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Comprehension of the electronic properties of nano-objects is a key to defining dedicated properties, which
can be adjusted by changing their size. Beyond confinement effects, the presence of interfaces, i.e., places where
there is an abrupt change of electronic density, should also play a role. Time-dependent density functional theory
(TD-DFT) is a state-of-the-art ab initio formalism in which this effect is accounted for through the so-called
local field effects. In an earlier paper [S. Mazzei and C. Giorgetti, Phys. Rev. B 106, 035431 (2022)], we showed
that the framework inherited from three-dimensional crystals could not provide reliable absorption spectra. In
the present paper, we propose to calculate the macroscopic average of the dielectric tensor of a quasi-two-
dimensional (2D) object from the response function of the density to the total macroscopic potential in order to
avoid use of the so-called Adler and Wiser formula. We evidence that the inclusion of interfaces in the thickness
of the slab causes the response function for the out-of-plane component to move sharply from the bulk absorption
resonance to the plasmon one. This shows that the longitudinal-longitudinal contraction of the dielectric tensor is
no longer equal to the transverse-transverse one in a quasi-2D object for out-of-plane perturbation. Nevertheless,
we also show that the macroscopic average of the dielectric tensor of an ultrathin slab calculated within the
longitudinal formalism of TD-DFT depicts the properties of the transverse reflectance and transmittance spectra
of a thin slab.
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I. INTRODUCTION

Nanomaterials are expected to exhibit novel properties as
a consequence of electronic confinement. In particular, vary-
ing their size or shape should enable us to define dedicated
optical properties [1] due to the modification of the screening
effects, leading, for example, to an adjustable band gap [2–5].
Understanding these properties at the atomic scale is key to
achieving this goal, and ab initio theoretical spectroscopy [6]
provides state-of-the-art frameworks in which it can be ac-
complished. In particular, time-dependent density functional
theory (TD-DFT) [7–9] offers an efficient scheme based on
the solution of the Dyson equation, which relates the density
response functions to the total and external potentials. The
kernel of this equation allows one to account for the exchange
and correlation phenomena at the origin of the excitonic ef-
fects [10], and for the fluctuations at the atomic scale of the
induced density, called the local field effects (LFEs), governed
by the Hartree potential.

Powerful numerical codes have been developed for three-
dimensional (3D) periodic crystals, exploiting the reciprocal
space and plane-wave basis-set framework. To treat isolated
nano-objects in this periodic formalism, one uses the supercell
approach, where the object is embedded in vacuum. To avoid
spurious interactions between replicas, one can extend the size
of the supercell. It has been shown that the results behave like
the effective medium theory [11–13], but this physical picture
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is dubious since it conceives the properties of the isolated
nano-object as an averaging with the surrounding vacuum.
Moreover, it has also been shown that for the out-of-plane
component in 2D geometry, the normalization of the response
function with the size of the supercell prevents us from
extracting a reliable macroscopic dielectric function [13]. An-
other approach, based on the use of a cutoff of the Coulomb
interaction [14,15], has been proposed. Beyond the question
of the vacuum still contained in the volume defined by the
cutoff parameter, no out-of-plane component can be extracted
for 2D material in the optical limit. Finally, a method called
Selected-G was developed to overcome these drawbacks, with
a modified expression for the Coulomb potential called the
slab potential to isolate the replicas for quasi-2D objects,
without any dependence on the size of the supercell [13,16].
It has been successfully applied to calculate the absorption
spectrum as well as the second-harmonic generation in the
thick slab limit in order to depict surface properties [13,17],
and to describe screening effects for an in-plane perturbation
in thin slabs [16].

The optical absorption spectrum is the imaginary part of
the macroscopic average of the dielectric tensor. In Ref. [18],
we solved the Dyson equation to obtain the response function
to the external potential χ . For 3D crystals, it is directly
related to the macroscopic average of the inverse dielectric
matrix ε−1

00 (q; ω) = 1 + 4π
|q|2 χ00(q; ω), which is expected to

give the plasmon, and the use of the Adler and Wiser formula
[19–21] εM (ω) = limq→0 1/ε−1

00 (q; ω) allows for the calcula-
tion of the absorption spectrum in the optical limit. In our
previous paper, we showed that the Adler and Wiser formula
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could not be applied for a quasi-2D object. For the in-plane
component, we demonstrated that the macroscopic dielectric
function is directly proportional to the average of the density
response function (to the external potential). For the out-of-
plane component, where the Adler and Wiser formula should
in principle be valid, we showed that the difficulty in defining
the thickness of matter and calculating a reliable value for
the average of the induced electric field leads to a continuous
shift of the absorption resonance. This behavior is similar
to the effective-medium theory between matter and vacuum
[11,13], but it occurs in the region that seems to define the
interfaces, and the Adler-Wiser formula clearly gives wrong
spectra [18,22]. Nevertheless, we also showed that the differ-
ent in-plane and out-of-plane macroscopic dielectric functions
calculated with the same value for the thickness of matter gave
the same reflectance and transmittance spectra [18,22]. This
means that the response function calculated within TD-DFT,
which is a longitudinal formalism, still contains the electronic
properties at the origin of the optical response, which is in
essence a transverse phenomenon.

The purpose of this paper is to extract these optical prop-
erties from a calculation of the macroscopic average of the
dielectric tensor that avoids the inversion of the quantity
ε−1

00 (q; ω) = 1 + 4π
|q|2 χ00(q; ω), where χ00 is ambiguously nor-

malized. We thus propose calculating the response function to
the macroscopic part of the total potential, called χ̄ , which
for an infinite crystal leads directly to the absorption spectrum
through εM (q; ω) = 1 − 4π

|q|2 χ̄00(q; ω), where q is a vanishing
reciprocal space vector allowing for the definition of the ex-
citation direction. The direction of this momentum transfer
mimics the direction of the electric field of the electromag-
netic wave. The amplitude of εM (q; ω) does not depend on the
choice of |q| in the optical limit. With such an expression, the
ambiguity of the normalization of the response function would
have only a small effect on the amplitude of the spectrum, but
at least we expect the spectral shape to be correct. The differ-
ence between the macroscopic average of χ and χ̄ comes from
the long-range component of the Coulomb potential, which
is set to zero when solving the Dyson equation in reciprocal
space for χ̄ as compared to χ . This difference means that only
microscopic components of the density response function ex-
ist when the excitation is due to a photon, contrary to what
occurs when the perturbation is an electron. Nevertheless,
beyond the scaling effect, the role of the interfaces will be
shown to be crucial, and since they are characterized by an
abrupt change of the electronic density, we will work within
the random phase approximation (RPA) to focus on the LFEs.
We will use the Selected-G formalism with the slab potential
[13,16], as well as a mixed-space approach [13,18], where
the in-plane directions are treated in reciprocal space, and the
direction perpendicular to the slab is described in real space, in
order to tackle the question of the definition of the interfaces.
This leads us to provide a criterion to define the thickness of
a quasi-2D object, and to question the relation between the
longitudinal-longitudinal and transverse-transverse contrac-
tions of the dielectric tensor for the out-of-plane direction of
a 2D object. We will still use a silicon slab as a model system,
since the absorption and plasmon resonance are separated of
more that 10 eV, which allows for a clear distinction [18,22].

But, we will show that the results are transferable to traditional
2D materials such as the stacking of a few layers of graphene.

This paper is organized as follows: In Sec. II, we calculate
the macroscopic dielectric function of an isolated slab using
the reciprocal space framework with the Selected-G method
and the slab potential [13,16]. We evidence that a very small
variation of the definition of the thickness of the slab leads
to a change in the nature of the response function for the
out-of-plane component. To clarify this effect, we adopt the
mixed space framework in Sec. III, where we first establish
how to suppress the long-range component of the Coulomb
potential to obtain the response function to the total macro-
scopic potential, and we propose how to define the thickness
of the matter. We also question the relation between the
longitudinal-longitudinal and transverse-transverse contrac-
tions of the dielectric tensor for 2D objects. For this purpose,
in Sec. IV, we analyze the optical response of a thin slab
obtained by Airy’s formula for reflectance and transmittance,
and we show the connection with the macroscopic dielectric
function calculated within TD-DFT. Finally, in Sec. V, we
show that these findings are also valid for traditional 2D
materials.

II. A QUASI-2D OBJECT IN RECIPROCAL SPACE

To depict a surface or a 2D object within periodic boundary
codes, one defines a supercell that contains the slab and vac-
uum in the perpendicular direction. It has been shown that,
when the response function includes the local field effects,
the spectra behave like an effective-medium theory with vac-
uum [13], which does not provide a correct physical picture.
The Selected-G formalism [13] allows one to overcome the
problem of the presence of the spurious vacuum for surfaces
[13] as well as for 2D objects [16]. In this framework, one
solves the Dyson equation on a set of reciprocal space vectors
{G̃} defined according to the thickness of the matter Lmat

z ,
i.e., G̃ = G|| + G̃z with G̃z = nz ∗ 2π/Lmat

z , nz ∈ Z [13]. The
remaining delicate point is to relate this density response
function to the macroscopic dielectric function to obtain the
absorption spectrum [18].

It can be shown that in reciprocal space, for a thin slab,
the longitudinal-longitudinal contraction of the macroscopic
dielectric tensor in the optical limit ←→ε M (ω) can be calculated
using the expression [23]

εLL
M (q; ω) = 1 − 4π

|q|2
¯̃χ00(q; ω), (1)

where ¯̃χ is the solution of a modified slab Dyson equation:

¯̃χG̃G̃′ (q; ω) = χ0
G̃G̃′ (q; ω)

+
∑
G̃1G̃2

χ0
G̃G̃1

(q; ω) ¯̃VG̃1G̃2
(q) ¯̃χG̃2G̃′ (q; ω) (2)

in which ¯̃VG̃G̃′ is derived from the slab potential ṼG̃G̃′ accord-
ing to

¯̃VG̃G̃′ =
(

0 0
ṼG̃0 ṼG̃G̃′

)
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with {G̃} the reciprocal space vectors defined according to
the Selected-G formalism [13,16]. χ0 is the Kohn-Sham
independent-particle response function. The slab potential di-
verges for G|| = 0, i.e., in the optical limit. For this reason, a
vanishing q|| vector must always be present in the calculation,
prohibiting us from obtaining the εLL

M (qz; ω) from a direct
calculation. It must result instead from a linear combination of
spectra calculated with (q||) and (q|| ± qz ) (see Appendix A).

