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A lattice mismatch between Van der Waals layers produces a moiré pattern and a subsequent electron band
reconstruction. When the bilayer is charged, the sliding motion of one layer with respect to the other produces
electric pumping. Here I discuss the reciprocal process: that a voltage bias produces a layer-shear mechanical
force. The effect is deduced from the lowest-order correction to the mechanical action by the coupling with
electrons in an external field. In twisted bilayer graphene the new mechanical force is shown to be perpendicular
to the applied field (due to C2 symmetries exchanging the layers) and proportional to the charge density measured
from neutrality. This is strictly true when the chemical potential is within a gap opened by the moiré potential
due to a topological quantization, and approximately true when the chemical potential crosses the flat bands in a
model including the self-consistent Hartree interaction. In a mechanical device the effect should be manifested
as an apparent enhancement of the friction between layers when the system is charged. Depinning fields for the
sliding motion of the layers are estimated in the order of Ec ∼ kV/cm around the magic angle.
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I. INTRODUCTION

The moiré patterns produced by a small lattice mismatch
between Van der Waals layers reorganize their electronic spec-
trum in narrow bands defined on a smaller Brillouin zone. In
twisted bilayer graphene [1] and other carbon-based structures
with an emergent sixfold symmetry [2] this process is opti-
mal at certain magic angles [3,4]. At low temperatures, the
flat bands can host broken-symmetry phases and physics of
correlated electrons yet to be understood [5–19]. The quantum
geometry of the flat bands is likely to play a fundamental role,
in particular, for the stability of the superconducting phase
[20–22].

Another manifestation of geometrical phases of electrons
in moiré patterns is the prediction of a charge pumping as the
result of the translation of one layer with respect to the other
[23–25] (see also Ref. [26]). For a bilayer with a threefold or
sixfold principal axis (along ẑ), the pumped electric current
density is related to the sliding velocity v by

j = C‖v + C⊥ẑ × v, (1)

where C‖,⊥ are phenomenological parameters constrained by
symmetry. For example, in the case of homobilayers where
the moiré pattern results from a twist, additional twofold
rotation axes within the plane of the device impose C‖ = 0.
In the case of heterobilayers with no relative twist where the
moiré pattern results from the difference in lattice parameters,
additional mirror reflection planes containing ẑ yield C⊥ = 0.

As pointed out in Ref. [25], Eq. (1) is a general phe-
nomenological relation that should be valid in any situation.
Nevertheless, the topological character of this response is only
manifest when the chemical potential lies within a gap opened
by the moiré potential. The authors of Refs. [23–25] show
independently that when the sliding motion is slow enough

compared to the timescale set by the inverse of the electronic
gap twisted bilayer graphene realizes a two-dimensional (2D)
analog of a Thouless pump [27].

Here, I provide a complementary discussion of this effect
by focusing on the reciprocal process. I show that a voltage
bias makes one layer to slide with respect to the other; more
specifically, in the presence of an electromotive force E there
is a mechanical force (density) between layers of the form

f = C‖E − C⊥ẑ × E . (2)

This relation is reciprocal to the pumping current in Eq. (1)
and is, therefore, governed by the same phenomenological
constants.

The structure of the paper is as follows. First, I will com-
pute the correction to the mechanical action describing the
dynamics of stacking configurations in the presence of an ex-
ternal field; this is Sec. II with some technical details relegated
to appendices. In the limit of weak fields and smooth stacking
fluctuations, the phenomenological parameters describing this
coupling are given by integrals of the sliding Berry curva-
ture introduced in Refs. [23–25]. These are evaluated for the
continuum model of twisted bilayer graphene at the magic
angle including also the effect of a self-consistent Hartree
potential. The force is shown to be proportional to the charge
density measured from neutrality, although this result is only
rigorous when the chemical potential lies within a miniband
gap (i.e., only when the adiabatic limit can be rigorously
defined). I write general constitutive relations for the coupled
charge and stacking dynamics and apply them to different
experimental scenarios in Sec. III. This analysis shows that
if the relative position of the layer is locked (for example,
due to the presence of the contacts) there is still a negative
correction to the electric polarization related to the mechan-
ical deformation of the moiré pattern due to pinning forces
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FIG. 1. Parametrization of stacking configurations. The field
φ(r) relates a position r in space with the local stacking configuration
given as the relative translation of the layers that would generate
the same configuration starting from maximum lattice overlap (AA
stacking in graphene bilayers). Consider then a position r (in gray)
and its projections in the top (blue) and bottom (red) layers before the
shift, in this case, a rigid rotation followed by a rigid translation of
the layers; φ(r) is defined as the difference between the projections
after the shift, φ(r) = rt − rb.

that contribute to partially screen the external field when the
chemical potential is within a gap. The reciprocal effect is
an apparent increase in the friction between layers when the
moiré pattern slides, but charge cannot flow. Finally, I will
show in Sec. IV that for weak disorder, the depinning fields for
the sliding motion of the layers are estimated in Ec ≈ 5 kV/cm
for magic-angle graphene. These are larger, for example, than
the typical threshold fields for sliding conduction of charge
density waves [28]. I will conclude in Sec. V with a discussion
on the experimental viability of controlling the stacking order
by the application of electric fields.

II. ADIABATIC FORCE ON STACKING ORDER

A. Preliminaries: Space of stacking configurations

The first assumption in the following derivation is that
the electronic Hamiltonian of the bilayer in the absence of
external fields only depends on positions through its paramet-
ric dependence on the local stacking configuration Ĥ[φ(r)],
represented by the vector-valued field φ(r); see Fig. 1 for a
definition. The sliding velocity introduced before measures
the rate of changes in stacking configurations v = δφ̇. The
important observation is that this space is periodic by con-
struction: vectors φ and φ + R, where R is a Bravais vector of
graphene’s lattice, represent the same stacking configuration.

