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We show that ultrathin metasurfaces with a specific multiresonant response can enable simultaneously
arbitrarily strong and arbitrarily broadband dispersion compensation, pulse (de)chirping, and compression
or broadening. This breakthrough overcomes the fundamental limitations of both conventional nonresonant
approaches (bulky) and modern singly resonant metasurfaces (narrowband) for quadratic phase manipulations
of electromagnetic signals. The required nonuniform trains of resonances in the electric and magnetic sheet
conductivities that completely control phase delay, group delay, and chirp are rigorously derived and the
limitations imposed by fundamental physical constraints are thoroughly discussed. Subsequently, a practical,
truncated approximation by finite sequences of physically realizable linear resonances is constructed and the
associated error is quantified. By appropriate spectral ordering of the resonances, operation can be achieved
either in transmission or reflection mode, enabling full space coverage. The proposed concept is not limited to
dispersion compensation, but introduces a generic and powerful ultrathin platform for the spatiotemporal control
of broadband real-world signals with a myriad of applications in modern optics, microwave photonics, radar, and
communication systems.
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I. INTRODUCTION

Metasurfaces (MSs), ultrathin artificial media composed
of subwavelength resonant meta-atoms, are being extensively
studied for a myriad of applications [1–5]. Despite their ul-
trathin nature, MSs can impart a nontrivial phase delay on
the impinging wave due to the meta-atom resonance, which
when spatially modulated is typically exploited for wave-
front manipulation [6,7]. However, this resonant phase delay
is inherently dispersive, resulting in narrowband operation.
Therefore, conventional metasurfaces can sustain their func-
tionality over very limited bandwidths and fail to perform well
for real-world signals which necessarily have significant tem-
poral bandwidth. Thus, researchers have recently focused on
the search for broadband (achromatic) MSs that are suitable
for practical applications.

Prominent examples of broadband functionalities reported
thus far with MSs include wavefront manipulation (e.g., beam
steering/splitting, focusing, and imaging) [8–12] and pulse
delay [13]. Both require a spectrally constant group delay by
the MS [or, equivalently, a linear phase profile φ(ω)], in order
to uniformly delay all frequency components of the broadband
input pulse and avoid pulse distortion [Figs. 1(a) and 1(b)].
However, a wider class of very important applications depends
on a quadratic phase profile, e.g., dispersion compensation,
chirped pulse amplification (CPA), and in general any applica-
tion requiring control over the instantaneous frequency (chirp)
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and temporal duration of a broadband input pulse through
pulse chirping/dechirping [Fig. 1(c)]. Such operations con-
ventionally require lengthy bulk media, e.g., dispersion com-
pensation fibers in optical telecommunications [Fig. 1(d)].

Thus far, the approaches to dispersion compensation with
metasurfaces are scarce [14–17]. They are either very narrow-
band or do not guarantee pulse integrity. This is because the
phase profile is not designed to be purely quadratic across a
wide bandwidth (accompanied by a flat amplitude response);
rather, typically a single frequency featuring maximum group
delay dispersion (GDD) is being exploited [15] [Fig. 1(e)].
In Ref. [16] a broadband pulse is separated into many fre-
quency components and each of them is handled separately
by a different, narrowband submetasurface. Note that elec-
tromagnetically induced transparency (EIT) [14] or Huygens
metasurfaces [15] can help to capture the peak of GDD un-
der high transmission. Operation in reflection is not being
discussed.

In this paper, we present a solution to these problems.
We show that by using multiresonant metasurfaces we can
overcome the limitations of both traditional, nonresonant ap-
proaches (bulky) and modern, singly resonant metasurfaces
(narrowband). Our approach allows us to design MSs that
implement a general quadratic phase profile which is both
arbitrarily strong (despite the ultrathin nature) and (almost)
arbitrarily broadband, controlled at will by the number and
spacing of the implemented resonances. We derive an explicit
construction for the sheet conductivities of a multiresonant
surface that can completely control the first three disper-
sion parameters (phase delay, group delay, and chirp) and
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FIG. 1. Motivation and scope of the current paper. (a) Broadband
pulse (centered at frequency �) interacting with a medium de-
scribed by a transfer function of the form H (ω) = exp[iφ(ω)], where
φ(ω) = �0 + �1(ω − �) + �2(ω − �)2 + . . . includes arbitrarily
high orders resulting in pulse distortion. Impact of leading terms
of the Taylor expansion on the output pulse shape uout (t ). (b) The
first-order term describes pulse delay by φ′(�) := dφ/dω |� = �1.
The constant �0 leads to a simple shift of the carrier oscillation under
the envelope. (c) The second-order term (�2, group delay dispersion)
describes pulse chirping (variation of instantaneous frequency along
pulse), typically leading to pulse broadening due to the different
delay of constituent frequency components (useful for, e.g., chirped
pulse amplification). For a prechirped pulse with chirp parameter
C, pulse compression can be achieved when �2C < 0 (useful for,
e.g., dispersion compensation). [(d), (e)] Prototypical examples of
physical systems for dispersion compensation. (d) Dispersion com-
pensation fiber: The response is broadband but the system is bulky.
(e) Conventional singly resonant metasurface: thin structure but nar-
rowband operation. Electromagnetically induced transparency [14]
or Huygens metasurfaces [15] can help to capture the peak of group
delay dispersion under high transmission.

