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Effects of disorder on Thouless pumping in higher-order topological insulators
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We investigate the effects of random onsite disorder on higher-order Thouless pumping of noninteracting
fermionic Benalcazar–Bernevig–Hughes (BBH) model. The interplay of disorder-induced topological phase
transition and delocalization-localization transition is extensively explored. The higher-order Thouless pump-
ing is characterized by the quantized corner-to-corner charge transport and nonzero Chern number, and the
delocalization-localization transition is analyzed by utilizing both inverse participation ratio and finite-size
scaling. The results show that the quantized corner-to-corner charge transport is broken for the strong disorder,
where the instantaneous bulk energy gap is closed. Although the instantaneous eigenstates are localized for the
weak disorder, the charge transport remains quantized. This is attributed to delocalized Floquet states caused
by the periodic driving. Furthermore, the phase transition from the quantized charge transport to topologically
trivial pumping is accompanied by the disorder-induced delocalization-localization transition of Floquet states.
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I. INTRODUCTION

Thouless charge pumping, proposed by Thouless in 1983
[1], is originally a dynamical topological effect in one-
dimensional systems. It shares the same topological origin
as the static Chern insulator, where one of the momentum
coordinates is replaced by an adiabatically varying param-
eter. The Thouless charge pumping serves as one of the
simplest manifestations to understand the topology in quan-
tum systems, where the quantized charge transport reveals
the correspondence between polarization in the bulk and
charge at the boundary [1,2], the so-called bulk-boundary
correspondence. Recently, an unconventional bulk-boundary
correspondence occurs in higher-order topological insulators
(HOTIs) [3–28]: a d-dimensional nth-order (n � 2) topo-
logical system hosts topologically protected gapless states
on its (d − n)-dimensional boundaries. Correspondingly, the
higher-order Thouless charge pumps, which can be utilized
to reveal such an unconventional bulk-boundary correspon-
dence, have been put forward and studied [29–34]. Especially,
the higher-order topological pumped corner-to-corner charge
flow has been related to four higher-order Zak phases in a
square Boson-Hubbard model [29], providing us a simple the-
oretical framework for characterizing higher-order Thouless
pumping.

Disorder, ubiquitous in real materials, plays an important
role in quantum transport due to the nontrivial interplay of
disorder-induced Anderson localization [35] and topological
Anderson insulator [36]. Recently, many efforts have been de-
voted to understanding the robustness properties of quantized
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charge transport against disorder in the conventional Thouless
pumping [37–41], where the breakdown of quantized charge
transport has been linked to a delocalization-localization
transition coincident with the topological transition [38]. Re-
cently, the disorder-induced higher-order topological pumping
(i.e., topological Anderson-Thouless pump) is explored [34].
Meanwhile, the effects of the disorder on Thouless pump-
ing in higher-order topological insulators still remains largely
unexplored.

In this paper, we aim to study the topological phase
transition and delocalization-localization properties of Thou-
less pumping against disorder in a higher-order topological
insulator. We introduce random onsite disorder into the non-
interacting fermionic Benalcazar–Bernevig–Hughes (BBH)
model [4] under periodic driving. The quantized corner-to-
corner charge transports through each corner during one
topological driving period is linked to four higher-order Zak
phases and characterized by the winding of the higher-order
Zak phase (i.e., Chern number). Results have shown that the
disorder causes the topological phase transition from Thouless
pumping to trivial pumping. Remarkably, the higher-order
Thouless pumped charge transport survives despite local-
ized instantaneous eigenstates for the weak disorder. The
inverse participation ratio indicates that the quantized corner-
to-corner charge transport is related to the delocalized Floquet
states in the weak disorder strength. Furthermore, as the dis-
order strength varies, the phase transition from topological
pumping to trivial pumping and delocalization to localization
transition coexist in our investigated system.

The rest of the paper is structured as follows. In Sec. II, we
describe the disordered BBH model under periodic driving. In
Sec. III, we investigate the corner-to-corner charge transport
under the higher-order Thouless pumping and relate it to the
four higher-order Zak phases. The topological phase transi-
tion and delocalization-localization properties of higher-order
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FIG. 1. Higher-order topological pumping in a noninteracting
fermionic BBH model. (a) Schematic representation of a square
lattice structure in the presence of time-dependent staggered nearest-
neighbor hopping strength with 1 − δ and δ, and onsite potentials
with � and −�. The arrows indicate the nearest-neighbor hopping
with a negative sign, accounting for a flux of π threading each
plaquette. Under corner periodic boundary conditions, θ denotes
the twisted phase added to a pair of corner-connecting links with
a shared corner c1 = (−D, D). This is equivalent to adiabatically
inserting a magnetic flux into the two supercells meeting at corner c1.
(b) The trajectory of driving parameters δ(t ) and �(t ) in a pumping
cycle. The quantized topological pumping requires such a trajectory
enclosing a gapless point (red dot) of the system’s eigenenergies in
the driving parameter space. (c) Evolution of density during a half-
Thouless pump with t ∈ [0, T/2]. The system is initially prepared in
the half-filling ground state of H0(t = 0), with δ = 0 and � = 0. At
the end of the half-cyclic evolution, there are +1/2 charges pumped
to two antidiagonal corners and −1/2 charges at two diagonal cor-
ners. The parameter used in the simulation is h̄ω = 0.05δ0.

