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Wave-packet scattering at a normal-superconductor interface in two-dimensional materials:
A generalized theoretical approach
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A wave-packet time evolution method, based on the split-operator technique, is developed to investigate the
scattering of quasiparticles at a normal-superconductor interface of arbitrary profile and shape. As a practical
application, we consider a system where low-energy electrons can be described as Dirac particles, which is the
case for most two-dimensional materials, such as graphene and transition-metal dichalcogenides. However, the
method is easily adapted for other cases such as electrons in few-layer black phosphorus or any Schrödinger
quasiparticles within the effective mass approximation in semiconductors. We employ the method to revisit
Andreev reflection in mono-, bi-, and trilayer graphene, where specular- and retro-reflection cases are observed
for electrons scattered by a steplike superconducting region. The effect of opening a zero-gap channel across the
superconducting region on the electron and hole scattering is also addressed, as an example of the versatility of
the technique proposed here.
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I. INTRODUCTION

It is widely known that electron states convert to holes
after being reflected by a normal (N)–superconductor (SC)
interface [1]. This effect, also known as Andreev reflection,
exhibits peculiarities: if the incidence to the N-SC inter-
face is normal, then the electron is fully converted into a
hole, whereas for oblique incidence, part of the wave func-
tion is reflected back to the normal region as an electron
state. In a system consisting of a semiconductor material,
with a considerable energy gap separating the conduction
and valence bands, the momentum of the hole, along with
its energy dispersion, guarantees that the hole component of
the wave function travels back in a trajectory that is par-
allel to that of the incident electron, which is then named
retro-reflection. However, it has been demonstrated that in
monolayer graphene, where low-energy electrons behave as
massless Dirac fermions in a gapless band structure [2], the
energy dispersion is such that for low Fermi levels, the hole
component of the wave function travels back in the normal
region in a trajectory that is parallel to that of the reflected
electron, thus undergoing a specular Andreev reflection. This
effect was predicted by Beenakker in 2006 [3] in a model for
monolayer graphene, which was further extended to bilayer
graphene [4,5] and experimentally observed only recently
[5–8]. A graphene-based device suggested by Bhandari et al.
[9], where an applied magnetic field guides electrons from a N
graphene region toward a SC one, has been recently employed
as yet another way to probe Andreev reflection and electron-
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hole conversion at the N-SC interface, through the analysis of
electron and hole cyclotron orbits as imaged by scanning gate
microscopy. The multiple Andreev reflection processes exper-
imentally observed in such a graphene-based N-SC interface
under an applied magnetic field produce quantum Hall edge
states, as demonstrated in Ref. [10].

Further suggestions have been made for experimental ob-
servation of Andreev scattering using N-SC interfaces based
on different materials, such as transition-metal dichalco-
genides [11,12] and their heterostructures [13], as well as
borophene [14]. A N-SC interface in monolayer black phos-
phorus [15] has also been recently theoretically proposed as
a venue for the observation of Andreev reflection [16]. Since
this is a ≈2 eV gap semiconductor [17], only retro-reflection
is expected to occur, but many two-dimensional (2D) ma-
terials with zero gap exist [18–20] and may be suitable for
the observation of specular Andreev reflection too. However,
developing a different theory for each Hamiltonian describing
each of the several classes of materials in the 2D materials
family seems like an insurmountable challenge. Moreover,
most of the techniques proposed in the literature for the study
of Andreev scattering resort to plane-wave-based methods
which, although providing analytical solutions to the scatter-
ing problem, are harder to be adapted to physical situations
involving arbitrary potentials and N-SC interface profiles, as
well as in the presence of applied fields. This motivates us to
develop a method that is easily adapted for any configuration
of the potential and N-SC interface profiles, as well as for any
form of the Hamiltonian describing the materials involved.

The time evolution of wave packets scattering across N-
SC-N interfaces in the context of three-dimensional (bulk)
systems, with charge carriers following a parabolic dispersion
(thus being described by a Schrödinger Hamiltonian), was
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explored decades ago; see Ref. [21]. Later on, studies of su-
percurrents in SC-N-SC junctions [22], as well as in ultrafast
Josephson nanojunctions based on SC-device-SC interfaces
with time-dependent Hamiltonians [23], have also been devel-
oped using different approaches involving the time-dependent
Bogoliubov–de Gennes equation.