discuss the fundamental limitations of physically possible
phase manipulations of broadband chirped pulses by such
metasurfaces. We subsequently approximate by finite se-
quences of physically realizable Lorentzian resonances and
rigorously quantify the associated error. Both signs of GDD
and operation in both transmission and reflection mode can be
implemented; as a result, full-space coverage can be provided.
Importantly, the required phase delay is solely provided by
the resonances implemented on the surface itself. Thus, the
proposed surfaces are essentially two dimensional, apart from
a small finite thickness to allow for implementing magnetic
polarizability without magnetic materials.

Note that using multiple Lorentzian resonances is the basis
of many models meant to capture the response function of
solids (susceptibility or permittivity) as accurately as pos-
sible. For instance, the Brendel-Borrman model takes into
account statistical variations in the vibrational frequencies
of amorphous media and models the resulting inhomoge-
neous broadening by convolving the different Lorentzians
with a Gaussian function centered at the respective resonant
frequency [18]. Inhomogeneous broadening should have im-
plications in our case as well, since in a realistic metasurface
deviations in the meta-atom dimensions along the metasur-
face would lead to linewidth broadening. In the process of
deriving such models, it is important to adhere to the restric-
tions of causality and the Kramers-Kronig criteria [19]. This
means symmetrizing the spectrum of the response function
and removing any singularity in the upper complex half plane
[19], which are common elements with our work. Further-
more, ending up with a causal and real-valued time-domain
representation of the material response function is also
important in the context of time-domain computational elec-
tromagnetics (e.g., the finite-difference time-domain method).
In such cases, the efficient incorporation of the mate-
rial model in the numerical algorithm becomes important
as well [20].

II. THEORY OF MULTIRESONANT METASURFACES
FOR A QUADRATIC PHASE PROFILE

The main elements of our approach are presented in Fig. 2.
Implementing a surface with a very specific multiresonant
surface conductivity can provide a perfectly quadratic phase
profile φ(ω) = �2(ω − �)2 + �1(ω − �) + �0 [Figs. 2(a)
and 2(b)]. The corresponding slope (GDD) is constant and
equals 2�2. By making the resonant features denser (sparser)
as the frequency increases, a positive (negative) chirp can be
implemented; the linewidths of the resonances follow a simi-
lar trend. Note that the simpler, special case of equally spaced
resonances would result in a constant (positive) group delay
that can be used for delaying broadband pulses [21,22] [see
Fig. 2(c)]. In addition, the linewidth (imaginary part of the
complex frequency) is constant for all resonances. A negative
constant group delay would require antiresonances [Fig. 2(d)].
Importantly, operation in transmission and reflection mode
can be handled in a uniform manner by spectrally interleav-
ing (antimatching) or overlapping (matching) the electric and
magnetic resonances, respectively [Figs. 2(e) and 2(f)].

