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Electrostatic effects of MnBi2Te4-superconductor heterostructures in the chiral Majorana search
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The realization of chiral Majorana modes using heterostructures is a challenging task. A significant reason
is that the previous theoretical models are simple and cannot capture the real physics among the interplay
of superconductivity, magnetism, and the electrostatic environment. Beyond the well-known minimal models,
we develop a self-consistent Schrödinger-Poisson method to include a key focus—the electrostatic effects
induced by the gate control. We show that the electrostatic environment imposes constraints on both induced
superconductivity and the effective magnetization, and therefore significantly changes the topological region
compared to previous work. However, within our theory we identify the topological regimes supporting the chiral
Majorana mode with practical tunability. Importantly, the induced superconductivity in the topological regime,
contrary to traditional beliefs, will not be reduced by the presence of the magnetization. Our results deeply
comprehend the real phase diagrams and parameter tunability of the actual devices in a chiral Majorana search.
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I. INTRODUCTION

The chiral Majorana modes (CMMs) [1–4] can be con-
sidered as the one-dimensional homologous counterpart of
Majorana zero modes (MZMs) [1,5] and are potentially useful
for quantum information processing [6–8]. Pioneering theo-
retical proposals [4,9,10] predict that CMMs can be realized
in hybrid systems that combine quantum anomalous Hall in-
sulators (QAHIs) (please refer to the theories [11–16] and
experiments [17]) with superconductors. The half-quantized
conductance plateau was proposed to be an evidence for
CMMs [9,18,19]. However, a controversy arises because
certain non-Majorana trivial mechanisms can also generate
similar signatures, especially in disordered samples [20–22].
In contrast to magnetically doped topological insulators,
the recent discovered MnBi2Te4 (MBT) family of materials
promises a bigger magnetic exchange gap and fewer disor-
ders [23–38], which is proposed as a potential platform to
realize CMMs [39,40].

Another serious problem is that the proposed systems re-
quire the coexistence of superconductivity and magnetism,
and we may wonder if the CMM phase can be realized via
a feasible parameter control of the device. Previous theoret-
ical works [9,10,39–47] only considered the simple minimal
models, which regard phenomenological parameters, such as
chemical potential and induced superconducting (SC) gap,
as independently adjustable parameters. Actually, these cru-
cial parameters are highly correlated and cannot be freely
tuned in real experiments by controlling the electrostatic
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environment [48–52]. This could greatly narrow the topologi-
cal region and complicates the experimental implementations.
Thus to understand the device control capability, we need
to develop a more reliable numerical simulation scheme for
realistic experimental setups, especially for treating both the
SC proximity effect and magnetism.

In this work we consider the debate about CMM realiza-
tions and the actual device tunability. Beyond the well-known
minimal models, we developed a self-consistent Schrödinger-
Poisson method [48–55] to solve the electrostatic problems
induced by the actual gate control. We apply this method to
study an MBT thin film coupled to an s-wave superconductor
as an example. We find that the band bending effect [56–59]
at the MBT-SC interface severely restricts the tunability of
top surface states, and the corresponding magnetic Dirac gap
is always below the Fermi level during the gate tuning. Our
results also show that the induced superconductivity varies
considerably as tuning the gate voltage. These constraints,
which are not properly considered in previous works, are nat-
urally thought to be detrimental to the realization of CMMs.
However, we show that the CMMs can be realized in a rea-
sonable range of experimental parameters. The key point is
to tune the Fermi level of the bottom surface state into the
magnetic Dirac gap, which is ensured by the high tunability.
Remarkably, the required proximity superconductivity will
not be reduced by the presence of the magnetization in the
topological regime and ensured a large topological gap. In
addition, the previously predicted CMM phase with Chern
number C = 2 [4,9] cannot be realized in a real MBT-SC
device.

The rest of the paper is organized as follows. In Sec. II we
construct a model Hamiltonian and calculate the electrostatic
potential using Schrödinger-Poisson method. In Sec. III we
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FIG. 1. A MnBi2Te4 thin film is coupled to an s-wave SC on the
top surface. The magnetic gap of the top surface state is always below
the Fermi level during the gate tuning. CMMs will exist if the Fermi
level is tuned in the magnetic gap of bottom surface states.

investigate the proximity effect in MBT-SC hybrid system.
In Sec. IV we discuss device control capabilities in the chi-
ral Majorana search and demonstrate that the key point for
achieving CMMs is to tune the chemical potential of bottom
surface states in their magnetic gap. Finally, we conclude in
Sec. V.