The notion of a moiré period follows from this observa-
tion: At small twist angles and assuming no mismatch in

lattice constant the stacking field corresponding to a rigid
rotation of angle θ can be approximated by φ0(r) ≈ θ ẑ × r
[29], and, hence, φ0(r + Rm ) = φ0 + R ≡ φ by construction,
where Rm = θ−1R × ẑ are the vectors of the moiré pattern in
real space. More generally, the equilibrium stacking texture
φ0(r) (including lattice relaxation) describes a mapping be-
tween real space and the manifold of stacking configurations,

φ0(r): r −→ φ ∈ S1 × S1 ≡ T2, (3)

which possesses the topology of a torus. The simplest mech-
anism for the mechanical force in Eq. (2) is related to the
accumulation of geometrical phases by the electronic wave
function along a nontrivial loop defined on this space.

B. Effective action

The dynamics of the stacking field φ(t, r) is governed by
the Lagrangian

Lmech[φ(t, r)] = �φ

2

∫
dr φ̇

2 − U [φ(t, r)], (4)

where U [φ(t, r)] is the mechanical free energy of the bilayer
and �φ parametrizes the inertia of the relative motion of the
two layers, hence, �φ = �/2, where � is the areal mass density
of each layer.

The form of U is not relevant for the following discus-
sion, but it consists essentially of two competing terms, one
accounting for the adhesion forces between layers favoring
certain stacking configurations, and the other penalizing in-
tralayer stress. The equilibrium stacking texture φ0(r) is the
result of the minimization of U subjected to a boundary
condition that stabilizes the twist angle θ . Putting aside the
important question of the stability of the angle as the layers
slide, I will consider then the dynamics around this equi-
librium solution, φ(t, r) = φ0(r) + δφ(t, r). In particular, we
are interested in the slow sliding dynamics of the bilayer
assuming that the layers are free to slide, i.e., that the layers
are incommensurate to each other so that the sliding motion
adiabatically connects isoenergetic stacking configurations in-
volving no distortion of the moiré pattern. The local change
in stackings is of the form δφ(t, r) = φ0(r − u(t )) − φ0(r),
where u(t ) corresponds to the collective coordinate associ-
ated with soft collective modes (phasons) in the spectrum of
stacking fluctuations [30–35]. If we neglect lattice relaxation,
this is just a rigid translation of one layer with respect to the
other. More generically, it parametrizes the traveling wave
associated with the sliding motion of stacking domain walls
resulting from the relaxation process.

The goal here is to compute the correction to the mechani-
cal action in the presence of external fields. We start with the
action for electrons in the bilayer coupled to a scalar (V ) and
vector (A) potentials,

S[ψ,ψ†] =
∫

dt
∫

dr ψ†(ih̄∂t + eV + μ − Ĥ[φ, A])ψ,

(5)

where μ is the chemical potential. The vector potential enters
in minimal coupling, −ih̄∂ → −ih̄∂ + eA/c. We can formally
integrate out electrons, iSeff [φ]/h̄ = Tr ln Ĝ[φ], to produce
an effective action for stacking configurations through the
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parametric dependence of the Hamiltonian; here, Ĝ[φ] =
(ih̄∂t + eV + μ − Ĥ[φ, A])−1, and the trace represents the
summation over all quantum numbers.

Since we are interested only in the force produced on the
stacking order in linear response to the external fields, we can
consider the linear correction to the electronic Hamiltonian
in stacking deviations, Ĥ[φ, A] ≈ Ĥ0[A] + δφ · ∂φĤ, where
Ĥ0[A] ≡ Ĥ[φ0, A], and expand the logarithm up to first order
both in the δφ and the fields. Diagrammatically, this amounts
to the calculation of the usual polarization bubble but with
the coupling ∂φĤ in the vertex with δφ. The stacking con-
figurations are assumed to be smoothly varying in space and
time, so we can expand the polarization to first order in the
external frequency/momentum. This produces the following
correction in the effective action:

S(2)
eff [δφ] = C̃i j

∫
dt

∫
dr

(
eV ∂iδφ j + e

c
Aiδφ̇ j

)
, (6)

where repeated indices are summed up, and the coefficients
C̃i j have the form of a Pontryagin index,

C̃i j =
∫

dq

(2π )3
Tr

[
Ĝ0 · ∂ωĜ−1

0 · Ĝ0 · ∂φ j Ĝ−1
0 · Ĝ0 · ∂qi Ĝ−1

0

]
,

(7)

with q = (ω, q). Here, I have introduced the free Green’s
operator in the absence of external fields,

Ĝ0(ω, q) = [h̄ω + i0+sgn(ω) + μ − Ĥ0(q)]−1, (8)

where Ĥ0(q) is the Fourier transform of the electronic Hamil-
tonian defined as a matrix spanned by band indices and with
momenta q restricted to the moiré Brillouin zone (mBZ).

From this term in the action, we see that the field produces
a force (density) of the form

f = δS(2)
eff

δφ
= ĈT · E, (9)

where E = −∇V − Ȧ/c is the electric field and Ĉ is a matrix
with elements Ci j = eC̃i j . This is nothing but Eq. (2). The
symmetry constraints discussed in the Introduction follows
from the symmetry transformations of momentum and stack-
ing fields. Both are vectors, but note, in particular, that they
have opposite signatures with respect to operations exchang-
ing the layers.

By the same token, there is a contribution to the electric
current (density) given by

j = c
δS(2)

eff

δA
= Ĉ · δφ̇, (10)

which is another way to write Eq. (1). The constants Ci j are
the same in both expressions, but the corresponding matrices
are transposed.