In order to impart a positive or negative linear chirp
(slope of instantaneous frequency) and broaden/compress
a broadband Gaussian input pulse, the required response
of the metasurface (be it reflection or transmission) should
be of the form H (ω) = A exp{i[�2(ω − �)2 + �1(ω − �) +
�0]}, where � is the center frequency of the pulse spectrum
and 0 < A � 1 allows for some absorption in a realistic MS.
With lowercase φi (i = 0, 1, 2) we indicate coefficients of
a Taylor expansion about zero frequency instead of �; for
relations between capital �i and lowercase φi see the Supple-
mental Material (SM) [23], Sec. S2. Such quadratic transfer
functions are used for controlling the group velocity disper-
sion, e.g., in fiber optics [24]. However, H (ω) is not a physical
transfer function since it does not correspond to a real-valued
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FIG. 2. Proposed multiresonant approach for positive/negative chirp and reflection/transmission operation: A generic multiresonant
metasurface with a quadratic transmission/reflection phase profile [φ(ω) = �2(ω − �)2 + �1(ω − �) + �0] provides a spectrally linear
group delay of slope 2�2 for pulse (de)chirping and pulse broadening/compression. (a) Surface conductivity with multiple resonances of
decreasing spacing and linewidth for a positive (constant) slope of the group delay. (b) Multiple resonances of increasing spacing and linewidth
for a negative slope. (c) A constant group delay is achieved with equally spaced resonances [21]. (d) A negative constant group delay would
require antiresonances. (e) An initially unchirped pulse is temporally broadened and chirped after interacting with the metasurface. Operation
in transmission requires overlapping (matched) electric and magnetic resonances. (f) A prechirped pulse can be compressed when �2 is
of opposite sign. This is the basis of dispersion compensation in, e.g., optical fiber systems. Operation in reflection requires interleaved
(antimatched) resonances.

convolution kernel in the time domain, h(t ). In order to
obey the required Hermitian symmetry, |X (ω)| = |X (−ω)|
and arg X (ω) = − arg X (−ω), we introduce the symmetrized
transfer function H ′(ω) = A exp{i sgn(ω)[�2(|ω| − �)2 +
�1(|ω| − �) + �0)]}, denoted by the prime symbol. Using
H ′(ω) in the place of H (ω) introduces a negligible error as
long as the signal half bandwidth is smaller than the central
frequency (�ω < �), such that the positive-frequency part
g(ω) of the pulse spectrum Uin(ω) = g(ω) + g∗(−ω) of the
real input signal does not extend into negative frequencies.
For the error to be strictly zero, the support of g(ω) needs
to contain only non-negative frequencies, g(ω) = 0 ∀ ω < 0.
For details see SM [23], Sec. S1.

Although H ′(ω) possesses the correct symmetry, it is
discontinuous, i.e., it jumps across the imaginary axis. (In
addition, it is not guaranteed to satisfy causality; this will be
discussed later on.) To sidestep this discontinuity, we focus on
frequencies ω > 0 for which H ′(ω) is meromorphic; this will
allow us to use the Mittag-Leffler partial fraction expansion of
complex analysis [25]. Note that the analytical continuation
of H ′(ω > 0) into negative frequencies coincides with the
initially defined H (ω).

We now specify the required surface conductivities of a
MS implementing the transfer function H ′(ω > 0). For opera-
tion in transmission, we require scattering amplitudes t (ω) =
Aeiφ(ω) and r(ω) = 0, where φ(ω) is the quadratic phase.
Substituting in the expressions relating plane-wave scattering
coefficients with dimensionless conductivities [σ̃se = ζσse/2

and σ̃sm = σsm/(2ζ ), where ζ is the wave impedance (see SM
[23], Sec. S2)], we find (for operation in reflection it would be
σ̃sm = 1/σ̃se)

σ̃se = σ̃sm = −i tan

(
φ(ω) + i| logA|

2

)
= −i tan z(ω). (1)

Equation (1) constitutes the “target spectrum” of the conduc-
tivities. However, only certain types of resonant behavior are
available in nature. In the following, we will thus be seeking
a good approximation of the target spectrum using Lorentzian
resonances, which can be physically implemented with reso-
nant meta-atoms. The ω poles for the desired conductivities
of Eq. (1) can be found analytically by solving a quadratic
equation (SM [23], Sec. S2), resulting in two sets of poles in
the complex ω plane:

ω±
k =: ωa ± ωk = � − �1

2�2

±
√(

�1

2�2

)2

+ 1

�2
[(2k + 1)π − �0 − i| logA|],

(2)

where ωa is a real quantity coinciding with the apex of the
parabolic phase and ωk is a complex quantity that determines
the offset of the poles in the complex plane. The poles reside
on two curves which asymptotically approach the vertical axis
Re(ω) = ωa for k → −∞ and the horizontal axis Im(ω) = 0
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FIG. 3. (a) Positions of poles of Eq. (1) in the complex ω plane
assuming the analytically continued transfer function H ′(ω > 0).
The two branches, ω+

k and ω−
k , diverge at Re(ω) = ωa. A subset of

the poles of the ω+
k branch satisfies Re ω+

k > 0 and Im ω+
k < 0 and

is denoted by k ∈ P . (b) Strategy for Lorentzian approximation: the
k ∈ P poles in panel (a) are used along with their negative-conjugate
counterparts. This specific example is for φ2 = +0.25, φ1 = 2.48,
φ0 = 0, and A = 0.7. The normalized frequency is defined as ω̃ =
ω