In this paper, we propose a generalized numerical tech-
nique to investigate the wave-packet dynamics at N-SC
interfaces with arbitrary profile. This technique is based on
an extension of the so-called split-operator method [24,25],
which accounts for the Bogoliubov–de Gennes Hamiltonian
describing a superconductor and a Dirac-Weyl Hamiltonian
describing the behavior of the charge carriers in the system.
The method allows for the investigation of wave-packet scat-
tering at the interface and the interplay between electron and
hole states, allowing one to assume an arbitrary form for
the interface and potential profiles and to conveniently change
the system Hamiltonian for that of any 2D material. We apply
the method to calculate transmission probabilities (i) in mono-
, bi-, and trilayer graphene-based N-SC interfaces, as well as
(ii) in a system consisting of a monolayer graphene-based nor-
mal wave guide defined by adjacent superconducting regions.
The former demonstrates the versatility of the method pro-
posed here, regarding its flexibility to be conveniently adapted
to other system Hamiltonians for electrons in materials yet
unexplored in the context of N-SC interfaces, while the results
in the latter illustrate how the channel width and length can be
used to tune the electron and hole components of the wave
packet that leaves the channel region.

II. WAVE-PACKET PROPAGATION METHOD

Consider a basis (uA uB vA vB)T , where ui and vi (i = A, B)
represent the ith component of the two-component spinor de-
scribing electrons and holes, respectively. The Bogoliubov–de
Gennes (BdG) Hamiltonian [26] describing the N-SC inter-
face is given by

HBdG =
(

H − EF + U (�r) �(�r)
�∗(�r) −[H − EF + U (�r)]

)
, (1)

where H is a 2 × 2 matrix Hamiltonian for charged particles
in the material in its normal phase, �(�r) = �0(�r)eiφ is a
space-dependent superconducting gap, which is assumed to
be nonzero only at the superconducting region, U (�r) is an
external potential, and EF is the Fermi level. Notice that U ,
�, and EF must each be multiplied by a 2 × 2 identity matrix
I (omitted here for the sake of convenience), so that HBdG is
a 4 × 4 matrix.

The time evolution of an arbitrary initial wave packet,

�(�r, t = 0) =

⎛
⎜⎜⎝

uA

uB

vA

vB

⎞
⎟⎟⎠ × ψ (�r, 0), (2)

is calculated as

|�(�r, t + �t )〉 = e−i
HBdG

h̄ �t |�(�r, t )〉. (3)

The Hamiltonian HBdG is conveniently split into parts that
depend exclusively on real or reciprocal space coordinates,

HBdG = (H − EF ) ⊗ σz + U (�r) ⊗ σz

+ �0(�r)(cos φI ⊗ σx + sin φI ⊗ σy), (4)

where the first term retains only the terms that depend on
reciprocal-space coordinates �k and �σ is the vector of Pauli
matrices.

We perform the Suzuki-Trotter expansion [24,25,27] in
the time evolution operator of Eq. (3), which allows us to
apply the exponential of operators that involve �k and �r in a
separate manner; see the Appendix for the full calculation.
This approach will be demonstrated to be very convenient in
the context of 2D materials since low-energy electrons in these
systems are often described by 2 × 2 Dirac-Weyl Hamiltoni-
ans that can be rewritten into the form H = �h · �σ , provided
one considers a proper �h. In this case, the exponentials in-
volved in the time evolution operator are eventually rewritten
as a series of 4 × 4 matrices,

e−i �Wr⊗�σ = Mr =

⎛
⎜⎜⎝

A− 0 B− 0
0 A− 0 B−

B+ 0 A+ 0
0 B+ 0 A+

⎞
⎟⎟⎠, (5)

where A± = cos( �t
2h̄

√
�2

0 + U 2) ± i sin( �t
2h̄

√
�2

0 + U 2)
U√

�2
0 + U 2 and B± = −i sin( �t

2h̄

√
�2

0 + U 2) �0e±iφ√
�2

0+U 2 ; and

e−i �Wk⊗�σ = Mk =

⎛
⎜⎜⎝

C− D− 0 0
D+ C+ 0 0
0 0 C′

− D′
−

0 0 D′
+ C′

+

⎞
⎟⎟⎠, (6)

where C± = [cos(ω) ± i sin(ω)ωz

ω
]eiEF

�t
h̄ , D± = −i sin(ω)

ωx±iωy

ω
eiEF

�t
h̄ , C′

± = [cos(ω′) ± i sin(ω′)ω′
z

ω′ ]e−iEF
�t
h̄ , D′

± =
−i sin(ω′)ω′

x±iω′
y

ω′ e−iEF
�t
h̄ , �ω = (hx, hy, hz )�t

h̄ , and �ω′ =
(−hx,−hy,−hz )�t

h̄ .
Thus, a wave packet at an instant t , |�(�r, t )〉, is propagated

to |�(�r, t + �t )〉 as

|�(�r, t + �t )〉 = MrMkMr |�(�r, t )〉, (7)

which is performed in three steps: (i) multiplying |�(�r, t )〉 by
Mr , (ii) taking the Fourier transform of the resulting spinor
and multiplying it by Mk in reciprocal space, and then (iii)
taking the resulting spinor back to real space, by performing
an inverse Fourier transform on it and multiplying it by Mr

again. The process is repeated until the propagation is per-
formed for a given time interval. Notice that since the matrix
expansion in Eq. (A2) is exact, the only error involved in
this procedure is the O(�t3) error resulting from the Suzuki-
Trotter expansion in Eq. (A1). As we consider a small time
step �t = 0.1 fs, this term can be neglected from now on.