To study the influence of the thickness of matter, we built
a slab of 16 bilayers of silicon atoms corresponding to a
stacking of four conventional cells of silicon (acell = 10.263
bohrs) leading to an “atomic” thickness of Latom

z = 41.052
bohrs [24]. Then we embedded it in a supercell of height
Lz = 205.26 bohrs, corresponding to five times the atomic
thickness. To vary the Lmat

z size, we solve the Dyson equa-
tion [Eq. (2)] within the Selected-G formalism, with different
values of rat io = Lz/Lmat

z equal to 5, 4, 3, 2, and 1 defining,
respectively, Lmat

z = 41.052 bohrs (= Latom
z ), 51.315 bohrs,

68.42 bohrs, 102.630 bohrs, and 205.26 bohrs. These different
values for Lmat

z depict a system with a constant thickness of
matter defined according to the extension of atomic posi-
tions (Latom

z = 41.052 bohrs, which we will called the “zero
vacuum” case), plus the addition of a slice of vacuum of
increasing thickness.

The imaginary part of the macroscopic dielectric func-
tion [Eq. (1)] for these different thicknesses is shown in
Fig. 1. We neglected the in-plane LFE by setting G|| ≡ 0 in
Eq. (2). The in-plane components are plotted as continuous
and dashed (blue) lines. They are all composed of one peak
located at around 4 eV, and their amplitude is scaled by
a factor 1/Lmat

z . The out-of-plane components are drawn as

FIG. 1. Im[εLL
M (q; ω)] [Eq. (1)] for in-plane (qx ) (lines without

symbols, blue) and out-of-plane excitations (qz ) (lines with sym-
bols, brown and orange) for slabs of different thicknesses [Lmat

z =
41.052 bohrs (= Latom

z ) (continuous lines/diamond), 51.315 bohrs
(small dashed lines/circle), 68.42 bohrs (large dashed lines/square),
102.630 bohrs (dotted-small dashed lines/up-triangle), and 205.26
bohrs (dotted-large dashed lines/down-triangle)], made of always the
same quantity of silicon, and an increasing slice of vacuum. G|| ≡ 0
in [Eq. (2)]. Inset: Im[εLL

M (qz; ω)] for Lmat
z = 41.052 bohrs (diamond,

brown), 44 bohrs (left-triangle, red), 46 bohrs (cross, turquoise), 48
bohrs (right-triangle, dark green), and 51.315 bohrs (circle, orange).

lines with symbols: diamond (brown) for Lmat
z = Latom

z , and
circle, square, up-, and down-triangles (orange) for the other
values. The spectra exhibit a completely different behavior:
for Latom

z (Fig. 1, brown diamond), the peak of εLL
M (qz ) appears

at around 4 eV, while for all other values, it is located at 17 eV,
with an amplitude scaled by a factor 1/Lmat

z .
The peak at 4 eV for the in-plane component (Fig. 1,

lines without symbols, blue) corresponds to the absorption
resonance of the bulk silicon, and it is in agreement with the
expected absorption spectrum as it results from the Lorentz
model for thin slabs [18,22]. For the out-of-plane component
(Fig. 1, lines with symbols, brown and orange), the result is
more puzzling. It is not an effect of the effective-medium
theory with vacuum, where the spectrum Im[εLL

M (qz; ω)] shifts
regularly toward the plasmon peak when the size of the su-
percell increases [13]. Here, there is quite an abrupt jump
from 4 to 17 eV. Actually, as can be seen in the inset of
Fig. 1, the spectral weight is transferred from ∼4 to ∼17 eV
on a lengthscale of around 10 bohrs. The peak at 4 eV for
Lmat

z = Latom
z (Fig. 1, diamond, brown) means that for such a

thickness, one performs an average on a bulklike unit cell. It
also confirms that the Dyson equation given by Eq. (1) cuts the
long-range component of the Coulomb potential regardless of
the q direction of the perturbation. For all the other values of
Lmat

z , the peak is at 17 eV, corresponding to the plasmon fre-
quency ωp of the bulk silicon. This peak cannot be attributed
to a surface plasmon, which is expected at ωp/

√
2 [25].

As could be expected from Fig. 1, there is a change in the
nature of the spectra, which originates in the totally different
shape of the (q|| ± qz ) spectra calculated to extract the qz

component of εLL
M (ω) by linear combination [Eq. (A1)]. This

puzzling effect is illustrated in Fig. 2 for the two values of
Lmat

z = Latom
z , corresponding to the situation in which the peak

of the qz component appears at 4 eV (“zero vacuum”) and

FIG. 2. Im[εLL
M (q; ω)] [Eq. (1)] for in-plane (qx ) [contin-

uous (left) and dashed (right) blue curves], coupled (qx ±
qz ) [up-triangle/continuous line (red) and down-triangle/dashed
line (green), respectively], and out-of-plane excitations (qz )
[diamond/continuous line (brown) (left) and circle/dashed line (or-
ange) (right)] extracted using Eq. (A1). Two thicknesses for the slab
are considered: left: Lmat

z = 41.052 bohrs (zero vacuum) and right:
Lmat

z = 51.315 bohrs (minimum vacuum).
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Lmat
z = 51.315 bohrs, which is the smallest value for which

the peak for the qz component appears at 17 eV, called for this
reason “minimum vacuum.”

For Lmat
z = Latom

z (Fig. 2, left), the peak of the (q|| ± qz )
spectra (red up-triangle and green down-triangle) is slightly
reduced in amplitude as compared to the (q||) one, but it is
still located at 4 eV and no structure at 17 eV is present:
Im[εLL

M (qz; ω)] turns out to be ∼4 eV (brown diamond). On
the contrary, as soon as a slice of “vacuum“ (∼ 10 bohrs) is
introduced in the slab thickness for the Selected-G procedure
[13] (Fig. 2, right), the (q|| ± qz ) spectra show a peak at 4 eV
reduced by a factor 2 as compared to the (q||) one, and a
peak at 17 eV arises. Consequently, Im[εLL

M (qz; ω)] exhibits
a unique peak at 17 eV (orange circle). Actually, it can be
seen that the induced density does not go to zero abruptly:
this slice of ∼10 bohrs corresponds to the two frontiers of the
slab where the induced density, or the induced electric field
(see Ref. [18], Fig. 2) or the response function (cf. Sec. III C),
decrease to zero. This “minimum vacuum” case actually in-
cludes the interfaces.

All these spectra were calculated within the Selected-G
formalism using the slab potential [13,16], which allows one
to remove the artificial vacuum and calculate the response
of an isolated object [16] of size defined according to Lmat

z .
The remarkable difference of the spectra between the zero
vacuum and minimum vacuum cases does not comes from a
spurious effect of vacuum, but from the fundamental change
of electronic properties of the object we are describing. The
zero vacuum case depicts a system that recovers the local
electronic environment of the bulk, leading to ¯̃χ00(q) having
a resonance at the absorption frequency of the bulk material,
whatever q is. On the contrary, the “minimum vacuum” case,
due to the inclusion of the interfaces, depicts a quasi-2D
object whose response function ¯̃χ00(q) is highly anisotropic: it
contains a peak at 4 eV, coming from the in-plane perturbation
and corresponding to the absorption resonance, and a peak at
17 eV arising from the out-of-plane perturbation, and located
at the plasmon resonance. One notes that, since this latter
component can only be calculated from a linear combina-
tion of (q||) and (q|| ± qz ) components, it turns out that the
response function calculated for (q|| ± qz ) is a linear combi-
nation of what would be the absorption and loss spectrum of
bulk silicon. This extremely puzzling spectrum directly results
from our framework (Selected-G and Slab potential), which
allows us to isolate the slab, remove the vacuum up to the
bulk limit, and calculate the coupled (q|| ± qz ) components.

III. A QUASI-2D OBJECT IN MIXED SPACE
A. In-plane and out-of-plane components of the

absorption spectrum

To have a better understanding of the properties of a quasi-
2D object, and in particular the role of the extra slice beyond
Latom

z , we solved the Dyson equation in a mixed-space ap-
proach [13,18]. In this framework, the in-plane components
are described in reciprocal space (qx, qy), since the system is
still infinite and periodic, and the direction perpendicular to
the slab, where the matter has been cut, is treated in real space
(z). The Dyson equation reads (we omit the frequency for the

sake of clarity)

χG||G′
|| (q||, z, z′) = χ0

G||G′
||
(q||, z, z′)

+
∑
G1||

∫
dz1

∫
dz2 χ0

G||G1|| (q||, z, z1)

×vG1|| (q||, z1, z2) χG1||G′
|| (q||, z2, z′),

where vG1|| (q||, z1, z2) is the two-dimensional Fourier trans-
form of the Coulomb potential:

vG|| (q||, z, z′) = 2π

|G|| + q|||e−|G||+q||||z−z′ |, (3)

and χ0 is the Kohn-Sham response function. Moreover, since
we expect the in-plane local field effects to be small [26],
we hypothesize further that only the G|| = G′

|| = 0 case is
sufficient to give reliable results (from now on, we omit the
in-plane G|| = 0||), leading to

χ (q||, z, z′) = χ0(q||, z, z′) +
∫

dz1

∫
dz2 χ0(q||, z, z1)

× v(q||, z1, z2) χ (q||, z2, z′). (4)

In Ref. [13], since our goal was to study the optical prop-
erties of a surface, depicted as a thick slab, the wavelength
of the perturbation was rescaled to ∼1 in order to fulfill the
condition |q|||L/2 
 1 [27]. In Ref. [18], the purpose was
to study the dielectric properties of an ultrathin slab, so we
kept a vanishing value for |q|. Moreover, to obtain indepen-
dently the dielectric function for the component perpendicular
to the slab, we did the further approximation that the slab
was homogeneous in-plane, and we replaced Eq. (3) with
v(q|| ≡ 0, z, z′) = −2π |z − z′|. In this paper, we pursue the
study of a quasi-2D object (|q|||L/2 � 1), but using the
usual 2D Coulomb potential given by Eq. (3) to compare
with the reciprocal space with the slab potential framework.
The Kohn-Sham response function χ0 is first evaluated in
reciprocal space with the DP code [28] for a set of reciprocal-
lattice vectors {G = (0||, Gz )}, from the ground-state energies
and eigenfunctions calculated with ABINIT [29,30] for the
supercell. The direction of the perturbation is set through
a vanishing q vector, used within k · p theory for the head
and the wings (first line and column of the matrix). We then
perform the inverse Fourier transform (IFT). Technical details
and tests of consistency are given in Appendix B. The IFT of
χ0

Gz,G′
z
(q||) reads

χ0(q||, zn, zn′ ) = 1

Lz

∑
m,m′

eiGmzn χ0
GmGm′ (q||) e−iGm′ zn′ . (5)

As was the case for the slab potential in reciprocal space,
the expression for the Coulomb potential [Eq. (3)] for G|| =
0 diverges if q|| ≡ 0. Thus the qz component must be ex-
tracted from a linear combination of different components
(Appendix A). The macroscopic average of the response func-
tion in reciprocal space for the coupled (q|| ± qz ) perturbation
is recovered by multiplying χ0(q||, zn, zn′ ) by e−iqz (zn−z′

n ) lead-
ing to

χ0
M (q||, qz ) ≡ �z2

Lz

∑
n,n′

e−iqzzn χ0(q||, zn, zn′ ) eiqzzn′ . (6)

165412-4



OPTICAL PROPERTIES OF QUASI-TWO-DIMENSIONAL … PHYSICAL REVIEW B 107, 165412 (2023)

FIG. 3. Imaginary part of the macroscopic average [Eq. (6)]
of χ 0(qx, z, z′) multiplied by −4π/|q|2, calculated for qx (qz ≡ 0)
(violet square) or qx ± qz [down-triangle, light green (+) and right-
triangle, dark green (−)] (qz �= 0). The qz contribution (magenta
diamond) is obtained from linear combination [Eq. (A1)]. Calcu-
lations for ||qx|| = ||qz|| = 1 × 10−4 a.u., but since, in the optical
limit, χ 0

00(q) ≡ χ 0
M (q||, qz ) is proportional to |q|2, the results are

independent of the value of |q|.