√|�2| and the normalized apex frequency equals ω̃a = −2.48.
Note that all the poles in panel (b) satisfy Im ω < 0; the imaginary
part is small and they might seem to overlap with the horizontal
axis. For the particular poles depicted in panel (b) we find that
−0.0585 < Im ω̃ < −0.0187 holds.

for k → +∞. Depending on the specific choice for �i, the
index k is “renormalized” and the poles shift to different
discrete positions along the curves (see SM [23], Sec. S2). The
discrete poles along with the underlying continuous curves
are depicted in Fig. 3(a) for a characteristic positive-chirp
(�2 > 0) case. Note that the pole index k is under the square
root, leading to nonuniform spacing along the real axis and
a varying imaginary part, in contrast to the case of multires-
onant metasurfaces for pulse delay [21], where the poles are
equidistant and the imaginary part constant. The study of pole
structure in nanophotonics and metasurfaces/scatterers in par-
ticular is recently receiving increased interest, since it can
help to achieve advanced functionalities and provide physical
insight [26–33].

In Fig. 3(a) we have chosen �1 > 2�2� so that ωa, where
the two branches diverge, lies in the left complex half plane.
When ωa < 0, all the poles in the right complex half plane
are predominantly real and possess a negative imaginary part.
They are compatible with physical resonances and can form
the basis for a Lorentzian approximation (LA) discussed be-
low [see Fig. 3(b)]; poles to the left of ωa possess a positive
imaginary part and would not satisfy causality (antireso-
nances). Importantly, this means that there is no fundamental
limit on the bandwidth that can be accommodated by the
metasurface; in contrast, if ωa > 0 a low-frequency limit for
the positive-frequency content of the pulse would be imposed.

Having specified the simple ω poles of Eq. (1), we can
write the corresponding Mittag-Leffler expansion (see SM
[23], Sec. S3):

−i tan z(ω) =
+∞∑

k=−∞

i

ωk�2

(
1

ω − ω+
k

− 1

ω − ω−
k

)
. (3)

The residues are r+
k = i/(ωk�2) and r−

k = −i/(ωk�2) for
ω+

k and ω−
k poles, respectively. We now identify a subset

of the poles of the ω+
k branch that satisfies Re ω+

k > 0 and
Im ω+

k < 0 and can play the role of positive-frequency poles
of an underdamped linear oscillator (resonant meta-atom; see
SM [23], Sec. S3.A). The corresponding indices are denoted
by k ∈ P in Fig. 3(a). We can thus use these simple poles,
along with their complex conjugate counterparts, to construct
a physical, Lorentzian approximation of the target spectrum.
This procedure is schematically depicted in Fig. 3(b). Looking
at the form of a Lorentzian resonance in the surface con-
ductivity (see SM [23], Sec. S3.A), we also require that the
corresponding residues are of the form r+

k = a(iω+
k ), with a ∈

R and a > 0. This suggests approximating the actual residues
with r+

k = i/(ωk�2) ≈ Re[1/(ωk�2ω
+
k )]iω+

k . For any reason-
able value of loss, the k ∈ P poles are predominantly real and
the error of approximating the residues by taking the real part
is negligible. The LA then takes the form

σ̃LA(ω) =
∑
k∈P

Re

(
1

ωk�2ω
+
k

)(
iω+

k

ω − ω+
k

− (iω+
k )∗

ω − (−ω+
k )∗

)
.

(4)

Note that by construction the proposed response function
given by Eq. (4) is analytic in the upper half plane and of
Hermitian symmetry (the time-domain counterpart is real).
In addition, for a finite number of terms it also holds that
σ̃LA(ω) → 0 as |ω| → ∞. This means that the real and imag-
inary parts are related via Kramers-Kronig relations (see, e.g.,
Ref. [34]). What remains in σ̃ (ω) = −i tan z(ω) = σ̃LA(ω) +
�σ̃ (ω) is the error of the Lorentzian approximation and is
composed of four contributions: (i) the subtraction of the
negative frequency counterparts we added in Eq. (4), (ii) what
is left from taking the real part of the residues, (iii) the poles
omitted from the ω+

k branch (k /∈ P ), and (iv) the entire ω−
k

branch. See SM [23], Sec. S3.B for details.
The procedure is entirely analogous for a negative chirp

(�2 < 0). In this case, necessarily ωa > 0 and only poles in
the strip Re(ω) ∈ (0, ωa) can be used for the LA; this imposes
a high-frequency limit for the positive-frequency content of
the pulse [see SM [23], Fig. S2(b)].