Thouless pumping against disorder are studied in Sec. IV.
Finally, we conclude the work in Sec. V.

II. THE MODEL

We extend the spinless fermionic BBH model [4] to include
the onsite staggered potential and periodic driving on a square
lattice with N/2×N/2 unit cells, as shown in Fig. 1(a). The
system Hamiltonian reads

H0 = −
⎡
⎣ D−1∑

x=−D

D∑
y=−D

(λ(x)â†
x+1,yâx,y + H.c.) + x ↔ y

⎤
⎦

+ �

D∑
x,y=−D

n̂x,y(−1)x+y, (1)

with λ(ε), and ε ∈ {x, y} satisfying

λ(ε) =
{
δ0 − δ, ε ∈ {−D,−D + 2 . . . , D − 1},
δ, ε ∈ {−D + 1,−D + 3 . . . , D − 2}, (2)

where D = (N − 1)/2, â†
x,y creates a fermion at site (x, y),

n̂x,y denotes the fermion number, δ and δ0 − δ, with δ =
δ0(1 − cos ωt )/2, represent the time-dependent staggered
nearest-neighbor hopping strengths, and � and −�, with � =
δ0 sin ωt , are the time-dependent staggered onsite potentials.
The undriven BBH model exhibits a second-order topological
phase, featured by the appearance of in-gap states and frac-
tional charge on corners of the lattice [4]. The periodically
driven fermionic BBH model can be experimentally realized
using ultracold quantum gases [42–46].

III. HIGHER-ORDER THOULESS PUMPING
AND TOPOLOGICAL INVARIANT

A Thouless pump induces a quantized amount of charge
transport during an adiabatic cycle in the parameter space.
We now consider a half-cyclic adiabatic pump during t ∈
[0, T/2], with T being the pumping period, as shown in
Fig. 1(b). We initialize the system in the half-filling ground
state of H0(t = 0), with δ = 0 and � = 0. Then, the particle
density in site i at time t is given by

〈n̂i(t )〉 =
N2/2∑
α=1

|〈xi|Û (t )|ψα〉|2, (3)

where Û (t ) is the one-body evolution operator, |ψα〉 is the αth
occupied eigenvector of initial Hamiltonian H0 at t = 0 in the
bases of one-particle Fock state, and |xi〉 denotes the coordi-
nate eigenvector with eigenvalue xi, which is the coordinate of
site i.

The half-cyclic adiabatic evolution of the particle density
is shown in Fig. 1(c). The direction of charge transport is
controlled by the onsite potential ±�. Initially, the density is
homogeneously distributed at each site for δ = 0 and � = 0.
As time evolves, when φ = ωt < π/2, � increases and the
system is in the topologically trivial phase. The density ac-
cumulates towards sites with negative onsite potential −�.
Once φ exceeds π/2, � decreases and the system enters the
topological phase regime. The density, accumulated at sites
with negative onsite potential, begins reducing in the bulk
and along the edge, and finally becomes uniform distribution
at the end of the half-cyclic evolution. However, there are
+1/2 charges pumped to two antidiagonal corners and −1/2
charges at two diagonal corners at the end of the half-cyclic
evolution.

The higher-order topological charge pumping can be char-
acterized by the four Chern numbers [29], each of which
is defined as the winding number of four higher-order Zak
phases in the square-lattice geometry. The higher-order Zak
phase is introduced under the corner periodic boundary condi-
tions (CPBCs) [29] by applying corner-connecting links, with
its Hamiltonian reading

HC
i (θ ) = e−iθ n̂ci HCeiθ n̂ci , (4)
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where the corner-connecting link Hamiltonian is written as

HC = −δ
(
â†

c1
âc2 + â†

c2
âc3 + â†

c3
âc4 − â†

c4
âc1 + H.c.