Finally, performing the integral in frequencies in Eq. (7)
(see Appendix A), the response coefficients can be written as

Ci j = e
∑
α,n

∫
mBZ

dq
(2π )2

�
(n,α)
qiφ j

(q)�[μ − εn,α (q)], (11)

where �
(n,α)
qiφ j

(q) the sliding Berry curvature introduced in
Refs. [23–25] summed over all occupied states with energy

FIG. 2. Flat bands and sliding Berry curvatures at the magic an-
gle. The insets show the distribution in momentum space of �

(n,+)
⊥ (q)

in Eq. (14) summed over occupied bands when the highest flat band
is fully occupied (top) and when the lowest flat band is fully empty
(bottom). I truncated the continuum Hamiltonian to 91 plane waves
for each layer and sublattice.

dispersion εn,α (q) (n is the band index, and α represents the
rest of the quantum numbers).

C. Application to twisted bilayer graphene

1. Noninteracting bands

Next, I evaluate the matrix of coefficients Ci j within the
continuum model of the twisted bilayer graphene [1,4]. The
model consists of two Dirac Hamiltonians describing the orig-
inal linear dispersion of the bands on each layer at valleys
centered at the two inequivalent points K± = ±K+ of the
hexagonal Brillouin zone. Tunneling from the bottom to the
top layer is described by the term

T̂ζ (r) =
2∑

n=0

eiζ (qn+K+ )·φ(r)eiζ 2πn
3 σ̂z T̂0 e−iζ 2πn

3 σ̂z , (12)

where ζ = ±1 labels valleys K±, and q0,1,2 = 0, g2,−g1,
where g1,2 are primitive vectors of graphene’s reciprocal lat-
tice forming 120◦. Operators σ̂i are Pauli matrices acting on
the sublattice degree of freedom of the spinor wave functions.
The matrix T̂0 contains the tunneling rates; a parametrization
compatible with D6 symmetry is of the form

T̂0 = tAA1̂ + tABσ̂x. (13)

Plugging φ0(r) ≈ θ ẑ × r into these equations one recovers
the usual expression of the continuum model with moiré re-
ciprocal vectors given by Gi = θ−1gi × ẑ. Lattice relaxation
produces more harmonics, but I will neglect those and take
slightly different values of the interlayer tunneling rates at
different stacking regions, tAA = 79.7 and tAB = 97.5 meV
[36]. Figure 2 shows the lowest-energy bands at the magic
angle (θ = 1.05◦ for these model parameters) including up to
91 plane waves in the calculation for each layer and sublattice.
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As discussed in the Introduction, D6 symmetry imposes
Cxx = Cyy = 0 and Cyx = −Cxy ≡ C⊥, the latter given by the
integral of the corresponding component of the sliding Berry
curvature. The insets in Fig. 2 show the distribution of the
symmetric combination,

�
(n,ζ )
⊥ (q) = 1

2�
(n,ζ )
qyφx

(q) − 1
2�

(n,ζ )
qxφy

(q), (14)

for valley ζ = +1, summed over the 182 bands below the flat
bands (lower inset), and including also the flat bands (upper
inset). The distribution in the opposite valley follows from
time-reversal symmetry, �

(n,−)
⊥ (q) = �

(n,+)
⊥ (−q). Summing

�
(n,+)
⊥ (q) on a grid of 1933 q points and accounting for the de-

generacy 4 from spin and valley, I obtained AmC⊥/4e = 56.31
for the lower inset and AmC⊥/4e = −56.52 for the upper
inset (Am = √

3a2/2θ2 is the area of the moiré unit cell in
real space, where a is graphene’s lattice constant). These are
numerically very close to ±θ−1 = ±54.57. Indeed, I checked
that the force coefficient follows the relation C⊥ = ±4e/θAm

for different values of twist angle within the same numerical
error (results not shown); in terms of the electron density n
measured form neutrality,

C⊥ = −θ−1en = − 8e θ√
3a2

. (15)

The same estimate (with opposite sign) follows for hole
dopings.

2. Hartree bands

As it is apparent from the insets in Fig. 2 most of the sliding
Berry curvature of the flat bands is concentrated around the
the zone center (γ point in the figures), so C⊥ does not neces-
sarily track the carrier density as the flat bands are gradually
populated. However, it is well known that electrostatic effects
alter significantly the dispersion of the flat bands as charge
is added or removed from the bilayer [37–40]. In order to
investigate charging effects in the bands and the distribution
of sliding Berry curvature, I included in the electronic Hamil-
tonian the Coulomb repulsion among electrons treated in a
self-consistent Hartree approximation. Details can be found
in Appendix B. The Fock terms (neglected here) give rise to
exchange renormalizations of the bands and symmetry break-
ing at low temperatures, but, being nonlocal potentials, they
are less sensitive to the accumulation of charge in some areas
of the moiré pattern and, therefore, they are expected to have a
smaller effect on the distribution of the sliding Berry curvature
and the force coefficients.

Figure 3 shows the self-consistent Hartree band structures
corresponding to a long-range Coulomb interaction with a rel-
ative permittivity εr = 7.5 for fully empty [panel (a)] and fully
occupied [panel (b)] flat bands. The density plots represent
�

(n,+)
⊥ (q) summed over all filled bands for each filling. The

sum in the same momentum grid as before gives AmC⊥/4e =
55.66 for filling ν = −4 and AmC⊥/4e = −55.69 for filling
ν = 4.

