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Collision of two interacting electrons on a mesoscopic beam splitter:
Exact solution in the classical limit
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Experiments on collisions of isolated electrons guided along the edges in quantum Hall setups can mimic
mixing of photons with the important distinction that electrons are charged fermions. In the so-called electronic
Hong-Ou-Mandel (HOM) setup uncorrelated pairs of electrons are injected toward a beam splitter. If the two
electron wave packets were identical, then Fermi statistics would force the electrons to scatter to different
detectors, yet this quantum antibunching may be confounded by Coulomb repulsion. Here we model an electronic
HOM experiment using a quadratic two-dimensional saddle point potential for the beam splitter and unscreened
Coulomb interaction between the two injected electrons subjected to a strong out-of-plane magnetic field.
We show that classical equations of motion for the drift dynamics of electrons’ guiding centers take on the
form of Hamilton equations for canonically conjugated variables subject to the saddle point potential and the
Coulomb potential where the dynamics of the center-of-mass coordinate and the relative coordinate separate.
We use these equations to determine collision outcomes in terms of a few experimentally tuneable parameters:
the initial energies of the uncorrelated electrons, relative time delay of injection, and the shape of the saddle
point potential. A universal phase diagram of deterministic bunching and antibunching scattering outcomes is
presented with a single energy scale characterizing the increase of the effective barrier height due to interaction
of coincident electrons. We suggest clear-cut experimental strategies to detect the predicted effects and give
analytical estimates of conditions when the classical dynamics is expected to dominate over quantum effects.
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I. INTRODUCTION

Solid-state electron quantum optics is a branch of quan-
tum technologies and concerns the creation, characterization,
and exploitation of individual excitations of electrical cur-
rent. It offers potential applications in sensing, metrology, and
quantum information processing [1–5]. In direct analogy with
photonics [6], a hallmark signature of quantum statistics in
electron quantum optics is the electronic Hong-Ou-Mandel
(HOM) two-particle interference at a beam splitter, first
demonstrated [7,8] for on-demand sources of well-screened
excitations of chiral edge states in an integer filling factor
quantum Hall system [9]. In these experiments corresponding
excitation energies are typically below 100 µeV above the
Fermi level and the wave packets are much longer than the
beam splitter, with the latter well-approximated as a linear
optics element [1,10]. Yet an essential difference of electrons
from photons is not only the fermionic nature of the former
but also the possibility of strong Coulomb interaction if elec-
trons are confined or propagating in isolation, as is the case
for tuneable-barrier quantum dot sources [2,3,11] injecting
electrons on demand into depleted ballistic nanostructures
[12–16]. On-demand electrons in such experiments can be
tuned [17] up to a hundred meV in energy above the Fermi
level and studied in isolation [12–14]. Distinguishing quantum
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correlations due to indistinguishability of noninteracting par-
ticles from correlations caused by interactions is an essential
conundrum of nanoscale quantum transport in general [18],
and remains an open challenge for the ballistic few-electron
devices in particular. Even though the experiment of Ubbelo-
hde et al. [13] has reported a tantalizing bunching anomaly
in partitioning of electron pairs emitted on demand, and at-
tributed this anomaly to interactions on the beam splitter using
very general arguments, a systematic understanding of in-
terplay between partitioning and interactions in two-electron
collisions is lacking. In this paper we address part of this prob-
lem theoretically by considering a limit of strong interactions
that is complementary to a much-better understood problem
of HOM interferometry with noninteracting electrons [1,19].
We consider the regime of long-range two-body interactions
relevant for isolated electrons in depleted edge channels which
is different from many-body physics leading to fractional-
ization of near-Fermi-level excitations in HOM experiments
with quantum Hall edge channels modeled as interacting one-
dimensional (1D) quantum liquids [20–24].

Available analytic approaches to quantum scattering of
two interacting particles on a local structure either exploit
exactly solvable limits of point-like interactions in 1D [25–27]
or are perturbative in the interaction strength [28,29]. Bel-
lentani et al. [30] have explored numerically collision of
two electrons at a two-dimensional (2D) constriction, looking
for interaction-induced changes in the antibunching proba-
bilities. A theoretical study of single-electron emission by
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FIG. 1. (a) Sketch of an experimental setup for investigation of two-electron collisions. (b) Coordinate axes and the level lines of the saddle
point potential. Two colored dots indicate the incoming electrons (red for electron 1, blue for electron 2), and the arrows on the level lines show
the direction of drift motion in the absence of interactions. (c) Characteristic scales for Coulomb scattering in a saddle potential. Equations of
motion (6d) and (6c) for the relative coordinates (x, y) are determined by the sum of the two-particle interaction potential Vee and single-particle
saddle potential Vsaddle/2 as shown as functions of y for fixed x = 0 (prefactor 1/2 due to reduced mass; thin lines for the two contributions and
thick line for the sum). The addition of interaction potential to the saddle potential shifts saddle point to new positions with (x, y) coordinates
(0, ±d0 ) with corresponding characteristic interaction energy defined as U = Vee(d0 ).

a time-dependent smooth potential by Ryu et al. [31] has
demonstrated, in particular, feasibility of a classical approx-
imation for the motion of the guiding center of a Gaussian
wave packet localized by strong magnetic fields. A common
challenge for numerical modeling and physical experiments
is the large dimensionality of the parameter space which is
difficult to explore systematically.

Recently, we have developed [32] a theory of two-electron
effects in electron quantum optics setups in the strong cou-
pling limit where the Coulomb repulsion is strong enough
to change the trajectories of two electrons. In the present
work we apply this approach for an in-depth analysis of
the classical two-electron correlations in a HOM setup with
the two electrons colliding at a constriction which serves
as a beam splitter (energy-filtering barrier). The constriction
is modeled as a 2D quadratic saddle-point potential [33] in
a magnetic field perpendicular to the plane [34]. We treat
the particles classically on the scale larger than the quan-
tum uncertainty and wave-function overlap, and compute a
universal phase diagram of deterministic scattering outcomes
as function of the incoming electrons’ energies, relative time
delay, and the three parameters of the constriction (dispersion
timescale ω−1, maximal interaction energy U and the aspect
ratio of the saddle). We derive experimentally testable scal-
ing relations, and illustrate possible qualitative signatures of
the interactions-dominated regime in experimentally relevant
coordinates. Finally, we show how to estimate feasibility of
reaching the relevant regime of U/(h̄ω) � 1 using the mi-
croscopic parameters of the constriction potential, magnetic
confinement and the Coulomb law constant.

The results of this study will hopefully help to map out fu-
ture theoretical and experimental explorations of few-electron
solid state quantum technologies with on-demand isolated
wave packets in the strong coupling regime.

The paper is structured as follows. We start in Sec. II with
the definition of the problem, the Hamiltonian, and classical
equations of motion, then solution of the problem is devel-
oped in Sec. III. A reader interested primarily in the physical
interpretation of the scattering solution may proceed from
Sec. II B directly to Sec. IV B, where the phase diagram and
the potential experimental signatures are discussed. In Sec. V
we discuss applicability of the classical approximation and

conditions for neglecting quantum uncertainties and statistics.
Finally, in Sec. VI we put the results into a broader context
of current experimental developments and sketch an outlook.
Extensive Appendices at the end of the paper provide theoret-
ical justifications for the choice of approximations and limits
of applicability.