)
, (5)

with corner sites c1 = (−D, D), c2 = (−D,−D), c3 =
(D,−D), and c4 = (D, D). In Eq. (4), θ denotes the twisted
phase added to a pair of corner-connecting links with a shared
corner ci [see Fig. 1(a)].

With the total Hamiltonian under the corner periodic
boundary conditions HCPBC

i = H0 + HC
i , we can define the

high-order Zak phase γi (i = 1, 2, 3, 4) [29] as

γi = i
∫ 2π

0
dθ〈
i(θ )|∂θ |
i(θ )〉, (6)

where the wave function |
i(θ )〉 is the instantaneous many-
body ground state of HCPBC

i at half filling. By defining the
current operator Ĵi = −∂θHCPBC

i |θ=0, associated to the flux
θ inserted into the corner-connecting links, one can infer
that each of four higher-order Zak phases is related to the
charge transport Qci across the corner ci along a diagonal
direction [29]

Qci = −�γi

2π
, (7)

where �γi is the gauge-invariant difference of γi during an
adiabatically pumping cycle.

Numerically, the total amount of transported charge during
a Thouless pumping circle can be calculated as

Qci =
∫ T

0
dτ tr(ρ̂(τ )Ĵi ), (8)

where ρ̂(τ ) is the density matrix of the adiabatic evolution
[29]. Furthermore, according to Eqs. (6) and (7), the total
charge pumped to each corner along the diagonal direction
over one pumping period T can be characterized by one of
four Chern numbers

Ci = 1

2π

∫ T

0
dτ∂τ γi = −Qci , (9)

which is always quantized. Therefore, the corner-to-corner
charge transport in higher-order topological pumping is in-
teger quantized. Note that

∑4
i=1 Ci = 0 due to net charge

conservation.

IV. EFFECTS OF DISORDER ON HIGHER-ORDER
THOULESS PUMPING

A. Charge transport versus disorder strength

The main focus of this work is to explore the effects of the
disorder on higher-order Thouless pumping. We consider in-
troducing the onsite disorder into the pumping system, which
has the Hamiltonian Htot = H0 + Hdis, with the disorder term
being

Hdis =
D∑

x,y=−D

V (x, y), (10)

where V (x, y) = W ζx,yn̂x,y denotes the onsite disordered po-
tential, with W being the disorder strength, and ζx,y ∈
[−1/2, 1/2] being uniformly distributed random number.

0 3.5 7 10.5 14 17.5

0

1

2

FIG. 2. The disorder-averaged corner charge |Qc1 | transported
across the corner c1, Chern number C1, and minimum value �E
of the instantaneous eigenenergy gaps during a pumping cycle as
a function of the disorder strength W under the corner periodic
boundary conditions. δqc is the disorder-averaged change of corner
charge across the corner c1, calculated under the open boundary
conditions, in a pumping cycle. The results are averaged over 800
disorder realizations, with the lattice size N×N = 24×24, h̄ω =
0.02δ0. The other results are averaged over 600 disorder realizations,
with the lattice size N×N = 16×16, h̄ω = 0.05δ0. The breakdown
of the quantized corner charge transport coincides with the minimum
instantaneous energy gap closing induced by the strong disorder
strength along the pumping cycle, where the adiabatic approximation
is broken.

Figure 2 shows the disorder-averaged corner charge |Qc1 |,
transported across the corner c1, as a function of the dis-
order strength W in a pumping cycle under the corner
periodic boundary conditions. Quantized corner-to-corner
charge transport, with |Qc1 | = 1, persists for the weak dis-
order strength with W � 3δ0. As the disorder strength
further increases, |Qc1 | decreases and becomes zero for the
strong disorder with W � 10δ0. In addition, we calculate the
disorder-averaged change δqc of corner charge across the cor-
ner c1, calculated under the open boundary conditions, in a
pumping cycle (see Fig. 2). Its variation follows |Qc1 | as the
disorder strength is increasing. Note that δqc is counted by
simply summing the particle density near the corner c1 during
a pumping cycle, where the system is initialized in topological
corner states.

The breakdown of quantized charge transport at the strong
disorder is also revealed by the disorder-averaged Chern num-
ber with C1 = 0 (see Fig. 2). As the disorder strength varies,
the behavior of Chern numbers remains the same as that of
the passing corner charge despite the existence of disorder,
indicating that the Chern number, defined as the winding
of higher-order Zak phase, can characterize the higher-order
topological pumping in the disordered system.

