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In equilibrium planer systems of Hall electrons, such as GaAs heterostructures and graphene, support two
species of current counterflowing along the system edges, as observed recently in experiment using a nanoscale
magnetometer. We examine distinct origins and distinctive features of these equilibrium currents, with the
Coulombic many-body effects taken into account, and derive their real-space distributions. Our basic tool of
analysis is a reformulation of quantum Hall systems as a W∞ gauge theory, which allows one to diagonalize the
total Hamiltonian according to the resolutions of external probes. These equilibrium currents are deeply tied to
the orbital magnetization in quantum Hall systems. Special attention is drawn to the case of graphene, especially
the neutral (ν = 0) ground state and its intrinsic diamagnetic response that combines with the equilibrium
currents to govern the orbital magnetization and its oscillations with filling.
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I. INTRODUCTION

Two-dimensional (2D) electron systems such as GaAs
heterostructures and graphene display fascinating electronic
properties that attract great attention in both applications and
fundamental physics. They host the quantum Hall (QH) effect
[1] in a magnetic field. An old and basic subject pertaining
to the foundation of the QH effect is the presence of edge
states and the role they play in the electronic transport in
such 2D systems. In equilibrium the edge states become the
only current carriers. Theoretically, along with explanations
of the QH effect in the bulk-state and edge-state pictures
[2–5], the current flow in QH samples was actively discussed
earlier [6–14]. In particular, it was pointed out in a model
calculation by Geller and Vignale [14] that the edge states
carry a pair of counterflowing equilibrium currents, one driven
by a local field and another by a density gradient, that form an
alternating pattern along the sample edges.

Experimentally such local features are not amenable to
global transport measurements [15]. Scanning probe studies,
probing locally the potential profile [16,17] or the electron
density and dissipation [18,19], detected the presence of edge
states but the current they carry locally remained unidentified
for years. Only recently it has become possible, by use of a
SQUID-on-tip nanoscale magnetometer in experiment by Uri
et al. [20], to achieve direct imaging of the counterflowing
equilibrium currents in graphene, indeed forming an alternat-
ing pattern.

With such early and recent developments in mind, we
study, in this paper, the equilibrium current distributions in
QH systems with gentle edges. Our basic tool of analysis is
a formulation, as a W∞ gauge theory, of QH systems coupled
to external probes [21]. The W∞ [or U (∞)] transformations
mix Landau levels and the associated gauge field is expressed
as a series of multipoles (or derivatives) of external potentials.
They serve to resolve level mixing according to the resolutions

of external probes. We use this gauge-theory framework to
diagonalize the many-body Hamiltonian in such a way that the
level spectra and associated currents are directly read from it.
In particular, full use is made of a special W∞ gauge transfor-
mation, which systematizes our analysis in such a manner that
electromagnetic gauge invariance is manifest from the start.

We first consider a QH system of conventional 2D elec-
trons (with quadratic dispersion). Keeping only the lowest
multipoles for the current operator allows one to confirm some
key findings of an early analysis of Geller and Vignale, i.e.,
the presence of two species of counterpropagating equilibrium
currents along the sample edges. Those lowest multipoles fix
the integrated amount of these currents while it turns out
necessary to pick up also higher multipoles to derive their real-
space distributions. Their distinct distributions reveal their
distinct origin: One species, a diamagnetic current flowing
fast with a narrow profile, derives from quantized cyclotron
motion of electrons and arises (or survives) only along the
periphery of a densely populated domain. Another one is
essentially a Hall current driven by a local edge potential.
A close study is also made of the Coulombic many-body
effects on the two species of current, which clearly reflect their
distinctive characters.

Subsequently we examine the case of Dirac electrons in
graphene. In graphene the Landau levels are naturally divided
into sectors {|n| = 0, 1, 2, . . .}, with each sector |n| consisting
of a pair of electron and hole levels (labeled by ±|n|) related
by electron-hole (e-h) symmetry. The W∞ transformations
work to partially diagonalize the Hamiltonian in sectors {|n|}.
The real-space current distributions and many-body effects
on them in the |n| � 1 sectors show features qualitatively
similar to those of conventional electrons while those in the
lowest (|n| = 0) Landau level exhibit some peculiar features.
Special attention is drawn to the neutral ν = 0 ground state
and its intrinsic diamagnetic response of “relativistic” origin
that combines with those equilibrium currents to govern the
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orbital magnetization and its oscillations (the de Haas-van
Alphene effect) in graphene.

The paper is organized as follows. In Sec. II we review and
refine the W∞ gauge-theory formulation of a QH system and
introduce a special gauge transformation mentioned above. In
Sec. III we consider a QH system of conventional electrons
and clarify some general features of two distinct species of
equilibrium current and their distributions. In Sec. IV we
examine the Coulombic many-body effects on them. In Sec. V
we focus on the case of Dirac electrons in graphene. Sec-
tion VI is devoted to summary and discussion.

II. ELECTRONS IN A MAGNETIC FIELD AND W∞ GAUGE
THEORY

Consider conventional 2D electrons in a magnetic field
Bz = B > 0, with the potential (Ax, Ay) = (−By, 0). The one-
body Hamiltonian H = ∫

dxdy �†H�, with

H = 1

2m∗
{
(px − eBy)2 + p2

y

} = 1

2
ωc (Y 2 + P2), (1)

is essentially a harmonic-oscillator system with the normal-
ized coordinate Y = (y − y0)/� and momentum P = � py with
[Y, P] = i, where � ≡ 1/

√
eB is the magnetic length and

y0 ≡ �2 px. The electron spectrum forms Landau levels of en-
ergy εn = ωc(n + 1

2 ) with ωc = eB/m∗, and the eigenmodes
〈x, y|n, y0〉 = 〈x|y0〉 〈y − y0|n〉, labeled by n ∈ (0, 1, 2, . . .)
and y0, consist of plane waves 〈x|y0〉 = eix y0/�

2
/
√

2π�2 and
the harmonic-oscillator wave functions 〈y|n〉 ≡ φn(y). In the
|n, y0〉 basis the coordinate x = (x, y) is written as [21]

〈n, y0|x|n′, y′
0〉 = {δnn′

i�2∂/∂y0 + � Pnn′ } δ(y0 − y′
0),

〈n, y0|y|n′, y′
0〉 = {δnn′

y0 + �Y nn′ } δ(y0 − y′
0), (2)

where (Y, P) now stand for numerical matrices in level (or
orbital) indices of the familiar harmonic-oscillator form.

An electron thus undergoes cyclotron motion with matrix
coordinate X ≡ (Xx, Xy) = � (P,Y ) and center motion with
continuous coordinate r = (i�2∂y0 , y0). In what follows we
make extensive use of the |n, y0〉 basis, and denote the co-
ordinate x as x = X + r, with uncertainty [Xx, Xy] = −i�2,
[rx, ry] = i�2 and [Xi, r j] = 0.

To study the electromagnetic response of the system let us
introduce weak external potentials aμ = (ax, ay, A0). They are
taken to be slowly varying in space and time, and are to be
expanded in multipoles (i.e., derivatives) in our analysis. A
simple yet practically useful choice is to suppose that they
depend only on one coordinate y (with time t treated implic-
itly). They serve to detect a current jx(y) driven by an applied
local field Ey(y) = −∂yA0(y) − ∂t ay(y). They also supply a
local magnetic field b(a)

z ≡ ∂xay − ∂yax → −∂yax(y) normal
to a sample.

Passing to the |n, y0〉 basis via the expansion �(x) =∑
n,y0

〈x|n, y0〉ψn(y0) yields the Hamiltonian

H =
∫

dy0

∑
m,n

ψm†(y0)Hmn ψn(y0), (3)

H = ωc
{
(Z† − iv†)(Z + iv) + 1

2 + 1
2 bz

} − eA0, (4)

with Z ≡ (Y + iP)/
√

2, Z† ≡ (Y − iP)/
√

2; [Z, Z†] = 1 and
Zmn ≡ 〈m|Z|n〉 = √

n δm,n−1. Here H stands for a matrix

Hmn ≡ 〈m|H|n〉 in orbital labels; in what follows we adopt
such matrix notation and frequently suppress summation
over repeated level indices. In H we have set vi = e� ai (or
v = e� a), v = (vy + ivx )/

√
2, v† = (vy − ivx )/

√
2, and bz ≡

�∇× v = �(∂xvy − ∂yvx ) = e�2b(a)
z .