In Eq. (6), the sum over zn is done over the full size of the
simulation box defined by Lz. χ0

M (q||, qz ) can also be obtained
as the FT of χ0(q||, zn, zn′ ) [Eq. (B1) for Gm = Gm′ = 0].

In the optical limit (q → 0), χ0
00(q; ω) is related to the ab-

sorption spectrum when the local field effects are negligible,
according to εNLF

M (q; ω) = 1 − 4π/|q|2χ0
00(q; ω), where NLF

stands for nonlocal fields. Then, one can extract εNLF
M (qz; ω)

using the properties of the dielectric tensor ←→ε M (ω) (see
Appendix A). The result is presented in Fig. 3.

Applying the linear combination [Eq. (A1)] to spectra cal-
culated for (qx ) (square, violet), (qx + qz ) (down-triangle,
light green), and (qx − qz ) (right-triangle, dark green), we
obtain the spectrum Im[εNLF

M (qz; ω)] (diamond, magenta). We
recover the spectrum calculated in reciprocal space directly
for the qz component (Fig. 12, right).

This result validates the procedure of calculating the out-
of-plane component of the macroscopic dielectric function
within this mixed-space approach from alternatively using
the macroscopic average [Eq. (6)] or the Fourier transform
[Eq. (B1) for Gm = Gm′ = 0], followed by the linear combi-
nation [Eq. (A1)].

One notes that the absorption spectra calculated neglecting
the local field effects contain one peak at 4 eV regardless of
the direction of the perturbation q (Fig. 3).

B. Susceptibility without the long-range component
of the Coulomb potential in mixed-space

For three-dimensional crystals, the absorption spectrum
can be calculated in reciprocal space as the optical limit
(q → 0) of the imaginary part of

εM (q; ω) = 1 − 4π

|q|2 χ̄00(q; ω), (7)

where χ̄ is the response function to the macroscopic part of
the total potential. It is calculated by solving a modified Dyson
equation (we omit the frequency ω for clarity):

χ̄GG′ (q) = χ0
GG′ (q) +

∑
G1

χ0
GG1

(q)v̄G1 (q)χ̄G1G′ (q), (8)

where v̄G(q) = 0 for G = 0 and

v̄G(q) ≡ vG(q) = 4π

||G + q||2 for G �= 0.

(9)

In Eq. (8), contrary to the regular Dyson equation [with full
vG, Eq. (C2)], we suppress the long-range component of the
Coulomb potential v0, which is at the origin of the difference
between the plasmon and the absorption resonances in infinite
systems. For 0D systems, this difference naturally vanished.

In this paper, since we deal with quasi-2D systems which
are still infinite in the (x, y) directions, the question of the
influence of a long-range component occurs. The approach
resulting from Eqs. (8) and (9) is well suited for reciprocal
space, but it is less obvious in real space. To achieve this goal,
we developed a procedure (see Appendix C) that consists in
(i) the definition, in reciprocal space, of a new χ̄0 identical to
χ0, except for the first column which is set to zero: χ̄0

G0 ≡
0, ∀ G; (ii) the calculation of the inverse Fourier transform

of both χ0 and χ̄0 to get χ0(q||, z, z′) and χ̄0(q||, z, z′); and
(iii) the resolution of

χ̄ (q||, z, z′) = χ0(q||, z, z′) +
∫

dz1

∫
dz2 χ̄0(q||, z, z1)

× v(q||, z1, z2) χ̄ (q||, z2, z′) (10)

with v(q||, z, z′) = 2π
|q|||e

−|q||||z−z′ |. The difference between
χ̄00(q) and χ00(q) resulting from the solution of the Dyson
equation in real space (Fig. 13) is detailed in Appendix C for
the structure at 4 eV.

While χ0
00(q||) and χ0

00(q|| ± qz ) present only one peak
at 4 eV (Fig. 3), the introduction of the local field effects
through the solution of the Dyson equation for χ̄ leads to
the appearance of a peak at 17 eV (Fig. 4, top) for (qx ± qz )
(magenta left-triangle, orange right-triangle).

Moreover, one can see that the peak at 17 eV in χ̄00(qx ±
qz ) (magenta left-triangle, orange right-triangle) is strictly the
same as the one in χ00(qx ± qz ) (red square, green diamond).
The small shift observed for the peak at 4 eV (Fig. 13) does
not exist. Applying the linear combination to χ̄00 [Eq. (A3)]
as well as to χ00, we can extract exactly the same peak for
the qz component: χ̄00(qz ) ≡ χ00(qz ). It is not obvious that
one can apply the linear combination [Eq. (A3)] to the χ00 re-
sponse function. In three-dimensional materials, this quantity
is related to the loss function ε−1

00 (q) = 1 + 4π
|q|2 χ00(q), which

is not expected to behave as linear combinations of spectra
for the different components. It is εM = limq→0[1/ε−1

00 (q)],
which verifies this property. For the case of the thin slab, the
similarity between χ̄ and χ seems to indicate that the linear
combinations of spectra [Eq. (A3)] can be applied to both
response functions. The small dependence in |q||| of the reso-
nance around ω0 does not affect the extracted qz component.
Moreover, it can be verified that the peak at 17 eV is exactly
the same as the one obtained in the direct calculation of
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FIG. 4. Imaginary part of FT [Eq. (B1) for Gm = Gm′ = 0] of
χ̄ (qx, z, z′) and χ (qx, z, z′), respectively, after resolution of the
Dyson equations [Eqs. (10) and (4)]. Spectra for qx (blue up-
triangle and black circle, respectively) and (qz ± qz ) (magenta
left-triangle/orange right-triangle and red square/green diamond,
respectively). Bottom: Linear combination [Eq. (A3)] for χ̄00(q)
and χ00(q) (calculated in mixed-space), to extract the qz component
(violet down-triangle and turquoise cross, respectively) compared to
the qz component coming from the direct calculation of Ref. [18]
(brown diamond). Calculation for the slab where the atomic positions
extend on 41.052 bohrs, introduced in a supercell of height 82.104
bohrs.

χ00(qz ) in the case of a planar homogeneous slab (diamond
brown) (see Ref. [18]). These results show that for an iso-
lated 2D object, χ̄00(q⊥; ω) ≡ χ00(q⊥; ω): there is no effect
of the long-range component of the Coulomb potential for
the out-of-plane perturbation in the optical limit. The same
result could have been obtained in reciprocal space with the
slab potential. Such a finding is finally less surprising than for
the case of the in-plane component, which probes the infinite
directions, since for q⊥, the perturbation is in the direction
where the matter was cut. The surprising point is that the
quantity χ̄00(q⊥; ω), which should be related to the absorption
spectrum, exhibits a resonance at the plasma frequency. In this
calculation, done in the simulation box defined by Lz much

larger than Lmat
z , where the interfaces are naturally present, we

confirm the puzzling result obtained in reciprocal space for
the minimum vacuum case (see Sec. II).

C. How do we define the thickness of the slab?

Up to now, the spectra (Fig. 3) have been obtained perform-
ing a macroscopic average [Eq. (6)] of quantities calculated
in mixed-space in the full simulation box, resulting from the
inverse Fourier transform (IFT) of the χ0 calculated in recip-
rocal space in a supercell. From the IFT process, the size of
the box is the height of the supercell Lz (Fig. 5, top, left). As a
consequence, the amplitude of spectra εNLF

M (Fig. 5, bottom,
left) suffers from the same problem as in reciprocal space,
i.e., it is scaled by the factor 1/Lz, which appears in Eq. (6).
Indeed, χ0(q||, zn, zn′ ) [Eq. (5)] is independent of the height of
the supercell used in reciprocal space, and χ̄ (q||; zn, zn′ ) and
χ (q||; zn, zn′ ) as well. Thus the absorption spectrum is smaller
by a factor Lmat

z /Lz as compared to the one for bulk silicon,
where Lmat

z is the thickness of the slab. Beyond the technical
point, we know that it is a manifestation of the effective-
medium theory with vacuum [13]. Moreover, the question of
the normalization of the Kohn-Sham response function, when
it is introduced in the Dyson equation, is also an issue.

In Ref. [13], to depict a surface, Lmat
z was defined according

to the atomic positions, and χ0 in reciprocal space was scaled
with the ratio Lz/Latom

z . Nevertheless, it has been shown in
Refs. [18,22] that for a thin slab, this quantity cannot be
defined so easily due to the fact that the induced density and
electric field extend in (z, z′) much larger than the extremes
of the atomic positions, or in other words, that the thickness
and the role of the interfaces are not negligible. To define
Lmat

z , we propose to adjust the size of the simulation box at
the limits where the shape of the spectra is recovered. This
value must result directly from the inverse Fourier transform
procedure. Since the size of the box is defined by the length
of the smallest Gz vector involved in the IFT, we propose to
apply the Selected-G procedure [13] to the IFT, and to replace
Eq. (5) with

χ0(q||, zn, zn′ ) = 1

Lmat
z

∑
m,m′

eiG̃mzn χ0
G̃mG̃m′ (q||) e−iG̃m′ zn′ , (11)

where G̃m = 2π
Lmat

z
, and no longer 2π

Lz
.