II. MODEL

A. Schematic setup for a collision experiment

A conceptual sketch of the experimental setup is shown in
Fig. 1(a). The sample is a 2D quantum Hall system in a strong
perpendicular magnetic field. The 2D bulk electron gas (two
large white areas) is depleted away from the edges (where
on-demand hot electrons propagate chirally as indicated by
arrows) and remains disconnected from sources and detectors
at all times, make a two-body approach feasible. Two sources,
S1 and S2, launch electrons on demand [12,17] at well-defined
energies ε1 and ε2 with a controlled time-delay �t (up to
unavoidable quantum uncertainty, see Refs. [14,31,35] and
Sec. V below). The electrons scatter on a central constriction
[marked by a square box in Fig. 1(a)] and then reach either
of the two detectors, D1 and D2. The number of electrons
detected at each detector is the scattering outcome. The total
number of electrons in a single-shot realization is two, hence
there are only three experimentally distinguishable outcomes:
0, 1, or 2 electrons at D1. Conventionally [11,18], the three
outcomes are distinguished by repeating the experiment at
a suitably chosen frequency (typically, tens to hundreds of
megahertz for on-demand sources that have evolved from
nonadiabatic quantized charge pumps [3,12,13,17]) and mea-
suring the zero-frequency current [14] and cross-correlation
noise [13,36]. Recent advances in compatible single-shot
electron counting detectors [16,37,38] would enable direct
realization of our idealized D1 and D2.

B. Hamiltonian

We consider a partitioning barrier for isolated on-demand
electrons described by a saddle potential in 2D,

Vsaddle(x j, y j ) = m

2

(
ω2

y y2
j − ω2

x x2
j

)
. (1)
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Level lines of Vsaddle(x, y) are shown schematically in
Fig. 1(b).

The Hamiltonian of the jth electron ( j = 1, 2) is

H j = 1

2m
(p j + eA j )

2 + Vsaddle(x j, y j ), (2)

where p j = −ih̄{∂x j , ∂y j } is the canonical momentum, and
the vector potential A j = B{+y j/2,−x j/2} describes uniform
magnetic field with induction B = mωc/e > 0, directed along
the negative z axis. Here e is the elementary charge, m is
the effective mass, and ωc is the cyclotron frequency. Single-
particle scattering problem for H j admits an exact solution
[34] for arbitrary ωx, ωy, and ωc; see Appendix A.

Two-electron interaction is described by the total Hamil-
tonian H = H1 + H2 + Vee(r) with a central two-body po-
tential Vee that is a function of the relative distance r =√

(x1 − x2)2 + (y1 − y2)2 only. We focus on a long-range
Coulomb potential,

Vee(r) = e2

4πε0εr
. (3)

The Coulomb potential (3) can alternatively be
parametrized as Vee(r) = U d0/r where U = Vee(d0) =
Vsaddle(0, d0) and

d0 = [
e2/

(
2πε0ε m ω2

y

)]1/3
, (4)

see Fig. 1(c). The rationale for this parametrization comes
from the form of the equations of motion discussed below. We
will show that d0 is the minimal distance and U is the maximal
interaction energy in a two-electron collision in the classical
limit.

C. Equations of motion, conserved quantities,
and dimensional crossover

In the large magnetic field limit, ωx, ωy � ωc, the electric
potentials do not cause transition between Landau levels, and
the classical motion of the guiding center is chiral, described
by first order differential equations of E × B drift along the
equipotential lines,1

{ẋ j, ẏ j} = {−∂/∂y j,+∂/∂x j}
mωc

[Vsaddle(x j, y j ) + Vee(r)]. (5)

In terms of relative and center-of-mass coordinates,
{x, y} = {x2 − x1, y2 − y1} and {xc.m., yc.m.} = {(x1 + x2)/2,

(y1 + y2)/2}, equations of motion (5) for the quadratic poten-
tial (1) separate [32]:

ẋc.m. = −ω yc.m./κ, (6a)

ẏc.m. = −ω κ xc.m., (6b)

ẋ = ω

κ
y

(
−1 + d3

0

(x2 + y2)3/2

)
, (6c)

ẏ = ωκ x

(
−1 − d3

0

κ2(x2 + y2)3/2

)
, (6d)

1Identification of the microscopic and the guiding center co-
ordinates is justified within one Landau level as we explicitly
demonstrate in Appendix A.

where κ = ωx/ωy and ω = ωxωy/ωc. We see that the drift
motion is completely specified by two dimensionful and one
dimensionless parameters: the beam splitter timescale ω−1,
the interaction lengthscale d0, and a geometric aspect ratio of
the saddle κ .

Equations (5) can be seen as Hamilton equations of
two one-dimensional degrees of freedom with (x j , y j) be-
ing the conjugate coordinate-momentum pairs in appropriate
units. The corresponding quantum commutator (and hence
the short-distance cutoff for classical dynamics) [x j,−y j] =
il2

c = ih̄/(mωc) is set by the magnetic length lc (see Ap-
pendix A 3). The classical Hamiltonians leading to the
separated equations of motion (6) are also the conserved quan-
tities,

Ec.m. = mω2
y

(
y2

c.m. − κ2 x2
c.m.

)
, (7)

E+ = mω2
y ( y2 − κ2 x2)/4 + U d0/(

√
x2 + y2). (8)

We have chosen constant prefactors in Eqs. (7) and (8) to
match the normal energy units; Ec.m. + E+ is the total potential
energy, yet the two quantities are conserved separately due
to separation of variables. While E+ is simply the energy
associated with the relative coordinate (note the factor m/4
instead of m/2 due to reduced mass μ = m/2), we use the
subscript “+,” since together with a similarly defined (yet
nonconserved) quantity E−, see Eq. (14) below, it turns useful
to express our main results in Sec. IV. Figure 1(c) shows E+
as function of y at x = 0, illustrating the characteristic scales
of energy (U ) and length (d0).

Even though the drift velocity equations are usually derived
in the large magnetic field limit, they can be used to examine
the full crossover from magnetic (ωc � ωy) to electrostatic
(ωy � ωc) confinement in the constriction, i.e., from 2D chi-
ral to 1D linear motion. For ωy ∼ ωc the transverse electric
field due to the term ∝ ω2

y y2 in Vsaddle contributes not only to
the drift motion but also to the quantum confinement. Indeed,
as we show in Appendix A 4, a more general derivation leads
to the same Eqs. (6) if (ω, κ, d0) are rescaled to

ω′ = ω 	, κ ′ = κ 	, d ′
0 = d0 	2/3, (9)

with 	 = ωc/
√

ω2
c + ω2

y as long as ωx � max(ωc, ωy) en-
sures the separation of energy scales between the drift and the
confined motion.

The limit 	 ≈ ωc/ωy → 0 admits reinterpretation of
Eqs. (6) as 1D Coulomb scattering [39] for which the mag-
netic field is irrelevant. Indeed, using Eq. (9) to take 	 →
0, Eq. (6d) becomes simply the Newton’s second law, ṗ =
μω2

x x − ∂xVee(x) if identify −yω2
y/ωc = p/μ with the linear

momentum governed by Eq. (6c), p = μẋ (here μ = m/2 is
the reduced mass). In this limit ω′ = ωx, but U ′ = U	−2/3 →
∞ as electrons cannot pass each other classically. Hence,
instead of U , a measure of interaction strength that does not
involve ωy is more appropriate in the 1D limit, as we will find
out in the analysis of the narrow-constriction limit,

U1D = Uκ2/3 = (m/2)1/3 [ωx e2/(4πε0ε)]2/3. (10)

We return to the discussion of the competition between 1D
and 2D effects in Sec. IV but for the main part of the paper we
consider the implications of the classical Eqs. (6) treating the
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interaction strength U (or d0 when discussing lengths), curva-
ture of the saddle ω, and the aspect ratio of the constriction κ

as given parameters.