Fields v = v(x) and A0 = A0(x) are functions of x = X +
r, and are matrices in orbital labels {n}. Let us adopt the
Fourier transform to specify their x dependence and isolate
their matrix portion by writing, e.g.,

v(x) =
∑

p

vpeip·(X+r) = eip·Xv(r) (5)

with v(r) ≡ ∑
p vpeip·r;

∑
p ≡ ∫

d2p/(2π )2. In the last line,
we regard p as a derivative −i∇ acting on v(r); ipyv(r),
e.g., stands for ∂yv(x), with x → r. One can rewrite eip·X =
ei�pZ†+i�p†Z = γp fp, with γp = e− 1

4 �2p2
and fp = ei�pZ†

ei�p†Z ,
where p = (py + ipx )/

√
2 and p† = (py − ipx )/

√
2, or ip →

(∂y + i∂x )/
√

2 ≡ ∂ and ip† → ∂†. Note, e.g., [Z, v(x)] =
�∂v(x) and [Z†, v(x)] = −�∂†v(x). A function of x = X + r,
e.g., v(x), is then expanded in a normal-ordered series of
(Z†, Z ) as

v(x) =
∞∑

s=0

Ds[∂] γp(�2∂†∂ )sv(r), (6)

Ds[∂] = Fs +
∞∑

r=1

{
F r0

s (�∂ )r + F 0r
s (�∂†)r

}
, (7)

with Fs = (Z†)sZs/(s!)2, F r0
s = (Z†)s+rZr/{(s + r)!s!}, and

F 0r
s = (F r0

s )†; obviously, Fs are diagonal in orbital labels {n}
while the rest are not; γp = e

1
4 �2∇2 = e

1
2 �2∂†∂ . In this way, the

matrix portion of v(x) is naturally expanded in a series of
multipoles of v(r). The actual values of 〈m|F r0

s |n〉 = [F r0
s ]mn,

etc., are readily extracted from the matrix elements f mn
p =

〈m|ei�pZ†
ei�p†Z |n〉, expressed in terms of the associated La-

guerre polynomials,

f mn
p =

√
n!/m! (i�p)m−nLm−n

n (�2 p† p). (8)

A useful formula is
∞∑

s=0

(−ξ )s
[
F r0

s

]n+r,n =
√

n!/(n + r)! Lr
n(ξ ). (9)

The one-body Hamiltonian Hmn in H is an infinite-
dimensional Hermitian matrix. Let us consider a class of
unitary transformations ψn → ψn

U = U nmψm, which mix
Landau levels {n}, with U of the form

U = exp

[
i

∞∑
r,s=0

αrs(r)(Z†)rZs

]
. (10)

The basis {(Z†)rZs} forms the U (∞) (or W∞) algebra. It is
possible to formulate 2D Hall electron systems as a W∞ gauge
theory, as noted earlier [21]. The action

L =
∫

dtdy0 ψ†(i∂t − H) ψ =
∫

dtdy0 ψ
†
U (i∂t − HU ) ψU

(11)

is invariant under W∞ transformations ψ → ψU = Uψ and
HU = U (H − i∂t )U † if the associated “W∞ gauge fields”
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v(x) and A0(x) are transformed as

vU (r) = U v(x)U † − iU [Z,U †],

eAU
0 (r) = U {eA0(x) + i∂t }U †. (12)

Here only the argument r is retained for vU and AU
0 , which are

no longer functions of a single x = r + X.
Obviously, Z + iv, Z† − iv† and ∂t − ieA0 act as covariant

derivatives, U (Z + iv)U † = Z + ivU , U (∂t − ieA0)U † =
∂t − ieAU

0 , etc. Their commutators

[Z + iv(x), Z† − iv†(x)] = 1 + bz(x),

[Z + iv(x), ∂t − ieA0(x)] = ie�E (x), (13)

then reveal the W∞ field strengths Ej = −∂ jA0 − ∂t a j and
bz = −i�(∂v† − ∂†v), which transform covariantly under U ,
(EU , bU

z ) = U (E , bz )U †; E ≡ (Ey + iEx )/
√

2. They coincide
with the electromagnetic fields (E , bz ).

The gauge fields (v, A0) transform inhomogeneously under
U . It is intriguing to see what will happen if one eliminates a
gauge-variant portion out of v. See Appendix A for an analysis
in this direction. The result is a W∞ gauge transformation G =
eiS with

S =
∞∑

s=0

∞∑
r=1

γp(∂†∂ )s
{
F r0

s ∂ r−1v(r) + F 0r
s (∂†)r−1v†(r)

}

+
∞∑

s=0

Fs+1
1

2
γp (∂†∂ )s∇ ·v(r), (14)

= Z†v(r) + Zv†(r) + 1

2
Z†Z ∇ ·v(r)

+ 1

2
Z†2∂v(r) + 1

2
Z2∂†v†(r) + . . . . (15)

(For conciseness, we suppress magnetic length � → 1 from
now on, taking it as a basic length unit, and recover it,
when appropriate.) Remarkably, the transformed field vG ≈
v − [Z, S], to first order in v, is expressed in terms of multi-
poles of magnetic field bz(r) alone,

vG O(v)= −i
∞∑

s=0

[
1

2
F 01

s +
∞∑

r=1

F 0,r+1
s (∂†)r

]
γp(∂†∂ )s bz(r),

= −i

{
1

2
Z bz(r) + 1

2
Z2∂†bz(r) + O(∂3)

}
, (16)

where O(∂3) denotes terms involving three powers of deriva-
tives or more acting on v(r). At the same time, eAG

0 = eA0 +
Ṡ + i[S, eA0] + i 1

2 [S, Ṡ] + . . . (with Ṡ ≡ ∂t S), to O(v), is ex-
pressed in terms of A0 and E = (Ex, Ey),

AG
0

O(v)= γpA0(r) −
∑
s=0

Fs+1
1

2
γp (∂†∂ )s∇ ·E(r)

−
∑
s=0

∑
r=1

γp(∂∂†)s
{
F r0

s ∂ r−1E + F 0r
s (∂†)r−1E†

}
,

= γpA0(r) − Z†Z
1

2
∇ ·E − Z†E − Z E† + . . . , (17)

where E = E (r) and E† = E†(r).

The gauge transformation ψ → ψG = Gψ leads to the
one-body Hamiltonian HG = ∫

dy0ψ
†
GHGψG, with

HG = ωc

(
Z†Z + 1

2

)
− eAG

0 + ωc(vG)†vG

+ ωc

∞∑
s=0

[
(s+1)Ds+1+ 1

2
Ds

]
(∂†∂ )sγp bz(r),

(18)

where Ds = Ds[∂] for short. It is clear that HG is exactly
diagonalized [in orbitals (m, n)] to first order in v and A0; the
off-diagonal pieces eventually lead to (diagonal) corrections
of O(v2), O(A2

0), and O(vA0). Of our particular interest are
O(vA0) terms that govern how the current flows when the
electrons are driven by an electric field Ej = −∂ jA0 − ∂t a j .
One such O(vA0) term comes from −eAG

0 
 −i[S, eA0 + Ṡ],
with the diagonal piece

HvA =
∞∑

s=0

Fs{(∂†∂ )sγp v(r)}×eE(r) + O(∇2A0); (19)

v × E = vxEy − vyEx. Here we have retained only terms in-
volving a single derivative of A0, assuming its gentle spatial
variations. Accordingly we now try to diagonalize HG to
O(v∂A0) (while keeping full multipoles of v). Let us first
eliminate the O(E ) off-diagonal piece in HG,

�offHG = eE (r) Z† + eE†(r) Z + O(∂2), (20)

by a further W∞ rotation ψG → ψ̂ = G2 ψG = G2G ψ , with
G2 = eiS2 and

S2 = −iβ[bz]{E (r)Z† − E†(r)Z} + . . . , (21)

where β[bz] = (e/ωc){1 − (1 + 1
2∂†∂ ) bz(r)}. The off-

diagonal portion in the ωc(. . .)bz(r) term of HG thereby
yields another diagonal piece of O(v∂A0),

H(2)
vA = − eE(r) ·

∑
s=0

�s(∂
†∂ )sγp∇ bz(r), (22)

where �s = (s + 1)Fs+1 + Fs/2; �0 = Z†Z + 1/2. (Note for-
mulas [F 0r

s , Z†] = F 0,r−1
s , [F 0r

s , Z] = −F 0,r+1
s−1 , etc.)

Let us denote by Ĥ = ∫
dy0ψ̂Ĥψ̂ with Ĥ =

G2HGG−1
2 |diag the resulting Hamiltonian diagonal to O(v),

O(A0), and O(v∇A0). For static potentials (with v̇ = Ȧ0 = 0),
Ĥ is neatly written as

Ĥ = ωc
(
Z†Z + 1

2

) − eF̂A0 + ωc�̂ bz(r)

− eE(r) × F̂ v(r) − eE(r) · �̂ ∇ bz(r) (23)

with F̂ = ∑∞
s=0 Fs(∂†∂ )sγp and �̂ = ∑∞

s=0 �s(∂†∂ )sγp. Not-
ing Eq. (9) one can project F̂ and �̂ to each level n,

kn(ξ ) ≡ [F̂ ]nn = e− 1
2 ξ Ln(ξ ),

hn(ξ ) ≡ [�̂]nn = e− 1
2 ξ

{
L1

n−1(ξ ) + 1
2 Ln(ξ )

}
(24)

with ξ ≡ −�2∂†∂ and L1
n−1(ξ ) = −(d/dξ )Ln(ξ ); kn(ξ ) =

1 − (n + 1
2 )ξ + 1

8 (2n2 + 2n + 1)ξ 2 + . . . and hn(0) = n + 1
2 .

Note that hn(ξ ) = −(d/dξ )kn(ξ ) holds.
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FIG. 1. (a) Cross section of a sample under the control of gates.
(b) Potential wall induced by a static potential A0(y).