The result is shown in Fig. 5 for two values of Lmat
z :

Lmat
z = Latom

z = 41.052 bohrs, corresponding to the extension
of the atomic positions (center), and Lmat

z = 51.315 bohrs, cor-
responding to the extension of the response functions (right).
In both cases, the ratio between Lz and Lmat

z was chosen to be
2, which means that the original χ0

G̃zG̃z
(q||) were evaluated in

a supercell of height Lz = 84.104 and 102.63 bohrs, respec-
tively. In Fig. 5 (top, center, and right), the response functions
have not been cut by the plot, but they are defined as they are
plotted: the length of the simulation box has been resized by
the Selected-G procedure to the value that we will identify as
Lmat

z .
The value of Lz for the initial supercells was chosen in

order to contain the slab of silicon plus the vacuum needed to
allow the apparition of the surface states, and the isolation of
the replicas at the level of the DFT calculations. This value is
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FIG. 5. Top: Im[χ 0(q||, z, z′)] resulting from the IFT of χ 0
GzG′

z
(qx ) for a box of size Lz = 82.104 bohrs, coming from the supercell height

(left), a box of size corresponding to Lmat
z = Latom

z = 41.052 bohrs (center), and to Lmat
z = 51.315 bohrs (right). The last two cases result from

the Selected-G procedure (ratio 2) applied when performing the inverse Fourier transform of χ0
GzG′

z
(qx ) [Eq. (11)] calculated with the original

supercells of size Lz = 82.104 and 102.63 bohrs, respectively. The different symbols correspond to different values of z′. Bottom: Imaginary
part of εNLF

M (q; ω) = 1 − 4π/|q|2χ 0
00(q; ω), where χ 0

00(q; ω) is the macroscopic average of χ 0(qx, z, z′; ω) [Eq. (6)]. For the three cases, the
summation over zn extends up to the full simulation box, which has been resized to the dedicated value of Lmat

z .

overestimated, but it must be at least twice the thickness of the
silicon slab to apply the Selected-G procedure, which requires
an integer ratio between Lz and Lmat

z . A choice of Lz = 51.315
bohrs, which would have avoided the Selected-G procedure,
is, on the contrary, not large enough to provide noninteracting
replicas in the calculation of the Kohn-Sham structure. The
left panels correspond to the IFT and FT without Selected-G,
plotted for reference.

We can immediately see that for Lmat
z = 41.052 bohrs

(Fig. 5, top, center), χ0(q||, z, z′) is folded in the borders of the
box. This is particularly visible for z′ = ±20.50 bohrs (open
black circle and plain cyan circle, respectively) where the
curves seem to add to each other, instead of slowly going back
to zero (Fig. 5, top, left). As a consequence, the calculation of
the macroscopic average [Eq. (6), for which the summation
over zn extends up to the limit of the response function, which
corresponds to the new size of the simulation box] does not
allow one to recover the original spectrum εNLF

M (qz ) (dashed
blue line in Fig. 5, bottom, center), as can be seen from
a comparison with the reference spectrum (Fig. 5, bottom,
left). Indeed, the qx ± qz spectra (red up-triangle and green
down-triangle in Fig. 5, bottom, center) are wrong, since, due
to the folding, the z and z′ values appearing in the phase factor
e−iqz (z−z′ ) are not associated with the correct corresponding
values of χ0(q||, z, z′). On the contrary, for Lmat

z = 51.315
bohrs (Fig. 5, top, right), χ0(q||, z, z′) exhibits the correct
development, no folding occurs, all the z′ cuts reach zero
in the border of the simulation box, and the qz spectrum is

recovered (dashed blue line in Fig. 5, bottom, right). More-
over, the amplitude of the spectra εNLF

M (q) (Fig. 5, bottom,
right) is now of the order of magnitude of the one of the
dielectric function of silicon. The exact amplitude of the di-
electric function of silicon bulk would have been obtained by
performing the summation over any box large enough to allow
the full development of χ0(q||; z, z′) [since the numerator of
Eq. (6) is independent of the size of the box], and normalizing
this quantity by Latom

z = 41.052 bohrs, corresponding to the
“zero vacuum” case. Nevertheless, if one defines the thickness
from the simulation box with the minimum size, which allows
one to recover the original χ0

00(q) (see Fig. 5), it cannot be
chosen smaller than the extension where the Kohn-Sham re-
sponse function goes to zero. In our calculation, it is achieved
for Lmat

z = 51.315 bohrs, where χ0
00(q||) is of the order of

5 × 10−5 (Fig. 5, right panels).
This justifies the term “minimum vacuum” given to this

case. This value actually accounts for the presence of the
interfaces, and we consider that it is the correct way to define
the thickness of the quasi-2D object. We emphasize that it
is different from the usual practice [32,33], which indeed
corresponds to taking for the thickness the value Latom

z , in the
spirit of a van der Waals atomic radius, which is also quite
close to the value given by the ground-state density [16], [34].
From a practical point of view, it should correspond to the
value where the χ0(q||; z, z′) reaches zero. We evaluate this
extra slice beyond the extreme atomic positions to be of the
order of magnitude of 5–6 bohrs per interface. It has been
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established in the case of a silicon slab, but the scheme also
affects traditional 2D materials. Indeed, Fig. 1 of Ref. [31]
shows that the induced density in one layer of MoS2 extends
beyond the atoms, and has the same features as Fig. 2 of
Ref. [18]. This will be evidenced in Sec. V on a stacking of
four graphene layers.

D. Macroscopic dielectric function versus
longitudinal-longitudinal contraction of ←→

ε M (ω) for
a quasi-2D object

Now that we have defined a thickness that accounts cor-
rectly for the electronic properties of the slab, we solve
the Dyson equation [Eq. (10)] with the corresponding
χ0(q||; z, z′) (Fig. 5, top, right) [and χ̄0(q||; z, z′)], obtained
by applying the Selected-G procedure when performing
the inverse Fourier transform of χ0

GzG′
z
(qx ) [and χ̄0

GzG′
z
(qx )]

[Eq. (11)], in order to adjust the size of the simulation box
at the “minimum vacuum” case (Lmat

z = 51.315 bohrs). The
result is presented in Fig. 6, which depicts the imaginary part
of [1 − 4π

|q|2 χ̄00(q; ω)] labeled εLL
M (q; ω), where χ̄00(q; ω) is

the macroscopic average [Eq. (6)] of χ̄ (q||; z, z′). The sum-
mation is done over the simulation box resized to the value
Lmat

z = 51.315 bohrs.
The first observation is that the response function χ̄00(q; ω)

has exactly the same spectral shape as if they were calculated
on a box resulting from the original supercell height (Fig. 4,
top), showing that the Selected-G process at the level of IFT
[Eq. (11)] does not introduce any spurious effect. The advan-
tage is that, with this process, the amplitude of the spectra
is associated with the thickness of the slab, and no longer to
the size of the supercell. Contrary to χ0

00(q) (Fig. 3), χ̄00(q)
exhibits a peak at 4 eV for the in-plane excitation (Fig. 6,
continuous black line), and two peaks at 4 and 17 eV for
the coupled (qx ± qz ) excitation (Fig. 6, red up-triangle and
green down-triangle), leading to a contribution at 17 eV for

FIG. 6. Im[εLL
M (q; ω)] [Eq. (7)] with χ̄00(q) calculated according

to Eqs. (10) and (6), for qx (continuous black line), (qx + qz ) (red up-
triangle), (qx − qz ) (green down-triangle), and qz (blue dashed line)
[Eq. (A1)]. Calculation for Lmat

z = 51.315 bohrs with Selected-G
procedure applied when performing the inverse Fourier transform of
χ 0

GzG′
z
(qx ) [Eq. (11)].

the extracted qz spectrum [Eq. (A1)] (Fig. 6, dashed blue line).
This spectrum results from the addition of the very thin slice
of vacuum to Latom

z , allowing us to rule out that it is due to
a mechanism of the effective-medium theory with vacuum
[11,13,18].

We recover the results obtained within the reciprocal
space calculations (Sec. II, Fig. 2, right). The presence of
the peak at 17 eV, in the absence of the long-range com-
ponent of the Coulomb potential, when the perturbation is
perpendicular to the slab, is actually a consequence of the
inclusion of the interfaces, and is a characteristic feature of
longitudinal-longitudinal contraction of the dielectric tensor
of the quasi-2D object. We conclude from these results that
Ehrenreich’s demonstration [21], established for 3D (cubic)
systems, which shows that in the optical limit the longitudinal-
longitudinal contraction of the dielectric tensor is equal to the
transverse-transverse contraction (allowing the calculation of
the absorption spectrum from the longitudinal calculation),
is no longer valid for 2D objects. Indeed, the resonance of
Im[εLL

M (q⊥; ω)] occurs at the plasma frequency, while the res-
onance of the dielectric function is still expected at the optical
absorption frequency (4 eV for silicon). This failure comes
from the finiteness of the object, and it should also occur for
1D and 0D objects.

E. Angular dependence of the longitudinal macroscopic
dielectric function for a quasi-2D object

Up to now, the presented calculations were done for |qx| =
|qz|, corresponding to an angle between the direction of the
perturbation and the interfaces of the slab of θ = 45◦. Based
on the direct calculation of εLL

M (q||) (Fig. 6, continuous black

FIG. 7. Imaginary part of [εLL
M (qx + qz ) + εLL

M (qx − qz )]/2 for
different angles θ of q with the surface plane direction (x): light green
circle (θ = 30◦), blue square (θ = 45◦), and magenta diamond (θ =
60◦) compared with the linear combination Im[εLL

M (qx )] cos2(θ ) +
Im[εLL

M (qz )] sin2(θ ) with Im[εLL
M (qx )] (Fig. 6, continuous black) and

Im[εLL
M (qz )] (Fig. 6, dashed blue) for θ = 30◦ (dark green cross), θ =

45◦ (cyan up-triangle), and θ = 60◦ (orange down-triangle). Calcu-
lations are done in real space for Lmat

z = 51.315 bohrs (“minimum
vacuum” case) with Selected-G procedure applied when performing
the inverse Fourier transform of χ 0

GzG′
z
(qx ) [Eq. (11)].
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line), and using the linear combination [Eq. (A1)], we ex-
tracted what appears to be εLL

M (qz ) (Fig. 6, dashed blue line).
It can be checked that the spectrum εLL

M (qz ) is independent of
the angle chosen. Indeed, Eq. (A1) can be rewritten as

εLL
M (q̂x + q̂z ) + εLL

M (q̂x − q̂z )

2

= εLL
M (q̂x ) cos2 θ + εLL

M (q̂z ) sin2 θ.

In Fig. 7, we compare the sum of the spectra calculated
for (qx ± qz ) for different values of |qx| and |qz| correspond-
ing to θ = 30◦ (light green circle), θ = 45◦ (blue square),
and θ = 60◦ (magenta diamond) with Im[εLL

M (qx )] cos2(θ ) +
Im[εLL

M (qz )] sin2(θ ) (dark green cross for θ = 30◦, cyan up-
triangle for θ = 45◦, and orange down-triangle for θ = 60◦),
where Im[εLL

M (qx )] and Im[εLL
M (qz )] correspond to the spectra

plotted as a continuous black line and a dashed blue line
in Fig. 6. Such a result would have been considered trivial
for a bulk material, but in the case of the slab, the quantity
that we label εLL

M (qz ) corresponds to the plasmon of the bulk
counterpart, and it cannot describe the absorption of an optical
photon in silicon.

