mode direction versus the hard one under the
influence of a probe laser. Our investigation into light-induced
phonon instability offers an approach to significantly manip-
ulate the lattice potential and with an optically stabilized new
ground-states structure with different stacking order. Specif-
ically, Fig. 1(c) illustrates the optically induced saddlelike
shear potential for which we must also involve the nonlinear
phononic terms. The quantitative analysis of the nonlinear
shear phononics is a topic for future studies.

Our theory can be applied to other types of phonon modes
in heterostructures of layered materials, which involve relative
twists of layers. Having a coherent control of shear phonon
dynamics provides an optical switching of polar metals, moiré
ferroelectrics, and superconductivity in the heterostructures of
layered quantum materials [66–74]. For intense incident laser,
there is a saturation effect of the light-induced displacement
usually observed in experimental measurements of coherent
phonon displacement amplitude. This effect is due to the
saturation of the optical absorption that can be explained via
a saturable absorption process described by the third-order
optical conductivity and a nonlinear force fourth-order in the
electric field amplitude, e.g., F ∝ EE∗EE∗. The saturation
effect analysis is beyond the scope of this paper and will be
discussed elsewhere.
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APPENDIX A: INSTANTANEOUS SUSCEPTIBILITY

Considering the contribution of �
(2)
abcd , the instantaneous

coupling consists of three contributions

χ̄ ins.
abcd (ω1, ω2) = χ̄

triangle
abcd (ω1, ω2) + χ̄

bubble−γ

abcd (ω1, ω2)

+ χ̄bubble−�
abcd (ω1, ω2). (A1)

In the following sections, we calculate the values of each
diagram for the instantaneous susceptibility.

1. Calculation of χ̄
triangle
abcd for the diagram depicted in Fig. 2(a)

The triangle diagram Fig. 2(a) can be written in terms
of electronic Green’s function Ĝ(k, ikn) and two-phonon-
electron matrix element M̂(2)

ab and paramagnetic current
operator ĵc, ĵd :

χabcd (iωm1 , iωm2 ) =
∑
P

1

S

∑
k

1

β

∑
ikn

Tr
[
M̂(2)

ab (k)Ĝ(k, ikn)

× ĵc(k)Ĝ
(
k, ikn + iωm1

)
ĵd (k)Ĝ

(
k, ikn

+ iωm1 + iωm2

)]
, (A2)

where the trace operator Tr[. . . ] sum over all spinor degree
of freedom, β = 1/kBTe, ikn (iωm) stands for the fermionic
(bosonic) Matsubara frequency. The intrinsic permutation
symmetry is enforced by

∑
P for the exchange of photon

frequencies and corresponding tensorial index: (c, m1) ↔
(d, m2). From now on, we adopt a shorthand notation ikn →
n and iωm → m for the sake of simplicity. The electronic
Green’s function is given as follows:

Ĝ(k, ikn) = [ikn − Ĥk]−1. (A3)

Because of the inversion symmetry, the response tensor
elements with odd Cartesian index x and y vanishes χxxxy =
χxxyx,= χyyxy = χyyyx = χxyxx = χxyyy = χyxxx = χyxyy = 0.
This symmetry consideration is confirmed by an explicit
calculation based on the low-energy two-band model. The
remaining tensor elements are also related to each other due
to the rotation symmetry of the system:

−χxxxx = −χyyyy = χxxyy = χyyxx = χxyyx

= χxyxy = χyxyx = χyxxy = χ1. (A4)

After performing the integration on the azimuthal angle of
electronic wave vector k and using the low-energy dispersion
εk = h̄2k2/2m and kdk = (m/h̄2)dε we find

χ1(m1, m2)=
(

Nf M(2)

2π

)( e

m

)2
(

m

h̄2

)∫ ∞

0
dε

1

β

∑
n

8ε2ξ (n)(2ε2 − ξ (m1 + n)2 − ξ (m2 + n)2)ξ (m1+ m2+ n)

(ε2 − ξ (n)2)(ε2 − ξ (m1 + n)2)(ε2 − ξ (m2 + n)2)(ε2 − ξ (m1+ m2+ n)2)
,

(A5)

where ξ (n) = μ + n. After performing Matsubara summation, integrating over ε at zero temperature and analytical continuation
mi → ωi + i0+, we find

χ1(ω1, ω2) = Nf M(2)e2

4π h̄2

{
A1 ln

[
4ε2 − ω2

1

] + A2 ln
[
4ε2 − ω2

2

] + A3 ln
[
4ε2 − (ω1 + ω2)2]}ε→∞

ε→μ
. (A6)