III. CLASSICAL SOLUTION OF THE COLLISION
PROBLEM

A. Initial conditions for the collision problem

Two electrons are entering the scattering region from op-
posite quadrants: in the far past (x1 > 0, y1 > 0) and (x2 <

0, y2 < 0). Individual energies of incoming electrons,

ε j = lim
t→−∞Vsaddle(x j, y j ), (11)

are well defined as asymptotically (at |x j |, |y j | � d0) interac-
tions are negligible.

Besides ε1 and ε2, the third crucial parameter is the relative
time delay �t . We define the time delay as �t = t1 − t2 by
fixing t1 (t2) as the time when electron 1 (electron 2) enters
the beam splitter region at some distance xb > 0 such that
x(t1) = +xb and x(t2) = −xb. The distance xb has to be far
enough from the center of the beam splitter for interactions
between electrons to be negligible. The times t j can be seen
as the arrival times at the entrance to the beam splitter with
�t > 0 if electron 2 arrives first. In general, �t definition
depends on the choice of the formal beam splitter boundary xb,
yet in our case of quadratic Vsaddle(x, y), one can extrapolate xb

to infinity and express the delay �t in terms of the incoming
trajectory asymptotics as

eω�t = lim
t→−∞

x1(t )

−x2(t )
. (12)

This equation is derived by considering the last-to-arrive elec-
tron at a point far enough from the origin and from the other
electron for interactions to be negligible, yet already suffi-
ciently close for the saddle approximation to be applicable,
and then using the noninteracting solution to extrapolate the
motion into far past.

The values of the conserved integrals of motion (7) and (8)
are determined by the noninteracting incoming asymptotes:

Ec.m. = ε1 + ε2 − E+, (13)

E± = ε2

2
(1 + e+ω�t ) ± ε1

2
(1 + e−ω�t ). (14)

Here we have additionally defined E− which is not a con-
served quantity but will turn out to be a useful combination
of initial conditions. Notation is motivated by the fact that for
coincident arrival (�t = 0) we have simply E± = ε2 ± ε1.

We note that the two conservation laws alone are not suf-
ficient to solve the scattering problem: there is an additional
constraint that involves d0 and κ in a nontrivial manner which
sets the relation between energy transfer and the time delay in
the outgoing asymptotes.

B. Solution for the relative coordinate

The separation of variables discussed in Sec. II C suggests
a two-step strategy for solving the classical scattering prob-
lem. First, we deal with relative coordinate in this Sec. III B,
and then we combine the results with the solution for the

d0

d 0

FIG. 2. Relative coordinate follows the level lines of E+(x, y)
depicted here at intervals of 0.25U for the aspect ratio parameter
κ = 0.5. Arrows on the level lines show the direction of movement of
the relative coordinate. The thick line at E+ = Ec = 1.5U separates
electrons that come closest along x (open region on the left, in cyan)
from electrons that come closest along y (open region at the bottom,
in yellow). The blue arrow indicates the unstable equilibrium point.
The dashed level line at E+ = Ec2 = U (1 − κ2/2) has a vanishing
second derivative along x at {±d0, 0}.

center-of-mass motion (which is trivial as it is unaffected by
interactions) to arrive at the asymptotic conditions for individ-
ual electron coordinates in Sec. III C.

For the relative coordinate we consider evolution from an
initial condition x(0) = −x0 < 0 with x0 � d0 such that the
contribution of the interaction term to the equations of motion
(6) can be neglected initially. The other initial value y(0) < 0
is determined by the initial value of the conserved energy
of relative motion E+. As we consider the scenario of both
electrons approaching the barrier and getting closer to each
other up to a distance of order d0, interaction effects may
become relevant for |E+| � E0 where E0 = mω2

x x2
0/4. We

consider all energies to the first relevant order and take the
limit x0, E0 → ∞ at the end. Under these conditions the initial
value y(0) is given by the linearization of Eq. (8) with respect
to |ε1|, |ε2| � E0, y(0) = −κx0(1 + E+/[2E0]).

Qualitative nature of trajectories near the interactions-
dominated region is apparent from the level-lines plot of
E+(x, y) [32] as shown in Fig. 2. The time evolution of the
relative coordinate starts at the lower left corner of Fig. 2,
proceeds according to equations of motion (6c) and (6d) along
the level lines of E+, and in the far future the point {x(t ), y(t )}
leaves either in the direction of bottom right (“transmitted
relative coordinate”) or in top left (“reflected relative coordi-
nate”), depending on the initial value of E+. The trajectories in
{x, y} plane can be computed analytically by solving a cubic
equation yielding cumbersome yet computationally efficient
algebraic expressions. In the range Ec2 = U (1 − κ2/2) <

E+ < Ec = 3U/2 the function x(y) has two minima, and x(t )
has one, three, and zero extrema for E+ < Ec2, Ec2 < E+ <

Ec, and E+ > Ec, respectively. The maximal value of x at
E+ = Ec2 is equal to −d0, see the dashed line in Fig. 2.
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U UU'

U U U'

(a) (b)

(c) (d)

FIG. 3. Scaling function 
k that encodes interaction-induced change in the relative coordinate travel time τ . From panel (a) to panel
(d), κ = 0.1, 0.2, 0.5, and 2.0, respectively. Vertical gridlines indicate E+ = 0, Ec2, and Ec. Blue dashed line in panel (a): calculation with
κ ′ = 	 κ = 0.05 and U ′ = 	−2/3U = 1.587U ; red dashed line (d): κ ′ = κ = 5.

We define the time τ > 0 for the relative coordinate to
travel from x(0) = −x0 back to a large distance |x(τ )| = x0.
For fixed parameters of the potentials, τ is a function of x0 and
E+ only. There are two possibilities,

x(τ ) =
{+x(0), E+ < Ec,

−x(0), E+ > Ec,
(15)

that correspond to reflection or transmission of the relative
coordinate, respectively (see color-shaded regions in Fig. 2).
Physically, the final sign of the relative coordinate x = x2 − x1

determines whether the electrons trade places along the x
coordinate: in the first case (cyan region in Fig. 2), the or-
der along the x axis remains the same (first electron 2, then
electron 1) while in the second case (yellow region in Fig. 2)
the electrons trade places along x. (The distribution of the
two between the detectors cannot be determined yet as it also
depends on the initial state for the center of mass.) In terms
of the absolute relative distance r =

√
x2 + y2, the electrons

come closest along x in the cyan region and along y in the
yellow region in Fig. 2 (this distance is explicitly calculated
in Appendix B). The critical value E+ = Ec corresponding
to degeneracy of the two regions can be found by setting
ẋ = ẏ = 0 in the equations of motion (6c) and (6d) as the
velocity vector (ẋ, ẏ) is a tangent to the level lines. This gives
Ec = 3U/2 and (0,−d0) as the location of the critical point
(point of unstable equilibrium, approached from negative y)
which is marked by an arrow in Fig. 2.

At E+ = Ec the relative coordinate trajectory approaches
the unstable equilibrium asymptotically, along the boundary
between the two shaded regions in Fig. 2. As a consequence,
τ → ∞ at E+ = Ec even for finite E0 (for E0 → ∞, τ → ∞

simply because the starting coordinate x0 moves infinitely far
away).