3. C⊥ as a function of band filling

The calculations in Fig. 3 show that the sliding Berry
curvature with the account of the Hartree potential is, in fact,

FIG. 3. Hartree bands and sliding Berry curvature. The dielectric
constant is εr = 7.5. I took the same number of plane waves as in
the calculations in Fig. 2, and the harmonics of the Hartree potential
were restricted to the first star. (a) Filling ν = −4 when the chemical
potential lies within the gap between the lowest flat band and the
rest of the spectrum. The right panel shows �

(n,+)
⊥ (q) summed over

all occupied bands. (b) Filling ν = 4 when the chemical potential
lies within the gap between the highest flat band and the rest of the
spectrum. The right panel shows �

(n,+)
⊥ (q) summed over all occupied

bands.

more spread over the moiré Brillouin zone. How do these
changes affect the value of C⊥ as the Fermi level crosses
the flat bands? Here, I am concerned only about the magni-
tude of the reactive force induced by the field, although in
the presence of a Fermi surface the adiabatic limit cannot be
properly defined and we should expect also dissipative terms
due to electron quasiparticle excitations.

The answer is in Fig. 4, which shows the numerical eval-
uation of C⊥ as a function of filling ν running from −4
(completely empty flat bands) to +4 (completely full). The

FIG. 4. C⊥ as a function of filling of the flat bands. Blue dots cor-
respond to the noninteracting theory, red dots to the self-consistent
Hartree theory. The dashed black line corresponds to C⊥ tracking the
charge density.
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blue dots correspond to the rigid noninteracting bands in
which C⊥ decreases rapidly as the lowest flat band starts to
be populated, then it is roughly 0 for a wide range of densities
around the neutrality point, and then decreases quickly again.

However, for the nonrigid Hartree bands, which change
with filling, the behavior is different; these correspond to the
red points in Fig. 4. We can see that C⊥ is roughly proportional
to band filling (dashed black line for reference) except for a
much narrower window around neutrality. This is the result
of the ν-dependent change in band dispersion associated with
the smoothening of the charge density in real space together
with the spreading of the sliding Berry curvature in reciprocal
space.

4. Coupled charge and twist-angle fluctuations

The quantization of C⊥ in units of e/θAm when the Fermi
level lies within a gap can be understood by rewriting Eq. (11)
in terms of the four Chern numbers defined on manifolds
S1 × S1 spanned by a primitive vector of the moiré Brillouin
zone and a primitive vector of the stacking configuration space
[23–25]; the derivation is shown in Appendix C. Physically,
the integral of the sliding Berry curvature describes how the
Wannier center of the band changes with stacking, so C⊥
tracks the charge density in the adiabatic limit.

Another way to understand the relation between C⊥ and
band filling is the following relation for the charge density
fluctuation associated with spatial variations of the stacking
configuration. From the effective action we have

δn = −δS(2)
eff

δV
= −Ci j∂iδφ j = C⊥(∇ × δφ)z. (16)

This relation is complementary to the expression of the pump-
ing current, in the sense that the gauge invariance of the new
term in the effective action guarantees that the pumped current
is conserved, δṅ + ∇ · j = 0.

If we compare the right-hand side with the stacking tex-
ture for a rigid rotation φ0(r) ≈ θ ẑ × r, then we can read
Eq. (16) as a relation between adiabatic changes in the charge
distribution and smooth (on the scale of the moiré pattern)
spatial variations of the twist angle: (∇ × δφ)z ≈ 2δθ , hence,
δn = 2C⊥δθ . On the other hand, for a fixed filling we can
write n = −eν/Am ∝ θ2. A smooth change in twist angle
modifies the area of the moiré cell and, thus, the density,
δn = δθδθn = 2nδθ/θ . Comparing both expressions we ex-
pect then C⊥ = n/θ = −eν/θAm, which agrees with Eq. (15)
for full fillings ν = ±4.

III. CONSTITUTIVE RELATIONS

The purpose of this section is twofold: First, I will show
that regardless of its microscopic origin, the force in Eq. (2)
follows from the phenomenological expression for the pump-
ing current in Eq. (1) as a result of Onsager reciprocity. Then,
I will apply the constitutive relations to different experimental
scenarios.

A. Mechanical force from Onsager reciprocity

The procedure is to write general constitutive relations
describing the coupled charge and sliding dynamics of the

bilayer. These expressions relate flows with their conjugate
thermodynamic forces via a matrix of linear-response func-
tions. The product of the flows with their conjugated forces
determine the work that we have to supply in order to sustain
transport. When charge flows and one of the layers slides the
work dissipated per unit of area is

�W̄ =
∫ ∞

−∞

dω

2π
[ j∗(ω) · E (ω) + v∗(ω) · f (ω)]. (17)

Here, I have introduced Fourier transforms in time of currents
and forces. From this expression, we identify the electric-
field E as the thermodynamic force conjugate to the electric
current. The force conjugate to the sliding velocity is simply
f = −δU/δφ. In linear response, we write[

j(ω)
v(ω)

]
=

[
σ̂ (ω) Â(ω)
B̂(ω) −iωχ̂ (ω)

][
E (ω)
f (ω)

]
. (18)

Thermodynamic stability requires that the real part of this
block matrix is positive semidefinite. Time-reversal symmetry
dictates that it must be symmetric; in particular,

B̂(ω) = ÂT (ω). (19)

In the ω = 0 limit this property reduces to the Onsager recip-
rocal relations among transport coefficients.

Before jumping into the off-diagonal blocks containing
C‖,⊥, it is worth discussing the diagonal blocks for a moment.
In the charge sector j(ω) and E (ω) are related by the optical
conductivity σ̂ (ω). In the mechanical sector, sliding velocities
and forces are related by the long-wavelength (q = 0) limit
of the stacking susceptibility tensor χ̂ (ω, q) introduced in
Ref. [33]. For the purposes of DC transport, we only need to
capture the behavior at small frequencies, which is dominated
by the phason modes [30–35] discussed before. We can write
then [33],

χ̂ (ω, q) =
∑

ν=L,T

�−1
φ P̂ν,q

ω2
ν,q − ω2 − iωγν (ω, q)