Electron and hole probability densities are calculated from
the propagated electron-hole pseudospinor,

�(�r, t ) =

⎛
⎜⎜⎝

ψuA(�r, t )
ψuB(�r, t )
ψvA(�r, t )
ψvB(�r, t )

⎞
⎟⎟⎠, (8)
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FIG. 1. Sketch of the two graphene-based systems considered
here: (a) a single interface between normal and superconducting (SC)
regions, and (b) a tilted (by 45◦) channel of length L and width
W across the SC region. In the former, Andreev retro- (top) and
specular (bottom) reflections will be investigated by calculating the
trajectories of the electron (e, blue) and holes (h, red), assuming an
incidence angle α and describing the quasiparticles as circular Gaus-
sian wave packets. As for the latter, we will investigate transmission
and reflection probabilities for an incoming electron described by a
Gaussian wave front (blue gradient).

as

Pe(t ) =
∫ r2

r1

[|ψuA(�r, t )|2 + |ψuB(�r, t )|2]d�r, (9)

Ph(t ) =
∫ r2

r1

[|ψvA(�r, t )|2 + |ψvB(�r, t )|2]d�r, (10)

where the interval [r1, r2] limits the region of interest in space.
For the systems shown in Fig. 1, the superconducting region
covers the range [−∞, +∞] in the horizontal x axis [with
the exception of the region inside the channel in Fig. 1(b)].
In the system in Fig. 1(a), the SC region goes from y = 0
to y → ∞. In this case, as we are interested in the reflected
quasiparticles in the N region, the integration region is taken
as [−∞, +∞] in the x direction and [0,∞] in the y direction.
For the system in Fig. 1(b), the SC region is finite in the
vertical y direction and limited to the range of [−L/2,+L/2].
For this case, we will discuss the transmission probabilities
after the SC region; therefore, the integration region will be
taken as [−∞, +∞] in the x direction and [+L/2,∞] in the y
direction. Reflection (transmission) probabilities are obtained
as the converged values of Eqs. (9) and (10), integrated only
within the space before (after) the SC region, as t → ∞.

The systems sketched in Fig. 1, where wave packets prop-
agate from the bottom to the top, represent a setup where the
bias is applied from the bottom to the top, along the vertical
y direction. In this case, the energy of the wave packet plays
the role of potential bias in the actual experiment, whereas
its width is related to, e.g., a temperature broadening factor
in Landauer-Buttiker formalism, as the wave-packet width
determines the range of energies and momenta of plane waves
that are involved in composing the whole wave packet [28].

III. RESULTS AND DISCUSSION

A. Uniform normal-SC interface in Dirac-Weyl materials:
Revisiting Andreev reflection in graphene

Let us first revisit the problem of Andreev reflection
in graphene. Figure 1(a) shows a sketch of the proposed
situation, where an electron in normal graphene propa-
gates towards the superconducting region (shaded) through a
trajectory that makes an angle α with the direction normal to
the interface.

For the envelope function multiplying the pseudospin in
Eq. (2), we assume a Gaussian wave packet,

ψ (�r, 0) = 1

d
√

2π
exp

[
− (x − x0)2 + (y − y0)2

2d2
+ i�k0 · �r

]
,

(11)

describing a propagating low-energy electron in graphene.
The band structure of Dirac-Weyl materials (e.g., graphene)
around the K and K ′ points of the first Brillouin zone can be
approximated by linear functions that follow from diagonal-
ization of the effective Hamiltonian,

H± = h̄vF (±kxσx + kyσy), (12)

where vF is the Fermi velocity and ± refers to K(+) and
K ′(−) cones, so that low-energy electrons in this material
behave as massless Dirac fermions. These cones are re-
lated by time-reversal symmetry and, therefore, here we will
consider only the case of electrons around K , whereas the
behavior of electrons at K ′ is predicted from our results just
by applying straightforward transformations due to the sign
change in Eq. (12). This Hamiltonian enters Eq. (6) through
the �ω = �h�t/h̄ and �ω′ = −�h�t/h̄ terms, in this case, con-
structed by rewriting H± = (±hx, hy, 0) · �σ with �h = h̄vF �k.
The calculation is easily adapted, e.g., for bilayer and tri-
layer graphene (in the ABC stacking order), using the 2 × 2
approximation for the Hamiltonian proposed in Ref. [29],

where one just needs to redefine �h = h̄2v2
F

γ
(k2

x + k2
y ,±2kxky, 0)

and �h = h̄3v3
F

γ 2 (k3
x − k2

y kx, 3k2
x ky − k3

y , 0) for bilayer and trilayer
cases, respectively, with γ as the interlayer hopping parame-
ter. While the results we will discuss further on here for mono-
and bilayer graphene revisit a topic that has already been
theoretically studied [3,4], although somewhat less for the
bilayer case, the results for trilayer graphene N-SC interfaces
that we will discuss in what follows are, in fact, rare in the
literature. The calculations presented here could also be easily
adapted, e.g., for N-SC interfaces based on few-layer black
phosphorus, where low-energy electrons are also described
by a 2 × 2 Hamiltonian [30,31] that can be easily rewritten
in terms of the previously defined �h vector [32].