IV. OPTICAL PROPERTIES OF A QUASI-2D OBJECT:
AIRY’S FORMULAS

To understand this confusing result, namely the linear com-
bination of the absorption peak and the plasmon peak in a
quantity that we expected to represent the optical response of
our quasi-2D object, we investigated the problem by means of
classical electromagnetism. Indeed, for lack of experimental
results, at least to our knowledge, we considered that Airy’s
formula should be representative of the measured quantity.

Let us consider first a surface separating the vacuum and
a semi-infinite medium having a dielectric function ε(ω). The
reflection coefficient of an electromagnetic field of wave vec-
tor ki impinging the surface with an angle θ (between ki and
the normal to the surface) is the so-called Fresnel coefficient
[35–37], which for the p-polarization of light reads

rp ≡ ε cos θ −
√

ε − sin2 θ

ε cos θ +
√

ε − sin2 θ
. (12)

We omit the frequency dependence for clarity. We focus on the
p-polarization since it depicts the case in which the electric
field E lies in the incident plane, leading to a component
perpendicular to the surface (Ez), in addition to the parallel
one (E||) for θ different from zero.

If the medium now has a finite thickness d , the electro-
magnetic field will be subjected to multiple reflections and
transmissions on the two interfaces, and the coefficients for
the reflection and transmission are given by Airy’s formulas
[36,38–40]:

rslab = r
1 − e2iβ

1 − r2 e2iβ
, (13)

t slab = (1 − r2) eiβ

1 − r2 e2iβ
, (14)

where β = kzd , with kz the component perpendicular to the
interface of the wave vector transmitted in the medium:

kz = k0

√
ε − sin2 θ , with k0 = ω/c the wave vector in vac-

uum [36].
To evaluate the reflectance R = |rslab|2, the transmittance

T = |t slab|2, and the absorbance A = 1 − R − T , we used for
ε(ω) a model Lorentz function:

ε(ω) = 1 − ω2
p

ω2 − ω2
0 + iωγ

with ω0 = 4 eV, ωp = 17 eV, and γ = 1.9 eV, in order to
reproduce the dielectric function of bulk silicon.

FIG. 8. Spectra of reflectance R = |rslab
p |2 with rslab

p given by
Eq. (13) (continuous black line), transmittance T = |t slab

p |2 with t slab
p

given by Eq. (14) (red up-triangle), and absorbance 1 − R − T (green
down-triangle) calculated with Airy’s formula, compared with the
reflection on the surface |rp|2 (Fresnel, blue dashed line) for θ = 30o

(top), θ = 45o (center), and θ = 60o (bottom). Thickness: d = 20 Å.
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The results are presented in Fig. 8. While the reflection on a
surface [Eq. (12)] is a plateau between ω0 and ωp (dashed blue
lines), the reflectance and transmittance calculated with Airy’s
formula are completely different. The reflectance (black con-
tinuous line), transmittance (red up-triangle), and absorbance
(green down-triangle) are composed of two peaks, one located
at ω0 = 4 eV, and one located at ωp = 17 eV. The respective
spectral weight of these two features evolves with the incident
angle θ .

It can be shown that, for a thin slab, the reflection and
transmission coefficients can be expended at first order in β,
which gives (see Appendix D)

rslab
p ≈ −2ik0d [(ε − 1) cos2 θ + (1/ε − 1) sin2 θ ]

4 cos θ − 2ik0d [(ε − 1) cos2 θ − (1/ε − 1) sin2 θ ]
,

(15)

t slab
p ≈ 4 cos θ

4 cos θ − 2ik0d [(ε − 1) cos2 θ − (1/ε − 1) sin2 θ ]
.

(16)

These expressions are the key to understanding the struc-
ture of the reflectance, transmittance, and absorbance spectra
(Fig. 8). The peak at ω0 = 4 eV arises from the (ε − 1)
contribution, and the peak at ωp = 17 eV from the (1/ε − 1)
term. The angular dependence is also perfectly explained. The
comparison of R = |rslab

p |2 with rslab
p given by Eq. (13) (Fig. 8,

continuous black line) with the reflectance on the semi-infinite
media [Eq. (12)] (Fig. 8, dashed blue line) shows that, for
the thin slab, the part of the intensity of the electric field
that is reflected is strongly reduced. The introduction of the
second interface, allowing reflections and transmissions, leads
to some destructive interferences. Moreover, the sum of the
reflectance and the transmittance at 17 eV is not equal to
1, which would have given zero for the absorbance at this
energy. The remarkable conclusion is that the resulting spectra
contain both the absorption and plasmon resonances of the
bulk material, as is evidenced by the expressions Eqs. (15)
and (16).

The presence of a peak at the frequency of the bulk plas-
mon in an electromagnetic radiation was already pointed out
in the context of the so-called transition radiation [41], mea-
sured when a fast electron beam impinges a thin slab of metal
perpendicular to the interface [42,43]. In a debate to interpret
this effect with surface plasma oscillations [44,45], Economou
[25] suggested on the contrary that the peak in the transition
radiation was due to a switch from conditions of total reflec-
tion at ω = ωp, the bulk plasma frequency, to conditions of
large transmission at the neighboring points, and he supported
his explanation by noting that the reflection coefficient of Airy
[Eq. (13)] had a maximum at the bulk plasmon frequency.
Since the experiment was done on metal, no peak at ω = ω0

was observed. In our case, R = |rslab
p |2 (Fig. 8, continuous

black line) is far from the total reflection. A non-negligible
part of the beam is transmitted and absorbed.

It can be seen by considering the case of a biaxial mate-
rial [46], where the dielectric functions for the parallel and
perpendicular excitations are explicitly taken into account in
the reflection and transmission coefficients [Eqs. (D10) and
(D11)], that the resonance at ω0 is associated with the in-plane

dielectric function (ε|| − 1) and the structure at ωp to the out-
of-plane term (1/ε⊥ − 1). To explain the peak at ωp arising
from the multiple reflection and transmission processes of
the electromagnetic field on the interfaces of a thin slab, we
suggest that the perpendicular component of the electric field
could create a collective oscillation of the electronic density,
which resonates at the plasma frequency.

The major result of our work is that the longitudinal-
longitudinal contraction of the macroscopic dielectric tensor
εLL

M (q → 0; ω) for a thin slab contains two structures that
arise from the absorption and the plasmon peaks of the bulk
counterpart, depending of the direction of the perturbation
(Fig. 7). These two structures are the resonances of the re-
sponse function of the system to the macroscopic part of
the total potential, calculated within TD-DFT, by solving the
Dyson equation [Eq. (2) or (10)]. These bulk features enter
in the reflectance and transmittance coefficients of a thin slab.
As a consequence, the TD-DFT, even if it is a longitudinal
formalism, allows one to calculate the quantities involved
in the optical response, which is by nature the response to
a transverse field. Such a result was already pointed out in
Ref. [47].

The structure coming from the plasmon peak arises in
the so-called minimum vacuum configuration, in reciprocal
space (Fig. 2, left), or in mixed-space (Fig. 6), which allows
one to correctly include the interfaces (Fig. 5, right). This
effect is similar to Airy’s formula. In the classical approach,
the dielectric layer is embedded between two media with a
dielectric function equal to 1 (vacuum), and in the ab initio
framework, the fact that we let the response function reach
zero accounts for the vacuum environment around the slab.
This effect, arising from the inclusion of the local field ef-
fects, reveals capable to mimic the multiple reflections and
transmissions experienced by the electromagnetic field.

The silicon slab turns out to be a well-suited model system
since the resonances for the absorption process and collective
excitations are largely separated. However, the materials of
interest for technology involving quasi-2D objects are the so-
called traditional 2D materials, namely piles of layers bonded
through van der Waals interactions.

V. FOUR-GRAPHENE-LAYER STACKING

We consider an AB stacking of four layers of graphene
[16]. The bulk counterpart is the AB graphite, for which the
lattice parameter perpendicular to the hexagonal planes was
taken as c = 12.588 bohrs. The imaginary parts of the macro-
scopic dielectric function (Im[εM (q)], giving the absorption
for vanishing q) and of the macroscopic inverse dielec-
tric function (Im[ε−1

00 (q)], leading to the loss function) for
the in-plane and out-of-plane components, calculated within
TD-DFT, are plotted as a reminder in Fig. 9. Im[εM (q||)]
(continuous green line) presents two large peaks between 0
and 5 eV coming from the π transitions and a wide resonance
between 10 and 25 eV corresponding to the π + σ ones. Due
to the anisotropy of graphite, Im[εM (qz )] (dashed red line)
differs: the π contribution almost vanishes and the π + σ

one is composed of a first structure peaked at 11–12 eV and
a second one at 16 eV. The in-plane loss function (double-
dashed-dotted orange line, see the inset for an extended energy
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FIG. 9. Imaginary parts of εM (q) and ε−1
00 (q) for the in- and

out-of-plane excitations of bulk graphite: absorption spectrum in-
plane (green continuous line) and out-of-plane (red dashed line); loss
function in-plane (orange double-dashed-dotted line) (large energy
range in the inset) and out-of-plane (blue dashed-dotted line).

range) exhibits the well-known π and π + σ plasmons at 7
and 28 eV, respectively. The out-of-plane spectrum (dashed-
dotted blue line) shows a vanishing π contribution like the
absorption, and it presents a resonance at 18 eV.

Based on the usual definition of the thickness of one
graphene layer [32,33], we get for the thickness defined by
the atomic positions Latom

z = 4 × 6.294 = 25.176 bohrs. In-
cluding the interfaces, which we evaluated to ∼12 bohrs,
we define Lmat

z = 6 × 6.294 = 37.764 bohrs. We checked for
one graphene layer that such an extension of the interfaces
allows us to reproduce correctly the spectra for the different
directions of the perturbation by applying the procedure of
Sec. III C.

We applied to this quasi-2D object the reciprocal space
formalism using the slab potential with the Selected-
G scheme (see Sec. II). Im[εLL

M (qy + qz )] is shown in
Fig. 10 as a plain-circle brown line for the object of
thickness Lmat

z = Latom
z = 25.176 bohrs, corresponding to the

so-called zero vacuum case, or describing an object without
interfaces, and as a continuous cyan line for the thick-
ness Lmat

z = 37.764 bohrs, describing the object including
the interfaces (minimum vacuum case). In Fig. 10, we
also added {Im[εM (q||)] + Im[εM (qz )]}/2 (dashed red line)
and {Im[εM (q||)] − Im[ε−1

00 (qz )]}/2 (blue dashed-dotted line),
where the spectra for bulk graphite are the ones of Fig. 9.