In the noninteracting case (U = 0), the travel time for large
E0 equals to

τU=0 = ω−1 ln |4 E0/E+|, (16)

which diverges logarithmically both for large E0 and for
|E+| → 0 (which is Ec for U = 0).

For finite U , we compute τ via numerical quadratures and
express the results in terms of a dimensionless function 
κ (z),


κ (E+/U ) = lim
E0→∞

eωτ E+/(4E0). (17)

The factors in Eq. (17) are chosen to set the asymptotic values
of 
κ in the noninteracting limit, U → 0, to 
κ (±∞) = ±1.
We can also interpret 
κ as the exponential of the interaction-
induced change in the travel time, |
κ | = exp[ω(τ − τU=0)]
as we can take the limit E0 → ∞ in which both τ and τU=0

diverge yet their difference τ − τU=0 remains finite.
The function 
κ for a range of κ is shown in Fig. 3. The

singularity due to critical trajectories is fixed at E+/U = 3/2
value, but the overall shape of 
κ (E+/U ) depends on the
geometric parameter κ = ωx/ωy. For large κ � 1 (wide con-
striction), the function 
κ converges to a ωx-independent limit
as the travel time becomes interaction-dominated in a wide
range of E+ > Ec2 → −Uκ2/2; see Fig. 3(d). The opposite
limit of small κ � 1 (narrow constriction) corresponds to
the 1D crossover due to the suppression of motion along y.
For energies E+ < Ec2 ≈ U < Ec = 3U/2, the corresponding
travel time as a function of E+ scales with U1D = Uκ2/3 which
is a well-defined measure of the interaction strength in the 1D
limit, see Eq. (10). Figure 3(a) illustrates this scaling.
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C. Solution for the absolute coordinates

We now combine the solution for the relative motion
with that of the center-of-mass motion. From x(0) = −x0

and the initial conditions (12)–(14), it follows that xc.m.(0) =
(1/2) x0 tanh(ω �t/2) and (again to the first order in E−/E0)

yc.m.(0) = κ xc.m(0) − κ x0

4E0
E−. (18)

In the large-τ limit the solution to the center-of-mass
e.o.m.’s for the initial condition (18) is

xc.m.(τ ) = −yc.m.(τ )/κ = eωτ [xc.m.(0) − yc.m.(0)/κ]/2

= x0 eωτ E−/(8E0). (19)

Combining this with the definition of τ , Eq. (15), and 
κ ,
Eq. (17), gives the asymptotic position of the two particles
after scattering,

lim
E0→∞

2 x j (τ )/x0 = ±1 + E− 
κ

E+
, (20)

where the upper sign is for j = 1 and E+ < Ec, and for j = 2
and E+ > Ec.

When both electrons go to the same detector (x1 x2 > 0),
we can express the result (20) as the difference in times of
arrival, exp(ω�t f ) = lim

t→∞ x2/x1,

�t f = ±ω−1 ln
E− 
κ − E+
E− 
κ + E+

, (21)

(upper sign for E+ < Ec). Note that the order of electrons ar-
riving at the detector changes at E+ = Ec (where �t f switches
sign as the interaction-caused delay of the relative coordinate,
τ − τU=0, and hence 
κ , diverges).

The noninteracting limit of Eq. (21),

�t f
U=0 = �t + ω−1 ln(−ε2/ε1), (22)

reveals an energy-dependent time-shift introduced indepen-
dently on each electron by the beam splitter (classical
dispersion). Note, that the requirement x1 x2 > 0 leads to
−ε2/ε1 > 0, as either electron 1 is transmitted (ε1 > 0) and
electron 2 is reflected (ε2 < 0) or the other way round.
Logarithmic dependence on energy in Eq. (22) is a direct
consequence of the parabolic approximation.

IV. PHASE DIAGRAM FOR SCATTERING OUTCOMES

A. Phase diagram in invariant coordinates

Classically, the scattering outcomes are deterministic un-
less the final state is of unstable equilibrium with one electron
stuck at the saddle point. Hence, the boundaries of the regions
with well-defined scattering outcomes will be given by the
x0 → ∞ limit of Eq. (20) with either x1 or x2 finite (and
hence necessarily zero). The corresponding conditions are
conveniently expressed in terms of the function 
κ and the
variables E±,

E− 
κ (E+/U ) = ±E+. (23)

Equations (23) and (21), and their subsequent analysis
constitute the main result of this paper. Separation of E+
and E− variables, each given in Eq. (14) by the sum and the

difference of a particular combination of the initial conditions,
ε j (1 + e±ω�t )/2, suggests a convenient form for the phase
diagram of scattering outcomes as presented in Fig. 4. The
diagram is symmetric with respect to exchange of sources S1
and S2, ε1 ↔ ε2 and �t → −�t , due to inversion symmetry
of the constriction assumed by the quadratic saddle approxi-
mation. The diagram is easiest to interpret for �t = 0 when
the axes are simply the energies of the incoming electrons
(ε1, ε2).

The phase diagram separates the parameter space into
four domains by the topology of the connection between
the incoming and the outgoing asymptotes of distinguishable
electron trajectories, numbered from I to IV, as indicated by
the sketches in Fig. 4(a). The four region boundaries meet
at {3U/4, 3U/4}. In regions II and IV both electrons end up
in the same detector [D2 or D1 in Fig. 1(a), respectively],
hence the relative time of arrival formula (21) is applicable
(neglecting additional dispersion between the barrier region
and the detector). The final time difference �t f diverges at
the boundaries (23) as either electron 1 or 2 remains stuck in
unstable equilibrium. The dashed line marks E+ = Ec where
the function 
κ diverges and �t f = 0. On this line the two
electrons arrive simultaneously in either D1 or D2 as they
are stuck at a finite relative distance of d0 (see blue arrow
in Fig. 2). In region II below the dashed line and region IV
above the dashed line electron 1 arrives at the detector faster
than electron 2, �t f < 0, and the order of arrival reverses
whenever the dashed line is crossed.

Limiting cases of the phase diagram are straightforward to
interpret. The meeting point of the four regions in terms of in-
coming electron energies corresponds to εc

1,2 = (3U/4)/[1 +
exp(∓ω�t )]. If U is reduced to zero, then this point shifts
to the origin and the diagram becomes trivial: a crossing of
two uncorrelated transmission thresholds, ε1,2 = 0. For finite
U but large positive �t , electron 2 with energy ε2 ≈ εc

2 → 0
arrives first and “waits” at the constriction for electron 1. Only
if the energy ε1 of the latter is larger than εc

1 → 3U/2 > 0 will
it be sufficient not only to kick electron 2 back toward detector
D2 but also for electron 1 to become transmitted to D2 (region
IV) instead of being reflected to D1 (region III).

The shape of the phase diagram according to Eq. (23) is
completely determined by the function 
κ (E+/U ) which de-
pends on the constriction geometry parameter κ = ωx/ωy, as
already discussed in Sec. III B. In Fig. 4(b) we show the phase
boundaries for different values of κ , using the same coordi-
nates as in Fig. 4(a). In a wide-constriction limit, κ � 1.5, the
shape of the diagram becomes κ-independent as there is only
one energy scale, U , that controls the collision. For κ � 0.5 an
inflection point in 
κ develops near E+ ≈ Ec2, and the phase
diagram for κ � 1 shows two characteristic behaviors: (i)
narrowing of the singularity at the four-region meeting point
(which is pinned on the scale of U ), and (ii) regions II and
IV approaching each other on the scale of U1D � U near the
origin. The latter effect is illustrated in Fig. 4(c).