Notice that for each of the different above-mentioned
materials, the most common approaches available in the liter-
ature to investigate transport through N-SC interfaces would
require, e.g., solving a whole new set of cumbersome differ-
ential equations and applying boundary conditions to match
wave functions or currents at the interface between the N
and SC regions. This is one of the most important results
of the present work: this problem is conveniently solved by
the method developed here, where the wave-packet propaga-
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FIG. 2. Sketch of the band structures in the normal and SC
regions (left), and wave-packet trajectories (right), considering an
incidence angle α = 45◦ and three values of Fermi energy: (a)
EF = 10�0, (b) EF = 2�0, and (a) EF = 0.1�0. SC regions are
highlighted as shaded areas in the figures. Color map in the right
panels is such that red (blue) represents hole (electron) wave packets,
whereas darker colors represent higher probability densities.

tion already accounts for the scattering at the interfaces in a
numerical way, and no (semi-)analytical matching of wave
functions or currents is explicitly required at the interfaces.
Nevertheless, in order to do so, we pay the price of dealing
with numerical Fourier transforms and finite-size wave pack-
ets [33].

The external potential is taken as U (�r) ≡ 0 and the super-
conducting gap �(�r) is assumed to be a step function that
is zero for y � 0, and �0 otherwise. We also assume a zero
superconducting phase, φ = 0. From now onwards, we write
energies in units of the SC gap �0 and spatial coordinates
in units of r0 = h̄vF /�0. The wave-packet energy is fixed as
ε = 0.7�0, which is used as input for Eq. (11) through the
modulus of the wave vector, given by k0 = (ε + EF )/�0r0

in monolayer graphene. The wave-packet width is fixed as
d = 6.67r0, which represents, e.g., a �E ≈ 0.15�0 width in
energy space for the monolayer case.

Figure 2 sketches the band diagrams in the normal (white)
and superconducting (shaded) regions, for different values
of Fermi level. When the Fermi level is much larger than
the superconducting gap, EF 
 �0, electrons with energy
ε < �0 inciding in the superconducting region are reflected
partially as holes. If the incidence is normal, the electron-hole
conversion occurs with unit probability. On the other hand, if
the trajectory of the incident electron makes a nonzero angle
α with the vertical axis (see trajectories in Fig. 2 for α = 45◦),
a normal (electron) reflection is also expected. Moreover, the
reflected hole is expected to propagate along the same trajec-
tory as the incident electron, but with opposite propagation
direction, which is known as Andreev retro-reflection. This
is verified in the trajectory of electrons (blue symbols) and
holes (red symbols) in Fig. 2(a), where darker (brighter) colors

-200

-150

-100

-50

0

FIG. 3. Snapshots of the wave-packet projections over the elec-
tron (blue) and hole (red) states, for a wave packet in graphene
being reflected by a superconduction region (shaded area) in y > 0,
assuming EF = 10�0. The snapshots are taken at three different
instants in time, namely, t = 0, 110, and 300 fs.

represent higher (lower) probability density. A small Goos-
Hänchen shift is also observed between electron and hole
trajectories [34]. The picture is, however, different if EF is in
the same order of magnitude as �0, as in Fig. 2(b), where the
almost no electron-hole conversion is observed. Furthermore,
if EF � �0, the converted hole wave function propagates in
the same direction as the reflected electron, as one verifies in
Fig. 2(c), which is known as Andreev specular reflection.

Figures 3 and 4 illustrate Andreev retro- and specular
reflections, respectively, by showing snapshots of the elec-
tron (blue) and hole (red) probability density distributions
at three different instants in time. In the former (latter), the
scattered electron and hole wave packets clearly propagate
towards opposite (the same) directions. Although it is not
easy to experimentally observe snapshots of the wave-packet
propagation as those shown in Figs. 3 and 4, one can still
track the trajectories and probability densities of electrons and
holes along the system via scanning gate microscopy [35], a
technique that has been regarded as one of the most convenient
tools to experimentally probe wave functions and transport
properties in low-dimensional systems, which has recently
been successfully employed in the specific context of Andreev
reflections in monolayer graphene-based N-SC interfaces in
Ref. [9].