II. MODEL HAMILTONIAN AND ELECTROSTATIC
POTENTIAL

We consider a two-dimensional (2D) MBT thin film
coupled to an s-wave SC, as shown in Fig. 1. The antiferro-
magnetic ordering and the magnetization direction are both
assumed to be along the z direction. A back-gate voltage Vg is
applied at the bottom surface to control the Fermi level. The
Hamiltonian of 2D MBT thin films read [44]

HTI(k) = ε0(k) +

⎡
⎢⎢⎣

M(k) −iA1∂z 0 A2k−
−iA1∂z −M(k) A2k− 0

0 A2k+ M(k) iA1∂z

A2k+ 0 iA1∂z −M(k)

⎤
⎥⎥⎦

− eφ(z) + HX (z), (1)

The translational invariance in the x-y plane allows us to con-
sider a fixed in-plane wave vector k = (kx, ky) of magnitude
k = |k|. And k± = kx ± iky, ε0(k) = C0 − D1∂

2
z + D2(k2

x +
k2

y ), and M(k) = M0 − B1∂
2
z + B2(k2

x + k2
y ). In our calcu-

lations, C0, Di, M0, Bi, and Ai with i = 1, 2, are model
parameters adopted from ab initio calculations, see Ap-
pendix A. HX is the spatial profile of the exchange field in
the antiferromagnetic MBT. For simplicity, we consider HX in
terms of the sinusoidal function, which takes the form [44]

HX (z) = −m0 sin
(π

d
z
)

szσ0, (2)

where m0 is the amplitude of the intralayer ferromagnetic
order, d is the thickness of a septuple layer (SL), s j and σ j

( j = 0, x, y, z) are the Pauli matrix acting in spin and orbital
space, respectively, and φ(z) is electrostatic potential, which is
obtained by the Schrödinger-Poisson (SP) method [48,51,52].

In order to obtain φ(z) self-consistently, we firstly set a
initial potential φ0(z) into the Hamiltonian HTI. In our calcu-
lations we choose φ0(z) to be a constant function φ0(z) = Vg.
Then we solve the Schrödinger-Poisson,

HTI(k, φ0(z))�n,k(z) = En,k�n,k(z), (3)

producing a set of eigenenergies En,k, and a corresponding set
of eigenstates �n,k(z). n is the index of the transverse eigen-
functions. Since the superconductor is typically metallic and
screens electric fields perfectly [52], we solve the Schrödinger
equation only in the MBT region, which means that we treat
the SC only as a boundary condition with a band offset W at
the interface between the MBT and SC. The charge density
with the potential profile φ0(z) is obtained by integrating over
the occupied eigenstates and minus the density stems from the
whole valence band ρval(z):

ρ1(z) = −e

2π

∫ ∞

0

[∑
n

|�n,k(z)|2 fT (En,k ) − ρval(z)

]
kdk,

(4)

where fT (En,k ) = 1/(eEn,k/T + 1) is Fermi distribution. Be-
cause HTI is a four-band k · p Hamiltonian, we choose
ρval(z) = 2. A new potential φ1(z) is obtained by solving the
Poisson equation,

d2φ1(z)

dz2
= −ρ1(z)

εrε0
, (5)

where εr denotes the dielectric constant of the MBT. As
discussed previously, the boundary conditions of Eq. (5) are
φ(0) = Vg and φ(Lz ) = W . Usually, φ1(z) is not consistent
with the initial potential φ0(z). The error is defined as

σ1 =
∑

m [φ1(zm) − φ0(zm)]2

Nm
, (6)

where subscript of σ1 represents the number of iterations. m is
the site index, and Nm is the number of sites.

The SP problem requires a self-consistent solution of two
iterative equations, Eq. (3) and Eq. (5), until the error of the
ith iteration σi is smaller than the critical value σc, and the
output φi(z) is the final self-consistent potential. The most
straightforward iterative method is to replace the potential in
Eq. (3) directly with the newly obtained potential in Eq. (5).
However, this usually leads to divergence of the iterations and
requires the suitable choice of initial potential φ0(z). Thus we
employ a mixing scheme [52], where the input potential used
in each iteration is a mixing of the input and output potential
of the previous iteration:

φin
i (z) = κφout

i−1(z) + (1 − κ )φin
i−1(z). (7)

We set κ = 0.1 and σc = 10−8 eV in our calculations. In Fig. 2
we show an iterative procedure when we calculate the poten-
tial with Vg = 0.2 eV. As shown in Fig. 2(a), the iteration error
decreases sharply as the number of iterations increases. The
convergence of the potential [Fig. 2(b)] and charge density
[Fig. 2(c)] occurs when the iterations number n > 50 with the
error σ < 10−7 eV, see the black solid and dashed lines.