, (20)

where P̂ν,q are projectors on the space of phason modes
labeled by momentum q within the moiré Brillouin zone
(in a continuum elastic theory that assumes moiré transla-
tional invariance) and branch indices ν = L, T . These modes
correspond to longitudinal (L) and transverse (T ) traveling
waves of the moiré pattern. They are soft in the sense that
ων,q → 0 as q → 0 due to incommensurability (or negligible
energy differences between commensurate and incommensu-
rate structures at small twist angles). Finally, γν (ω, q) is a
memory matrix that introduces the effect of harder modes of
the stacking dynamics. The ω = 0, q = 0 limit of the memory
matrix is a kinetic coefficient describing the friction between
the two layers. It can be written as a Green’s-Kubo formula of
the form [33]

γ ≡ lim
ω→0

lim
q→0

γν (ω, q)

= 1

kBT
lim

ε→0+
lim
q→0

∫ ∞

0
dt e−εt 〈 fν (t, q) fν (0, q)〉T , (21)

where I have introduced equilibrium correlation functions
between microscopic forces fν (t, q) acting on mode (ν, q).
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The important observation is that the effect of these fluctu-
ating forces is finite at q = 0 due to anharmonic coupling
with optical phonons, reflecting that the linear momentum of
an individual layer is not conserved; γ is its characteristic
relaxation rate. Consequently, under the application of a me-
chanical force the layer slides at some finite velocity in the
steady state; otherwise, the layer would accelerate infinitely.
From the spectral point of view, this means that phasons are
overdamped at long wavelengths [33].

Consider first the pumping scenario, i.e., the flow of elec-
tric charge due to a mechanical force in the absence a voltage
bias, E (ω) = 0. In this case, the constitutive relations dictate

j(ω) = Â(ω) · f (ω), (22a)

v(ω) = −iωχ̂ (ω) · f (ω). (22b)

Note that the ω = 0 limit in the second relation reads v(0) =
f (0)/γ �, i.e., one layer slides at the velocity imposed by the
applied force compensated by the friction with the other layer.
Combining both equations, we have

j(ω) = i

ω
Â(ω) · χ̂−1(ω) · v(ω). (23)

Comparing Eq. (1) with this last equation, we conclude that at
small frequencies Â(ω) should go as

Ai j (ω) = �−1
φ

γ − iω
(C‖δi j − C⊥εi j ). (24)

Now we consider the reciprocal effect, i.e., the sliding of
one layer with respect to the other due to a voltage bias in the
absence of a mechanical force, f (ω) = 0. By making use of
the last result along with Onsager reciprocity [Eq. (19)], the
constitutive relations dictate

v(ω) = �−1
φ

γ − iω
(C‖ − C⊥ẑ×)E (ω). (25)

The electric field makes the layers slide as if they were sub-
jected to the shear force f in Eq. (2). Alternatively, in the
presence of a bias voltage, if the layers do not slide there must
be a mechanical force opposing Eq. (2) so that the relative
position of the layers remains locked. We will come back to
this scenario later.

Finally, note that thermodynamic stability imposes the fol-
lowing relation between transport coefficients,

γ �φ

ρ
� C2

‖ + C2
⊥, (26)

where ρ = σ−1(0) is the electric resistivity.

B. Experimental scenarios

Let us consider first the scenario in which the device ge-
ometry (due to the contacts, encapsulation, etc.) prevents the
two layers to move with respect to each other, v(ω) = 0. The
constitutive relations dictate

j(ω) = σ̂ (ω) · E (ω) + C‖ + C⊥ẑ×
γ �φ (1 − iωγ −1)

f (ω), (27a)

(C‖ − C⊥ẑ×)E (ω) + f (ω) = 0. (27b)

By bringing the value of the force deduced from the second
relation to the first equation, we have

j(ω) =
[
σ̂ (ω) − σ0

1 − iωγ −1

]
E (ω), (28a)

with

σ0 = C2
‖ + C2

⊥
γ �φ

. (28b)

We find a Drude-like negative contribution to the effective
conductivity. When the Fermi level lies within the electron
gap we expect σ̂ (0) → 0 (ρ → ∞) at low temperatures, and
it seems that the effective conductivity is dominated by this
new negative correction given by

σ0 = ne2τ

m∗
,

with

m∗ = θ2�φ

n
, (29)

where τ ≡ γ −1 is the momentum relaxation time. Note here
the similarity of this expression with the sliding conductivity
of an incommensurate charge-density wave [41], where m∗
defined above plays the role of the effective mass of the sliding
charge.

The important caveat is that nothing is really sliding here,
and this apparent charge counterflow should be absent. The
resolution of this paradox is that phasons are no longer soft,
there must be a pinning gap ωp in the spectrum, and we should
replace the Drude-like factor (γ − iω)−1 by −iω/(ω2

p − ω2 −
iωγ ) in these expressions. There is no DC transport in linear
response, but there is a correction to the electric polarization
density P(ω) = − j(ω)/iωz0 (defined here per volume, with z0

being the thickness of the bilayer) opposing the applied field,
or in other words, a negative correction to the effective electric
susceptibility,

δχe(ω) = − C2
‖ + C2

⊥
ε0z0�φ

(
ω2

p − ω2 − iωγ
) (30a)

−−→
ω→0

− ne2

ε0z0m∗ω2
p

, (30b)

where ε0 is vacuum permittivity. The pinning gap is ultimately
related to a smooth (so that the gap remains open) distortion of
the moiré pattern under the application of an electric field. In
this case the adiabatic approximation is ensured so long ω−1

p
is long compared to the timescale set by the electronic gap.