III. EDGE CURRENTS

In this section we study equilibrium current distributions
in a QH system with edges. Figure 1 illustrates the Hall
bar sample we consider. It extends homogeneously in the x
direction while, in the y direction, it is divided into three
domains under the control of three sets of gates (G, G′). In
each domain the potential A0(y) is taken to be flat, except for
the (left/right) edge portions where A0(y) connects the adja-
cent domains smoothly. We thus use it to simulate a potential
wall W (y) ≡ −eA0(y) that confines electrons in some lower
Landau levels. We suppose a gentle edge ∼∂yA0(y) so that the
basic features of bulk Landau levels remain intact. In such a
static setting it suffices to adopt a potential vx(y) = e�ax(y),
that depends only on y, to detect the (x-averaged) current
jx(y) = (1/Lx )

∫
dx jx(x, y) (with Lx = ∫

dx) flowing along
the gate-induced edges.

The electric current j = ( jx, jy) = −δH/δa is read from
the Hamiltonian through terms linear in aj . The current and
charge, coupled to potentials (v, A0), in the original ψn(y0)
basis induce Landau-level mixing. The transformation ψ →
ψ̂ = G2G ψ resolves such level mixing to O(v) and O(v∂A0)
for Ĥ in Eq. (23), and the current distribution is directly read
from it by taking a ground-state expectation value 〈Ĥ〉.

Let us now take a static setting r → y0, v(r) → vx(y0) and
bz → −�∂y0vx(y0) ≡ −� v′

x (y0) and project Ĥ to each level n.
Then Ĥ is cast in the form

Ĥ =
∫

dy0

∑
n

{
εn(y0) + Hv

n (y0)
}
ρ̂n(y0), (25)

εn(y0) =
(

n + 1

2

)
ωc + kn(ξ )W (y0),

≈
(

n + 1

2

){
ωc + 1

2
�2W ′′(y0)

}
+ W (y0), (26)

Hv
n (y0) = −ωc� hn(ξ ) v′

x(y0)

+ �W ′(y0) {kn(ξ ) − 2ξ hn(ξ )} vx(y0), (27)

where ξ ≡ −�2∂†∂ = 1
2�2 p2

y is a derivative operator acting
on vx(y0) and W (y0); W ′(y0) ≡ ∂y0W (y0). Here ρ̂n(y0) =
ψ̂n†(y0)ψ̂n(y0) is the electron density of the (n, y0) mode
with the spectrum εn(y0) in the presence of a potential
wall W (y).

Varying Ĥ with respect to ax(y0) yields the x-averaged
current density in the eigenmode space {n, y0}. Let us, for the

moment, take only the lowest multipoles,

j (0)
x [y0] = −(e�2/Lx )

∑
n

I (0)
n (y0),

I (0)
n (y0) = ωc

(
n + 1

2

)
∂y0 ρ̂n(y0) + W ′(y0)ρ̂n(y0). (28)

Actually, j (0)
x [y0], in this operator form, confirms the result of

an earlier Green’s-function analysis of Ref. [14]. The current
(density) consists of two components, (i) an “edge” current
j (c) ∝ ∂y0 ρ̂n(y0) driven by a change in the electron density
and (ii) a “bulk” current j (d) ∝ W ′ driven by a field W ′(y0) =
eEy(y0). For clarity, we call j (c) a “circulating” current since
it comes from the cyclotron motion of electrons, as elaborated
on later. Similarly, we call j (d) a “drift” current. The current
carried by a given ground state is calculated by taking an
expectation value 〈 jx[y0]〉. Obviously 〈 j (d)[y0]〉 and 〈 j (c)[y0]〉
both vanish deep in the sample interior, where W ′(y0) → 0
and 〈ρ̂(y0)〉 → constant.

For clarity, let us hereafter focus on one edge of a sample.
We suppose that W (y) = 0 deep in the bulk y � 0 and that
W (y) rises as y → 0 and accommodates a few lower Landau
levels in the edge region y ∼ 0 and inward. Each filled level
is characterized by a filled domain {y0; y0 � y+

0;n} and the
boundary y+

0;n is fixed from the spectrum εn(y+
0;n) = εF for a

given value of the Fermi energy εF. Each filled domain has a
constant density 〈ρ̂n(y0)〉/Lx = ρ̄ = 1/(2π�2) owing to Fermi
statistics.

Due to this simple density profile in the y0 space, the total
amount of current jx[y0] per edge y ∼ 0 is calculable from the
lowest multipole j (0)

x [y0]. For each filled level n,

J (c)
n =

∫
dy0

〈
j (c)
n [y0]

〉 = eωc

2π
(n + 1/2), (29)

J (d)
n =

∫
dy0

〈
j (d)
n [y0]

〉 = − e

2π
W (y+

0;n). (30)

The drift current J (d) = ∑
n J (d)

n is governed by Hall voltages
∝ W (y+

0;n) acting on each level n across the edge region and
by Hall conductance σxy = −e2/(2π h̄) per level. The two
currents in general flow in opposite directions, J (c)

n > 0 and
J (d)

n < 0 at the present edge. In equilibrium, they simply cir-
culate along the sample edges.

It is the current distribution 〈 jx(y)〉 in the real space x that is
directly observable. To derive it let us go back to Ĥ in Eq. (25)
and try to switch from vx(y0) to the potential vx(y) in the real
y space through its Fourier transform vx[py]. One can rewrite,
e.g.,

kn(ξ ) vx(y0) =
∫

dy vx(y)
∑

q

eiq(y0−y)kn

(
1

2
�2q2

)
; (31)

∑
q = ∫

dq/(2π ). It turns out that the Fourier transforms of
kn(ξ ) and hn(ξ ) are related to the harmonic-oscillator wave
functions φn(y) = e− 1

2 (y/�)2
Hn(y/�)/

√
n! 2n

√
π �,∑

q

e−iqy

{
kn

(
1

2
q2

)
, hn

(
1

2
q2

)}
= {|φn(y)|2,�n(y)}, (32)

�n(y) = 1

2
|φn(y)|2 + |φn−1(y)|2 + . . . + |φ0(y)|2, (33)
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∑
q

e−iqy− 1
4 q2

L1
n−1

(
1

2
q2

)
=

n−1∑
m=0

|φm(y)|2. (34)

See Appendix B for a derivation of these formulas. From the
equality ∂ξ kn(ξ ) = −hn(ξ ) follows the relation

�2∂y�n(y) = −y|φn(y)|2, (35)

which then leads to the Fourier transform Rn(y) =∑
q e−iqy{kn( 1

2 q2) − q2hn( 1
2 q2)}, with

Rn(y) = |φn(y)|2 − ∂y{y|φn(y)|2}. (36)

Those fields {φn(y)} are localized in y with a spread of a few
magnetic lengths.

The real-space current operator is thereby written as

jx(y) = −e�2

Lx

∑
n

∫
dy0 ρ̂n(y0)În(y − y0),

În(y) = ωc∂y�n(y) + W ′(y0) Rn(y). (37)

This leads to the current distributions of each filled level n in
the edge region y ∼ 0,

〈
j (c)
n (y)

〉 = eωc

2π�2

∫ y+
0;n

dy0(y − y0)|φn(y − y0)|2, (38)

〈
j (d)
n (y)

〉 = − e

2π

∫ y+
0;n

dy0 W ′(y0) Rn(y − y0). (39)

In view of Eq. (35), the distribution of the circulating current
j (c)(y) = ∑

n j (c)
n (y) is explicitly evaluated,

〈 j (c)(y)〉 = eωc

2π

∑
n

�n(y − y+
0;n), (40)

with
∫

dy 〈 j (c)(y)〉 = (eωc/2π )
∑

n(n + 1/2). Its profile is lo-
calized only in the vicinity of the boundary positions y = y+

0;n
of filled levels with a spread of a few magnetic lengths and
each pronounced profile of height ∝ (n + 1/2) moves towards
the edge with increasing filling ∼εF.

This j (c)(y) comes from the −∂y0vx(y0) ∼ bz(y0) term in
Hv

n (y0) of Eq. (27), which represents a magnetic moment

mn = −e�2ωc hn(ξ → 0) = −e�2ωc(n + 1/2) < 0 (41)

induced by an orbiting electron of level n. The associated
circulating current cancels out locally in a filled domain [as
seen from Eq. (38)] while it survives as j (c)(y) along the
periphery. Actually it is instructive to see this by extracting
the magnetization density from Hv

n (y0),

Mz
n(y) = −(e�2ωc/Lx )

∫
dy0 ρ̂n(y0) �n(y − y0). (42)

The current j(m) = ∇ × M associated [22] with magnetization
M then reads j (m)

x (y) = ∑
n ∂yMz

n(y), which precisely yields
j (c)(y); j (c)(y) is diamagnetic in nature [23] with mn < 0. It
is clear now why j (c)

n (y) is localized only in the periphery
of a densely populated domain with a small spread and car-
ries a fixed amount J (c)

n = (eωc/2π )(n + 1/2) = −ρ̄ mn per
level; these properties come from the Landau quantization
of cyclotron motion. Note that J (c)

n is directly related to the
magnetization (in the bulk) M (c)

n ≡ 〈Mz
n(y)〉 = −J (c)

n .