Considering momentum conservation along the x direc-
tion of the system, one can infer the propagation direction
of the Andreev reflected hole as follows: in the monolayer
graphene case, the incident electron has a momentum k0 =
(EF + ε)/h̄vF , while the Andreev scattered hole has momen-
tum kh = (EF − ε)/h̄vF . Conservation of momentum along
the horizontal direction requires k0 sin α = kh sin αh, where αh
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FIG. 4. The same as Fig. 3, but for EF = 0.1�0.

is the reflection angle of the hole. This suggests the existence
of a critical incidence angle beyond which the scattered hole
propagates with αh = π/2. An interesting case happens when
ε = EF , where this critical incidence angle is zero and any
hole that come from Andreev scattering has to propagate side-
ways along the x axis, with zero momentum, regardless of the
incidence angle α. This situation is illustrated in Fig. 5, which
is similar to Fig. 4, but for an incident electron with energy
ε = 0.1�0 = EF . In the context of wave packets in monolayer

FIG. 5. The same as Fig. 3, but for a wave packet with the same
energy as the Fermi level, ε = EF = 0.1�0.

graphene, a zero-momentum hole wave packet would indeed
exhibit a time evolution in the shape of a circular ring (see,
e.g., Refs. [36–38]), just as the one observed in Fig. 5. It is
clear that while the reflected electron propagates backwards,
the hole propagates sideways, which guarantees that holes
cannot be collected in the region from which the electrons
came in. A better visualization of this propagation is seen in
the Supplemental Material videos, for ε = 7EF and ε = EF

[39]. This effect is closely related to the basic concept behind
the so-called crossed Andreev reflection (CAR), where a pnp
junction is set up such that incoming electrons have the same
energy as EF , thus avoiding scattered holes in the source
region, while the Fermi level in the drain region is set in a way
that guarantees that only holes are collected there [40–42].
This suggests that by properly tuning the potential and Fermi
levels, one can conveniently use the method proposed here
also in the study of CAR and cotunneling phenomena in
Dirac-Weyl materials. Moreover, by tracking the trajectories
of refracted wave packets [43], one can investigate the pos-
sibility of observing, e.g., the Veselago lens effect in such a
pnp device [44,45], which is left as an exciting perspective for
future works.

Within the Blonder-Tinkham-Klapwijk (BTK) model,
conductivity is proportional to

∫ π/2
0 [1 − r(ε, α) +

rA(ε, α)] cos αdα, where r and rA represent the probabilities
of observing a reflected electron and hole, respectively, after
scattering of the incident electron by the SC interface. In a
graphene normal-SC interface, it is known that in the case
of retro-(specular) reflection, i.e., for EF > �0(EF < �0),
increasing the voltage V leads to an increase (decrease) in
the conductivity [3]. It is not in the scope of this paper to
calculate the exact value of the conductivity. Nevertheless,
one can use the method proposed here to verify this result.
The integration kernel I (ε, α) = [1 − r(ε, α) + rA(ε, α)] in
the BTK expression is plotted as a function of the incidence
angle in Fig. 6, assuming two values of the Fermi level.
Increasing the energy of the incident wave packet, which
plays the role of the voltage V in the BTK model, leads to
I × α curves with consistently smaller area when EF > �0,
as in Fig. 6(a). Consequently, the integral of I with respect to
the angle α decreases with ε, thus suggesting a conductivity
that decreases with V . The opposite is true for EF < �0,
as in Fig. 6(b), where increasing the wave-packet energy
rather increases the area of the I × α and, consequently, the
conductivity.

As previously mentioned in Sec. III A, one advantage of
the method proposed here is its flexibility to be easily adapted
to other materials where charge carriers can also be described
as Dirac-Weyl quasiparticles. As an example, we have cal-
culated the time evolution and scattering of wave packets
in N-SC interfaces based on bilayer and trilayer graphene.
Figures 7(a) and 7(b) show the integration kernel in the BTK
model plotted as a function of the incident angle α, assuming
two values of the Fermi level, in the bilayer and trilayer cases,
respectively.

For EF > �0, the integrand I monotonically decreases
with α in all cases, although with an area that is larger
(smaller) for the trilayer (monolayer) graphene case, thus
leading to higher (lower) conductivity. Notice that the results
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(a) EF = 10 Δ0

FIG. 6. Integration kernel in the BTK model of conductivity as a
function of the wave-packet incidence angle, assuming wave packets
with different energies ε and Fermi levels (a) EF = 10�0 and (b)
EF = 0.1�0.

in Fig. 7 for EF > �0 do not converge to 2 as α → 0◦, as
one would expect (see, e.g., Fig. 6), e.g., from a plane-wave
calculation. This is due to the finite width of the wave pack-
ets considered here in the reciprocal space, which yields an
energy distribution for the wave packet that is significant in

FIG. 7. Integration kernel in the BTK model of conductivity
as a function of the wave-packet incidence angle, assuming wave
packets with energy ε = 0.7�0 scattered by N-SC interfaces based
on (a) bilayer and (b) trilayer graphene. Two values of Fermi level,
EF = 0.1�0 and EF = 10�0, are considered.