It is also interesting to note that not only the proposed
response function, σ̃LA(ω), but also the corresponding transfer
function t = (1 − σ̃LA)/(1 + σ̃LA) [we have used σ̃se(ω) =
σ̃sm(ω) = σ̃LA(ω) in Eq. (S18b) of the SM] is analytic in the
upper half plane. This is discussed in more detail in SM [23],
Sec. S4. The corresponding scattered field, t (ω) − 1 (the total
transmitted field is the sum of incident field plus scattered
field), possesses the additional property that it vanishes at
infinity (for a finite sum of Lorentzians). We thus conclude
that Kramers-Kronig relations apply to the scattered field,
t (ω) − 1.

III. TRUNCATION OF THE INFINITE LORENTZIAN SUM
AND PERFORMANCE ANALYSIS

The final step that enables a practical, physical prescrip-
tion for the implementation of a metasurface for dispersion
compensation and pulse chirping is to truncate the sum in
Eq. (4). The impact of this truncation on the MS performance
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FIG. 4. Results for operation in transmission. Compression of
a negatively prechirped (C < 0) Gaussian broadband pulse upon
interaction with a metasurface exhibiting a quadratic phase profile
with positive �2 (e.g., for dispersion compensation). We consider
different levels of approximation in the transfer function and their
impact on the output pulse uout (t ). [(a), (b)] Ideal transfer function.
(a) Ideal transmission amplitude and phase; some loss is included
(A := |t (ω)| = 0.95). The corresponding required surface conduc-
tivity and the pulse spectrum are overlaid. (b) Input and output pulse
and frequency chirp. The output pulse is dechirped and compressed
by 1/

√
2, as verified by the pulse durations measured at the e−1

intensity points. [(c), (d)] Physical approximation of the ideal target
spectrum with an infinite train of Lorentzian resonances [Eq. (4)].
(c) Transmission amplitude and phase along with surface conductiv-
ity and pulse spectrum. The ideal surface conductivity from panel
(a) is also included with a dashed line. (d) Input and output pulse
and frequency chirp. The performance is practically indistinguish-
able from the ideal case. [(e), (f)] Truncated physical approximation
using seven resonances. (e) Some ripples manifest in the transmis-
sion phase/amplitude due to the truncation. The untruncated surface
conductivity from panel (c) is included with a dashed line. (f) The
compression is only slightly affected and the residual output chirp is
negligible along the duration of the output pulse.

is tractable and the associated error is negligible provided that
the pulse spectrum is accommodated within the bandwidth
supplied by the finite set of resonances. This is demonstrated
in Figs. 4 and 5, where the effect of the LA and its truncation
on the transfer function of the MS, as well as the pulse in the
time domain, are documented.

Figure 4 deals with positive chirp (�2 > 0) and stud-
ies compression (dispersion compensation) of a negatively
prechirped (C < 0) broadband Gaussian pulse upon inter-
action with the metasurface. The input pulse is a delayed,
modulated Gaussian pulse of the form uin(t ) = exp[−(1 +
iC)(t − t0)2/(2τ 2

0 )] exp[−i�(t − t0)], with �ω = 1/τ0 being
the transform limited spectral half width (e−1 intensity point)

FIG. 5. Results for operation in transmission. Broadening of an
initially unchirped Gaussian broadband pulse upon interaction with
a metasurface exhibiting a quadratic phase profile with negative �2

(e.g., for chirped pulse amplification). We consider different levels of
approximation in the transfer function and their impact on the output
pulse uout (t ). [(a), (b)] Ideal transfer function: (a) Ideal transmission
amplitude and phase; some loss is included (A := |t (ω)| = 0.95).
The corresponding required surface conductivity and the pulse spec-
trum are overlaid. (b) Input and output pulse and frequency chirp.
The output pulse acquires a negative chirp and is broadened by

√
2,

as verified by the pulse durations measured at the e−1 intensity points.
[(c), (d)] Physical approximation of the ideal target spectrum with an
infinite train of Lorentzian resonances. (c) Transmission amplitude
and phase along with surface conductivity and pulse spectrum. The
ideal surface conductivity from panel (a) is also included with a
dashed line. (d) Input and output pulse and frequency chirp. The
performance is practically indistinguishable from the ideal case. (e,
f) Truncated physical approximation with nine resonances: (e) The
untruncated surface conductivity from panel (c) is also included with
a dashed line. (f) The broadening is only slightly affected; the output
chirp is in good approximation linear along the duration of the output
pulse.