As for the drift current 〈 j (d)
n (y)〉, let us first note that, in its

y0 integral, the −∂y{y|φn(y)|2} portion of Rn(y) is explicitly
integrated [to O(W ′)] to yield

−W ′(y+
0;n) (y − y+

0;n) |φn(y − y+
0;n)|2, (43)

which is sizable and oscillating only in the vicinity of y = y+
0;n

and supports no net current. It is further seen that Rn(y) differs
from R0(y), or equally, kn( 1

2 q2) differs from k0( 1
2 q2) = e− 1

4 q2
,

by such integrable components (q2)me− 1
4 q2

. Accordingly, the
drift current 〈 j (d)

n (y)〉 of each filled level shows a gradual and
universal growth〈

j (d)
n (y)

〉 = −(e/2π )W ′(y) + O(W ′′′) (44)

toward the edge and goes to zero rapidly around the bound-
ary y ∼ y+

0;n. Such a localized level-specific rapid change, in
practice, is hardly visible because it overlaps with a prominent
profile �n(y − y+

0;n) of j (c)
n (y).

Actually, it is somewhat arbitrary how to divide the current
jx(y) into j (c)(y) and j (d)(y). One may include, e.g., the in-
tegrable portion in Eq. (43) into j (c)

n (y), without affecting the
total amount J (c)

n .
The drift current j (d)

n (y) varies in distribution depending on
the shape of edge potential W (y). Still its integrated amount
J (d)

n = ∫
dy 〈 j (d)

n (y)〉 is essentially fixed by the filling at the
edge ∼εF,

J (d)
n = −(e/2π )W (y+

0;n) ≈ −(e/2π ) (εF − εn) (45)

for εF > εn = (n + 1/2) ωc. In contrast, the circulating cur-
rent J (c)

n = (eωc/2π ) (n + 1/2) is insensitive to εF, and easily
evades detection in global measurements.

It will be worth noting here that Eq. (38) follows from the
(x-integrated) current in the original �(x) basis∫

dx jx(x) = −eωc

∫
dx �†(x)(y0 − y)�(x) (46)

by substituting an eigenmode �N (x) ≈ 〈x|y0〉φn(y − y0) valid
to O(E0), constructed from the N ≡ (n, y0) mode of Ĥ via
�(x) = ∑

N ′ 〈x|N ′〉[(GG2)−1]N ′N ψ̂N . It is clear that the step
ψ̂n(y0) → �N (x) offers an alternative path to the current dis-
tributions in Eqs. (38) and (39).

For numerical simulations we adopt a potential of the form

W (y) = Wh {1 + tanh(λ y/�)}/2 (47)

and take Wh = 6 ωc and λ = 1/20; �W ′(0)/ωc ∼ 0.15 and
W ′′(y) is negligibly small. As seen from Fig. 2(a), this po-
tential accommodates the edge modes of the n = (0, 1, 2)
levels over the domain −50� � y � 0 of the y axis. We write
εF = ωc(nf + 1/2) and use an effective factor nf to specify
their filling at the edge.

Figure 2(b) shows the equilibrium current distributions
at some fillings nf ∈ [0.1, 2.1]. The diamagnetic circulat-
ing currents 〈 j (c)

n (y)〉 always flow fast with sharp profiles
∝ �n(y − y+

0;n) along the periphery of filled domains and
their positions are in one-to-one correspondence with the
spectra [in Fig. 2(a)]. The drift currents 〈 j (d)

n (y)〉, acting as
paramagnetic ones, arise only in the edge region, and grad-
ually grow with a broad profile ∝ −W ′(y) toward the edge
boundaries y ∼ y+

0;n. In the edge region the circulating currents
j (c)
n (y) appear one after another at integer intervals �nf = 1
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FIG. 2. (a) Spectra of edge modes. (b) Current distributions,
j (c)(y) + j (d)(y), at some edge fillings nf ∈ [0.1, 2.1]. The drift cur-
rent j (d)

n (y) gradually grows ∝ W ′(y) toward the edge boundary
y ∼ y+

0;n. The circulating one j (c)(y) keeps level-specific localized
profiles �n(y − y+

0;n), which move with y+
0;n as nf is varied. (c) j (c)(y)

and j (d)(y) compete in the total amount with increasing filling nf .
(d) Orbital magnetization M oscillates as a function of the total filling
factor ν.

over a broad background of j (d)(y) of opposite polarity, thus
forming an alternating pattern of current channels, and they
move toward the edge with increasing filling nf , in qualita-
tive agreement with observations [20]. While j (c) and j (d)

locally differ in distribution, they compete in the total amount,
as seen from Fig. 2(c); J = J (c) + J (d) changes sign across
nf ≈ 0.5, 1.5, 2.5, . . .. In terms of the total filling factor ν, J (c)

n
begins to flow for ν > n while J (d)

n arises slightly below ν =
n + 1 and increases with ν. Figure 2(d) depicts how the as-
sociated magnetization M = M (c) + M (d) = −J (c) − J (d) (in
units of −eωc/2π ) oscillates with increasing ν.

IV. COULOMB INTERACTION

In this section we study many-body effects on current dis-
tributions. The Coulomb interaction is denoted as

Vc[ρ] = 1

2

∑
p

vC
p : ρ−p ρp :, (48)

with the potential vC
p = 2παe/(εb|p|), αe ≡ e2/(4πε0) and

the substrate dielectric constant εb; normal ordering stands for

: (ψm†ψn)(ψm′†ψn′
) : ∼ ψm′†ψm†ψnψn′

. The electron den-
sity ρ−p = ∫

d2x eip·x �†� is rewritten as

ρ−p =
∫

dy0 [eip·X]mn Rmn
−p(y0), (49)

Rmn
−p(y0) = ψm†(y0) eip·rψn(y0), (50)

where [eip·X]mn = γp f mn
p with f mn

p defined in Eq. (8). The
charge operators Rmn

−p and form-factor matrices [eip·X]mn both
obey the W∞ algebra [24].

Upon the W∞ transformation ψ → ψ̂ ≡ G2Gψ , the charge
density ρ−p = ρ̂−p + δρ̂−p acquires modifications of O(v),
O(vA′

0), etc. Thus, in the ψ̂ basis, the current operator directly
depends on the Coulomb interaction.

Let us examine such modifications in a static setting of
potentials v(r) → vx(y0) and A0(r) → A0(y0). For simplifi-
cation, we retain terms up to O(v′

x ) and O(A′
0) for δρ̂−p, and

thus consider [as done for j (0)
x [y0] in Eq, (28)] the amount

of edge currents rather than their detailed spatial distribu-
tions. The relevant correction δρ̂−p consists of three terms,
δ1ρ̂−p + δ2ρ̂−p + δ2δ1ρ̂−p: (i) δ1ρ−p = i

∫
dy0 ψ̂†[S, eip·x] ψ̂

comes from the first rotation G = eiS of Eq. (14),

δ1ρ̂−p ≈ i
∫

dy0 ψ̂† �(1)
p eip·Xeip·rψ̂ ∼ O(v), (51)

�(1)
p = py

{
vx(y0) − 1

2
pxv

′
x(y0)

} + 1

2
v′

x(y0) (p ·X). (52)

(ii) δ2ρ−p = i
∫

dy0 ψ̂†[S2, eip·x] ψ̂ comes from the second
rotation G2 with S2 ≈ C(y0) P of Eq. (21),

δ2ρ̂−p ≈ i
∫

dy0 ψ̂† �(2)
p eip·Xeip·rψ̂ ∼ O(A′

0), (53)

�(2)
p = [S2, eip·x]e−ip·x = pyC

′(y0), (54)

where C(y0) = (e/ωc){1 − bz(y0)}A0(y0) and C′ = ∂y0C.
(iii) δ2δ1ρ̂−p = i2

∫
dy0 ψ̂† [S2, �

(1)
p eip·x] ψ̂ denotes correc-

tions of O(vA′
0) obtained from δ1ρ̂−p by a further rotation G2,

δ2δ1ρ̂−p ≈ −
∫

dy0 ψ̂†
{[

S2, �
(1)
p

] + �(1)
p �(2)

p

}
eip·x ψ̂, (55)

where [S2, �
(1)
p ] ≈ −ipy

1
2v′

x(y0)C′(y0). The resulting modi-
fications to the interaction Vc[ρ] = Vc[ρ̂] + δIVc + δIIVc are
divided into the following two sets:

δIVc =
∑

p

vC
p : {(δ1ρ̂−p) ρ̂p + (δ2ρ̂−p) ρ̂p} :,

δIIVc =
∑

p

vC
p : {(δ2ρ̂−p) δ1ρ̂p + ρ̂−p δ2δ1ρ̂p} : . (56)

Here δIIVc ∝ vxA′
0 represents two different sources of the drift

current j (d) driven by field Ey = −A′
0(y). They combine to

essentially vanish, as we see below.
In general, Vc[ρ] has both direct and exchange interactions

at the quantum level. The direct interaction plays no role when
a neutralizing background is taken into account. For 2D elec-
trons in a magnetic field, it is possible to rearrange Vc[ρ] into
a form of exchange interaction [25]: The Coulomb interaction
between two charges, each having form factor f jk (y0) and
gmn(y0), is cast into a form of manifest exchange interaction
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as follows:∑
p

vC
p

∫
dy0 f jk (y0):R̂ jk

−p(y0)
∫

dz0 gmn(z0)R̂mn
p (z0) :,

= − 1

ρ̄

∑
k

∫
dy0P jk;mn

y0;k :R̂ jn
−k(y0)

∫
dz0 R̂mk

k (z0) :,

≈ − 1

ρ̄

∑
k

∫
dy0 Pnm;mn

y0;k :R̂nn
−k(y0)

∫
dz0 R̂mm

k (z0) :,

(57)

where R̂mn
−p(y0) = ψ̂m†(y0) eip·rψ̂n(y0) and ρ̄ = 1/(2π�2).