In terms of nonrescaled coordinates, 1D behavior requires
not only |ε1|, |ε2| ∼ U1D � U but also for the collision to
take place sufficiently close to the center of the narrow con-
striction. We can get the corresponding condition on �t by
requesting |εc

1|, |εc
2| � U1D which gives |�t | � −(2/3) ln κ .

In the exact 1D limit, described by κ → 0 and U → ∞ with
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FIG. 4. Phase diagram of classical collision outcomes. (a) Boundaries between the four regions corresponding to well-defined number
of electrons reaching the detectors: two at D2 (II), two at D1 (IV), or one at both D1 and D2 (I and III). The difference between I and III
is the topology of the closest approach, as indicated by the sketches. Here κ = 1.0. The dashed line is E+ = Ec. (b) Evolution of the phase
diagram with changing the aspect ratio parameter κ . Coordinate axes are the same as in panel (a). In the wide constriction limit, ωy � ωx ,
the diagram remains close to the case of κ = 2.0 as shown by the darkest line. (c) The same boundary lines as in panel (b), emphasizing the
narrow constriction (κ = 0.1–0.3) limit by scaling the coordinates with U1D = Uκ2/3 instead of U .

finite U1D and ω = ωx, the region I of the phase diagram
does not exist and the limiting form illustrated approximately
Fig. 4(c) with κ = 0.1 becomes universal for one-dimensional
Coulomb scattering.

B. Collision outcomes in experimentally relevant variables

The universal phase diagram in Fig. 4 can be explored
by scanning different combinations of experimentally con-
trollable parameters, emission energies of incoming electrons
ε1, ε2 and time delay between electrons arriving at the beam
splitter �t = t1 − t2 as defined in Sec. III A, Eqs. (11) and
(12). On a general level, the phase diagram of scattering
outcomes is a partitioning of the three dimensional param-
eter space {ε1, ε2,�t} into four domains, corresponding to
particular matchings between sources and detectors (see the
sketches from I to IV in Fig. 4). One can investigate particular
two-dimensional cross sections by fixing one condition in the
parameter space.

In this section we examine a particular protocol [40]:
changing the average energy ε0 = (ε1 + ε2)/2 and the relative
delay time �t , while keeping the energy mismatch between
the sources S1 and S2 constant, �ε = ε1 − ε2 = const. Note
that changing ε0 is equivalent to gating the whole saddle point
region [41] (varying the scattering barrier height).

In Fig. 5 we show three examples corresponding to zero,
intermediate, and large �ε in Figs. 5(a)–5(c), respectively.
First we analyze the phase diagram for the case of equal
incoming energies, �ε = 0, shown in Fig. 5(a). If the particles
arrive simultaneously, �t ≈ 0, then they go to opposite detec-
tors, either both passing through (region I) or getting reflected

from the barrier and one another (region III). Such perfect
anticorrelation would be detectable as a suppression of cross-
correlation noise between D1 and D2. The regions II and IV
(“wings” of the diagram) are characterized by an unequal
distribution of the current between the detectors, and can be
distinguished by a differential directed current measurement
between D1 and D2. In region II, both particles end up in D1 if
electron 2 arrives first (�t > 0), i.e., electron 2 is transmitted
and electron 1 is reflected, even though the unmodified barrier
height should allow transmission of electron 1 in the absence
of the other electron (ε1 = ε2 > 0 in regions II and IV).

Qualitatively, the time-dependence of collision outcomes is
illustrated by the sketches in Fig. 5(a) which follow the same
notation as in Fig. 4 but additionally indicate which electron
is ahead as they approach the beam splitter. In particular, in
regions II and IV the electron which arrives first raises the
effective barrier height for the other electron and changes its
scattering outcome compared to noninteracting transmission
(deflection of electron 2 by electron 1 in region IV and of
electron 1 by electron 2 in region II). This mutual gating is
asymmetric and the change in the scattering outcome is not
reciprocal unless |�t | is small enough for both electrons to
get reflected despite being above the noninteracting transmis-
sion threshold (see region III at ε0 > 0 and the corresponding
sketch).

A similar shift in a transmission threshold toward higher
incoming energies is observed if the electron energies are not
equal, see the case of large �ε in Fig. 5(c). Near coincidence
(ω�t ∼ 1) one observes “bumps” in otherwise horizontal
boundary lines at ε0 = ±�ε/2 ⇔ ε1,2 = 0. This increase in
effective barrier height due the Coulomb repulsion by the
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FIG. 5. Predicting scattering outcomes as a function of average electron energy and relative time for (a) zero, �ε = 0, (b) intermediate,
�ε = 0.3U , and (c) large, �ε = 1.5U , energy differences between the electrons. The dashed line indicates E+ = Ec. Six sketches in (a) show
how a particular scattering outcome is reached: gray lines indicate the topology of each electron’s path from the source to the detector while dots
represent a qualitative snapshot of electron positions with electron 1 (red dot) being ahead (for �t < 0) or lagging behind (for �t > 0) electron
2 (blue dot); at �t = 0 the electrons scatter symmetrically. The outcomes shown in sketches correspond to the average energy (ε1 + ε2 )/2 and
time delay �t at the center of each sketch. Aspect ratio parameter is κ = 1.

other electron is quantified in our model by U and ω, and can
be tested even if the fourfold degeneracy point ε j = εc

j (�t ) is
not reached or is confounded by broadening effects.

For intermediate fixed energy difference, 0 < |�ε| <

3U/2, the partitioning diagram is more complex, as exem-
plified in Fig. 5(b) for �ε = 0.3U with similarities both to
�ε = 0 [Fig. 5(a)] and large �ε [Fig. 5(c)].

A different way to analyze the scattering outcomes is to
fix �t and plot the outcomes in {ε1, ε2} plane as shown in
Fig. 6. The phase diagram in Fig. 6(b) has the same shape as
the universal diagram in Fig. 4(a) as for ω�t = 0 the coor-
dinates in Fig. 4(a) become simply {ε1, ε2}. Since in contrast
to Fig. 4(a) we do not rescale the coordinate axes in Fig. 6,
the boundary lines are deformed for ω�t �= 0 and approach
the noninteracting limit (I–IV as quadrants of {ε1, ε2} plane)
for |�t | → ∞, see Figs. 6(a) and 6(c). The two ways of
visualizing the partitioning phase diagram in nonrescaled co-
ordinates (fixing �ε versus fixing �t) can be connected by
following particular vertical lines of constant �t in Fig. 5 and
the corresponding diagonal lines of constant �ε in Fig. 6.

(c)

t

(b)

t

(a)

t

FIG. 6. Illustrations of the partitioning phase diagram at fixed
values of interarrival time �t in terms of nonscaled ε1 and ε2 at
(a) ω�t = −6.5, (b) ω�t = 0, and (c) ω�t = 6.5. Ticks on the axes
mark the value of 0.75U = εc

1 (0) = εc
2 (0). Colored diagonal lines

correspond to the three particular fixed values of �ε = ε2 − ε1 that
have been chosen for Figs. 5(a) to 5(c), respectively. The values of
�t illustrated here are also marked by vertical lines in Figs. 5(b) and
5(c). Aspect ratio parameter is κ = 1.

V. CONDITIONS FOR THE CLASSICAL LIMIT

We now discuss consistency conditions for the classical
solution that will help us to estimate the boundaries in the
parameter space where the solution is a valid approximation.