The chemical potential of MBT can be obtained from
φ(z) solution with different gate voltage Vg, as shown in
Figs. 3(a)–3(c). Here we choose the septuple layer number
of MBT N = 4 (with the full thickness L0 = Nd). The inho-
mogeneous electrostatic potential breaks inversion symmetry,
which lifts the degeneracy of the surface states. Obviously, the
bottom surface states (BSSs) and the top surface states (TSSs)
have totally different electrostatic environments because they
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FIG. 2. (a) The error of Schrödinger-Poisson equations as a function of the number of iterations n. The distribution of (b) electrostatic
energy −eφ(z) and (c) carrier density ρ(z) as the number of iterations increases. The convergence occurs when the iterations number n > 50
with the error σ < 10−7 eV; see the black solid and dashed lines in panels (b) and (c).

couple to back-gate and SC, respectively. Therefore, the two
surface states have different tunability with the change of gate
voltage Vg. The Fermi level of TSSs can be well controlled
by the different gate voltage, see Figs. 3(a)–3(c). However,
the magnetic Dirac gap of TSSs is always below the Fermi
level during the gate control. In Fig. 3(d) we calculate the
eigenenergies of TSSs and BSSs at kx = 0 [see Et and Eb

labeled in Figs. 3(a)–3(c)] as a function of gate voltage Vg.
Note that the Fermi level of TSSs (red line) is nearly unaf-
fected by the change of Vg. The different tunability between
BSSs and TSSs stems from the nonuniform distribution of
the electrostatic potential in MBT. As shown in Fig. 3(e),

the potential energy −eφ(z) at the SC-MBT boundary (right
side) is fixed at W = −0.3 eV [61], which is the band bending
strength between MBT and SC (see Appendix B for details).
Nevertheless, the potential energy close to the MBT-substrate
boundary (left side) varies with the gate voltage. Because
TSSs distribute locally near the interface between MBT and
SC, the tunability is greatly limited by the band bending effect.
This constraint about the chemical potential tunability also
manifests in the charge density distribution [Fig. 3(f)]. The
type of carrier near the left side is electron (hole) when Vg

is positive (negative), while the carrier near the right side
is nearly unchanged with Vg. Actually, these results, which
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FIG. 3. (a)–(c) Energy bands of MBT with different gate voltage Vg. The blue, red, and black curves correspond to BSSs, TSSs, and bulk
states, respectively. (d) Gate voltage dependence of the eigenenergies of TSSs and BSSs, see Eb and Et in panels (a)–(c). Note the three
different corresponding markers. (e) The distribution of electrostatic potential energy −eφ(z). The right side is fixed by the band bending
strength between MBT and SC. (f) The distribution of carrier charge density ρ(z).
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FIG. 4. (a)–(d) The energy bands of the MTB-SC system with four typical gate voltages Vg as marked in panel (e). (e) 
bss, 
tss, and 
cond

represents the induced gap of BSSs, TSSs, and conduction bands (N = 4). 
ind is the minimum of the gaps of all occupied states. The Chern
number C = 1 in the gray region, otherwise C = 0. (f) The polar representation of the SC gap 
ind along the whole Fermi surface of MBT.
The radial length represents the amplitude of 
ind. (g) 
ind as a function of the thickness of superconductor Ls. The size of the induced gap
oscillates with a period set by the Fermi wavelength of the superconductor λs (for our parameters λs = 1.94 nm), which is consistent with
results in Refs. [50,60]. (h) 
ind as a function of coupling strength tc. ts = h̄2/2msa2

s is the hopping magnitude in the superconductor. In panels
(f)–(h), the blue, black, and red curves correspond to the cases with gate voltage Vg = −0.1 eV, Vg = −0.028 eV, and Vg = 0.1 eV, respectively.

cannot be obtained in previous minimal models [10,39–47],
could highly narrow the regions of parameter for achieving
CMMs.

III. SUPERCONDUCTING PROXIMITY EFFECT

When the superconducting shell is considered, the
Bogoliubov–de Gennes (BdG) Hamiltonian of MBT-SC hy-
brid system takes the form

HBdG =
(

HTI + Hs + Ht isy
(z)
−isy
(z) −(HTI + Hs + Ht )∗

)
. (8)

We include an s-wave pairing potential only in the SC part,
i.e., 
(z) = 
0 for z > L0, and 
(z) = 0 for z < L0. The
normal state of the SC has the form Hs = h̄2k2

2me
− μs, where

μs is the chemical potential and the effective mass ms is taken
to be infinite in the direction parallel to the interface [62]. It is
noted that the calculated self-consistent electrostatic potential
φ(z) is included in HTI. The coupling between the MBT and
SC at the interface takes the form [60]

Ht =
∑
〈z,z′〉

[−tcc†
z,kdz′,k + H.c.], (9)

where 〈z, z′〉 denotes the hopping between the nearest sites,
and tc is the coupling strength. The operator cz,k (dz,k ) annihi-
lates a state of momentum k at site z within the MBT (SC).