The new form factor is written as

P jk;mn
y0;k =

∑
p

vC
p e−i�2p×k f jk (y0) gmn

(
y[px+kx]

0

)
, (58)

where y[px+kx]
0 ≡ y0 − �2(px + kx ). See Appendix C for a

derivation of this formula. Relevant to our present analysis is
the last line of Eq. (57), that retains only the leading diagonal
charges R̂nn

−k and R̂mm
k .

Upon rearrangement, the : (δ2ρ̂−p) δ1ρ̂p : term in δIIVc ac-
quires a form factor involving a product

−[
�(2)

p eip·X]nm [
�

(1)
−p

∣∣
y0→y[px+kx ]

0
e−ip·X]mn

. (59)

With �
(2)
±p ∝ ±py, this term cancels out the corresponding

term ∝ −[eip·X]
nm

[(�(1)
−p �

(2)
−p)|y0→y[px+kx ]

0
e−ip·X]

mn
in

:ρ̂−p δ2δ1ρ̂p: of Eq. (55), apart from terms of O(C′′) ∼
O(A′′

0 ) + O(v′′′
x A0) beyond our present concern.

The remaining term in δIIVc involves [S2, �
(1)
p ] ∝

pyv
′
x(y0)C′(y0), which, upon integration over p in Pmn;nm

y0;k ,
becomes ∝ kx O(v′

xA′
0). (Note here that [eip·X]nm[e−ip·X]mn =

γ 2
p | f mn

p |2 is a function of p2.) Such kx-dependent terms are
sensitive to spatial x variations and do not contribute to the x-
averaged (i.e., kx → 0) current jx[y0] of our present concern.
For the same reason terms involving odd powers of py in δIVc

cease to contribute to jx. Here we learn that the Coulomb
interaction leaves the drift current j (d)[y0] unaffected. As a
result, Eqs. (30), (44), and (45) hold as they are [26].

On the other hand, the last term 1
2v′

x(y0) (p ·X) in �(1)
p

survives and leads to the interaction

�Vc ≈ 1

ρ̄

∑
k

Qmn
k

∫
dy0 v′

x(y0) R̂nn
−k(y0)

∫
dz0 R̂mm

k (z0),

(60)
with

Qmn
k = 1

2

∑
p

e−i�2p×k vC
p γ 2

p wmn
p , (61)

wmn
p = −i[(p ·X) fp]mn f nm

−p . (62)

Here the factors wmn
p are functions of ξ ≡ 1

2�2p2;
wmn

p = (n!/m!) ξm−n {ξLm−n+1
n (ξ ) − m Lm−n−1

n (ξ )}Lm−n
n (ξ );

w00
p = ξ , w10

p = w01
p = ξ (ξ − 1), etc. Direct calculations

yield, e.g.,

(
Q00

k→0, Q10
0 , Q11

0

) = Ṽc

(
1

4
,

1

8
,

3

16

)
, Ṽc = αe

εb �

√
π

2
. (63)

Obviously this �Vc ∝ bz represents Coulombic corrections
to orbital magnetization, and thus also contributes to j (c)(y). A
simple estimate is to consider the expectation value 〈�Vc〉 and
approximate the density of a filled level by

∫
dz0〈R̂mm

k (z0)〉 ≈
ρ̄ (2π )2δ2(k), i.e., by that in the sample bulk,

〈�Vc〉 ≈
∑
n,m

Qmn
k→0

∫
dy0 � v′

x(y0) 〈ρ̂n(y0)〉. (64)

This leads to the corrections to the magnetic moment mn =
−e�2ωc(n + 1/2) of an electron in the bulk

�mn = e�2
∑

m

Qmn
k→0, (65)

where the sum is taken over filled levels {m}. The Coulomb
interaction thus generally works to reduce orbital magneti-
zation mn → mn + �mn and the associated current J (c)

n →
−ρ̄ (mn + �mn) to some extent.

V. GRAPHENE

In this section we consider the case of graphene. The elec-
trons in graphene are described by two-component spinors on
two inequivalent lattice sites. They acquire a linear spectrum
(with velocity vF ∼ 10 6 m /s) near the two inequivalent Fermi
points (K, K ′) in momentum space, with an effective Hamil-
tonian of the form [27],

H =
∫

d2x {�†
+H+�+ + �

†
−H−�−},

H± = vF (�xσ
1 + �yσ

2) ± δm σ 3 − eA0, (66)

where �i = pi + eAi and σ i denote Pauli matrices. The
Hamiltonians H± describe electrons in two different valleys
a ∈ (K, K ′) per spin, and δm stands for a possible sublattice
asymmetry; we take δm > 0, without loss of generality. Ac-
tually, valley asymmetry of a few percent is inferred from
experiments [28,29] using high-mobility graphene/hexagonal
boron nitride (hBN) devices.

Let us place graphene in a uniform magnetic field Bz =
B > 0 and include also weak potentials v(x) = e� {ay(x) +
iax(x)}/√2 and A0(x). In the | |n|, y0〉 basis, the Hamiltonian
H+ in valley K is written as

H+ = ωc

(
μ −Z− iv(x)

−Z†+ iv†(x) −μ

)
− eA0(x), (67)

where Z = (Y + iP)/
√

2;

ωc ≡
√

2 vF/� and μ ≡ δm/ωc. (68)

For v = A0 = 0, the electron spectrum forms an infinite
tower of Landau levels of energy

εn = ωcen and en ≡ sn

√
|n| + μ2 (69)

in each valley (with sn ≡ sgn[n] = ±1), labeled by integers
n ∈ (0,±1,±2, . . . ) and y0 = �2 px, of which only the n = 0
(zero-mode) levels split in the valley (hence to be denoted as
n = 0∓),

ε0∓ = ∓δm = ∓ωc μ for K/K ′. (70)

Thus, for each integer |n| ≡ N = 0, 1, 2, . . . (we use capital
letters for the absolute values), there are in general two modes
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with n = ±N (of positive/negative energy) per valley and
spin, apart from the n = 0± modes.

The eigenmodes in valley K are written as [30]

�n
y0

(x)|K = (〈x|N −1, y0〉 bn, 〈x|N, y0〉 cn)t, (71)

with (bn, cn)t given by the (normalized) eigenvectors of the
reduced (numerical) matrix H+|red

N obtained from H+|v=A0=0

by replacing Z, Z† → √
N . In explicit form,

(bn, cn) = 1√
2

(√
1 + μ

en
,−sn

√
1 − μ

en

)
, (72)

and (b0− , c0− ) = (0, 1).
One can pass to another valley K ′ by simply setting μ →

−μ since H− = H+|−μ holds, where O|−μ signifies reversing
the sign of μ in O. Actually, the electron and hole spectra are
intimately related, via electron-hole (e-h) symmetry, between
valleys (K, K ′) and also within each valley. Let εK

n [μ, A0]
denote the spectrum of level n in valley K for a given
(μ, A0). The unitary equivalence σ 3 H−σ 3 = −H+|−A0 and
σ 3 H+σ 3 = −H+|−A0,−μ then implies the following relations:

εK
n [μ, A0] = −εK ′

−n[μ,−A0] = −εK
−n[−μ,−A0] (73)

as well as εK ′
n [μ, A0] = εK

n [−μ, A0]. For notational clarity,
we henceforth suppress obvious valley (and spin) labels, and
mainly present K-valley expressions.

Let us now turn on (v, A0) and expand �+(x) =∑
y0,n

�n
y0

(x) ψn(y0) in terms of {�n
y0

(x)}. The one-body
Hamiltonian H+ is then written as [30]

H =
∫

dy0 ψm†(y0)Hmnψn(y0),

H = ωc{−b (Z + iv) c − c (Z† − iv†) b

+ μ (b b − c c)} − e b A0 b − e c A0 c, (74)

where v = v(x) and A0 = A0(x) with x = X + r; orbital la-
bels (m, n) now run over all integers (0,±1,±2, . . .). Here
we have introduced condensed notation: For Hmn we interpret,
e.g.,

b Z c → bm ZM−1,N cn, bv c → bm [v(x)]M−1,N cn,

b b → bm 1M−1,N−1 bn, c c → cm 1M,N cn,

c A0 c → cm [A0(x)]M,N cn, etc., (75)

with M = |m|, N = |n|, ZMN ≡ √
N δM,N−1, [v(x)]M,N ≡

〈M|v(x)|N〉, 1M,N ≡ δM,N , etc.
In each N sector, the associated eigenvectors form an or-

thogonal matrix ((bN , cN )t, (b−N , c−N )t ). Obviously the row
vectors also form an orthonormal set, which we denote as
b ∼ (bN , b−N )t and c ∼ (cN , c−N )t. We write their inner prod-
ucts (e.g., b · b ≡ bN bN + b−N b−N ) as

b · b = c · c = 1, b · c = c · b = 0 (76)

for each N and subsequently for all N = 0, 1, 2, . . .. [For the
N = 0 sector one only has c0∓ = ±1 (and b b = 0); in most
cases b0 = 0 is automatically eliminated via the associated
matrix elements like cm1M,N−1 bn.] In this way, the orbital
space {n} is decomposed into two subspaces referring to (b, c).