the case of EF > �0. This issue is less relevant for mono-
layer graphene, where its linear energy dispersion ensures that
the wave-packet width in energy is proportional to its width
in momentum. The energy dispersion in bilayer (trilayer)
graphene, on the other hand, exhibits a second- (third-)order
dependence on �k [29], which yields wider distributions in
energy for the wave packet, as compared to the monolayer
case. As a consequence, bilayer and trilayer graphene cases
require calculations with narrower momentum distributions,
i.e., wider wave packets in real space, in order to keep the
entire energy distribution of the wave packet below the su-
perconducting gap. Indeed, we verified that increasing the
wave-packet width (thus narrowing down the energy distri-
bution) leads to I at α = 0◦ consistently closer to 2. However,
dealing with such wide wave packets in a time propagation
simulation makes the system computationally more demand-
ing due to the need for a much larger computational box,
which makes the reproduction of Fig. 7 with large wave
packets prohibitive. Therefore, for the sake of consistency, we
decided to keep these results in Fig. 7, assuming a wave packet
with the same width as in the other figures, and discuss them
only in a qualitative way.

Conversely, for EF < �0, we observe that the value of
the integrand I for α = 0◦ in the bilayer case is zero, which
means that at normal incidence, the electron is fully reflected
by the barrier and no hole propagates through the normal
region. This is in stark contrast to the results observed for
both monolayer and trilayer graphene, where the integrand
converges to 2 as α → 0◦ and originates from the quadratic
band structure of low-energy electrons in bilayer graphene,
which differs from that of mono and trilayer graphene cases.
The integration kernel I in bi- and trilayer graphene exhibit
nonmonotonic dependence on the incidence angle α, which
also differs from the results observed for the monolayer case.
The behavior of the integrand I as a function of α observed
in Figs. 6 and 7(a) is consistent with previous studies on
monolayer [3] and bilayer [4], where this quantity has been
calculated by matching quantum modes at the N-SC interface
for some specific cases. This helps to validate the model
proposed here, which, as previously mentioned, also allowed
us to investigate trilayer graphene N-SC interfaces, a case that
is not yet discussed in the literature in detail, to the best of our
knowledge.

B. Zero-gap channel in the superconducting region

In order to illustrate the versatility of the method proposed
here for the study of N-SC interfaces with arbitrary shape and
profile, we now investigate, as a sample case, the propagation
of a wave front across a channel open in the SC region, as
illustrated in Fig. 1(b), in monolayer graphene. The channel,
with width W and length L along the propagation direction,
is tilted by 45◦ from the vertical axis, so that the first reflec-
tion by the normal-SC interface makes the electron propagate
horizontally inside the channel.

The time evolution of Pe (blue) and Ph (red), integrated
in the region after the SC ([y1, y2] = [L/2,∞] and [x1, x2] =
[−∞,∞], see Fig. 1(b)), is shown in Fig. 8, assuming EF =
10�0 (solid line) and EF = 0.1�0 (dashed line). In general,
all Pe and Ph values are small due to the fact that most of the
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FIG. 8. Electron (blue) and hole (red) integrated probability den-
sities as a function of time in the normal region beyond a W =
300 Å, L = 300 Å channel in the superconducting region [see
Fig. 1(b)], assuming Fermi energies EF = 10�0 (solid line) and
EF = 0.1�0 (dashed line). Arrows in the insets illustrate the ex-
pected electron and hole trajectories undergoing reflections by the
normal-SC interfaces.

incoming electron wave front reaches the SC region aside of
the channel entrance, and just a small fraction of it is actually
capable of entering the channel region. The probability of
finding an electron after the SC region is always nonzero
and it is higher for EF = 0.1�0. However, the probability for
holes to cross the channel is nonzero only for EF = 0.1�0.
Notice that in the absence of the channel, no hole is expected
to be found after the SC region, regardless of the value of
EF , since for this value of incoming energy and potential
landscape, we do not expect significant CAR. The trajectories
of electrons (blue) and holes (red) illustrated in the insets help
to understand the nonzero hole probability in the EF = 0.1�0

case. As the electron is horizontally (vertically) reflected by
the first (second) normal-SC interface in the channel, the
resulting holes propagate in a direction that depends on EF .
For EF > �0, the retro-reflected holes created in each normal-
SC reflection propagate backwards along the same trajectory
of the ongoing electron; thus, no hole is able to cross the
channel. Conversely, for EF < �0, specular-reflected holes
arisen in each normal-SC reflection propagate along with the
electron across the channel and eventually make their way
through it, thus yielding nonzero hole probability beyond the
channel.