We can consider the alternative situation of a purely me-
chanical experiment/device in which the layers are free to
slide (ωp = 0), but there are no electric contacts, so charge
cannot flow, j = 0. In this case, the constitutive relations in
the ω = 0 limit dictate that layers slide at a rate v = f /γ̃ �

with an enhanced friction parameter γ̃ given by

γ̃ = γ

1 − σ0ρ
, (31)

where σ0 is the sliding conductivity introduced before. Note
that 1 � σ0ρ � 0, hence, γ̃ > 0 for thermodynamic stability
Eq. (26).
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This last result expresses that the friction between layers is
effectively larger when the system is charged. As the layers
slide, there is a pumping electromotive force perpendicular
(in the case of twisted bilayer graphene) to the motion. If the
system is isolated (disconnected from reservoirs/contacts),
the pumped charge cannot leave the system, so a charge ac-
cumulation builds up. The associated voltage drop cancels
the pumping electromotive force in the steady state. But this
voltage drop produces an additional mechanical force oppos-
ing the original driving force, hence, modifying the relation
between force and sliding velocity: one has to apply a larger
force to slide at the same velocity. Quantum mechanically,
the spectral flow linked to this charge accumulation implies
the existence of edge states associated with the moiré pattern
[26,42,43].

IV. DEPINNING FIELDS

The main result in Eq. (2) suggests that if external con-
ditions do not prevent the sliding motion of the layers (the
second scenario discussed in the previous section) an ar-
bitrary small field should be able to drive this motion. In
real devices, however, the presence of disorder implies a fi-
nite threshold that the driving force must overcome first. A
model for the locked-to-sliding transition is beyond the linear-
response theory presented here. The following is a rough
estimate of the order of magnitude of the depinning fields
in the same spirit as in the problem for charge-density waves
[44,45].

In order to estimate the total pinning force opposing the
driving field, I am going to neglect thermal fluctuations and
consider only the static mechanical response to a quenched
distribution of random forces acting on stacking configura-
tions. The mechanical free energy is U + ∫

dr Vdis(r, δφ); the
disorder potential Vdis(r, δφ) favors deviations of the stacking
order at a given point r from the one imposed by the moiré
pattern and the mutual interaction between layers, therefore,
pinning the relaxed texture φ0(r). We assume that disorder
is weak in the sense that spatial variations of stacking fields
are smooth compared to the moiré pitch. We can then ex-
pand to linear order in δφ, Vdis(r, δφ) ≈ − f dis(r) · δφ, where
f dis(r) is some distribution of microscopic pinning forces. For
simplicity, we model them with a Gaussian distribution with
variance,

〈 fi(r) f j (r′)〉dis = f 2
disξ

2δi jδ(r − r′). (32)

The model can be understood as spatial distribution of pin-
ning centers of characteristic force ( f 2

dis)1/2 coarse grained
in a microscopic length ξ representing its characteristic
range.

From general arguments for elastic media [46,47], the
moiré pattern always breaks into finite domains regardless
of the microscopic origin of disorder [33]. Beyond its char-
acteristic size Lpin, the stacking configurations are no longer
correlated and the cumulative effect of the microscopic pin-
ning forces must stop. Due to their random orientation the
total pining force on the domain grows with the length, not the
area. This opposes the driving force, Eq. (2) integrated over
the area L2

pin. Consequently, there is always a finite strength of

the electric field that overcomes pinning,

Ec = ξ

Lpin

√√√√ f 2
dis

C2
‖ + C2

⊥
. (33)

The size of the domains corresponds to the distance at which
the spatial fluctuations in stackings exceed the microscopic
length ξ . In linear response, taking the static limit ω = 0 of
the susceptibility in Eq. (20) and dropping the logarithm in
the estimate of Lpin [33], we have

Ec ≈
√

3
(
κ2

L + κ2
T

)
π

a2 f 2
disξ

8eθκLκT
, (34)

where κL,T is the stiffness of longitudinal and transverse pha-
son fluctuations and I have used the result for twisted bilayer
graphene in Eq. (15).

Taking ξ ∼ a and disorder strength of the order of adhesion
energies between graphene layers, ξ ( f 2

dis)1/2 ∼ 4 meV/Å2

(the difference between AA and AB/BA stacking configu-
rations [48]), and identifying κL = μ, κT = λ + 2μ, where
λ = 3.25 eV/Å2, μ = 9.57 eV/Å2 are graphene’s Lamé co-
efficients [49], the collective pinning lengths are estimated
in Lpin ∼ 500 nm, which is roughly the characteristic size of
domains in the landscape of twist angle variations around the
magic condition observed in experiment [50]. Bringing these
numbers to the expression of the depinning field, we have
Ec ∼ 5 kV/cm at the magic angle. Note, however, that, for
the same disorder parameters, the depinning fields are smaller
for larger twist angles, Ec ∝ θ−1.

Are these small or large? We can compare them with
the depinning fields for charge-density waves. Naturally,
these vary from one material to another depending on the
amount of disorder, temperature, and other factors. In a typ-
ical system such as NbSe3, threshold fields for the sliding
conduction range from tens of mV/cm [51] to a few V/cm
[52]. Threshold fields of few V/cm have been also reported
recently for the axion insulator candidate (TaSe4)2I [53] and
previously for a commensurate charge-density wave in a man-
ganite [54]. We can conclude that the estimated Ec, here,
is, at least, two to three orders of magnitude larger than
the typical threshold fields observed in sliding conduction
[28] with the recent exception of a nearly commensurate
2D charge-density wave in 1T-TaS2, which is as large as 1
kV/cm [55].

V. CONCLUSIONS

The constitutive relations written above describe the cou-
pled response of a twisted Van der Waals bilayer against
electric fields and layer-shear mechanical forces. These re-
lations are general in the sense that they account also for
intrinsic forces between layers responsible for lattice re-
laxation, pinning, and friction. Along with the resistivity
ρ and the friction parameter γ , we must consider also
new coefficients C‖,⊥ describing reactive forces on stack-
ing configurations exerted by an electric field when the
moiré pattern is charged. From Onsager reciprocity, these
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must be the same coefficients describing charge pumping by
the sliding motion of one layer with respect to the other
[23–25].