Note that (b b)mn and (c c)mn, defined in Eq. (75), act as pro-
jection operators,

b b · b b = b b, c c · c c = c c, b b + c c = 1. (77)

In addition, (bb − cc, bc, cb) obey formally the same algebra,
e.g., [bc, cb] = bb − cc, as (σ3, σ+, σ−); σ± = (σ1 ± iσ2)/2.
The SU(2) spinor structure of the Dirac Hamiltonian is thus
projected onto the (b, c) sectors of infinite dimensions. Such
algebraic features are naturally shared by multilayers of
graphene as well.

Inner products play a role in multiplication. Note, e.g.,
b O1b · b O2b = b O1O2 b (= bm(O1O2)M−1,N−1bn), c O1c ·
c O2c = c (O1O2)c, and O b · c O′ = 0. These features suggest
how to generalize the W∞ rotations ψM

U = U MNψN in the
|N, y0〉 basis of Sec. II, to the present spinor case. We extend
them to ψn(y0) by setting

ψU = Uψ with U = bUb + c Uc. (78)

This U , when acting on H in Eq. (74), induces rotations in the
|N, y0〉 basis, e.g.,

U · b (Z + iv) c · U† = b(U (Z + iv)U †)c, (79)

and U · bOb· U† = b (UOU †)b, while retaining the
(bc, cb, bb, cc) outer structures intact,

U (bc, cb, bb, cc)U† = (bc, cb, bb, cc). (80)

Let us also project (Z, Z†) into the (b, c) space by setting

Z = b Zb + c Zc, Z† = b Z†b + c Z†c, (81)

which obey the same algebra as (Z, Z†), with [Z,Z†] = 1;
Zmn ∝ δM,N−1, etc. A given W∞ rotation U (Z, Z†) in the
(N, y0) basis is then immediately promoted to U in the (n, y0)
space by replacing (Z, Z†) → (Z,Z†) in U . One can thus
write the field transformation law as

ψm
U (y0) = [U (Z,Z†; r)]mn ψn(y0). (82)

It is also possible to express the Hamiltonian H itself in terms
of (Z,Z†),

H[v, A0] = ωc{−bc · (Z + iv) − (Z† − iv†) · cb

+ μ (bb − cc)} − eA0, (83)

where v and A0 stand for v(x) and A0(x) with obvious replace-
ment (Z, Z†) → (Z,Z†) in the argument x = X + r.

The basic framework of W∞ gauge theory, including
the gauge transformation G = eiS , vG and AG

0 , developed
in Sec. II, is now naturally adapted to the present spinor
case by simple replacement (Z, Z†) → (Z,Z†). In particu-
lar, via the gauge transformation ψ → ψG = G ψ , with G =
G[Z,Z†], the Hamiltonian H[v, A0] in Eq. (83) turns into
HG ≡ H[vG, AG

0 ], which is diagonal in the sectors ∝ δMN to
O(v), O(A0), and O(v∂A0). A critical departure from the case
of Sec. II arises when one eliminates the off-diagonal portion
�offHG = eE (r)Z† + eE†(r)Z + . . . by a further transfor-
mation G2 = eiS2 , with

Smn
2 = −i

e

ωc
(em + en){E (r) (Z†)mn − E†(r)Zmn}. (84)

This is a sensible unitary transformation but not written as a
W∞ transformation. [It is the presence of bc and cb that does
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not allow diagonalization of H[v, A0] by W∞ transformations
alone.] This Smn

2 gives rise to another O(v∂A0) piece, such as
H(2)

vA in Eq. (22). For the N = 0 sector, e.g., it takes the form

[
H(2)

vA

]00 = μ eE(r) · ∇ γp bz(r). (85)

Such terms contribute to the drift current j (d)(y) as integrable
and oscillating components, which, as discussed in Sec. III,
are sizable only in the vicinities of the edge boundaries y ∼
y+

0;n and are made practically invisible by the dominant profile
of j (c)(y). For this reason and for simplification we omit them
in our analysis below.

Let us now denote the diagonal portion as Ĥ =∫
dy0ψ̂

†Ĥψ̂ , with ψ̂ = G2Gψ and Ĥ = G2HGG−1
2 |diag, and

take a static setting v → vx(y0) and −eA0 → W (y0). Project-
ing Ĥ into diagonal sectors {N} then yields

Ĥmn ≈ εnδ
mn + δMN [kN (ξ )]mnW (y0)

− δM,N ωc
1
2

[
h1

N (ξ )
]mn

bz(y0)

+ δMN�W ′(y0) [kN (ξ )]mnvx(y0), (86)

where [kN (ξ )]mn ≡ bmkN−1(ξ )bn + cmkN (ξ )cn and [h1
N (ξ )]mn

≡ (bm cn + cm bn) (1/
√

N ) e− 1
2 ξ L1

N−1(ξ ); [kN (0)]mn = δmn

and [h1
N (0)]mn = √

N (bm cn + cm bn).
There is a level mixing due to Hn,−n within the sector {N �

1}, but it eventually leads to corrections ∼O(v′′′
x W ′′) far be-

yond our present concern. The spectra and associated current
are therefore read from the diagonal components Ĥnn ≡ Ĥn

with n = ±N .
In the N = 0 sector n|K = 0− (or n|K ′ = 0+), the associ-

ated spectrum and current are read from

Ĥn=0∓ = ε0∓ [y0] + �W ′(y0) k0(ξ )vx(y0),

ε0∓[y0] ≈ ∓ωcμ + W (y0) + 1
4 �2W ′′(y0). (87)

Here we see no single bz ∼ −v′
x term (since b0 = 0).

This shows that, in graphene, the zero-mode levels n =
(0−|K , 0+|K ′

) carry no orbital magnetization and no circulat-
ing current j (c) while they support a normal amount of drift
current j (d) ∝ W ′(y0). Such features of the N = 0 sector have
been noted and observed [20] in experiment via direct imaging
of local currents.

In the N � 1 sector the spectra are written as

εn[y0] = εn + [bnbnkN−1(ξ ) + cncnkN (ξ )]W (y0),

≈ εn + W (y0) + 1
2

(
N − 1

2 μ̂n
)
�2W ′′(y0), (88)

where μ̂n ≡ μ/en = snμ/
√

N + μ2. From Ĥn one can read
off an orbital magnetic moment of an electron, m̂n =
e�2 ωc

1
2 [h1

N (0)]nn or

m̂n = e�2 ωc

√
Nbncn = −e�2ωcN/(2en). (89)

This m̂n agrees with one, −∂εn/∂B, calculated from the spec-
trum of an electron in the sample interior.

Let us now note Eqs. (32) and (34). Then Ĥn is readily
translated into the edge-current distributions,

〈
j (c)
n (y)

〉 = −eωc

2π

1

2en

∫
dy0 ∂y

N−1∑
m=0

|φm(y − y0)|2, (90)

= eωc

2π

1

2en

N−1∑
m=0

|φm(y − y+
0;n)|2, (91)

〈
j (d)
n (y)

〉 = − e

2π

∫
dy0 W ′(y0) Rnn(y − y0), (92)

with the density profile of the ψ̂n(y0) mode

Rnn(y) = bn |φN−1(y)|2 bn + cn |φN (y)|2 cn. (93)

The filled domain {y0 � y+
0;n} of each level n is fixed by

εn[y+
0;n] = εF for a given εF. The diamagnetic circulating cur-

rent 〈 j (c)
n (y)〉 is again explicitly integrated to have a profile

localized around the edge position y = y+
0;n. For a filled level

n it carries the total amount

J (c)
n =

∫
dy

〈
j (c)
n (y)

〉 = eωc

2π

N

2en
= −ρ̄ m̂n. (94)

The drift component 〈 j (d)
n (y)〉 again exhibits a universal

growth toward the edge, as in Eq. (44), and carries a total
amount J (d)

n = ∫
dy 〈 j (d)

n (y)〉, with

J (d)
n = − e

2π
W (y+

0;n) ≈ − e

2π
(εF − εn) (95)

for εF > εn.
There are an infinite number of Landau levels in graphene.

The neutral ν = 0 state, or the “vacuum” state |0〉, consists
of all filled negative-energy levels, i.e., levels n with n � 0−
in valley K and n � −1 in K ′. The spectra and current are to
be measured relative to this neutral state (in the bulk). In this
picture, in particular, the empty n|K = −N state (hole) is rep-
resented as ψ̂−N (y0)|0〉 and, upon acting on Ĥ , is seen to have
the spectrum −Ĥ−N , which, according to Eq. (73), is equal to
ĤN |−μ,−A0 = ĤN |K ′

−A0
. The n|K = −N hole state therefore has

the same spectrum as the n|K ′ = N electron state in K ′ with the
sign of A0 reversed. It is clear now that the present edge with
W ′(y) = −eA′

0(y) > 0 only confines electron levels. We thus
consider only the ν > 0 case, with n = 0+|K ′

, 1, 2, . . ., below.
The ν < 0 case is simply recovered via e-h conjugation with
e ↔ h and A0 → −A0.

For numerical simulations we again use a potential wall
of Eq. (47) and adopt μ = 0.05 of valley breaking. We ex-
amine equilibrium currents associated with levels n = 0+|K ′

and n = (1, 2)|K,K ′
, with the spin and valley degeneracy νn of

each level n taken into account, i.e., ν0± = 2 and νn = 4 for
|n| � 1, and with small spin splitting set to zero. Let us write
εF = ωc

√
nf + μ2 and specify filling of the edge modes by

nf ; accordingly, 0 < nf < 1 refers to filling of the n = 0+|K ′
↓↑

levels near the total filling factor ν = 2, 1 < nf < 2 to filling
of four n = 1 levels near ν = 6, etc.