The induced SC gap of MBT is highly dependent on
the types of the bands crossing the Fermi level [Fig. 4(e)].
We use 
bss, 
tss, and 
cond to represents the induced gap
of BSSs, TSSs, and conduction bands. The induced gap of
MBT is defined as the minimum of all the gaps 
ind =
min{
bss,
tss,
cond}. In Figs. 4(a)–4(d), we calculate the SC

bands with four typical Vg, as marked in Fig. 4(e). When
MBT is bulk insulating and the Fermi level only crosses
both BSSs and TSSs [Fig. 4(a)], the TSSs open a finite SC
gap with 
tss/
0 ≈ 0.462. Arguably, superconductivity at
the BSSs may be strongly suppressed (see a recent exper-
iments [63]) because of the very short penetration depth,
about 1.62 nm [34,44,63]. In our calculations, the thickness
of the MBT is 5.48 nm (4 SLs). Thus, the suppression of
superconductivity on BSSs limits the SC proximity gap, ex-
cept for the region where the Fermi level is tuned in the
magnetic gap of BSSs [Fig. 4(b)]. In this case, MBT has
the largest induced gap because the Fermi level only crosses
TSSs [Fig. 3(b)], and 
ind is dominated by 
tss. When the
Fermi level moves toward the bottom of the conduction bands,

bss gradually increases because of the increase of pene-
tration depth [Fig. 4(c)]. When the Fermi level crosses the
conduction bands [Fig. 4(d)], 
bss is still suppressed. This is
because the positive gate-induced electrostatic potential will
change the electron confinement and pull electron density
away from the interface between MBT and SC [51]. This in
turn strongly suppresses the SC proximity effect for states in
MBT [Fig. 4(e)].

In our calculations, 
ind is obtained from the supercon-
ducting band with ky = 0 because it is isotropic. In Fig. 4(f)
we plot the polar representation of 
ind along the whole Fermi
surface. The blue, black, and red curves correspond to the
cases with different gate voltage Vg. And the radial length
represents the amplitude of 
ind along the Fermi surface.
Clearly, 
ind is isotropic because of the circle shape. On the
other hand, the SC gap also depends on the thickness of the
superconductor Ls. In Fig. 4(g) we calculate 
ind as a function
of Ls. We find that the size of the induced gap oscillates with
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FIG. 5. (a) Topological phase diagram as a function of gate voltage Vg and the layers of MBT N . Topological regions which stem from
surface states and bulk states are enclosed by the black and white dashed lines, respectively. (b) Thickness dependence of the induced gap. For
each layer number N , we calculate the largest SC gap in the topological region enclosed by black dashed lines in panel (a). When N increases
up to six SLs, the SC gap decrease drastically because the Fermi level crosses the conduction bands. Inset: The electron band of MBT when
N = 4 (left) and N = 8 (right). (c) The Fermi level of TSSs cannot be tuned in the magnetic Dirac gap. This narrows the topological regions,
in contrast to those predicted in previous works, as indicated by the slash.

a period set by the Fermi wavelength of the superconductor λs

(for our parameters λs = 1.94 nm), which is consistent with
results in Refs. [50,60]. Another significant parameter affect-
ing the proximity effect is the coupling strength tc between
the MBT and SC [Fig. 4(h)]. Certainly, the SC gap gradually
increases with the increases of tc. Importantly, our results
don’t change qualitatively when varying the amplitude of tc
and Ls. The induced SC gap of MBT is highly dependent on
the gate voltage Vg, i.e., the type of bands crossing the Fermi
level. MBT has the largest SC gap when it is in the chiral topo-
logical superconductor phase [red curves in Figs. 4(f)–4(h)].
When MBT is in the trivial phase, the suppression of super-
conductivity on BSSs limits the SC proximity gap [blue and
black curves in Figs. 4(f)–4(h)]. These results about the gate
tunability cannot be captured by previous minimal models.