This new mechanical force has a geometrical origin. In
agreement with Refs. [23–25], the coefficients C⊥,‖ appear-
ing in the lowest-order correction to the mechanical action
can be expressed as integrals of a Berry curvature defined
on the mixed space spanned by momenta and stacking con-
figurations. In twisted bilayer graphene, C‖ = 0 due to C2

symmetry and C⊥ = −eν/θAm, where ν is the band filling
measured from neutrality. This is strictly true for completely
filled/empty bands, which is a consequence of a topolog-
ical quantization in terms of four sliding Chern numbers
defined on this mixed space [23–25]. The calculation for
noninteger fillings including a self-consistent Hartree po-
tential shows that C⊥ tracks the electron density for most
fillings, although it is important to note that, in the presence
of a Fermi surface, the adiabatic regime is not rigorously
defined, and there must be corrections to the force in
Eq. (2), including dissipative terms due to electron quasi-
particle excitations. These processes introduce additional
relaxation channels for the linear momentum of individ-
ual layers, and, hence, electronic contributions to interlayer
friction.

The application of the constitutive relations shows that,
when the relative position of the layers is pinned, there is still
a negative correction to the electric polarization opposing the
electric field. The reciprocal effect is an effective increase in
the friction between layers when the system is charged and
free to slide. This, however, might be challenging to probe in
the laboratory due to the thermodynamic instability intrinsic
to incommensurate layers.

It is important to stress that already in linear response
thermodynamic stability [Eq. (26)] imposes a stringent con-
dition for the observation of a topological Thouless pump in
the sense that, when the chemical potential lies within the
gap of the electron bands and ρ → ∞ at low temperatures,
the layers cannot be free to slide. In this regard, charged
impurities may contribute to pin the moiré pattern in the same
way as in Wigner crystals [56] provided that charge is more
concentrated in some stacking areas within the moiré cell.

Finally, for a model of weak disorder compatible with
the observed deviations in twist angles close to the magic-
angle condition, the depinning fields for the sliding motion of
the graphene layers are on the order of Ec ≈ 5 kV/cm. These
are large if we compare them with typical depinning fields
for incommensurate charge-density waves [28]. This probably
constitutes the major limitation for the control of the stacking
order by electric means.
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APPENDIX A: SLIDING BERRY CURVATURE
FROM EQ. (7)

The free Green’s operator in the Bloch basis |n, q, α〉,
where n is the band index and α represents the rest of quantum
numbers (spin, valley, etc.), can be written as

Ĝ0(ω, q) =
∑
n,α

[
�[εn,α (q) − μ]

h̄ω + i0+ − [εn,α (q) − μ]
+ �[μ − εn,α (q)]

h̄ω + i0− − [εn,α (q) − μ]

]
|n, q, α〉〈n, q, α|. (A1)

εn,α (q) is the band dispersion and �(x) is the Heaviside step function. Hereafter, the electronic Hamiltonian is assumed to be
diagonal in α numbers. Equation (7) can be written as

C̃i j =
∑

α

∑
n1,n2

∫
mBZ

dq
(2π )2

〈n1, q, α|∂φ j Ĥ0|n2, q, α〉〈n2, q, α|∂qiĤ0|n1, q, α〉
∫ ∞

∞

dh̄ ω

2π

(
�

(
εn1,α (q) − μ

)
h̄ω + i0+ − (

εn1,α (q) − μ
)

+ �
[
μ − εn1,α (q)

]
h̄ω + i0− − [

εn1,α (q) − μ
])2

(
�

[
εn2,α (q) − μ

]
h̄ω + i0+ − [

εn2,α (q) − μ
] + �

[
μ − εn2,α (q)

]
h̄ω + i0− − [

εn2,α (q) − μ
]
)

. (A2)

Only when the two poles lie at different halves of the complex plane the result of the integral in ω is different form 0. The result
is

C̃i j =
∑

α

∑
n1,n2

∫
mBZ

dq
(2π )2

−2 Im
[〈n1, q, α|∂φ j Ĥ0|n2, q, α〉〈n2, q, |∂qiĤ0|n1, q, α〉][

εn1,α (q) − εn2,α (q)
]2 �

[
μ − εn2,α (q)

]
�

[
εn1,α (q) − μ

]

=
∑
α,n

∫
mBZ

dq
(2π )2

�
(n,α)
qiφ j

(q)�[μ − εn,α (q)], (A3)

where I have introduced the sliding Berry curvature [23–25],

�
(n,α)
qiφ j

(q) =
∑
n′ �=n

−2 Im
[〈n, q, α|∂qiĤ0|n′, q, α〉〈n′, q, α|∂φ j Ĥ0|n, q, α〉]

[εn,α (q) − εn′,α (q)]2
. (A4)
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APPENDIX B: SELF-CONSISTENT HARTREE POTENTIAL

The Hartree potential (diagonal in sublattices and layers)
reads

VH(r) =
∫

dr′ e2

4πε0εr |r − r′|n(r′), (B1)

where εr describes the dielectric environment. The electron
density is periodic on the moiré pattern and, thus, admits a
Fourier expansion of the form

n(r) =
∑
{G}

nGeiG·r, (B2)

where nG’s are computed self-consistently from the Hartree
bands εH

n,ζ (q) and wave-functions uH
n,q,ζ (r),

nG = 4
∑

n

∫
mBZ

dq
(2π )2

f
(n,+)
G (q)�

[
μ − εH

n,ζ (q)
]
. (B3)

The factor 4 comes from spin and valley degeneracies, and I
have introduced the form factors,

f
(n,ζ )
G (q) =

∫
dr e−iG·r[uH

n,ζ ,q(r)
]∗

uH
n,ζ ,q(r). (B4)

In the calculations of Fig. 3 the number of harmonics in
the Fourier expansion of n(r) was restricted to momenta G in
the first star of the moiré; nG reduces then to the same real
number for the six vectors due to D6 symmetry. The bands
in Fig. 3 were computed after determining this number in an
iterative calculation with an error inferior to 1% for these two
examples (errors never exceeded 2.5% in the calculations of
Fig. 4). The appreciable distortion of the flat-band dispersion
agrees well with similar calculations in the literature [37–40].