Figure 3 presents the current distributions j (c)(y) and
j (d)(y) associated with levels n = 0+, 1, 2. The way the cur-
rent distributions [in Figs. 3(b)–3(d)] change with increasing
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FIG. 3. Graphene. (a) Level spectra in the edge region.
(b) No circulating current j (c)

n=0(y) → 0 arises in the N = 0 sector.
(c)–(d) Edge current distributions, j (c)(y) + j (d)(y).

filling ∼εF ∼ nf is roughly the same as in the case of Fig. 2,
and is again in clear one-to-one correspondence with the edge
spectra [in Fig. 3(a)]. A clear difference is the absence of cir-
culating current j (c)

n=0 → 0 in the N = 0 sector. The decrease
of drift current j (d)

n=0(y) in the vicinity of edge boundary y ∼
y+

0;0 is now visible but the effect of the integrable component
in Eq. (85) is too weak ∼O(μ) to be noticeable in the figure.
Some other differences lie in level-specific profiles of j (c)

n (y)
and their slower growth ∝ √

N with N .
In graphene the paramagnetic drift component j (d) domi-

nates over j (c) in the total amount, as shown in Fig. 4(a). This
does not mean that graphene exhibits orbital paramagnetism.
A key fact is that the ν = 0 vacuum state, consisting of filled
negative-energy sea, has an intrinsic quantum response [31].
In a magnetic field the filled negative-energy sea has the

FIG. 4. Currents and magnetization. (a) Edge current J (c) + J (d)

vs edge filling nf . (b) Orbital magnetization M = Mvac + 〈Mz〉 [in
units of −(eωc/2π ) < 0] vs nf . (c) Magnetization M plotted as a
function of the total filling factor ν. (d) Magnetization vs ν ∝ 1/B
for fixed electron density.

energy density

εB
vac = ρ̄

{
−

Ncut∑
n=1

νnεn − ν0− |δm|
}

. (96)

This is to be compared with the B → 0 vacuum energy εB=0
vac =

−2vF
∑

k

√
k2 + (δm)2, with the Fermi momentum kF cho-

sen to give the same number of negative-energy states, Ns =
k2

F/(2π ) = (2Ncut + 1)ρ̄. The deviation εvac = εB
vac − εB=0

vac is
finite for Ncut → ∞ and is an observable energy shift [31],

εvac = ρ̄ ωc{−4 ζ (−1/2) − 2|μ| + O(μ2)} > 0, (97)

with a zeta function −ζ (−1/2) = ζ (3/2)/(4π ) ≈ 0.2079.
This expression for εvac ∝ B3/2 was also encountered earlier
in thermodynamic calculations [32–34].

Thus in graphene the ν = 0 vacuum state has an intrinsic
diamagnetic response with no associated current (or, with
no charge carriers), and leads to the magnetization per area
Mvac = −∂εvac/∂B ∝ −√

B, with

Mvac = −eωc

2π
{−6 ζ (−1/2) − 3|μ| + O(μ2)} < 0; (98)

−6ζ (−1/2) ≈ 1.2474. With this vacuum contribution in-
cluded, the magnetization M = Mvac + 〈Mz〉 with 〈Mz〉 =
−J (c) − J (d) oscillates between diamagnetism and paramag-
netism (the de Haas-van Alphen oscillations) with increasing
filling ν under fixed B, as depicted in Figs. 4(b) and 4(c). Note
also Fig. 4(d), which shows that when one approaches the
ν = 0 state by increasing B under fixed electron density, M
increases rapidly due to Mvac, as observed recently in experi-
ment [35].

Let us finally examine the effects of Coulomb exchange
interactions. The charge density ρ−p ∝ eip·x is a function of
x and is readily promoted to the {n, y0; b, c} space by re-
placement (Z, Z†) → (Z,Z†) in x. The analysis developed
in Sec. IV applies to the present case of graphene equally
well. Actually, some extra care is needed to handle �(2)

p =
[S2, eip·x]e−ip·x, which, unlike one in Eq. (54), acquires a ma-
trix structure [�(2)

p ]mn �= (. . .) δmn. In Sec. IV we have retained
terms up to O(v′A′

0) for δIIVc. In reality it suffices to keep
terms to O(vA′

0) to determine O(Ṽc) corrections to the inte-
grated drift current J (d). Let us adopt this simplification and
set �(1) → pyvx(y0) in handling δIIVc. Then the discussion
presented around Eq. (59) goes through and the O(vA′

0) terms
combine to vanish, irrespective of the form of �(2)

p ∼ O(A′
0).

One thus eventually reaches the same conclusion as before:
(i) The amount of drift current J (d) remains unaffected by
the Coulomb interaction. (ii) The circulating current J (c) is
affected, and the many-body corrections are again cast in the
form �Vc of Eq. (60), with wMN

p in Eq. (62) replaced by

wmn
p = −i[(pZ† + p†Z ) gp]mngnm

−p, (99)

where g−p = b f−pb + c f−pc. The corrections again take the
form of Coulombic orbital magnetization induced by filled
levels, though, now by an infinite number of levels in the Dirac
sea. Still it is possible to show by direct calculations that the
ν = 0 vacuum state acquires no such Coulombic corrections;
see Appendix D.

In consequence, when the n = 0+|K ′
level (with spin de-

generacy ν0+ = 2) is filled, i.e., as ν → 2, the electrons in the
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n = 0+ level will feel the same amount �m0+ = (1/4)e�2Ṽc

(per spin) of many-body correction to magnetization M as
in the case of Sec. IV. Accordingly, in graphene, when the
lowest N = 0 level is filled, a weak circulating current j (c)

0+ of
many-body origin will arise around y ∼ y+

0;0 and flow in the

same direction as the drift current j (d)
0+ .

VI. SUMMARY AND DISCUSSION

In equilibrium, QH electron systems support two species
of current, j (c) and j (d), forming an alternating pattern of
counterflowing channels of current along the sample edges, as
predicted earlier theoretically [14] and as observed recently in
experiment [20] by use of a nanoscale magnetometer. In this
paper, inspired by such early and recent works, we have ex-
amined distinctive features of these edge currents and derived
their real-space distributions.

The drift current j (d)(y) is essentially a Hall current driven
by a local edge field ∝ W ′(y). Its total amount J (d) is uni-
versally fixed by a sum of Hall potentials ∝ ∑

n(εF − εn) νn

across the edge region and is left unaffected by the Coulomb
interaction, as in the QH effect.

Associated with cyclotron motion of an electron is a
microscopic diamagnetic current. This current cancels out
locally in a densely populated domain while it leaves uni-
form magnetization inside and a circulating current j (c)(y)
along its periphery. The narrow profile �n(y − y+

0;n) of j (c)
n (y)

and the integrated amount Jn = −ρ̄ m̂n are universally fixed
by the level index n and B, reflecting the underlying quan-
tized cyclotron motion, although the Coulomb interaction
affects them to some extent. Intriguingly, as noted in Sec. V,
in graphene the lowest Landau level 
 n = 0∓ supports
no orbital magnetization and hence no circulating current
j (c)
n=0(y) → 0 at the one-body level while a weak current of

many-body origin will arise and flow in the same direction as
the drift current j (d)

0+ (y). It will be a challenge to detect such
direct signals of interaction in graphene.

Observation of the orbital magnetization M offers an indi-
rect way of detecting the equilibrium currents. In particular, its
paramagnetic portion of response M (d) around integer fillings
is due to the edge-driven drift current J (d), and thus implies
the presence of the edge states, which are invisible [23] in
thermodynamic calculations.

Crucial to our analysis is the use of a refined description
of QH systems as a W∞ gauge theory, which allows one to
handle diagonalization of the many-body Hamiltonian accord-
ing to the resolutions of external probes and in a manifestly
gauge invariant way. One can thereby define, e.g., the charge,
current, and magnetization densities in the form of diagonal
operators. Such a framework will also find applications in
some nonperturbative treatments (such as the Hartree-Fock
and single-mode approximations) as well as in perturbation
theory.
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APPENDIX A: W∞ GAUGE TRANSFORMATION G

In this Appendix, we outline the derivation of the
W∞ gauge transformation G = eiS in Eq. (14). Let us
first divide the W∞ generators {(Z†)rZs} into three groups
(of diagonal/off-diagonal matrices): (i) Fs = (Z†)sZs, (ii)
(Z†)rFs, (iii) FsZr for integers s � 0 and r � 1. We expand S
of G = eiS in the form

S =
∞∑

s=1

asFs +
∞∑

s=0

∞∑
r=1

{bsr (Z†)rFs + b∗
srFs Zr}, (A1)

where as are real coefficients and bsr are complex ones. The
gauge field v(x) is expanded in multipoles as

v(x) =
∑
s=0

[
1

(s!)2
Fs + Ds[∂]

]
γp(∂†∂ )sv(r), (A2)

Ds[∂] =
∑
r=1

1

s! (s + r)!
{(Z†)rFs∂

r + FsZ
r (∂†)r}. (A3)

Evaluating the commutator [Z, S] for the transformed field
vG ≈ v − [Z, S] to O(v) yields

[Z, S] = (s + 1)as+1FsZ

+ (s + r)bsr (Z†)r−1Fs + s b∗
srFs−1 Zr+1,

= (s + 1)bs1Fs + (s + r + 1)bs,r+1(Z†)rFs

+ (s + 1)as+1Fs Z + (s + 1) b∗
s+1,rFs Zr+1,

(A4)

where, in each line, summation is made over repeated integers
s � 0 and r � 1 (with the sign

∑
s,r suppressed).