The π resonance is not well-suited to determine if the slab
spectrum comes from the linear combination of the in-plane
and out-of-plane macroscopic dielectric functions of the bulk
graphite (dashed red line), or the linear combination of the
in-plane macroscopic dielectric function and the out-of-plane
macroscopic inverse dielectric function of the bulk graphite
(dashed-dotted blue line), since the out-of-plane components
are negligible compared to the in-plane ones. The difference
of the amplitudes only comes from the “thickness” scaling
factor. On the contrary, the π + σ resonance, due to the
presence of the σ bonds, which contribute to the width of

FIG. 10. Comparison of the longitudinal-longitudinal contrac-
tion of the dielectric tensor of the four-layer-graphene object for
the coupled excitation with the linear combinations of the differ-
ent resonances of the bulk graphite (Fig. 9). Without interfaces
(Lmat

z = Latom
z = 25.176 bohrs): plain-circle brown line. With inter-

faces (Lmat
z = 37.764 bohrs): continuous cyan line. {Im[εM (q||)] +

Im[εM (qz )]}/2: dashed red line. {Im[εM (q||)] − Im[ε−1
00 (qz )]}/2:

dashed-dotted blue line.

the interfaces, is more appropriate to get insight on the def-
inition of the thickness of the quasi-2D object. The spectra
of Fig. 9 behave exactly as those for the silicon slab (see
Fig. 2). Without interfaces, the coupled component of the slab
spectrum εLL

M (qy + qz ) is very well reproduced by the sum of
the in- and out-of-plane absorption spectra of the bulk graphite
(plain-circle brown versus dashed red line), exhibiting a bulk
behavior. Including the interfaces, the coupled component of
the quasi-2D spectrum εLL

M (qy + qz ) is in very good agree-
ment with the sum of the in-plane absorption and out-of-plane
plasmon of the bulk counterpart (continuous cyan versus
dashed-dotted blue lines). One notices nevertheless a small
discrepancy at the level of the peak at 18 eV arising from
Im[ε−1

00 (qz )], which appears at 17 eV for the slab spectrum.
Due to the sp2 bonding in the plane of the layers, the π

and π + σ resonances of the absorption and the loss func-
tion coexist in the same energy region (0–10 and 10–25 eV,
respectively) (Fig. 9), so the identification of the respective
contributions is less intuitive than for the silicon slab, but the
same mixing occurs.

Finally, in order to verify that the longitudinal-longitudinal
contraction of the dielectric tensor of the four-layer-graphene
system could be related to the reflectance or transmittance
features of an electromagnetic field impinging on this quasi-
2D object, we calculated these quantities using Eqs. (D8)
and (D9) derived from the transfer-matrix formalism [46] for
the p-polarization in the biaxial case [18]. We used for the
anisotropic dielectric functions the ones of graphite shown in
Fig. 9. The results are plotted in Fig. 11.

The spectrum Im[εLL
M (qy + qz )] for the object including the

interfaces (continuous cyan line) and the sum of the in-plane
absorption and the out-of-plane plasmon of the bulk graphite
(dashed blue line) have been multiplied by the energy (ω) to
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FIG. 11. Spectra of reflectance R = |rpp|2 with rpp given by
Eq. (D8) (up-triangle violet line), (1 − T ) where the transmit-
tance T = |tpp|2 with tpp given by Eq. (D9) (down-triangle magenta
line), compared with Im[εLL

M (qy + qz )] for the slab with interfaces
(continuous cyan line) and {Im[εM (q||)] − Im[ε−1

00 (qz )]}/2 (blue
dashed-dotted line). The bulk spectra are the ones of Fig. 9. The last
two spectra have been scaled by the energy. R and (1 − T ) have been
scaled to fit the amplitude.

account for the k0 = ω/c dependence of the reflectance and
transmittance. The reflectance and transmittance spectra have
been scaled to fit the amplitude. It turns out that the transmit-
tance spectrum (down-triangle magenta line) reproduces very
well the spectral shape of the sum of the in-plane absorption
and the out-of-plane plasmon of the bulk graphite (dashed-
dotted blue line), as could be expected from the expression of
the transmission coefficient [Eq. (D11)]. The coupled compo-
nent εLL

M (qy + qz ) calculated for the slab including interfaces
(continuous cyan line) is in very good agreement with the
reflectance spectrum (up-triangle violet line), even if the
depression at 17 eV is not present. The shift in the structure at
17–18 eV seems to result from the more complex expression
of the reflection coefficient with the bulk dielectric functions
[Eq. (D10)]. Further investigations are needed to establish the
exact relationship between the TD-DFT response function and
the reflectance, transmittance, or absorbance spectra.

Nevertheless, these results show that the scheme evidenced
for the silicon slab also applies to traditional 2D materials. The
interfaces must be included in the definition of the thickness
of the slab to correctly account for the optical properties of the
quasi-2D object. The LL contraction of the dielectric tensor,
as it results from the TD-DFT, is a mixture of the in-plane ab-
sorption and the out-of-plane plasmon of the bulk counterpart,
in a way similar to the transverse response.

VI. CONCLUSION

In this paper, we studied the optical properties of a quasi-
2D object within the ab initio TD-DFT formalism, including
the local field effects. We proposed calculating the macro-
scopic average of the dielectric tensor of a quasi-2D object
directly from a response function that contains only micro-

scopic excitations in order to avoid the use of the Adler and
Wiser formula.

Comparing the result of the Dyson equation without and
with the long-range contribution of the Coulomb potential,
we evidenced that they are almost similar. We identified a
small shift of the resonance at ω0 for the in-plane component,
depending on the amplitude of the in-plane wave vector of
the perturbation. For out-of-plane excitation they are identical,
indicating that the long-range part of the Coulomb potential is
always cut by the slab. The most spectacular result is that this
resonance arises at the plasma frequency. From the reciprocal
space calculations, using the Selected-G method to remove
the spurious vacuum effect and the slab potential to isolate
the slab, we evidenced that the appearance of the peak at
the plasma frequency for the out-of-plane component of the
response function to the macroscopic part of the total potential
[χ̄00(qz )] occurs only when the interfaces are included in the
2D object. If the thickness of the slab is defined according to
the atomic positions, called the zero vacuum case, and which
corresponds to the bulklike definition of the unit cell, the
Selected-G method allows one to build an object exhibiting a
resonance of εLL

M (qz ) at ω0, as is expected in the bulk material.
On the contrary, extending the thickness of the slab slightly in
order to incorporate the interfaces, we obtained a resonance of
εLL

M (qz ) at ωp, evidencing a complete change in the nature of
the response for the qz excitation.

To understand the origin of this unexpected excitation, we
investigated the optical response of a thin slab by means of the
classical electromagnetism formalism (Airy’s formula, with a
model Lorentz dielectric function). We showed that for the
p-polarization of the light for a nonzero incident angle, the
reflectance, transmittance, and absorbance spectra exhibit two
peaks at ω0 and ωp. The expansion of the biaxial version
of Airy’s formula in the limit of the thin slab allows us
to evidence that the two resonances appear in conjunction
with (ε|| − 1) and (1/ε⊥ − 1), which confirms the link of the
out-of-plane resonance with the bulk plasmon. This optical re-
sponse of a 2D object is by nature the response to a transverse
field. The structure at ωp cannot result from an absorption
process, but it arises from the reflection and transmission
processes of the interfaces. We suggest that the back and forth
reflections of the component of the electric field perpendicular
to the slab create an oscillation of the electronic density, which
naturally resonates at the plasma frequency. This leads us to
the conclusion that the thickness of the quasi-2D object must
include the interfaces.

The remarkable conclusion that for an isolated quasi-2D
object the in-plane response function presents a resonance
at the frequency of the absorption, and the out-of-plane re-
sponse function presents a peak governed by the plasma
frequency, has the consequence that the Ehrenreich result,
demonstrated for infinite cubic crystals, cannot apply any-
more for 2D objects. For these highly anisotropic systems,
the longitudinal-longitudinal contraction of the macroscopic
dielectric tensor is equal to the transverse-transverse one
only for the in-plane direction, while for the out-of-plane
direction it is closely related to the plasmon of the bulk
counterpart. For this reason, we need to label with “LL” the
quantities calculated within TD-DFT, which are in essence
the longitudinal-longitudinal contraction of the macroscopic
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dielectric tensor. Nevertheless, our work shows that the (trans-
verse) optical response of a 2D object can still be calculated
within the longitudinal formalism of the TD-DFT, as was the
case for bulk material, even if the phenomena involved are
different.
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APPENDIX A: LINEAR COMBINATIONS OF χ̄00(q; ω)

The linear combinations use the properties of the dielectric
tensor ←→ε M (ω) (in the following, we omit ω for clarity),

←→ε M =

⎛
⎜⎝

εxx
M ε

xy
M εxz

M

ε
yx
M ε

yy
M ε

yz
M

εzx
M ε

zy
M εzz

M

⎞
⎟⎠

and

ε12
M = q̂1εM q̂2 with |q̂i| = 1.

Let q̂ be a normalized vector,

q̂ = (q̂x, q̂y, q̂z )

=

⎛
⎜⎝ qx√

q2
x + q2

y + q2
z

,
qy√

q2
x + q2

y + q2
z

,
qz√

q2
x + q2

y + q2
z

⎞
⎟⎠.

We then obtain (taking qy = 0 for simplification)

εM (q̂x + q̂z ) = (q̂x 0 q̂z )

⎛
⎜⎝

εxx
M ε

xy
M εxz

M

ε
yx
M ε

yy
M ε

yz
M

εzx
M ε

zy
M εzz

M

⎞
⎟⎠

⎛
⎝q̂x

0
q̂z

⎞
⎠

= q̂2
x εxx

M + q̂xq̂z εxz
M + q̂zq̂x εzx

M + q̂2
z εzz

M .

In an equivalent manner, this yields

εM (q̂x − q̂z ) = q̂2
x εxx

M − q̂xq̂z εxz
M − q̂zq̂x εzx

M + q̂2
z εzz

M,

which allows us to extract εzz
M :

εzz
M = q2

x + q2
z

q2
z

εM (q̂x + q̂z ) + εM (q̂x − q̂z )

2
− q2

x

q2
z

εxx
M . (A1)

We obtain immediately that εxx
M ≡ εM (q̂x ) and εzz

M ≡ εM (q̂z ).
Using now the definition of εM (q̂):

εM (q̂) = lim
q→0

[1 − 4π

|q|2 χ̄00(q)], (A2)

and introducing Eq. (A2) into Eq. (A1), one finally obtains

χ̄00(qz ) = χ̄00(qx + qz ) + χ̄00(qx − qz )

2
− χ̄00(qx ). (A3)

One can either use Eq. (A1) for εM spectra, or Eq. (A3) for χ̄ .
To use the linear combination (A3), the (qx ) used to calculate
χ̄00(qx ) must be the same as the one in (qx ± qz ), and the (qz )
for which we have calculated χ̄00(qz ) is the one in (qx ± qz ).