For the calculation of the matrix elements of ∂φĤ is impor-
tant to emphasize again that all position-dependent terms in
the Hamiltonian are a functional of the stacking configuration
and, in particular, there is also a contribution from the Hartree
term. The previous expressions for the Hartree potential were
implicitly written in the coordinate frame defined by φ0(r).
Under an adiabatic change in stacking configurations the wave
functions and, therefore, the form factors are transformed ac-
cordingly, f (n,ζ )

G (q) → eiθ (G×δφ)zf
(n,ζ )
G (q). Thus, the Hartree

potential can be written as a functional of the stacking field as

VH(r) ≡ VH[φ(r)] =
∑

i

eigi ·φ(r) nGi e
2

2ε0εr |Gi| . (B5)

APPENDIX C: QUANTIZATION OF THE FORCE
COEFFICIENTS AND RELATION TO THE SYMMETRIES

OF THE MODEL

Consider the expression of the force coefficients in Eq. (11)
in terms of the sliding Berry curvature in Eq. (A4). The
latter does not depend on the stacking deviation δφ, what is
ultimately rooted in the fact that the two layers are incom-
mensurate to each other. Assuming that the Fermi level lies
within a gap and accounting for spin and valley degeneracies,
we can write

Ci j = 4e

Ac

∑
n∈occ

∫
Ac

dφ

∫
mBZ

dq
(2π )2

�
(n,+)
qiφ j

(q), (C1)

FIG. 5. Parametrization of momenta and stacking configurations.
The primitive vectors in momentum space are shown in blue and for
stacking fields in red.

where the sum is in occupied bands and the additional integra-
tion is in stacking configurations defined mod a Bravais vector
of graphene’s lattice; Ac is the area of graphene’s unit cell.

In order to see the topological origin of the force coef-
ficients in this case, it is convenient to change variables to
dimensionless units x1,2, y1,2 ∈ [0, 1) parametrizing, respec-
tively, momenta and stackings as

q =
∑

α=1,2

xαGα, (C2a)

δφ =
∑

α=1,2

yαaα. (C2b)

Here, a1,2 and G1,2 are primitive vectors of the graphene’s
Bravais lattice and the moiré reciprocal lattice. Without loss of
generality, I choose the primitive vectors as indicated in Fig. 5.
Changing variables in the integration measure and noting that
the Berry curvature in the new variables is the pullback of the
curvature in the old variables, we can write

Ci j = 4e

Am

∑
α,β

[Aα]i[gβ] j

2π

∑
n∈occ

c(n,+)
α,β , (C3)

where A1,2 and g1,2 are dual to the primitive vectors, Aα ·
Gβ = aα · gβ = 2πδα,β , and c(n,+)

α,β are Chern numbers defined
on the mixed space of momenta and stackings,

c(n,+)
α,β = 1

2π

∫ 1

0
dxα

∫ 1

0
dyβ�(n,+)

xαyβ
∈ Z. (C4)

Specifically, the force coefficients introduced in the main text
can be written as (repeated latin indices are summed)

C‖ = Cii

2
= 4e

Am

∑
α,β

Aα · gβ

2π

∑
n∈occ

c(n,+)
α,β

2
, (C5a)

C⊥ = ε ji
Ci j

2
= 4e

Am

∑
α,β

[gβ × Aα]z

2π

∑
n∈occ

c(n,+)
α,β

2
. (C5b)
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In the case of twisted bilayer graphene we have Aα =
aα × ẑ/θ with the previous choice of primitive vectors. The
previous formulas reduce to

C⊥ = − 4e

Amθ

∑
α,β

aα · gβ

2π

∑
n∈occ

c(n,+)
α,β

2

= − 4e

Amθ

∑
n∈occ

c(n,+)
1,1 + c(n,+)

2,2

2
= − 4e

Amθ

∑
n∈occ

c(n,+)
1,1 ,

(C6a)

C‖ = − 4e

Amθ

∑
α,β

[aα × gβ]z

2π

∑
n∈occ

c(n,+)
α,β

2

= 4e

Amθ

∑
n∈occ

c(n,+)
1,1 − c(n,+)

2,2 − 2c(n,+)
1,2 + 2c(n,+)

2,1√
3

= 0.

(C6b)

In these expressions, we have used that labels 1 and 2 can
be exchanged under C2 symmetries within the plane of the

structure, i.e., c(n,+)
1,1 = c(n,+)

2,2 and c(n,+)
1,2 = c(n,+)

2,1 . We obtain
then that C‖ is 0 by symmetry and C⊥ is quantized in units
of 4e

Amθ
in agreement with the discussion in Sec. II.

What happens if in-plane C2 symmetries are broken? If the
gaps between the flat bands and the rest of the spectrum are
not closed and reopened, then the sum of the sliding Chern
numbers over occupied bands cannot change. However, the
geometrical prefactors change if the moiré pattern is modified
accordingly. For example, if the twist is accompanied by a
change in lattice parameters (such as in graphene on boron
nitride) given by a dimensionless number ε, which can be
understood as a biaxial heterostrain (ε = 0 for the same lattice
constants), then,

Aα = εaα + θaα × ẑ
ε2 + θ2

. (C7)

We can see from this and previous expressions that even if
the sum of the sliding Chern numbers do not change, there is
a nonzero longitudinal force C‖ ∝ ε/(ε2 + θ2) coming from
the geometrical prefactor.
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