Let us now compare Eqs. (A2) and (A4). On choosing

bsr = 1

s! (s + r)!
γp∂

r−1(∂†∂ )sv(r) (A5)

for s � 0 and r � 1, one can remove the Fs and (Z†)rFs terms
from vG. With this choice of bsr , the FsZr (∂†)r terms (r �
1) in vG take a form proportional to (∂†)r−1(∂†v − ∂v†) =
−i(∂†)r−1bz(r). As for the remaining FsZ∂† terms, the choice
of real parameters an,

(s + 1) as+1 = 1

s! (s + 1)!
γp(∂†∂ )sRe[∂†v(r)] (A6)

for s � 0, eliminates the unfavored real part Re[∂†v(r)] =
1
2∇ ·v(r) from the coefficient ∂†v(r), leaving terms ∝
−i 1

2 bz(r)FsZ . Some adjustment of notation then leads to the
expressions for S in Eq. (14) and vG in Eq. (16).

APPENDIX B: SOME FORMULAS

In this Appendix we present the derivation of Eqs. (32)–
(36). The Fourier transform of kn( 1

2 q2),∑
q

e−iqykn(ξ ) =
∑

q

e−iqy− 1
4 q2

Ln(ξ ) = |φn(y)|2, (B1)

with ξ = 1
2 q2, is readily verified. Let us note the rela-

tion hn(ξ ) = −∂ξ kn(ξ ) and set �n(y) = ∑
q e−iqyhn(ξ ). One

can write ∂qkn(ξ ) = q ∂ξ kn(ξ ) = −q hn(ξ ), which implies the
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relation

∂y�n(y) = −i
∑

q

e−iqyq hn(ξ ) = −y|φn(y)|2. (B2)

This immediately leads to the Fourier transform of kn(ξ ) −
q2hn(ξ ) in Eq. (36).

On the other hand, examining the action of Z and Z† on
φn(y) reveals a formula

yφ2
n = −∂y

{
1
2 φ2

n + φ2
n−1 + . . . + φ2

0

}
, (B3)

with φn = φn(y) for short. One can now identify the expres-
sion for �n(y) in Eq. (32) and fix the Fourier transform of
e− 1

2 ξ L1
n−1(ξ ) = hn(ξ ) − 1

2 kn(ξ ) in Eq. (34).

APPENDIX C: FIELD REARRANGEMENT

In this Appendix we outline the derivation of Eq. (57) for
field rearrangement. Note first that, in the |y0〉 basis, the plane
wave e−ip·r is a unitary matrix, with elements

〈y0|e−ip·r|y′
0〉 = δ(y0 − y′

0 + �2 px ) e−i 1
2 py (y0+y′

0 ). (C1)

They obey the completeness relation∑
p

〈y′
0|e−ip·r|y0〉〈z0|eip·r|z′

0〉 = ρ̄ δ(y0 − z0) δ(y′
0 − z′

0),

(C2)

as verified directly, where ρ̄ ≡ 1/(2π�2). This relation
allows one to express the field product ψm†ψn in
terms of charge operators Rmn

−p = ∫
dy0 ψm†eip·rψn =∑

y0,y′
0
ψm†(y0)〈y0|eip·r|y′

0〉ψn(y′
0),

ρ̄ ψm†(y0)ψn(y′
0) =

∑
p

〈y′
0|eip·r|y0〉 Rmn

p . (C3)

Let us substitute the above formula into the
ψ̂m†(z0)ψ̂k (y′

0) gmn(z0) portion of the first equation in
Eq. (57). This yields the following expression between

ψ̂ j†(y0) and ψ̂n(z′
0),∑

k

〈y0|eip·reik·rgmn(y0)e−ip·r|z′
0〉 R̂mk

k . (C4)

Reducing it by making use of relations eip·reik·r =
e−i�2p×k eik·reip·r and eip·ry0e−ip·r = y0 − �2 px then leads
to the key formula in Eq. (57).

APPENDIX D: COULOMBIC CORRECTIONS
IN GRAPHENE

In this Appendix, we discuss the absence of Coulom-
bic corrections to orbital magnetization in the ν = 0
ground state in graphene. Note first that wmn

p = �mn
p gnm

−p in
Eq. (99), with �mn

p = −i[(pZ† + p†Z ) gp]mn, satisfy the re-
lation

∑
n=all w

mn
p = −i(pZ† + p†Z )mm = 0; this means that,

when all levels are filled, the O(Ṽc) corrections to orbital
magnetization combine to vanish for each level m. Let us next
rearrange the sum

∑
n�−1 in the form 1

2 [
∑

n=all −
∑

n=0 −D]
with D = ∑

n�1 −∑
n�−1. This yields

κm
p ≡

∑
n�−1

wmn
p = −1

2

(
�m0

p g0m
−p + Dm

p

)
,

Dm
p =

∑
n�1

(
�mn

p gnm
−p − �m,−n

p g−n,m
−p

)
. (D1)

In view of e-h conjugation which interchanges K ↔ K ′, one
readily sees that Zmn|K = Z−m,−n|K ′

, gmn
p |K ′ = g−m,−n

p |K , etc.,

which then imply D−m
p |K = −Dm

p |K ′
.

For the 0−|K and 0+|K ′
levels, in particular, one finds

D0−
p |K = −D0+

p |K ′
and �00

p g00
−p = w00

p = 1
2 �2p2, so that

κ0∓
p = 1

2

( − w00
p ∓ D0−

p
)
. (D2)

This shows that the empty N = 0 sectors 
 (0−|K , 0+|K ′
) feel

an orbital magnetic moment ∝ −w00
p coming from the filled

valence band (with n � −1). Thus, when the 0−|K level is
filled, an extra moment ∝ w00

p is added and the resulting ν = 0
vacuum state has no O(Ṽc) correction to orbital magnetization,
as expected.
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eral acquire O(Ṽc ) self-energy corrections δεn so that the edge

boundaries y+
0;n = y+

0;n(εF ) are modified accordingly; still, these
equations, as functions of y+

0;n or εF, remain as they are.
[27] G. W. Semenoff, Phys. Rev. Lett. 53, 2449 (1984).
[28] B. Hunt, J. D. Sanchez-Yamagishi, A. F. Young, M. Yankowitz,

B. J. Leroy, K. Watanabe, T. Taniguchi, P. Moon, M. Koshino,
P. Jarillo-Herrero, and R. C. Ashoori, Science 340, 1427 (2013).

[29] C. R. Woods, L. Britnell, A. Eckmann, R. S. Ma, J. C. Lu,
H. M. Guo, X. Lin, G. L. Yu, Y. Cao, R. V. Gorbachev, A. V.
Kretinin, J. Park, L. A. Ponomarenko, M. I. Katsnelson, Yu. N.
Gornostyrev, K. Watanabe, T. Taniguchi, C. Casiraghi, H.-J.
Gao, A. K. Geim et al., Nature Phys. 10, 451 (2014).

[30] K. Shizuya, Int. J. Mod. Phys. B 33, 1950171 (2019).
[31] K. Shizuya, Phys. Rev. B 75, 245417 (2007).
[32] J. W. McClure, Phys. Rev. 104, 666 (1956).
[33] S. G. Sharapov, V. P. Gusynin, and H. Beck, Phys. Rev. B 69,

075104 (2004).
[34] A. Ghosal, P. Goswami, and S. Chakravarty, Phys. Rev. B 75,

115123 (2007).
[35] J. V. Bustamante, N. J. Wu, C. Fermon, M. Pannetier-Lecoeur,

T. Wakamura, K. Watanabe, T. Taniguchi, T. Pellegrin, A.
Bernard, S. Daddinounou, V. Bouchiat, S. Guéron, M. Ferrier,
G. Montambaux, and H. Bouchiat, Science 374, 1399 (2021).

165410-13

https://doi.org/10.1103/PhysRevLett.107.176809
https://doi.org/10.1088/1367-2630/14/8/083015
https://doi.org/10.1038/s41567-019-0713-3
https://doi.org/10.1038/s41586-020-2255-3
https://doi.org/10.1103/PhysRevB.52.2747
https://doi.org/10.1103/RevModPhys.69.607
https://doi.org/10.1007/BF01397213
https://doi.org/10.1103/PhysRevB.33.2481
https://doi.org/10.1142/S0217979217501764
https://doi.org/10.1103/PhysRevLett.53.2449
https://doi.org/10.1126/science.1237240
https://doi.org/10.1038/nphys2954
https://doi.org/10.1142/S0217979219501716
https://doi.org/10.1103/PhysRevB.75.245417
https://doi.org/10.1103/PhysRev.104.666
https://doi.org/10.1103/PhysRevB.69.075104
https://doi.org/10.1103/PhysRevB.75.115123
https://doi.org/10.1126/science.abf9396