A. Quantum broadening

So far we have treated the electrons as point particles that
can have a well-defined energy at a well-defined time. In-
evitable uncertainty due to quantum mechanics (and potential
additional classical fluctuations at the source [14]) will result
in probabilistic scattering and broaden the sharp lines of the
phase diagram discussed in the previous section.

A qualitative condition in the energy domain for applica-
bility of the classical picture follows from the exact solution
of the single-particle quantum scattering on the saddle point
potential [34] (summarized in Appendix A 5). Transmission is
near-deterministic (probability close to 0 or 1) and the travel
times computed from the group velocity of a wave packet
follow closely the classical equation Eq. (16) if the energy
distance E to the saddle point is larger than h̄ω. This condition
is immediately applicable to the center-of-mass degree of
freedom since it is governed by the same potential as a single
particle,

|Ec.m.| = |E− tanh(ω�t/2)| > h̄ω. (24)

The condition (24) is independent of U and reflects the quan-
tum uncertainty of coincidence in both time and energy. At
ω�t � 1, Eq. (24) implies

(1/2)|(ε2 − ε1) �t | > h̄, (25)

as expected from the uncertainty principle applied to each
wave packet individually before scattering.

For the relative motion, the relevant saddle point is given
by the quadratic expansion of Eq. (8) near (0,−d0),

E+(x, y) − Ec ≈ m
[
3 ω2

y (y + d0)2 − (
ω2

x + ω2
y

)
x2

]
/4. (26)
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Note that the expansion Eq. (26) is valid only for trajec-
tories that approach the saddle-point—this requires at least
E+ > Ec2; see Fig. 2. Comparing Eq. (26) to Eq. (8) with
d0 = 0 we see that instead of ω = ωxωy/ωc, the vicinity of the
interaction-induced saddle point is controlled by the timescale

ω(2) = ωy

√
3
(
ω2

x + ω2
y

)
/ωc, (27)

and the corresponding condition is

|E+ − (3U/2)| > h̄ω(2) = h̄ω
√

3(1 + κ−2). (28)

This condition will necessarily be violated near the dashed
lines in the diagrams of Figs. 4 and 5, and in particular, near
the fourfold degenerate point. Yet for a sufficiently large U
the bulk areas of the diagram will be robust against quantum
uncertainty if the colliding wave packets are prepared suffi-
ciently compact in energy and time.

B. Consistency conditions for the classical approximation

If the interaction strength is insufficient, then the quan-
tum effects will always be overwhelming and the classical
description of interactions will fail qualitatively. Hence, it is
important to estimate the lower bound on U due to quantum
mechanics. (There is also an upper bound imposed by the
condition of staying in the lowest confined mode, discussed
further below).

For moderate and wide constrictions, κ � 1, U is the only
energy scale in the classical phase diagram, and U has to be
larger than the quantum broadening scale (28),

U � h̄ω (wide). (29)

This condition has a straightforward physical interpretation in
terms of the experimental protocol discussed in Sec. IV B: the
increase in the effective barrier height due to the presence of
another electron, U , has to be larger than the barrier energy
resolution, h̄ω, to allow for a single-shot detection of coinci-
dent arrival.

For a narrow constriction, κ � 1, there are two behaviours:
2D-like in the vicinity of the fourfold degenerate point, for
E+ ∼ U , for which the condition (28) implies

U � h̄ω2
y/ωc (narrow), (30)

and the 1D-like behavior for |E+| ∼ U1D � U .
Together with the microscopic definitions of U =
(m/2)1/3 [ωy e2/(4πε0ε)]2/3 and ω = ωx ωy/ωc, conditions
(29)–(30) define the necessary bounds for confinement
strengths ωx, ωy � ωc in a material with known effective
mass m and dielectric constant ε.

The conditions (29) and (30) expressed in energy language
can also be understood in terms of phase-space geometry of
Fig. 2. The area A of the inaccessible region at short relative
distances, enclosed by the critical level line E+ = Ec in Fig. 2,
has to be much larger than the quantum phase space unit l2

c . A
straightforward computation gives A ∼ d2

0 /κ for κ � 1, and
A ∼ d2

0 for κ → 0. The condition A � l2
c = h̄/(mωc) is then

equivalent to either Eq. (29) or Eq. (30) for the respective
range of κ .

The classical solution completely neglects the effects of
quantum statistics. Qualitatively, this can be similarly justified

by the localization length lc of maximally localized quan-
tum wave packets being smaller than the minimal distance
allowed by interactions (which is derived in the classical limit
in Appendix B), yet a careful analysis of potential quantum
exchange effects in the strong-coupling limit is beyond the
scope of this study.

A bound on U from above follows from the condition of
scattering within the first Landau level only,

h̄ω, U �
√

ω2
y + ω2

c . (31)

This can be satisfied in large magnetic fields for ωx, ωy � ωc

both for a wide or a narrow constriction. If, however, the elec-
trostatic transverse confinement is significant, ωy � ωc, then
only the narrow limit is allowed, ωx � ωy, but then Eq. (31)
becomes incompatible with the condition for the classical 2D
behavior (30). Hence, we explicitly confirm that magnetic
confinement is essential for the possibility to probe all four
regions of the classical phase diagram.

VI. CONCLUSIONS AND OUTLOOK

The classical-limit phase diagram of two-electron
Coulomb scattering in two dimensions, described in Sec. IV,
is a robust and a tightly constrained prediction since it maps
a three-dimensional manifold of initial conditions onto a
two dimensional diagram of final outcomes which is fully
determined ab initio. Scaling with particular combinations of
initial conditions (E±) is potentially testable experimentally
even in the presence of significant stochastic broadening.

In addition to measuring collision outcomes, time-of-flight
measurements [42] could be used to characterize the clas-
sical dispersion of the constriction. An additional element
is a gate-controlled “chopper” barrier in front of a detector
that is triggered at a tuneable time delay with respect to the
source(s) [14]. On the single-particle level, one could calibrate
Eq. (16) [Eq. (A15)] for a single source or Eq. (22) for two
sources. Such classical partitioning (i.e., deflection) measure-
ments would yield not only an estimate of ω but also of the
range of �t and ε j for which a quadratic saddle point approx-
imation is applicable. Experimental techniques have already
been demonstrated to resolve the time gap in the arrival of two
electrons at one detector [43], thus our quantitative prediction
for �t f , Eq. (21), could also be put to the test alongside with
the diagram of scattering outcomes.

The classical approach to electron scattering presented
here follows the spirit of classical interpretation [44] of
energy-time tomography of isolated on-demand electrons
demonstrated recently by Fletcher et al. [14]. In both cases,
fidelity of the outcome improves with reducing the character-
istic scale h̄ω for energy sensitivity of tunneling,2 as compared
to the interaction strength U in our case and the energy width
of the incoming distribution σE in the case of tomography.
This is opposite to the HOM-interference-based tomography
of low-energy excitations close to a Fermi surface [45,46] that
works with spectrally neutral half-transmission beam splitters

2Usually denoted 2π�b for tuneable-barrier devices [11,13,43].
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on the energy scale much smaller than h̄ω [7]. Exploration of
the crossover between these two extremes of electron-electron
collisions presents a challenging nonperturbative problem for
theory.