Here, by ωi we mean h̄ωi + i0+ and Ai factors read

A1 = ω1(ω1 + 2ω2)

ω2(ω1 + ω2)
, A2 = ω2(ω2 + 2ω1)

ω1(ω1 + ω2)
, A3 = −1 − (A1 + A2). (A7)

By subtracting the zero-frequency contribution and after some simplifications, we find

χ1(ω1, ω2) − χ1(0, 0)= Nf M(2)e2

4π h̄2

{
A1 ln

[
4ε2 − ω2

1

4ε2 − (ω1 + ω2)2

]
+ A2 ln

[
4ε2 − ω2

2

4ε2 − (ω1 + ω2)2

]
− ln

[
4ε2 − (ω1 + ω2)2

4ε2

]}ε→∞

ε→μ

.

(A8)

Eventually, we obtain χ̄
triangle
1 (ω1, ω2) = χ1(ω1, ω2) − χ1(0, 0) as follows:

χ̄
triangle
1 (ω1, ω2) = Nf M(2)e2

4π h̄2

{
ln

[
1 − (ω1 + ω2)2

4μ2

]
− A1 ln

[
4μ2 − ω2

1

4μ2 − (ω1 + ω2)2

]
− A2 ln

[
4μ2 − ω2

2

4μ2 − (ω1 + ω2)2

]}
. (A9)

2. Calculation of χ̄
bubble−γ

abcd for the diagram depicted in Fig. 2(b)

The bubble diagram Fig. 2(b) can be written in terms of electronic Green’s function Ĝ(k, n), electron-phonon matrix element
M̂(2)

ab and the Raman vertex γ̂cd :

χabcd (m1, m2) = −1

S

∑
k

1

β

∑
n

Tr
[
M̂(2)

ab (k)Ĝ(k, n)γ̂cd (k)Ĝ(k, n + m1 + m2)
]
. (A10)

The overall minus sign originates from the standard rules of Feynman diagrams [48], also see Ref. [75]. Similar to the previous
diagram, we have χxxxy = χxxyx = χyyxy = χyyyx = χxyxx = χxyyy = χyxxx = χyxyy = 0. The other nonvanishing tensor elements
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read

−χxxxx = −χyyyy = χxxyy = χyyxx = χxyyx = χxyxy = χyxyx = χyxxy = χ2. (A11)

After performing the integration on the azimuthal angle of electronic wave vector k and using the low-energy dispersion εk =
h̄2k2/2m and kdk = (m/h̄2)dε we find

χ2(m1, m2) = Nf
m

h̄2

e2M(2)

2πm

∫ ∞

0
dε

1

β

∑
n

2ξ (n)ξ (m1 + m2 + n)

(ε2 − ξ (n)2)(ε2 − ξ (m1 + m2 + n)2)
. (A12)

After performing the summation on the Matsubara frequency n and subtracting the zero-frequency contribution, we find

χ2(ω1, ω2) − χ2(0, 0) = −Nf M(2)e2

8π h̄2

{
ln

[
4ε2 − (ω1 + ω2)2

4ε2

]}ε→∞

ε→μ

. (A13)

Finally, we obtain

χ̄
bubble−γ

2 (ω1, ω2) = Nf M(2)e2

8π h̄2 ln

[
1 − (ω1 + ω2)2

4μ2

]
. (A14)

3. Calculation of χ̄bubble−�
abcd for the diagram depicted in Fig. 2(c)

The bubble diagram Fig. 2(c) can be written in terms of electronic Green’s function Ĝ(k, n), photon-electron-phonon vertex
�̂

(2)
abc and the paramagnetic current ĵd . Considering the permutation symmetry, we have

χabcd (m1, m2) = − 1

2S

∑
k

1

β

∑
n

Tr
[
�̂

(2)
abc(k)Ĝ(k, n) ĵd (k)Ĝ(k, n + m2)

]

− 1

2S

∑
k

1

β

∑
n

Tr
[
�̂

(2)
abd (k)Ĝ(k, n) ĵc(k)Ĝ(k, n + m1)

]
. (A15)

Using the isotropic approximation for the PEP vertex given in Eq. (6) and after performing the integration on the azimuthal
angle of electronic wave vector k, we obtain a vanishing result for all tensor elements. Therefore, within our low-energy model
analysis, the mix of photon-electron-phonon coupling does not contribute to the Raman force:

χ̄bubble−�
abcd (ω1, ω2) = 0. (A16)

4. Sum of all diagrams for the instantaneous coupling

Similar to the Raman force case, we obtain χ̄ ins.(ω1, ω2) = χ̄1(ω1, ω2) + χ̄2(ω1, ω2). One main difference is that instead of
M(1) we have M(2):