IV. CHIRAL MAJORANA MODE

As discussed above, we mainly have two constraints that
limit the realization of CMMs. Firstly, the tunability of TSSs
is greatly limited by the band bending effect. Secondly, BSSs
exhibit a giant attenuation of surface superconductivity. Nev-
ertheless, we demonstrate that CMMs can still be achieved
in a reasonable range of experimental parameters. The key
requirement for realizing CMMs is to achieve superconduc-
tivity and magnetization on TSSs and BSSs, respectively. As
shown in Figs. 3(a)–3(c), the magnetic Dirac gap of TSSs is
always much below the Fermi level during the gate tuning.
This fact protects the induced superconductivity of TSSs from
the destruction of the magnetization [64]. Thus, the key point
for achieving CMMs is to tune the Fermi level into the mag-
netic gap of BSSs, which is enabled by the high tunability
[Figs. 3(d)]. We further calculate the Chern number C (see
Appendix C) as a function of gate voltage. We have C = 1 in
the gray region of Fig. 5(e), where the Fermi level locates in
the magnetic gap of BSSs, otherwise C = 0.

Figure 5(a) shows the topological phase diagram as a func-
tion of the two experimentally relevant and tunable quantities,
gate voltage Vg and the layer number of MBT N , rather than
more phenomenological parameters. Note that most of the
topological regions, which are enclosed by the black dashed

lines, are concentrated in the range of Vg ∈ (−0.06 0.03) eV.
When the thickness of MBT increases up to six SLs, the
superconducting gap in the topological regions decreases
drastically because the Fermi level also crosses the conduc-
tion bands [Fig. 5(b)]. Another remarkable result is that we
also have additional topological regions stemming from the
bulk states of MBT (Appendix D), which are enclosed by
the white dashed lines in Fig. 5(a). The formation of these
topological regions originates from two major effects on bulk
states: induced finite spin-orbital coupling due to the applied
electric field and the magnetization effects. Because of the
antiferromagnetic structure of MBT, these usually occur when
the layer number is odd or the gate voltage is negative. Never-
theless, the induced superconducting gaps in these topological
regions are very small, which is not favorable for achieving
robust CMMs. Notably, the obtained topological regions in
Fig. 5(a) are greatly narrowed compared with those predicted
in previous works (Appendix E). This is because the Fermi
level of TSSs cannot be tuned into the magnetic Dirac gap,
i.e., CMMs with Chern number C = 2 cannot be realized,
as illustrated in Fig. 5(c). It is noted that the phase diagram
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FIG. 6. (a) The eigenenergies at kx = 0 as a function of gate
voltage Vg. The red curves correspond to the CMMs. (b) The spec-
trum shows that CMMs (red curves) appear in the SC gap. (c) The
distribution of local density of states of CMMs at kx = 0 in the y-z
cross section of MBT. The SC part of MBT-SC is not shown. We
choose N = 4, Vg = −0.028 eV, and Ly = 1.5 µm.
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[Fig. 5(a)] does not change qualitatively as long as W is not
very small. Otherwise, the Fermi level of TSSs can also be
tuned by the gate voltage, and additional topological regions
stemming from TSSs will arise (Appendix B).

To further confirm the system is exactly in the topological
phase under such conditions, we consider the MBT-SC system
with open boundary conditions in the y direction. In Fig. 6(a)
we calculate the eigenenergy with kx = 0 as a function of Vg.
The gap closes when Vg approaches −0.048 eV. Then a pair
of zero modes emerges in the gap, which is the crossing point
of the two CMBSs at kx = 0 [Fig. 6(b)]. The distribution of
local density of CMMs at kx = 0 in the y-z cross section (the
top SC part is not shown) is given in Fig. 6(c). As expected,
CMMs mainly distribute in the two edges of the MBT-SC slab
and gradually decay into the bulk.

V. CONCLUSION AND DISCUSSION

We consider a two-dimensional MBT thin film in proxim-
ity to an s-wave SC. Beyond the well-known minimal models,
we calculate the electrostatic potential self-consistently in a
Schrödinger-Poisson scheme. We find that the band bending
effect at the MBT-SC interface severely restricts the tunability
of top surface states, and the corresponding magnetic Dirac
gap is always below the Fermi level during the gate tuning.
Moreover, we find that the induced SC gap of MBT is highly
dependent on the types of the bands crossing the Fermi level.
Arguably, superconductivity at the BSSs may be strongly sup-
pressed, especially when the bulk is insulating. These results,
which cannot be obtained in previous minimal models, could
highly narrow parameter regions for achieving CMMs. Nev-
ertheless, we demonstrate that the CMMs can still be realized
via control of the gate voltage. The key point is to tune the
Fermi level of the bottom surface state into the magnetic Dirac
gap. Our method provides a more accurate prediction about
the topological phase and device control capability. This is in
stark contrast to those previous theoretical works.