Due to its topological nature, the quantized Thouless
pumping requires the trajectory of driving parameters en-
closing a gapless point of the system’s eigenenergies along
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FIG. 3. Gap structure log[�E (δ,�)] at different disorder strengths for a single random realization. The black circle indicates the pumping
cycle in the � − δ parameter space.

the pumping cycle while a gapped energy gap remains
[see Fig. 1(b)]. However, the eigenenergy gap can close during
the adiabatic evolution along the trajectory in the driving
parameter space under effects of the disorder, leading to the
breakdown of the quantized corner-to-corner charge transport.
We plot the disorder-averaged minimum value �E of the
instantaneous eigenenergy gaps in a pumping cycle as the
disorder strength varies in Fig. 3, where �E is defined as

�E = min
φ∈[0,2π]

[EN2/2+1(φ) − EN2/2(φ)], (11)

with EN (φ) being the N-particle many-body ground-state
eigenenergy. As shown in Fig. 2, the breakdown of the quan-
tized corner charge transport coincides with the minimum
instantaneous energy gap closing induced by the strong dis-
order strength along the pumping cycle, where the adiabatic
approximation is broken.

The effects of the disorder on the quantized corner-
to-corner charge transport can also be revealed by calcu-
lating log[�E (δ,�)] at different disorder strengths, where
�E (δ,�) is the instantaneous energy gaps in the δ − �

parameter space. As shown in Fig. 3, the black circle
indicates the pumping cycle in the � − δ parameter space.
For W = 0, the driving circle encircles a single gapless point
(indicated by the blue point in Fig. 3), signaling a quantized
higher-order topological charge transport. When the disorder
strength rises to W = 2δ0, the number of gapless points, with
the �E closing to zero for these points (also �E � ω), in-
creases. These points form a net-line region. However, the
net-line region can still be encircled by the driving circle,
and the quantized transport can be sustained. When the dis-
order strength is further increased, the net lines (indicated
the blue regime) start to cross with the driving circle. While,
for W = 3δ0, we can enlarge the driving cycle to restore the
quantized transport. However, for the strong disorder (e.g.,
W = 8δ0), the net lines, connected by gapless points, cover
the whole parameter space, and the quantized charge transport
is completely broken.

B. State localization and delocalization

We now proceed to investigate state localization and de-
localization under the effects of the disorder in a pumping

cycle, which determines the quantized charge transport. Ac-
cording to Anderson localization [35], the arbitrary disorder
can cause one- and two-dimensional states to be localized
in a noninteracting stationary system. We, therefore, ex-
plore the localization-delocalization properties of eigenstates
in the pumping circle under the corner periodic boundary
conditions.

To measure the degree of state localization, we utilize the
inverse participation ratio (IPR) I [47], which defines as

I (|ψn(φ)〉) =
N2∑
j=1

|〈 j||ψn(φ)〉|4, (12)

where |ψn(φ)〉 is the nth single-particle instantaneous eigen-
state at pump angle φ, and | j〉 is the coordinate eigenstate
localized at site j. The IPR I can vary from I = 1 for the

8 12 16 20 24 28 32

N
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5

6

FIG. 4. The characteristic localization length ξI of the instanta-
neous eigenstates versus the system size N for different disorder
strengths. The results are averaged over 1200 disorder realizations
for N � 16, over 800 disorder realizations for 24 � N > 16, and
over 400 disorder realizations for N > 24. When W � 2, the finite
size effect can be neglected. The results indicate that instantaneous
eigenstates are localized even for the weak disorder.
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FIG. 5. The characteristic localization length ξF of the Floquet
eigenstates versus the system size N for different disorder strengths.
The results are averaged over 1200 disorder realizations for N � 16,
over 800 disorder realizations for 24 � N > 16, and over 400 disor-
der realizations for N > 24. The parameter used in the simulation is
h̄ω = 0.05δ0.

perfect localization to I = 1/N2 for the totally delocalized sit-
uation (i.e., take |〈 j||ψn(φ)〉| = 1/N). Then, we can calculate
the characteristic localization length by using the inverse of
the minimum IPR over all eigenstates and pump angles φ,
which is defined as

ξI = {
min
n,φ

Ī (|ψn(φ)〉)
}−1/2

. (13)

In Fig. 4, we plot the characteristic localization length ξI of
instantaneous IPR versus the system size N for different dis-
order strengths. When W � 2, ξI remains nearly unchanged,
and the finite size effect can thus be neglected. Furthermore,

the results show that instantaneous eigenstates are localized
even in the small disorder strength.