χ̄ ins.
xxxx(ω1, ω2) = Nf M(2)e2

4π h̄2

{
3

2
ln

[
1 − (ω1 + ω2)2

4μ2

]
− ω1(ω1 + 2ω2)

ω2(ω1 + ω2)
ln

[
4μ2 − ω2

1

4μ2 − (ω1 + ω2)2

]

− ω2(ω2 + 2ω1)

ω1(ω1 + ω2)
ln

[
4μ2 − ω2

2

4μ2 − (ω1 + ω2)2

]}
. (A17)

Finally, by considering a linear polarized incident electric field E(t ) = E0(x̂ cos θ + ŷ sin θ )e−iωt + c.c, we find

Ĝ ins.(ω1, ω2) = �ins.
xxxx(ω1, ω2)E2

0

[
− cos(2θ ) sin(2θ )

sin(2θ ) cos(2θ )

]
. (A18)

The rectified part of Ĝ ins. is obtain after setting ω1 = h̄(ω + i0+) and ω2 = h̄(−ω + i0+) where ω is the incident laser frequency
and �e stands for the effective scattering rate of electrons.

APPENDIX B: RETARDED SUSCEPTIBILITY

The retarded coupling is given in terms of five different diagrams

χ̄ ret .
abcd (ω1, ω2, ω3) = χ̄

square
abcd (ω1, ω2, ω3) + χ̄

triangle−γ

abcd (ω1, ω2, ω3) + χ̄
triangle−�

abcd (ω1, ω2, ω3)

+ χ̄bubble−�
abcd (ω1, ω2, ω3) + χ̄bubble−�

abcd (ω1, ω2, ω3). (B1)

In the following, we calculate the explicit expression of each contribution using standard Kubo’s formalism at zero electronic
temperature.
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1. Calculation of χ̄
square
abcd for the diagram depicted in Fig. 2(e)

The square diagram Fig. 2(e) can be written in terms of electronic Green’s function Ĝ(k, ikn) and two-phonon-electron matrix
element M̂(1)

a , M̂(1)
b and paramagnetic current operators ĵc, ĵd :

χabcd (m1, m2, m3) = 1

3!

∑
P

1

S

∑
k

1

β

∑
n

Tr
[
M̂(1)

a (k)Ĝ(k, n)M̂(1)
b (k)Ĝ(k, n + m3) ĵc(k)Ĝ(k, n + m3 + m1)

× ĵd (k)Ĝ(k, n + m3 + m1 + m2)
]
. (B2)

Note that
∑

P stands to ensure the intrinsic permutation symmetry. Because of the inversion symmetry, the response tensor
elements with odd Cartesian index x and y vanishes χxxxy = χxxyx = χyyxy = χyyyx = χxyxx = χxyyy = χyxxx = χyxyy = 0. Ac-
cordingly, there are only four independent tensor elements

χxxxx = χyyyy, χxxyy = χyyxx, χxyxy = χyxyx, χxyyx = χyxxy. (B3)

By performing a straightforward algebra similar to what was discussed in the previous section, one can obtain the four
nonvanishing tensor elements in the following form:

χxxxx(ω1, ω2, ω3)= χxxyy(ω1, ω2, ω3)= Nf

24π

(
eM(1)

h̄

)2{
− 4ω1ω2

(
ω2

1 + (ω2 + ω3)ω1 + ω3(ω2 + ω3)
)

(ω1 + ω2)ω3(ω1 + ω3)(ω2 + ω3)(ω1 + ω2 + ω3)
ln

[
2|μ| − ω1

2|μ| + ω1

]

− 4ω1ω2
(
ω2

2 + ω3ω2 + ω2
3 + ω1(ω2 + ω3)

)
(ω1 + ω2)ω3(ω1 + ω3)(ω2 + ω3)(ω1 + ω2 + ω3)

ln

[
2|μ| − ω2

2|μ| + ω2

]

+ 4ω3
(
(ω2 + ω3)ω2

1 + (
ω2

2 + 3ω3ω2 + ω2
3

)
ω1 + ω2ω3(ω2 + ω3)

)
ω1ω2(ω1 + ω2)(ω1 + ω3)(ω2 + ω3)

ln

[
2|μ| − ω3

2|μ| + ω3

]

− 4(ω1 + ω3)(ω1(ω3 − ω2) + ω3(ω2 + ω3))

ω1ω2ω3(ω1 + ω2 + ω3)
ln

[
2|μ| − ω1 − ω3

2|μ| + ω1 + ω3

]