In this work, we regard MBT as an infinite 2D system
and only consider the inhomogeneity of the potential in the
z direction. This approximation is reasonable because the
size of the MBT is usually very large, about hundreds of
nanometers. And most of the wave functions of the TI surface
states are localized on the top and bottom surfaces. Thus, the
electrostatic properties of surface states are barely affected by
the potential spikes at the edges. Apart from the Schrödinger-
Poisson method, another self-consistent method called the
Thomas-Fermi method has also been widely used in Rashba
semiconductors [52]. However, the Thomas-Fermi approxi-
mation relies on the assumption that the electronic charge
density is given by the standard result for a homogeneous 3D
electron gas. Thus, it is not appropriate in the TI system be-
cause of the existence of topological surface states. Compared
with bulk states, surface states are more concentrated near the
interface, so they are more sensitive to band bending. Thus,
our result that topological surface states near the supercon-
ductor do not respond to gating does not apply to the bulk
states in the nanowire system. Although the disorder defects
are not considered in this work, it was still a very important
topic. Various novel phenomena were proposed to exist in
disordered QAH systems [20,65,66]. More calculations about

different types of disorder effects in the QAH-SC system will
be considered in the future.

Apart from the QAHI system, the electrostatic effects also
exist in other TI-SC hybrid systems, such as MZMs in the
vortex of SC-TI [67] and TI nanowire [68–70]. Growing TI
film on SC substrate will induce charge doping from the SC
to the TI, which shifts the Fermi level into the TI conduction
band [61,71,72]. Thus, MZMs only exist when the TI film is
thick enough, at least three quintuple layers, as they found in
Ref. [72]. As for TI nanowire, it was proposed that the in-
homogeneous potential breaks the inversion symmetry, which
enhances the subband splitting of TI states required for the
realization of topological superconductivity [69].
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APPENDIX A: PARAMETERS USED IN THIS WORK

The parameters of the k · p Hamiltonian of MBT in Eq. (1)
are adopted from ab initio calculations [24]: C0 = −0.05 eV,
M0 = −0.117 eV, D1 = 2.72 eVÅ2, D2 = 1.2 eVÅ2, B1 =
11.9 eVÅ2, B2 = 9.40 eVÅ2, A1 = 2.7 eVÅ, A2 = 3.2 eVÅ.
The other parameters used in this work are given in Table I.
ax,y,z is the lattice constant of MBT in the tight-binding calcu-
lations. In our calculations, the choice of the superconducting
(SC) materiel is NbSe2, which has been widely used in exper-
iments [71–74]. as is the lattice constant of SC. Because the
dielectric constant of MBT has not been studied experimen-
tally, we set it equal to the value of Bi2Se3. The details about
band bending are in Appendix B.

APPENDIX B: EFFECT OF BAND BENDING STRENGTH

The bend bending strength W exists at the interface
between MBT and SC because of their work function imbal-
ance [78]. In this section we discuss the effect of band bending
strength on our result. We consider two limiting cases: a small
band bending strength with W = 0.1 eV and a very large
value, W = 0.45 eV.

In Fig. 7(a) we calculate the Chern number C (blue curves)
and induced SC gap 
ind (blue curves) as a function of gate
voltage Vg when the band bending strength W = 0.1 eV. In

TABLE I. Parameters used for the calculations in this work.

m0 d 
0 μs Ls

0.1 eV [34] 1.37 nm [25] 1.5 meV [75] 0.4 eV [76] 10 nm

εr as ax(y) az ms

25 [77] 0.4 nm 1 nm 0.7 nm me

W tc

0.3 eV [71] 0.05 eV
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FIG. 7. (a) The Chern number C (blue curves) and induced SC gap 
ind (red curves) as a function of gate voltage Vg when the band bending
strength W = 0.1 eV. (b)–(d) The energy band structure of MBT. The blue, red, and black curves correspond to BSSs, TSSs, and bulk states,
respectively. We choose the gate voltage of panels (b)–(d) as marked in panel (a). In panels (b) and (d), the Fermi level is tuned in the magnetic
gap of the BSSs and TSSs, respectively. In panel (c), the Fermi level is tuned in the trivial gap stemming from the coupling between BSSs and
TSSs. (d)–(f) The cases when W = 0.45 eV. In panels (f) and (h), the Fermi level is tuned in the magnetic gap of the BSSs and first lowest
bulk band, respectively. Due to the large band bending effect, the Fermi level cannot be tuned in the magnetic gap of TSSs. The layer number
of MBT N is fixed to 3 in all the panels.

Figs. 7(b)–7(d), we plot the energy bands of MBT with three
typical different gate voltages as marked in Fig. 7(a). Because
of the small band bending strength, the Fermi level can be
tuned in the magnetic gap of TSSs [Fig. 7(b)]. Additional
topological regions arise in this case, but the corresponding
SC gap is very small because the superconductivity of BSSs
is suppressed [Fig. 7(a)]. When W is very large [Figs. 7(e)–
7(h)], the Fermi level cannot be tuned in the magnetic gap of
TSSs, which is consistent with the result in the main text.