Yet another closely related experimental system in which
developing a classical approach to scattering similar to the
present study could be potentially useful is the on-demand
transport of electrons in potential minima induced by a
traveling surface acoustic wave (SAW) [15,47]. There, a
single-electron beam splitter has been recently realized [15]
and time-of-flight measurements have been demonstrated
[48] which potentially would allow one to bring two elec-
trons simultaneously to the interaction and tunneling region
from independent sources. Energy scales analogous to our
U and h̄ω could play a comparable role for determining
the physical regime of two-particle collision in such SAW
devices, and estimates of a sizable phase space available at
the beam splitter [15] suggest room for suitable classical
approximations.

We hope that the results of this study offer a useful map
for a particular corner of strongly interacting few-electron
mesoscopic systems ripe for exploring novel fundamen-
tal effects [32] and developing technology for applications
[49].

Since the completion of the initial version of this
manuscript, three experimental studies [50–52] of Coulomb-
mediated collisions of on-demand electrons have been
published. In particular, Wang et al. [52] demonstrate sym-
metrical reciprocal Coulomb gating of electrons arriving at
a tunnel-coupled region synchronously in a single SAW
minimum from two different sources. Complementary exper-
iments on two different realizations of edge-channel-guided
chiral electrons interacting at a depleted beam splitter and
probing emission energy ranges of > 100 meV [50] and
30–60 meV [51] above the Fermi level yield comparable es-
timates of U/(h̄ω) ≈ 13 and 14, respectively. The experiment
by Fletcher et al. [50] confirms the essential features of the
phase diagram presented in Fig. 5(a), while the study by
Ubbelohde et al. (which includes authors of the present paper)
[51] further develops the approach presented here into an an-
alytical model for quantitative analysis of HOM-type electron
collisions.
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APPENDIX A: DETAILS OF EXACT SINGLE-ELECTRON
SOLUTION AND DERIVATION OF ONE-DIMENSIONAL

EQUATIONS OF MOTION

Here we give details of the exact quantum solution to a
single particle in a saddle-point potential [34] and provide a
first-principles derivation of the classical equations of motion
(5) and the scaling relations (9).

1. Exact diagonalization

Fertig and Halperin [34] put the quadratic single-particle
Hamiltonian (2) into a diagonal form3

H = h̄ω2

2
(s2 + p2) + h̄ω1

2
(P2 − X 2) (A1)

by a linear transformation to new separated canonically con-
jugate variables such that [X, P] = [s, p] = i and [s, X ] =
[s, P] = [p, X ] = [p, P] = 0 (in their solution ωc > 0 corre-
sponds to B in the positive direction of z axis).

The two frequencies ω2 and ω1 are given by the positive
solutions to

ω1ω2 = ωxωy, (A2a)

ω2
2 − ω2

1 = ω2
c − ω2

x + ω2
y . (A2b)

Considering ω2 > ω1, denoting η = ω1/ω2, and introducing
the confinement length l2 = √

h̄/(m ω2), we cast the exact
diagonalization transformation of Ref. [34] into the following
form (as in the main text, we denote κ = ωx/ωy):

x/l2 =
√

κ−1 + η

1 + η2
X +

√
1 − κ−1 η

1 + η2
s, (A3a)

y/l2 = −
√

κ − η

1 + η2
P +

√
1 + κ η

1 + η2
p, (A3b)

l2 px/h̄ = κ + η

2

√
κ−1 + η

1 + η2
P + 1 − κ η

2

√
1 − κ−1 η

1 + η2
p,

(A3c)

l2 py/h̄ = κ−1 − η

2

√
κ − η

1 + η2
X − 1 + κ−1η

2

√
1 + κ η

1 + η2
s.

(A3d)

(This transformation follows our sign convention where B
is taken in the negative direction of the z axis. For the opposite
direction of the magnetic field, such as in Ref. [34], one should
flip the signs of x, y, X , and p in the equations above.)

Instead of dimensionless X and P as in Ref. [34], we work
with dimensionful guiding center coordinates x̃ ∝ X and ỹ ∝
−P, defined by setting s → 0, x → x̃, p → 0, and y → ỹ in
Eqs. (A3a) and (A3b),

x = x̃ + s lx
0 , (A4a)

y = ỹ + p ly
0, (A4b)

3We omit the electron index j = 1, 2 since only a single-particle
problem is discussed throughout this Appendix.

165304-10



COLLISION OF TWO INTERACTING ELECTRONS ON A … PHYSICAL REVIEW B 107, 165304 (2023)

with some positive lx
0 and ly

0 with the dimension of length.
The commutation relation between x̃ and ỹ follows from

[X, P] = i and Eqs. (A4),

[ỹ, x̃] = i lx
0 ly

0 . (A5)

Note that [x̃, s] = [ỹ, p] = [x̃, x] = [ỹ, y] = 0.

2. Separation of scales

In the limit of 0 < η = ω1/ω2 � 1, it follows from

Eqs. (A2) that ω2 ≈
√

ω2
c + ω2

y − ω2
x and

η ≈ ωx ωy

ω2
c + ω2

y − ω2
x

� 1. (A6)

It is easy to deduce from Eq. (A6) that separation of scales,
ω1 � ω2, implies ωx � max(ωc, ωy), that is, either strong
magnetic (ωc) or electric (ωy) confinement.

To the leading order in η, we have {ωx, ωy, ωc}/ω2 ≈
{√η κ,

√
η/κ,

√
1 − η/κ} (note that κ can be of order η if

ωy � ωc) and

ω1 = ωx ωy

ω2
, (A7a)

ω2 ≈
√

ω2
y + ω2

c . (A7b)

Equations (A7) justify the formulas for ω and ω′ used in the
main text in and before Eq. (9).

The transformation (A3) simplifies to

x/l2 = κ−1/2
(
X + √

κ − η s
)
, (A8a)

y/l2 = −√
κ − η P + p, (A8b)

l2 px/h̄ = 2−1 κ−1/2[(κ + η) P + √
κ − η p], (A8c)

l2 py/h̄ = 2−1 κ−1[
√

κ − η X − (κ + η) s], (A8d)

and the corresponding characteristic lengths in Eqs. (A4)
become simply lx

0 = l2 ωc/ω2 and ly
0 = l2.

The same limit of η → 0 also simplifies the Hamiltonian
of the propagating dimension in Eq. (A1),

h̄ω1

2
(P2 − X 2) = Vsaddle(x̃, ỹ) + ω2

y

ω2
c

× mω2
y ỹ2

2
. (A9)

3. Reduction to one-dimensional motion of the guiding center

Consider a particle which in addition to the saddle point
potential and the magnetic field captured by H from Eq. (2)
[Eq. (A1)] is subject to external potential V (x, y). For the
two-body interaction problem considered in the main text V is
the interaction potential that also depends on the coordinates
of the other particle; here we focus on the formal procedure
for a generic V (x, y). It is clear from Eq. (A4) that quantum
fluctuations of the confined degree of freedom (s, p) introduce
uncertainty to x and y on the scale of l2. If V (x, y) is smooth
on this scale, then we can develop a useful approximation for
one-dimensional motion, assuming that s and p are confined
to the lowest energy state (lowest Landau level/transverse
quantization mode) and using x̃ and ỹ as the active coordinates
for the guiding center motion.

Using the saddle-point Hamiltonian (A1), the commutation
relations (A5) and the simplifications of the η � 1 limit,

Eq. (A9) and lx
0 ly

0 = h̄ωc/[m(ω2
c + ω2

y )], Heisenberg equa-
tions of motion for the guiding center coordinates (x̃, ỹ) are

˙̃x = i

h̄
[H + V (x, y), x̃] = −ỹ ω2

y/ωc − 1

m

∂V

∂y
× ωc

ω2
y + ω2

c

,

(A10a)

˙̃y = i

h̄
[H + V (x, y), ỹ] =

[
−x̃ ω2

x + 1

m

∂V

∂x

]
× ωc

ω2
y + ω2

c

.