− 4(ω2 + ω3)(ω1(ω3 − ω2) + ω3(ω2 + ω3))

ω1ω2ω3(ω1 + ω2 + ω3)
ln

[
2|μ| − ω2 − ω3

2|μ| + ω2 + ω3

]

+ 4ω3
(
ω3

1 + 2(ω2 + ω3)ω2
1 + (

2ω2
2 + 3ω3ω2 + ω2

3

)
ω1 + ω2(ω2 + ω3)2

)
ω1ω2(ω1 + ω2)(ω1 + ω3)(ω2 + ω3)

ln

[
2|μ| − ω1 − ω2 − ω3

2|μ| + ω1 + ω2 + ω3

]}
,

(B4)

and

χxyxy(ω1, ω2, ω3) = −χxyyx(ω1, ω2, ω3) = Nf

24π

(
eM(1)

h̄

)2{4ω1(ω1 + ω2 + 2ω3)

ω2(ω1 + ω2 + ω3)ω3
ln

[
2|μ| − ω1

2|μ| + ω1

]

− 4ω2(ω1 + ω2 + 2ω3)

ω1(ω1 + ω2 + ω3)ω3
ln

[
2|μ| − ω2

2|μ| + ω2

]
+ 4(ω1 − ω2)ω3

ω1ω2(ω1 + ω2 + ω3)
ln

[
2|μ| − ω3

2|μ| + ω3

]

− 4
(
ω2

1 − ω2
2

)
(ω1 + ω2 + 2ω3)

ω1ω2(ω1 + ω2 + ω3)ω3
ln

[
2|μ| − ω1 − ω2

2|μ| + ω1 + ω2

]

− 4(ω1 + ω3)
(
ω2

1 + (ω2 + ω3)ω1 − ω2ω3
)

ω1ω2(ω1 + ω2 + ω3)ω3
ln

[
2|μ| − ω1 − ω3

2|μ| + ω1 + ω3

]

+ 4(ω2 + ω3)(ω1(ω2 − ω3) + ω2(ω2 + ω3))

ω1ω2(ω1 + ω2 + ω3)ω3
ln

[
2|μ| − ω2 − ω3

2|μ| + ω2 + ω3

]

+ 4(ω1 − ω2)(ω1 + ω2 + ω3)

ω1ω2ω3
ln

[
2|μ| − ω1 − ω2 − ω3

2|μ| + ω1 + ω2 + ω3

]}
. (B5)

For the shorthand notation we adapt ωi for h̄(ωi + i0+) in the above relations.

2. Calculation of χ̄
triangle−γ

abcd for the diagram depicted in Fig. 2(f)

The triangle diagram Fig. 2(f) can be written in terms of electronic Green’s function Ĝ(k, ikn) and electron-phonon matrix
element M̂(1)

a , M̂(1)
b and diamagnetic current operator γ̂cd :

χabcd (m1, m2, m3) = −
∑
P

1

S

∑
k

1

β

∑
n

Tr
[
M̂(1)

a (k)Ĝ(k, n)M̂(1)
b Ĝ(k, n + m1)γ̂cd (k)Ĝ(k, n + m1 + m2 + m3)

]
(B6)
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Using the isotropic approximation model Hamiltonian and after performing the integration on the azimuthal angle of electronic
wave vector k, we obtain a vanishing result for all tensor elements. Therefore, within our low-energy model analysis, we have

χ
triangle−γ

abcd (ω1, ω2, ω3) = 0. (B7)

3. Calculation of χ̄
triangle−�

abcd for the diagram depicted in Fig. 2(g)

The triangle diagram Fig. 2(g) can be written in terms of electronic Green’s function Ĝ(k, ikn) and photon-electron-phonon
matrix element �̂(1)

ac , electron-phonon matrix element M̂(1)
b , and paramagnetic current operator ĵd :

χabcd (m1, m2, m3) =
∑
P

1

2S

∑
k

1

β

∑
n

Tr
[
�̂(1)

ac (k)Ĝ(k, n)M̂(1)
b (k)Ĝ(k, n + m1) ĵd (k)Ĝ(k, n + m1 + m3)

]

+
∑
P

1

2S

∑
k

1

β

∑
n

Tr
[
�̂

(1)
ad (k)Ĝ(k, n)M̂(1)

b (k)Ĝ(k, n + m1) ĵc(k)Ĝ(k, n + m1 + m2)
]
. (B8)

Using the isotropic approximation model Hamiltonian and after performing the integration on the azimuthal angle of electronic
wave vector k, we obtain a vanishing result for all tensor elements. Therefore, within our low-energy model analysis, we have