The dependence of the electron and hole transmission
probabilities on the width W and length L of the chan-
nel is shown in Figs. 9 and 10, respectively. For EF =
0.1�0 and a fixed length L = 300 Å, results in Fig. 9(a)
show that increasing the channel width W from 200 to
400 Å improves the hole transmission probability for wave-
packet energies lower than ≈0.775�0. For higher energies,
hole transmission probability for W = 300 Å is just slightly
lower than that for W = 400 Å. Nevertheless, a significant
hole transmission probability is observed only for EF =
0.1�0. For EF = 10�0, Fig. 9(b) show an electron trans-
mission probability that monotonically increase with the
wave-packet energy, whereas hole probabilities are always
vanishingly small. Qualitatively, this result persists for the
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FIG. 9. Electron (blue) and hole (red) integrated transmission
probability as a function of the energy of the incoming wave front, as-
suming a channel in the superconducting region with length L = 300
Å, assuming widths W = 200 Å (dotted line), 300 Å (dashed line),
and 400 Å (solid line). Fermi energies are (a) EF = 0.1�0 and (b)
EF = 10�0.

whole energy range considered here, namely, from ε = 0.6
�0 to ε = 0.85 �0. Similar conclusions are also drawn from
the results in Fig. 10, where increasing the channel length L
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FIG. 10. Electron (blue) and hole (red) integrated transmission
probability as a function of the energy of the incoming wave front,
assuming a channel in the superconducting region with width W =
300 Å, for lengths L = 200 Å (dotted line), 350 Å (dashed line),
and 400 Å (solid line). Fermi energies are (a) EF = 0.1�0 and (b)
EF = 10�0.
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is demonstrated to yield equivalent results as decreasing the
width W .

The 45◦ value was chosen for the angle of the tilted channel
only for convenience, in order to facilitate the visualization of
the results. One can easily verify that the same qualitative re-
sults would be observed for any angle. In fact, even a straight
vertical channel shows a nonzero transmission probability
for holes in the EF < �0 case. However, this effect is much
weaker for a vertical channel since electron-hole conversion
requires the wave function to bounce back and forth between
the normal-SC interfaces in the channel, which is optimized as
the angle between the channel and the vertical axis increases.

IV. CONCLUSIONS

In summary, we have proposed a general numerical tech-
nique to investigate electron scattering and electron-hole
conversion at normal-SC interfaces with arbitrary shapes and
profiles. The method, based on real-time wave-packet prop-
agation through a system described by a Bogoliubov–de
Gennes model, is easily adapted for Dirac-Weyl-like Hamil-
tonians representing different two-dimensional materials, and
allows one to observe electron and hole trajectories in a ped-
agogical and convenient way. As a sample case, we apply
the method to revisit the problem of Andreev reflection in a
normal-SC interface in monolayer graphene, where the tran-
sition from retro-reflection to specular reflection is observed
just by tracking electron and hole trajectories as the Fermi
level of the system is tuned. We then expanded this study
to the investigation of Andreev reflection in bilayer and tri-
layer graphene cases as well, observing discrepancies with the
monolayer graphene case, especially for wave packets with
energy lower than the superconducting gap. This illustrates
how flexible the method proposed here is, being easily adapted
to other Dirac-Weyl-like Hamiltonians.

As an example of an arbitrary profile of the SC region,
we consider the case of an electron wave front propagating
through a normal channel within the superconducting region,
tilted 45◦ with respect to the propagation trajectory of the
incoming electron. The system is demonstrated to work as

an electronic wave guide for any value of Fermi level EF .
However, the channel guides holes along with the electrons
only for EF < �0, whereas the retro-reflected holes in the
EF > �0 case propagate backwards and leave the channel
via its entrance. This effect is enhanced as either the channel
length or width is increased.

Exciting future prospects for this method are to investi-
gate Andreev reflection in, e.g., monolayer transition-metal
dichalcogenides and phosphorene, even under external ap-
plied electric and/or magnetic fields. Required modifications
are straightforward and therefore expected in imminent stud-
ies. Results of these simulations are likely to be of interest
to experimentalists working on heterostructures involving 2D
materials and superconductors, as well.
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APPENDIX: TIME EVOLUTION OF WAVE PACKETS AND
PSEUDOSPINS

The Suzuki-Trotter expansion [27] of the exponential in the
time evolution operator in Eq. (3) yields

e−i
HBdG

h̄ �t = e−i �Wr⊗�σ e−i �Wk⊗�σ e−i �Wr⊗�σ + O(�t3), (A1)

where �Wr = (�0 cos φ,�0 sin φ,U )�t/2h̄, �Wk = (0, 0, H −
EF )�t

h̄ , and the O(�t3) error comes from the noncommutativ-
ity between the �Wr · �σ and �Wk · �σ operators.