(A10b)

Coupling between (s, p) and (x̃, ỹ) is present in Eqs. (A10) due
to difference between (x, y) and (x̃, ỹ), but the equations are
still formally exact (apart from using the separation of scales
simplifications).

Tracing out s and p requires an assumption about the state
of the confined dimension. Assuming the lowest Landau level,
which corresponds to the ground state of the correspond-
ing harmonic oscillator in Eq. (A1), the projection can be
written explicitly in the coordinate representation of s and
p = −i∂/∂s,

Ṽ (x̃, ỹ) = 1√
π

∫ +∞

−∞
e−s2/2V

(
x̃ + slx

0 , ỹ − ily
0∂s

)
e−s2/2 ds.

(A11)

Performing a similar projection on Eqs. (A10) would give
Heisenberg equations of motion for position-momentum op-
erator pair (x̃, −ỹ) with lx

0 ly
0 playing the role of an effective

Planck constant.
The classical limit formally corresponds to ω2 → ∞,

which leads to lx
0 , ly

0 → 0, Ṽ (x̃, ỹ) → V (x, y) and turns
Eq. (A10) into the conjugate pair of Hamilton equations for
the classical trajectory x(t ), y(t ).

Taking the limit ωc → ∞ in Eqs. (A10) and (A11) and
identifying mB = h̄ωc gives Eqs. (5) of the main text which
are simply statements of drift velocity v = ∇V × B/(eB2) for
each electron in the combined electrostatic field of external
confinement and mutual repulsion.

4. Mapping onto E × B drift for arbitrary electric-to-magnetic
confinement ratio ωy/ωc

The first-principles derivation laid out in Appendices A 1–

A 3 relies only on ωx �
√

ω2
y + ω2

c for separation of scales

and hence does require ωy � ωc as a necessary condition. We
observe that the B → ∞ drift velocity equations (5) used to
derive the results of this paper coincide with the classical limit
of Eqs. (A10) if ωc and ωy in the former are replaced by

ω′
c = ωc + ω2

y

ωc
= ωc 	−2, (A12a)

ω′
y = ωy

ωc

√
ω2

c + ω2
y = ωy 	−1. (A12b)

This observation yields the rescaling recipe (9) of the main
text. We also note that lx

0 = 	3/2 lc, ly
0 = 	1/2 lc and [ŷ, x̂] =

i(l ′
c)2 where l ′

c = √
h̄/(mω′

c) = 	 lc is the renormalized mag-
netic length.

In the 1D limit, ωc/ωy → 0, we can use Eq. (A12)
on Eq. (A8c) to confirm the correspondence of operators

165304-11



ELINA PAVLOVSKA et al. PHYSICAL REVIEW B 107, 165304 (2023)

px = −mω2
y ỹ/ωc, consistent with 	 → 0 derivation of the

Newton’s second law for the relative coordinate on the classi-
cal level, as discussed after Eqs. (9) in the main text.

5. Single-particle quantum scattering on the saddle potential

Quantum scattering probability on the saddle-point (in 2D
terms) or parabolic (in equivalent 1D representation) potential
for a wave packet with a well-defined energy E is [33,34,53]

T (E ) = 1

1 + exp[−2πE/(h̄ω)]
, (A13)

where ω = ω1 of the exact diagonalization [34] described in
Sec. (A1). We see that T (E ) is exponentially close to either 0
or 1 (i.e., classical) if |E | � h̄ω.

In the time domain, quantum fluctuations heal the loga-
rithmic divergence near the saddle point on the same energy
scale [54]. The reflection (transmission) time from x = −x0

to x = −x0 (x = +x0) computed as a Wigner delay time
τW = h̄−1∂Im log sα/∂E from the asymptotically exact quan-
tum scattering amplitudes [34,55] α = R (α = T),

sT = (2π )−1/2 e(0.5πE+i2E0 )/(h̄ω) (A14a)

×
(

4E0

h̄ω

)iE/(h̄ω)

�

(
1

2
+ i

E

h̄ω

)
,

sR = −ie−πE/(h̄ω) sT, (A14b)

equals to

ω τW (E ) = ln
4E0

h̄ω
− Re�

(
1

2
+ i

E

h̄ω

)
, (A15)

where �(z) is the gamma and �(z) = d ln �(z)/dz is the
digamma function. Equations (A13) and (A14) are related by
T (E ) = |sT|2 = 1 − |sR|2.

The Wigner delay time Eq. (A15) should be compared to
the classical travel time (16) with a matching phase reference
point ±x0, single-particle energy E+ = E and mass (here m
and hence E0 = mω2

x x2
0/2, in contrast to the reduced mass

μ = m/2 and E0 = μω2
x x2

0/2 in Sec. III B). In the limit of low
tunneling probabilities, |E | � h̄ω, as �(z) ∼ ln z at |z| � 1,
the quantum mechanical calculation gives the same result as
the classical one; the classical divergence is cut off at |E | ≈
h̄ω giving a finite τW (E =0) = ω−1[− ln(h̄ω/E0) + 3.35 . . .].
This comparison is illustrated in Fig. 7.

APPENDIX B: MINIMAL DISTANCE

Here we evaluate the minimal classical distance between
electrons as function of the variable E+ that controls the
dynamics of the relative coordinate.

Minimal distance dmin between two electrons is reached
at t = τ/2 at the relative coordinate vector equal to either
{−dmin, 0} for E < Ec or {0,−dmin} for E > Ec, cf. Fig. 2.
The corresponding values as a function of κ and E+ can
be expressed analytically in terms of roots of the a cubic
equation,

ξ 3 − 2 ε ξ − 2 = 0. (B1)

The real roots of this equation are plotted in Fig. 8 as functions
of ε. There is one positive real root ξ1(ε) > 0 for all real ε, and

FIG. 7. Continuous (blue) line: classical travel time (16) for
E0 = 20 h̄ω, dashed (orange) line: quantum wave-packet travel time
(computed as Wigner delay time with an appropriate phase reference
point), both as functions of single-particle energy E .

two additional negative real roots ξ2(ε) � −1 � ξ3(ε) � 0
for ε � 3/2. The relevant limiting values are ξ1(ε → −∞) =
−ε−1, ξ1(0) = 21/3, and ξ2(3/2) = 1.

The minimal distance is

dmin/d0 =
{
κ−2/3 ξ1(−κ−2/3 E+/U ), E+ < 3U/2,

−ξ2(E+/U ), E+ > 3U/2.
(B2)

For κ ∼ 1 and for κ � 1, dmin � d0 for all E+. In particu-
lar, in the narrow constriction limit, κ � 1,

dmin/d0 ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

U
E+

, U1D < E+ < 3U/2,

∼ κ−2/3, −U1D < E+ < U1D,√−2E+/U/κ, E+ � −U1D,

� 1, E+ > 3U/2.

(B3)

In the wide constriction limit, κ � 1, there is a range
of values of E+ such that d0 > dmin > 21/3 κ−2/3d0 for
−κ2U/2 < E+ < 3U/2.

FIG. 8. Roots of Eq. (B1) for calculating the minimal distance.
The degeneracy point ξ2 = ξ3 is at {3/2, −1}.
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