APPENDIX B: TECHNICAL DETAILS OF THE FOURIER
TRANSFORM AND TESTS OF CONSISTENCY

IN MIXED-SPACE

The inverse Fourier transform (IFT) of χ0
GzG′

z
(q||) is per-

formed using a 2D FFTW3 algorithm, where even N integer
values of Gz = Gm (in units of 2π/Lz, where Lz is the size of
the supercell) are taken into account. It reads [Eq. (5)]

χ0(q||, zn, zn′ ) = 1

Lz

∑
m,m′

eiGmzn χ0
GmGm′ (q||) e−iGm′ zn′ .

The result is an N ∗ N matrix for zn = n
2N Lz with n ∈

[−N, N − 1], thus χ0(q||, zn, zn′ ) extends in a box of size
Lz ∗ Lz and it can be checked that with such a normalization, it
is independent of the height of the supercell used in reciprocal
space.

To recover in reciprocal space the response function for
the coupled (q|| ± qz ) perturbation, we introduce the qz di-
rection of the perturbation by multiplying χ0(q||, zn, zn′ ) by
e−iqz (zn−z′

n ) in the Fourier transform (FT) process, leading to

χ0
GmGm′ (q||, qz ) = Lz

N2

∑
n,n′

e−i(Gm+qz )zn χ0(q||, zn, zn′)ei(Gm′ +qz )zn′ .

(B1)

The macroscopic average [21] is defined with the same
methodology, yielding

χ0
M (q||, qz ) ≡ �z2

Lz

∑
n,n′

e−iqzzn χ0(q||, zn, zn′ ) eiqzzn′

= 1

Lz

L2
z

N2

∑
n,n′

e−iqzzn χ0(q||, zn, zn′ ) eiqzzn′

≡ χ0
00(q||, qz ).

We recover the FT [Eq. (B1)] for Gm = Gm′ = 0. The sum
over zn is done over the full size of the simulation box defined
by Lz.

To describe a quasi-2D object, the wave vector used to
define the direction of the excitation takes a very small value
(|q||| = 1 × 10−4 a.u. and |qz| = 1 × 10−4 a.u. here, but we
checked that 1 × 10−5 a.u. or 1 × 10−3 a.u. gave the same
results). Since the head and the wings of χ0

Gz,G′
z
(q||) are pro-

portional, respectively, to |q|||2 and |q|||, they are quantities
much smaller than the elements of the body. To ensure that we
did not lose any information in the inverse Fourier transform
leading to χ0(q||, zn, zn′ ), we did some tests of consistency.
The results are presented in Fig. 12.

We first checked that the Fourier transform algorithm
[Eq. (B1)] allows us to recover the original χ0 calculated in
reciprocal space. The left panel of Fig. 12 shows the com-
parison of the imaginary part of the FT of χ0(qx, zn, zn′ )
[Eq. (B1) for Gm = Gm′ = 0] for qx (violet square) and for
(qx + qz ) (green down-triangle) with the χ0

00(q) calculated in
reciprocal space (χ0

orig) for qx (cyan circle) and (qx + qz ) (red
up-triangle): both in-plane and coupled components (qx + qz )
are recovered.

To rule out the possibility that numerical errors could be
compensated for by the reversibility of the FFT procedure,
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FIG. 12. Left: Imaginary part of FT of χ 0(qx, zn, zn′ ) [Eq. (B1) for Gm = Gm′ = 0], calculated for qz = 0 (violet square) or qz > 0 (green
down-triangle), compared to the original (reciprocal space) χ0

00(q) (labeled χ 0
orig) calculated for the polarizations qx (cyan circle) and (qx + qz )

(red up-triangle). Center: Imaginary part of the macroscopic average [Eq. (6)] of χ 0(qx, zn, zn′ ) normalized by −4π/|q|2, compared to NLF
spectra in reciprocal space for qx (violet square vs cyan circle) or (qx + qz ) (green down-triangle vs red up-triangle). Right: qz component
extracted from the linear combination of spectra calculated for qx , qx + qz and qx − qz, in mixed-space (magenta diamond), compared with
the qz spectrum calculated directly in reciprocal space (turquoise square). The calculations are done for ||qx|| = ||qz|| = 1 × 10−4 a.u., but
the results are independent of the value of |q| in the optical limit, except for χ0

00(q), which is proportional to |q|2. In Eqs. (B1) and (6), the
summation is done on a box of size Lz = 82.104 bohrs.

we also compared the spectra resulting from the macroscopic
average [Eq. (6)] to the absorption spectra calculated without
local fields (NLF) in reciprocal space, which are defined ac-
cording to Im[εNLF

M (q; ω)] = Im[1 − 4π/|q|2χ0
00(q; ω)] in the

optical limit q → 0. The center panel shows the imaginary
part of the macroscopic average normalized by −4π/|q|2 for
qx (violet square) and (qx + qz ) (green down-triangle) com-
pared to the absorption spectra Im[εNLF

M (q; ω)] for qx (cyan
circle) and (qx + qz ) (red up-triangle). All the corresponding
spectra are on top of each other. The difference in the ampli-
tudes of the corresponding spectra between the left and center
panels comes from the 1/|q|2 factor, since in our calculations
|qx| = 1 × 10−4 a.u. and |qx + qz| = √

2 × 10−4 a.u.
These results show that χ0(q||, zn, zn′ ) does not suffer from

the relative amplitude of the head and wings as compared to
the body of the initial reciprocal space, χ0

GzG′
z
(q||). They also

show that the qz dependence of χ0
00(q) arose correctly from

the multiplication of the (zn, zn′ ) element with the phase factor
e−iqz (zn−zn′ ).

One can extract εNLF
M (qz; ω) using the properties of the

dielectric tensor ←→ε M (ω) (see Appendix A). Using the lin-
ear combination given by Eq. (A1), we obtain the spectrum
Im[εNLF

M (qz; ω)] (magenta diamond) in Fig. 12, right: it is
identical to the spectrum calculated in reciprocal space di-
rectly for the qz component (turquoise square).

APPENDIX C: χ̄ IN MIXED-SPACE

For three-dimensional crystals, the response function asso-
ciated with the absorption spectrum is the response function to
the total macroscopic potential (χ̄) solution of the reciprocal
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space Dyson equation [Eq. (8)]:

χ̄GG′ (q) = χ0
GG′ (q) +

∑
G1

χ0
GG1

(q) v̄G1 (q) χ̄G1G′ (q),

where v̄G(q) = 0 for G = 0 and

v̄G(q) ≡ vG(q) = 4π

||G + q||2 for G �= 0.

This approach, which aims to suppress the long-range compo-
nent of the Coulomb potential v0, is well suited for reciprocal
space, since the G elements can be addressed in a distin-
guished manner. The equivalent scheme in real space is more
tricky. To go further, we separate the different equations for
the head, wings, and body of the χ̄GG′ , and we isolate the
term that involved the long-range component of the Coulomb
potential:

χ̄00 = χ0
00 + χ0

00 v̄0 χ̄00 +
∑
G1 �=0

χ0
0G1

v̄G1 χ̄G10,

χ̄0G′ = χ0
0G′ + χ0

00 v̄0 χ̄0G′ +
∑
G1 �=0

χ0
0G1

v̄G1 χ̄G1G′ ,

χ̄G0 = χ0
G0 + χ0

G0 v̄0 χ̄00 +
∑
G1 �=0

χ0
GG1

v̄G1 χ̄G10,

χ̄GG′ = χ0
GG′ + χ0

G0 v̄0 χ̄0G′ +
∑
G1 �=0

χ0
GG1

v̄G1 χ̄G1G′ ,

where G �= 0 and G′ �= 0.

By definition, v̄0 = 0, so the second term in each right
member is suppressed. One sees that to obtain the Dyson
equation for χ̄ , it is equivalent to suppressing v0 in the equa-
tion for χ , or to suppressing the first column of the matrix χ0

: χ0
G0 ≡ 0 ∀ G. Indeed, these elements do not intervene in

the other terms of the equations. It is thus equivalent to define
a new matrix χ̄0 identical to χ0, except for the first column,
which is set to zero, and to solve

χ̄GG′ (q) = χ0
GG′ (q) +

∑
G1

χ̄0
GG1

(q) vG1 (q) χ̄G1G′ (q), (C1)

where vG(q) = 4π

||G + q||2 ∀ G. (C2)

In reciprocal space, this is equivalent to solving Eq. (8) or
Eq. (C1). In real space, it is not possible to suppress the long-
range part of the Coulomb potential, but since our χ0(z, z′)
is obtained by a FT of a reciprocal space matrix, one can
define χ̄0

GG′ (q), perform the inverse Fourier transform, and
solve Eq. (C1) in mixed-space. The resulting equation is

χ̄ (q||, z, z′) = χ0(q||, z, z′) +
∫

dz1

∫
dz2 χ̄0(q||, z, z1)

× v(q||, z1, z2)χ̄ (q||, z2, z′)

with v(q||, z, z′) = 2π
|q|||e

−|q||||z−z′|.

FIG. 13. Imaginary part of FT [Eq. (B1) for Gm = Gm′ = 0]
of χ (qx, z, z′) and χ̄ (qx, z, z′), respectively, after resolution of the
Dyson equations [Eqs. (4) and (10)]. Zoom on the peak at 4 eV: spec-
tra for qx (black circle and blue up-triangle, respectively) and (qz ±
qz ) (red square/green diamond and magenta left-triangle/orange
right-triangle, respectively). Calculation is for the slab where the
atomic positions extend to 41.052 bohrs, introduced in a supercell
of height 82.104 bohrs.

The spectra obtained by solving the Dyson equation for χ̄

and χ in real space (with the FT [Eq. (B1) for Gm = Gm′ =
0]), are presented in Fig. 13 for qx and (qx ± qz ). We zoomed
on the peak at 4 eV. The three spectra χ̄00(qx ) (blue up-
triangle) and χ̄00(qx ± qz ) (magenta left-triangle and orange
right-triangle, respectively) are identical. The same occurs
for the three components of χ00 (black circle, red square,
and green diamond, respectively). There is a tiny difference
between χ̄00 and χ00. It comes from the fact that the resonance

of χ (q||) occurs at
√

ω2
0 + |q|||L/2 ω2

p, as we evidenced in

Ref. [18], where ω0 is the absorption resonance and ωp is
the plasmon frequency (4 and 17 eV, respectively, for bulk
silicon), and L is the thickness of the slab, while the resonance
of χ̄00(q||) is expected exactly at ω0. It can be checked numer-
ically that χ00(q) reaches χ̄00(q) as |q||| → 0. The difference
between the two response functions illustrates the effect of
the long-range component of the Coulomb potential for the
perturbation parallel to the infinite directions: it leads to a
small shift of the resonance, but in the limit of the ultrathin
slab (|q|||L/2 � 1), it does not have the capacity to move the
resonance of χ00(q||) up to the plasmon frequency. We remind
the reader that it is a consequence of the huge reduction of
the screening in the 2D object for the in-plane perturbation
[18,22]. This result also confirms that the procedure we de-
veloped to remove the long-range component of the Coulomb
potential in real space is adequate.