Since the exponential of the arguments that depend linearly
on Pauli vectors can be rewritten as [24]

e−i�S·�σ =
[

cos(S) − i sin(S) Sz

S −i sin(S) Sx−iSy

S

−i sin(S) Sx+iSy

S cos(S) + i sin(S) Sz

S

]
, (A2)

each of the exponentials in Eq. (A1) is expanded in an exact
way as matrices, which are eventually multiplied in sequence,
as in Eq. (7).
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Milošević, J. Appl. Phys. 128, 124303 (2020).
[26] P. G. De Gennes, Superconductivity of Metals and Alloys (Ben-

jamin, New York, 1966).
[27] M. Suzuki, Phys. Lett. A 146, 319 (1990).
[28] T. Kramer, C. Kreisbeck, and V. Krueckl, Phys. Scr. 82, 038101

(2010).
[29] E. McCann and M. Koshino, Rep. Prog. Phys. 76, 056503

(2013).
[30] T. Low, A. S. Rodin, A. Carvalho, Y. Jiang, H. Wang, F. Xia,

and A. H. Castro Neto, Phys. Rev. B 90, 075434 (2014).
[31] D. J. P. de Sousa, L. V. de Castro, D. R. da Costa, J. M. Pereira

Jr., and T. Low, Phys. Rev. B 96, 155427 (2017).
[32] S. M. Cunha, D. R. da Costa, G. O. de Sousa, A. Chaves, J. M.

Pereira Jr., and G. A. Farias, Phys. Rev. B 99, 235424 (2019).
[33] M. H. Degani and M. Z. Maialle, J. Comput. Theor. Nano. 7,

454 (2010).

[34] C. W. J. Beenakker, R. A. Sepkhanov, A. R. Akhmerov, J.
Tworzydło, Phys. Rev. Lett. 102, 146804 (2009).

[35] H. Sellier, B. Hackens, M. G. Pala, F. Martins, S. Baltazar, X.
Wallart, L. Desplanque, V. Bayot, and S. Huant, Semicond. Sci.
Technol. 26, 064008 (2011).

[36] V. Krueckl and T. Kramer, New J. Phys. 11, 093010
(2009).

[37] I. R. Lavor, D. R. da Costa, A. Chaves, S. H. R. Sena, G. A.
Farias, B. Van Duppen, and F. M. Peeters, J. Phys.: Condens.
Matter 33, 095503 (2021).

[38] A. Chaves, L. Covaci, K. Yu. Rakhimov, G. A. Farias, and F. M.
Peeters, Phys. Rev. B 82, 205430 (2010).

[39] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.107.165306 for videos of the propagation
of wave packets with electron (top panels) and hole (bottom
panels) components in a monolayer graphene N-SC interface
at the y = 0 horizontal axis. Videos considering incoming elec-
trons with energy ε = 0.7�0 = 7EF and ε = 0.1�0 = EF , both
at incidence angle α = π/4, are provided.

[40] J. Cayssol, Phys. Rev. Lett. 100, 147001 (2008).
[41] L. G. Herrmann, F. Portier, P. Roche, A. L. Yeyati, T.

Kontos, and C. Strunk, Phys. Rev. Lett. 104, 026801
(2010).

[42] S. Gómez, P. Burset, W. J. Herrera, and A. L. Yeyati, Phys. Rev.
B 85, 115411 (2012).

[43] J. M. Pereira Jr., F. M. Peeters, A. Chaves, and G. A. Farias,
Semicond. Sci. Technol. 25, 033002 (2010).

[44] V. V. Cheianov, V. Fal’ko, and B. L. Altshuler, Science 315,
1252 (2007).

[45] R. V. Gorbachev, A. S. Mayorov, A. K. Savchenko, D. W.
Horsell, and F. Guinea, Nano Lett. 8, 1995 (2008).

165306-9

https://doi.org/10.1038/nmat4792
https://doi.org/10.1038/s41699-020-00162-4
https://doi.org/10.1103/PhysRevB.64.104515
https://doi.org/10.1103/PhysRevB.71.184504
https://doi.org/10.1103/PhysRevB.81.115446
https://doi.org/10.4208/cicp.110914.281014a
https://doi.org/10.1063/5.0020392
https://doi.org/10.1016/0375-9601(90)90962-N
https://doi.org/10.1088/0031-8949/82/03/038101
https://doi.org/10.1088/0034-4885/76/5/056503
https://doi.org/10.1103/PhysRevB.90.075434
https://doi.org/10.1103/PhysRevB.96.155427
https://doi.org/10.1103/PhysRevB.99.235424
https://doi.org/10.1166/jctn.2010.1380
https://doi.org/10.1103/PhysRevLett.102.146804
https://doi.org/10.1088/0268-1242/26/6/064008
https://doi.org/10.1088/1367-2630/11/9/093010
https://doi.org/10.1088/1361-648X/abcd7f
https://doi.org/10.1103/PhysRevB.82.205430
http://link.aps.org/supplemental/10.1103/PhysRevB.107.165306
https://doi.org/10.1103/PhysRevLett.100.147001
https://doi.org/10.1103/PhysRevLett.104.026801
https://doi.org/10.1103/PhysRevB.85.115411
https://doi.org/10.1088/0268-1242/25/3/033002
https://doi.org/10.1126/science.1138020
https://doi.org/10.1021/nl801059v