χ
triangle−�

abcd (ω1, ω2, ω3) = 0. (B9)

4. Calculation of χ̄bubble−�
abcd for the diagram depicted in Fig. 2(h)

The triangle diagram Fig. 2(h) can be written in terms of electronic Green’s function Ĝ(k, ikn) and photon-electron-phonon
matrix element �̂(1)

ac :

χabcd (m1, m2, m3) =
∑
P

1

2S

∑
k

1

β

∑
n

Tr
[
�̂(1)

ac (k)Ĝ(k, n)�̂(1)
bd (k)Ĝ(k, n + m2 + m3)

]

+
∑
P

1

2S

∑
k

1

β

∑
n

Tr
[
�̂

(1)
ad (k)Ĝ(k, n)�̂(1)

bc (k)Ĝ(k, n + m1 + m3)
]
. (B10)

Similar to the square diagram the only nonvanishing tensor elements are given by χxxxx = χyyyy, χxxyy = χyyxx, χxyxy =
χyxyx, χxyyx = χyxxy. The straightforward algebra similar to what was discussed earlier, one can obtain the four nonvanishing
tensor elements in the following form:

χ̄xxxx(ω1, ω2, ω3) = C�

{
ln

[
1 − (ω1 + ω2)2

4μ2

]
+ ln

[
1 − (ω1 + ω3)2

4μ2

]
+ ln

[
1 − (ω2 + ω3)2

4μ2

]}
, (B11)

χ̄xxyy(ω1, ω2, ω3) = C�

{
− ln

[
1 − (ω1 + ω2)2

4μ2

]
+ ln

[
1 − (ω1 + ω3)2

4μ2

]
+ ln

[
1 − (ω2 + ω3)2

4μ2

]}
, (B12)

χ̄xyyx(ω1, ω2, ω3) = C�

{
ln

[
1 − (ω1 + ω2)2

4μ2

]
− ln

[
1 − (ω1 + ω3)2

4μ2

]
+ ln

[
1 − (ω2 + ω3)2

4μ2

]}
, (B13)

χ̄xyxy(ω1, ω2, ω3) = C�

{
ln

[
1 − (ω1 + ω2)2

4μ2

]
+ ln

[
1 − (ω1 + ω3)2

4μ2

]
− ln

[
1 − (ω2 + ω3)2

4μ2

]}
. (B14)

where

C� = Nf m[�(1)]2

24π h̄2 . (B15)

5. Calculation of χ̄bubble−�
abcd for the diagram depicted in Fig. 2(i)

The triangle diagram Fig. 2(i) can be written in terms of electronic Green’s function Ĝ(k, ikn) and photon-electron-phonon
matrix element �̂

(1)
acd and electron-phonon matrix element M̂(1)

b :

χ5,abcd (m1, m2, m3) =
∑
P

1

2S

∑
k

1

β

∑
n

Tr
[
�̂

(1)
acd (k)Ĝ(k, n)M̂(1)

b (k)Ĝ(k, n + m3)
]

(B16)

Similar to the square diagram the only nonvanishing tensor elements are given by χxxxx = χyyyy, χxxyy = χyyxx, χxyxy =
χyxyx, χxyyx = χyxxy. The straightforward algebra similar to what was discussed earlier, one can obtain the four nonvanishing
tensor elements in the following form:

χ̄xxxx(ω1, ω2, ω3) = −3C�

2

{
ln

[
1 − ω2

1

4μ2

]
+ ln

[
1 − ω2

2

4μ2

]
+ ln

[
1 − ω2

3

4μ2

]}
, (B17)
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χ̄xxyy(ω1, ω2, ω3) = −C�

2

{
− ln

[
1 − ω2

1

4μ2

]
− ln

[
1 − ω2

2

4μ2

]
+ ln

[
1 − ω2

3

4μ2

]}
, (B18)

χ̄xyxy(ω1, ω2, ω3) = −C�

2

{
ln

[
1 − ω2

1

4μ2

]
− ln

[
1 − ω2

2

4μ2

]
− ln

[
1 − ω2

3

4μ2

]}
, (B19)

χ̄xyyx(ω1, ω2, ω3) = −C�

2

{
− ln

[
1 − ω2

1

4μ2

]
+ ln

[
1 − ω2

2

4μ2

]
− ln

[
1 − ω2

3

4μ2

]}
. (B20)

where

C� = Nf m�(1)M(1)

24π h̄2 . (B21)

Since �(1)M(1) = [�(1)]2, we have C� = C�.
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