More puzzling is the fact that the amplitudes of the spectra
for qx and (qx ± qz ) are the same. This was not the case for
χ0, where the amplitude of χ0

00(q|| ± qz ) was twice that of
χ0

00(q||) for the considered case ||qx|| = ||qz|| (Fig. 12, left).
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APPENDIX D: ANALYSIS OF AIRY’S FORMULAS FOR A SLAB IN VACUUM

1. p-polarization

The Fresnel coefficient of reflection for a p-polarized beam with an angle of incidence θ is [Eq. (12)]

rp = ε cos θ −
√

ε − sin2 θ

ε cos θ +
√

ε − sin2 θ
≡ A

B
≡ c − d

c + d
. (D1)

The reflection coefficient for a slab in vacuum is [Eq. (13)]

rslab
p = rp

1 − e2iβ

1 − r2
p e2iβ

with β = k0d
√

ε − sin2 θ and k0 = ω

c
.

d is the thickness of the slab, c is the speed of light in vacuum, and ω is the energy of the photon.
Considering the situation in which the thickness of the slab is much smaller than the wavelength, β << 1, one can expand

rslab at first order in β:

rslab
p = A

B

−2iβ

1 − ( A
B )2(1 + 2iβ )

= −2iβ(c2 − d2)

4 c d − 2iβ (c2 + d2 − 2 c d )
,

which gives (see Fig. 14)

rslab
p = −2ik0d

√
ε − sin2 θ [ε2 cos2 θ − (ε − sin2 θ )]

4 ε cos θ
√

ε − sin2 θ − 2ik0d
√

ε − sin2 θ [ε2 cos2 θ + ε − sin2 θ − 2 ε cos θ
√

ε − sin2 θ ]
(D2)

= −2ik0d [ε cos2 θ − 1 + 1/ε sin2 θ ]

4 cos θ − 2ik0d [ε cos2 θ + 1 − 1/ε sin2 θ − 2 cos θ
√

ε − sin2 θ ]

= −2ik0d [(ε − 1) cos2 θ + (1/ε − 1) sin2 θ ]

4 cos θ (1 + ik0d
√

ε − sin2 θ ) − 2ik0d [(ε − 1) cos2 θ − (1/ε − 1) sin2 θ ] − 4 ik0d cos2 θ

≈ −2ik0d [(ε − 1) cos2 θ + (1/ε − 1) sin2 θ ]

4 cos θ − 4 ik0d cos2 θ − 2ik0d [(ε − 1) cos2 θ − (1/ε − 1) sin2 θ ]
(D3)

≈ −2ik0d [(ε − 1) cos2 θ + (1/ε − 1) sin2 θ ]

4 cos θ − 2ik0d [(ε − 1) cos2 θ − (1/ε − 1) sin2 θ ]
. (D4)

The transmission coefficient of p-polarized light for a slab in vacuum is [Eq. (14)]

t slab
p = (1 − r2

p) eiβ

1 − r2
p e2iβ

.

FIG. 14. Results of different approximations of Airy’s formulas (θ = 45o). Reflectance = |rslab
p |2 (left) [transmittance = |t slab

p |2 (right)]:
(black) Eq. (D2) [(D5)], (magenta) Eq. (D3) [(D6)], (orange) Eq. (D4) [(D7)].
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Using the quantities defined according to Eq. (D1), we obtain

t slab
p = [1 − ( A

B )2] (1 + iβ )

1 − ( A
B )2(1 + 2iβ )

= 4 c d (1 + iβ )

4 c d − 2iβ (c2 + d2 − 2 c d )
,

t slab
p = 4 ε cos θ

√
ε − sin2 θ (1 + ik0d

√
ε − sin2 θ )

4 ε cos θ
√

ε − sin2 θ − 2ik0d
√

ε − sin2 θ [ε2 cos2 θ + ε − sin2 θ − 2 ε cos θ
√

ε − sin2 θ ]
(D5)

= 4 cos θ (1 + ik0d
√

ε − sin2 θ )

4 cos θ (1 + ik0d
√

ε − sin2 θ ) − 2ik0d [ε cos2 θ + 1 − 1/ε sin2 θ ]

= 4 cos θ (1 + ik0d
√

ε − sin2 θ )

4 cos θ (1 + ik0d
√

ε − sin2 θ ) − 2ik0d [(ε − 1) cos2 θ − (1/ε − 1) sin2 θ ] − 4 ik0d cos2 θ

≈ 4 cos θ

4 cos θ − 4 ik0d cos2 θ − 2ik0d [(ε − 1) cos2 θ − (1/ε − 1) sin2 θ ]
(D6)

≈ 4 cos θ

4 cos θ − 2ik0d [(ε − 1) cos2 θ − (1/ε − 1) sin2 θ ]
. (D7)

This decomposition of rslab
p and t slab

p allows one to understand the reason why the reflectance and the transmittance will exhibit
two peaks (see Fig. 14), one coming from (ε − 1) corresponding to the resonance of the absorption frequency, and one coming
from (1/ε − 1), associated with the plasmon frequency.

2. s-polarization

The Fresnel coefficient of reflection for an s-polarized beam with an angle of incidence θ is

rs = cos θ −
√

ε − sin2 θ

cos θ +
√

ε − sin2 θ
.

The same expansion as for the p case gives

rslab
s = 2ik0d (ε − 1)

4 cos θ (1 + ik0d
√

ε − sin2 θ ) − 4ik0d cos2 θ − 2ik0d (ε − 1)

≈ 2ik0d (ε − 1)

4 cos θ − 4ik0d cos2 θ − 2ik0d (ε − 1)
≈ 2ik0d (ε − 1)

4 cos θ − 2ik0d (ε − 1)
,

t slab
s = 4 cos θ (1 + ik0d

√
ε − sin2 θ )

4 cos θ (1 + ik0d
√

ε − sin2 θ ) − 4ik0d cos2 θ − 2ik0d (ε − 1)

≈ 4 cos θ

4 cos θ − 4ik0d cos2 θ − 2ik0d (ε − 1)
≈ 4 cos θ

4 cos θ − 2ik0d (ε − 1)
.

It is obvious that for the s-polarized light, no peak at the plasmon frequency should appear.

3. p-polarization for a biaxial slab in vacuum

In Ref. [18], based on the work of Ref. [46], we have established that for a slab of biaxial material in vacuum, the reflection
and transmission coefficients are expressed as

rpp = i sin(κp)[1 − 1/ε⊥ sin2(θ ) − ε|| cos2(θ )]

2
√

ε||
√

1 − [1/ε⊥ sin2(θ )] cos(κp) cos(θ ) − i sin(κp)[1 − 1/ε⊥ sin2(θ ) + ε|| cos2(θ )]
, (D8)

tpp = 2
√

ε||
√

1 − [1/ε⊥ sin2(θ )] cos(θ )

2
√

ε||
√

1 − [1/ε⊥ sin2(θ )] cos(κp) cos(θ ) − i sin(κp)[[1 − 1/ε⊥ sin2(θ )] + ε|| cos2(θ )]
, (D9)

with κp = k0d
√

ε||
√

1 − [1/ε⊥ sin2(θ )], and ε|| and ε⊥ are the in-plane and out-of-plane dielectric functions of the biaxial
material. Considering the case in which the thickness of the slab is much smaller than the wavelength of the electromagnetic
field, one has

sin(κp) ≈ κp = k0d
√

ε||
√

1 − [1/ε⊥ sin2(θ )],

cos(κp) ≈ 1,
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and the reflection and transmission coefficients of a biaxial slab in vacuum become

rpp = −2 i k0d
√

ε||
√

1 − [1/ε⊥ sin2(θ )][ε|| cos2(θ ) − [1 − 1/ε⊥ sin2(θ )]]

4
√

ε||
√

1 − [1/ε⊥ sin2(θ )] cos(θ ) − 2 i k0d
√

ε||
√

1 − [1/ε⊥ sin2(θ )][[1 − 1/ε⊥ sin2(θ )] + ε|| cos2(θ )]

= −2 i k0d[[(ε|| − 1) cos2(θ ) + (1/ε⊥ − 1) sin2(θ )]]

4 cos(θ ) − 4 i k0d cos2(θ ) − 2 i k0d[(ε|| − 1) cos2(θ ) − (1/ε⊥ − 1) sin2(θ )]

≈ −2 i k0d[[(ε|| − 1) cos2(θ ) + (1/ε⊥ − 1) sin2(θ )]]

4 cos(θ ) − 2 i k0d[(ε|| − 1) cos2(θ ) − (1/ε⊥ − 1) sin2(θ )]
(D10)

tpp = 2
√

ε||
√

1 − [1/ε⊥ sin2(θ )] cos(θ )

2
√

ε||
√

1 − [1/ε⊥ sin2(θ )] cos(θ ) − i k0d
√

ε||
√

1 − [1/ε⊥ sin2(θ )][[1 − 1/ε⊥ sin2(θ )] + ε|| cos2(θ )]

= 4 cos(θ )

4 cos(θ ) − 4 i k0d cos2(θ ) − 2 i k0d[(ε|| − 1) cos2(θ ) − (1/ε⊥ − 1) sin2(θ )]

≈ 4 cos(θ )

4 cos(θ ) − 2 i k0d[(ε|| − 1) cos2(θ ) − (1/ε⊥ − 1) sin2(θ )]
. (D11)

This decomposition of tpp and rpp gives expressions similar to those obtained from Airy’s formula [Eqs. (D2) and (D5)]
where we treated the isotropic case, but it shows that, for the biaxial case, the resonance at the absorption energy comes from the
in-plane dielectric function, while the resonance at the plasmon frequency comes from the inverse of the out-of-plane dielectric
function. These expressions explain why the spectra of Ref. [18] (Figs. 3 and 5), considered to be anisotropic dielectric functions
of effective slabs of different thicknesses d , give the same reflectance and absorbance spectra (Ref. [18], Fig. 9). Indeed, since
these anisotropic dielectric functions result from a mechanism that leads to a scaling with 1/d of (ε|| − 1) and (1/ε⊥ − 1), the
expressions [Eqs. (D10) and (D11)] show why an exact compensation occurs: the dielectric functions are involved through a
linear combination of d (ε|| − 1) and d (1/ε⊥ − 1), leading to a cancellation of the scaling effect [22].
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