The exact value of W is unknown, depending on the choice
of superconducting materials in the experiment. In addition,
W also depends on the plane of the SC crystal [79,80], as
well as the thickness of SC [81]. The work functions of MBT,
Bi2Te3, and several SCs are given in Table II. The band offset
between Bi2Te3 and NbSe2 is about 0.15–0.2 eV, according
to the experiments in Ref. [71]. Obviously, the band banding
strength in the MBT-NbSe2 system is larger because of the
smaller work function of MBT. In the main text, we set W =
0.3 eV. Nevertheless, our results do not change qualitatively
as long as W is not very small, see Fig. 7.

APPENDIX C: NUMERICAL CALCULATION
OF CHERN NUMBER

For the calculation of Chern number C, we do not utilize
the Hamiltonian HBdG [Eq. (8) in the main text]. This is
because the bands which stem from the superconductor are
trivial, and the dimension of the superconductor Hamiltonian
is very large, which increased computational effort. Thus we
treat the superconductor as the self-energy 
ind [84] and

consider the Hamiltonian

HBdG =
(

HTI isy
ind

−isy
ind −H∗
TI

)
. (C1)

As discussed in the main text, 
ind is highly dependent on
the gate voltage, and top surface states (TSSs), bottom surface
states (BSSs), and bulk states have totally different induced
SC gaps. In our calculations of Chern number, we set 
ind =

tss, where 
tss is the SC gap of TSSs. This is because the
topological phase transition is mainly related to 
tss [4]. The
Chern number C of Hamiltonian Eq. (C1) is [85]

C = 1

2π

∫
d2kF12(k), (C2)

where the Berry connection Aμ(k) (μ = 1, 2) and the associ-
ated field strength F12(k) are given by

Aμ(k) = −i
∑
En<0

〈ψn(k)|∂μ|ψn(k)〉,

F12(k) = ∂1A2(k) − ∂2A1(k), (C3)

where ψn(k) and En is the nth eigenfunction and eigenvalues
of Eq. (C1). We calculate the Chern number C numerically
according to the method proposed in Ref. [86].

We consider lattice points kl (l = 1, ..., N1N2) on the two-
dimensional discrete Brillouin zone as

kl = (k j1 , k j2 ), k jμ = 2π jμ
Nμ

, ( jμ = 0, . . . , Nμ − 1),

(C4)
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TABLE II. The work functions of MBT, Bi2Te3, and several SCs.

MnBi2Te4 Bi2Te3 NbSe2 NbN Al Pb

4.0 eV [59] 5.3 eV [82] 5.9 eV [83] 4.7 eV [58] 4.26 eV [80] 4.25 eV [79]

The occupied multiplet of Hamiltonian HBdG is � =
(|ψ1〉, . . . , |ψM〉). The number of the occupied states M is
half of the dimension of HBdG because of the particle-hole
symmetry. The U (1) link variable is defined as

Uμ(kl ) = 1

Nμ(kl )
det[�†(kl )�(kl + μ̂)], (C5)

where μ̂ is a vector in the direction μ with the magnitude 2π
Nμ

,

Nμ(kl ) = |det[�†(kl )�(kl + μ̂)]| is the normalization con-
stant. Then the lattice field strength is

F12(kl ) = ln[U1(kl )U2(kl + 1̂)U1(kl + 2̂)−1U2(kl )
−1]. (C6)

The Chern number C is the summation of the lattice field F12,

C = 1

2π i

∑
l

F12(kl ). (C7)

APPENDIX D: TOPOLOGICAL REGIONS STEM
FROM BULK STATES

The applied electric field will induce finite spin-orbital
coupling on bulk states. And topological regions will exist as
long as the magnetization of bulk states is large enough, i.e.,
satisfying the topological phase transition condition M2

n,bulk >


2
n,bulk + μ2

n,bulk. Here Mn,bulk, μn,bulk, and 
n,bulk are the
magnetization, chemical potential, and induced SC gap of the
nth bulk bands, respectively.