To explore why the quantized charge transport survives
even though the instantaneous eigenstates remain localized
for the small disorder strength, we study the localization
properties of the Floquet eigenstates. For the periodic driving,
we write the evolution operator over a pumping cycle in the
Floquet representation [48]

Û (T, 0) =
∑

n

e−iEnT/h̄|φn(0)〉〈φn(0)|, (14)

where |φn(0)〉 is the Floquet eigenstate, and εn is the
corresponding quasienergy with −π/T � εn < π/T . The
characteristic localization length of the Floquet eigenstates is
defined as

ξF = {
min

n
Ī (|φn(0)〉)

}−1/2
, (15)

where I (|φn(0)〉) = ∑
j |〈 j||φn(0)〉|4.

Figure 5 shows the ξF as a function of the lattice size N for
different disorder strengths W . For W < 4δ0, ξF ∼ N , which
shows the longer localization length than ξI in Fig. 4. The
Floquet eigenstates remain delocalized, where the periodic
driving mixes the localized instantaneous eigenstates [38],
and the quantized charge transport is thus survived for the
small disorder strength despite the instantaneous eigenstates
localized. However, for W > 10δ0, the Floquet eigenstates are
perfectly localized, where the charge transport is inhibited
(see Fig. 2). This indicates that the disorder-induced transition
from higher-order topological pumping to topologically trivial
pumping is accompanied by the delocalization-localization
transition of Floquent eigenstates.

To further determine the critical disorder strength WC of
the disorder-induced phase transition for the driving sys-
tem, we perform a finite-size scaling analysis of ξF. As
shown in Fig. 6(a), we infer that ξF(W ) ∼ (W − WC )−β with
β � 1.8 for W > WC under the thermodynamic limit, where

2 6 10 14
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18

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3
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0.5

0.6

(a) (b)

FIG. 6. (a) Characteristic localization length ξF of the Floquet eigenstates as a function of disorder strength W with different system sizes
N . The curve of the dashed line is proportional to (W − WC )−β . (b) The collapse of ξF/N , plotted as a function of N1/β (W − WC )/δ0, with
WC � 3.1δ0 and β � 1.8. The parameter used in the simulation is h̄ω = 0.05δ0.
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FIG. 7. IPR I (|φn(0)〉) versus the time-averaged energy 〈E〉n of the corresponding Floquet eigenstate. The dashed lines indicate the value
1/N2 for totally delocalized states. The results are simulated by several disorder realizations with N = 24 and h̄ω = 0.02δ0.

WC � 3.1δ0 is the critical disorder strength. By rescaling the
data and plotting ξF/N as a function of N1/β (W − WC )/δ0

in Fig. 6(b), we observe the collapse of ξF/N . While for
W < WC , ξF scales as N (see also Fig. 5). These indicate
a delocalization-localization phase transition. Moreover, the
critical disorder strength WC extracted by this scaling analysis
is compatible with the breaking of quantized charge transport
in Fig. 2.

As shown in Fig. 7, we plot the energy-resolved
IPR I (|φn(0)〉) of Floquet eigenstates over the
time-averaged energy of Floquet eigenstates 〈E〉n =
1
T

∫ T
0 dt〈φn(t )|Htot(t )|φn(t )〉 under CPBC. For W =2δ0 <WC ,

the time-averaged energy bands are separated by a gap, and
nearly all the Floquet eigenstates are delocalized, leading
to the quantized corner-to-corner charge transport at half
filling. As the disorder rises, the energy gap decreases.
Near the critical region with W � WC , the disorder makes
two energy-band regions touch and merge, and breaks
the quantized charge pumping, although most of Floquet
eigenstates are still extended states. For the strong disorder
with W = 10δ0, most of the Floquet eigenstates are localized,
inhibiting the charge transport.

V. SUMMARY AND CONCLUSION

We have investigated the higher-order Thouless pumping
of the noninteracting fermionic BBH model in the presence
of random onsite disorder. We started with the corner-to-
corner charge transport in the pumped clean system, where its
charge flow is related to four higher-order Zak phases defined
in corner periodic boundary conditions, and the quantized
pump is characterized by the winding of higher-order Zak

phase (i.e., Chern number). When the random onsite disorder
is introduced into the system, the instantaneous eigenstates
remain localized. However, the quantized corner-to-corner
charge transport is survived in the weak disorder, although
it is broken as the disorder strength increases. The transi-
tion from higher-order topological pumping to trivial phase
is characterized by the disorder-averaged Chern number (i.e.,
winding of higher-order Zak phase). Furthermore, we have
shown that the quantized charge transport, in the weak dis-
order, is related to the extended Floquet states, where the
periodic driving mixes localized instantaneous eigenstates.
By analyzing the inverse participation ratio, we found that
the phase transition from the quantized charge transport to
topologically trivial pumping is accompanied by the disorder-
induced delocalization-localization transition of Floquet
states.
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