of the pulse spectrum. The parameters of the example are � =
2π × 4.5 × 109 rad/s, initial chirp C = −1, �ω = 1/τ0 =
2π × 0.28 × 109 rad/s, A = 0.95, �2 = +0.04 ps2, �1 =
2.26 ps, and �0 = 32 (equivalently, φ2 = 0.04 ps2, φ1 = 0,
and φ0 = 0). Microwave frequencies are selected for this
example, since for the physical implementation we can di-
rectly rely on an experimentally verified multiresonant unit
cell based on electric-LC electric resonators and split ring
resonator magnetic resonators [13]. The approach of using
metallic meta-atoms can be utilized practically unchanged up
to THz frequencies. For optical frequencies, Mie resonances
in dielectric particles may constitute a favorable approach,
since metals are associated with significant resistive loss.
Note that such engineering challenges, associated with a
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particular physical implementation, are outside the scope of
the current paper, in which we establish the theoretical prin-
ciples and foundations that are prerequisite to any subsequent
physical implementation. The target spectrum is depicted in
Fig. 4(a): the transmission amplitude is flat and equal to 0.95
over arbitrarily broad bandwidths and the phase is exactly
quadratic. In effect, the input pulse is compressed by exactly
1/

√
2, as designed, and the output chirp (variation of instan-

taneous frequency) is zero across the entire pulse duration
[Fig. 4(b)]. The untruncated train of physical Lorentzian reso-
nances [Eq. (4)] is depicted in Fig. 4(c). The target spectrum is
included with a dashed line; they are almost indistinguishable
and so is the effect on the output pulse [Fig. 4(d)]. Sub-
sequently, the infinite resonance train is truncated keeping
only seven resonances [Fig. 4(e)]. The available bandwidth
becomes finite but is approximately 3 GHz, corresponding to
a vast relative bandwidth of 67%. Due to the crude truncation,
a ripple develops in the transmission amplitude and phase.
However, the pulse compression is only slightly affected and
the residual output chirp is negligible throughout the duration
of the output pulse [Fig. 4(f)]. If even higher integrity is
required, one can fine tune the positions and strengths of the
considered resonances after truncation and/or introduce an
additional background contribution [see SM [23], Fig. S5(d)].

Next, the case of negative chirp (�2 < 0) and pulse stretch-
ing (e.g., for chirped pulse amplification) is considered in
Fig. 5. The parameters of the example are � = 2π × 4.5 ×
109 rad/s, initial chirp C = 0, �ω = 2π × 0.28 × 109 rad/s
(transform-limited spectral half width measured at the e−1

intensity point), A = 0.95, �2 = −0.04 ps2, �1 = 2.83 ps,
and �0 = 112 (equivalently, φ2 = −0.04 ps2, φ1 = 5.1 ps,
and φ0 = 0). The target spectrum is depicted in Fig. 5(a). The
initially unchirped Gaussian broadband pulse acquires a linear
induced chirp and is broadened by a factor

√
2, as designed

[Fig. 5(b)]. The infinite Lorentzian approximation is depicted
in Fig. 5(c). As was the case with the positive chirp sce-
nario, the output pulse [Fig. 5(d)] is almost indistinguishable
compared with the ideal case. Finally, the infinite resonance
train is truncated keeping nine resonances [Fig. 5(e)]. Pulse
stretching is only slightly affected and output chirp is linear
throughout the duration of the output pulse [Fig. 5(f)]. Results
for operation in reflection mode (both positive and negative
chirp) are included in the SM [23], Sec. S5.

IV. CONCLUSION

In conclusion, we have presented a solution to arbitrarily
strong and arbitrarily broadband quadratic phase shaping with
multiresonant metasurfaces. Our approach aspires to bring
dispersion engineering to the nanoscale and overcome the
current limitations of both (i) conventional nonresonant ap-
proaches with bulk media (too bulky) as well as (ii) modern
singly resonant metasurfaces (too narrowband). The proposed
concept is not limited to dispersion compensation or chirped
pulse amplification, but provides a generic and powerful ul-
trathin platform for the spatiotemporal control of broadband
real-world signals with a myriad of applications in modern
optics, microwave photonics, radar, and communication sys-
tems.
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