In Fig. 8(a) we calculate the Chern number C as a function
of gate voltage Vg when the layer number of MBT N = 3.
Note that there exist two topological regions with C = 1,
which stem from surface states and bulk states, respectively.
To see it more clearly, we choose the two gate voltages as
marked in Fig. 8(a) and calculate the corresponding band
structure of MBT [Figs. 8(b) and 8(c)]. The blue, red, and
black curves correspond to BSSs, TSSs, and bulk states, re-
spectively. In Figs. 8(b) and 8(c), the Fermi level is tuned
in the magnetic gap of BSSs and the first lowest bulk band,
respectively. This indicates that the nonzero Chern number
in these two cases stems from surface states and bulk states,
respectively. Due to the antiferromagnetic properties of MBT,
the magnitude of Mn,bulk highly depends on the parity of the
layer number of MBT N . Mn,bulk is usually very small when N
is even [Fig. 8(f)]. This makes the corresponding topological
region also very small, about 0.87 meV [Fig. 8(d)]. We do not
plot this topological region in Figs. 3(e) and 3(f) of the main
text. It is noted that the signs of the C stem from surface states,
and bulk states are different when N is even. This is because
the gate-induced electrostatic potential will confine the bulk
states closer to the top surface of MBT. Thus, the BSSs and
bulk states have opposite magnetization (the sign of the Chern
number is determined by the direction of magnetization). We
also find that the magnetization of bulk states changes with
the gate voltage because of the nonuniform distribution of

the electrostatic potential in MBT. When the gate voltage is
very negative, bulk states can also have large magnetization
even for even N . As shown in the Fig. 5(a), the induced
superconducting gaps in topological regions stemming from
bulk states are very small, which is not favorable for achieving
robust CMMs.

APPENDIX E: THE ELECTROSTATIC POTENTIAL
NARROWS THE TOPOLOGICAL REGIONS

For simplicity, we consider the 2D effective Hamiltonian
of MBT which consists of the Dirac-type surface states only.
It takes the form H(k) = ∑

k ψ
†
k Hs f (k)ψk with

Hs f (k) = vF kyσzsx − vF kxσzsy + mkσ0sz

+ Mσzsz + V σzs0, (E1)

where the field operator ψk = (ct↑, ct↓, cb↑, cb↓)T , and t and
b denote the TSSs and BSSs. ↑ and ↓ represent spin-up and
spin-down, respectively. k = (kx, ky). vF is the Fermi velocity
of surface states. σi and si (i = x, y, z) are the Pauli matrix act-
ing on layer and spin space, respectively. mk = m0 + m1(k2

x +
k2

y ) describes the tunneling effect between TSSs and BSSs
and set m1 > 0. M is the magnetization of surface states.
Here the layer number of MBT is odd (for even layers, the
exchange field term changes as Mσ0sz). V is structure inver-
sion asymmetry imposed by the gated-induced electrostatic
potential [10].

The Bogoliubov–de Gennes (BdG) Hamiltonian for the s-
wave superconductor proximity coupled MBT is HBdG(k) =∑

k �
†
k HBdG(k)�k/2, with �k = (ψk, ψ

†
−k)T and

HBdG(k) =
(

Hs f (k) − μ 
(k)

†(k) −Hs f (−k)∗ + μ

)
, (E2)

where μ is chemical potential, and 
(k) is the pairing func-
tion given by


(k) =
(

i
t sy 0
0 i
bsy

)
, (E3)

where 
t (b) is the SC gap of TSSs (BSSs).
We consider limiting cases with mk = 0. The Hamiltonian

HBdG(k) is decoupled into two parts which contain BSSs and
TSSs, respectively. The Chern number of these two surface
states Ct (b) is determined by

Ct (b) =
{

Sign(M ) M2 > 
2
t (b) + (μ ∓ V )2

0 Otherwise
. (E4)

The sign of Ct (b) is opposite (the same) in even (odd) layers
of MBT. In experiments, we usually have V � M, 
t (b) [87].
This makes the topological region stemming TSSs and BSSs
well separated. As discussed in the main text, the Fermi level
of TSSs cannot be well tuned because of the band bending
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FIG. 8. (a) The Chern number C as a function of gate voltage Vg when the layer number of MBT N = 3. There exist two topological regions
with C = 1, which stem from surface states and bulk states, respectively. (b, c) The band structure of MBT. The blue, red, and black curves
correspond to BSSs, TSSs, and bulk states, respectively. We choose the gate voltage of panels (b) and (c) as marked in panel (a). In panels
(b) and (c), the Fermi level is tuned in the magnetic gap of the BSSs and first lowest bulk band, respectively. (d)–(f) The cases when N = 4. Due
to the antiferromagnetic properties of MBT, the magnetization of bulk states is small when N is even. So the corresponding topological region
is small. In addition, the signs of the C stem from surface states and bulk states are different. This is because the gate-induced electrostatic
potential will confine the bulk states closer to the top surface of MBT. Thus, the BSSs and bulk states have opposite magnetization.

effect. This makes the magnetic gap of TSSs always below
the Fermi level during the gate tuning. Thus, we always have

Ct = 0, which highly narrows the topological regions, as
shown in Fig. 5(c).
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