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Superbunching in cathodoluminescence: A master equation approach
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We propose a theoretical model of a master equation for cathodoluminescence (CL). The master equation de-
scribes simultaneous excitation of multiple emitters by an incoming electron and radiative decay of individual
emitters. We investigate the normalized second-order correlation function, g(2)(τ ), of this model. We derive
the exact formula for the zero-time delay correlation, g(2)(0), and show that the model successfully describes
giant bunching (superbunching) in the CL. We also derive an approximate form of g(2)(τ ), which is valid for
small excitation rate. Furthermore, we discuss the state of the radiation field of the CL. We reveal that the
superbunching results from a mixture of an excited photon state and the vacuum state and that this type of state
is realized in the CL.
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I. INTRODUCTION

In electron microscopy, cathodoluminescence (CL) visual-
izes optical properties beyond the diffraction limit of light. A
wide range of materials can be investigated by this approach,
for instance, defect or luminescence centers in semicon-
ductors [1–4], quantum-confined structures [5–7], surface
plasmon polaritons [8–10], and fluorescent proteins [11–13].
Thus, the electron-microscopy-based CL measurement is a
powerful tool to analyze various materials on nanoscale.

The optical state of CL itself has not been in the spot-
light for a long time though CL had been used in displays
with cathode ray tubes for more than a century. By the
recent introduction of Hanbury Brown-Twiss (HBT) inter-
ferometry to CL, the quantum character “antibunching” of
the emitted states of CL has been revealed with a deep sub-
wavelength spatial resolution in the measurement of a single
nitrogen-vacancy (NV) center in a nanodiamond [14]. Since
antibunching is a result of the particle nature of a photon, this
HBT-CL technique opens a way to measure quantum optical
phenomena on the nanoscale.

However, the HBT measurement of CL from multiple de-
fect centers has presented strong bunching [15], which has
not been observed in photoluminescence (PL) experiments for
the same kind of sample. Although there are differences be-
tween optical and electron-beam excitations such as absence
of the NV− spectrum in CL [16], this bunching observation
raises a question on the origin of the bunching. In addition,
the observed bunching in CL is often huge, where the nor-
malized second-order correlation function, g(2)(τ ), at time
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delay τ = 0 is larger than 2, i.e., superthermal values. This
is known as superbunching and a peculiar state of light. A
representative example of the superbunching is spontaneous
parametric down-converted light (a squeezed vacuum), which
is the quantum light widely used as heralded single photons
and entangled photon pairs [17]. Other examples are super-
radiant coupling of the emitters [18–20], quantum dot–metal
nanoparticles [21,22], and bimodal lasers [23–27].

The bunching in CL has already enabled us to measure
the luminescent lifetime well below the optical diffraction
limit without a pulsed electron beam [28]. This time-resolved
measurement not only demonstrated the Purcell effect on the
nanoscale [29,30] but also quantified excitation and emission
efficiencies of optical nanostructures [31,32]. These practical
applications prove that the CL photon correlation has great
potential to access intrinsic nanophotonic properties in a di-
rect manner and offer important insights into nanophotonic
devices. Therefore, it is important to clarify how the strong
bunching emerges in CL from both basic and applied aspects.
The deeper understanding of CL photon correlation should
progress nanoscale optical imaging to the next stage.

There were studies on CL photon statistics about half
a century ago [33,34]. These pioneering investigations pre-
sented a theoretical description of the photon statistics and an
experimental observation of the strong intensity correlation.
However, the feature of g(2) in CL was not focused. In the
first report of the superbunching in CL [15], Meuret et al.
assumed that plasmons induce a synchronized excitation of
multiple emitters and proposed a stochastic model to per-
form a Monte Carlo simulation on g(2)(τ ). On the basis of
similar assumptions, CL excitation efficiency was estimated
[31], and an analytical model was constructed [35]. Feldman
et al. claimed that the bunching in the nanodiamond CL
is mediated by the phonon sidebands and explained g(2)(τ )
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using another Monte Carlo model [36]. Besides these models,
Yanagimoto et al. derived an expression of g(2)(τ ) using a
rate equation for multiple two-level systems [30]. However,
the models in all the previous studies are essentially classical,
and no quantum model has been proposed that explains the su-
perbunching in CL. Even if photon bunching can be described
by classical electromagnetic waves, the lack of photon picture
would obscure the understanding of the essence of CL photon
correlation.

In this study, we introduce a model of a quantum master
equation (QME) to describe the dynamics of multiple emitters
in CL. The excitation by incident electrons is incorporated
phenomenologically in the QME. We find that the QME is
reduced to a semiclassical master equation for the distribution
of number of excited emitters. From this master equation, we
exactly obtain the stationary distribution and the formula for
zero-time delay correlation g(2)(0). We also derive an approx-
imate equation for delay time-dependent correlation g(2)(τ ).
We show that these results successfully reproduce several fea-
tures of CL, in particular, the superbunching and the decaying
behavior of g(2)(τ ). Moreover, we extend the model so that it
is applicable to the case of large electron-beam current. We
also deduce the state of the radiation field from a possible
sequence of pulses of the field in the CL. From the model
calculation and the deduced argument for the radiation field,
we shed light on a universal aspect of the superbunching.

II. MODEL

A. Excitation process in cathodoluminescence

Before describing the quantum master equation of our
model, we briefly explain the excitation process in a material
by fast incident electrons in CL.

In CL, it is considered that an incident electron excites
multiple emitters (defect centers) not directly but via several
steps of elementary processes mainly due to bulk plasmons
and/or secondary electrons [15,31,37–41]. The timescale re-
quired to excite emitters ranges from femtoseconds (bulk
plasmon) to picoseconds (secondary electrons). Therefore,
when the radiative lifetime τrad of the emitters is on the order
of nanoseconds (we consider this case in the present study),
the excitation timescale is sufficiently smaller than the emitter
lifetime.

The region excited by the electron beam extends from
the beam path. Its size depends on the beam diameter,
the generation range of secondary (quasi)particles, and the
mean free path and/or diffusion length of secondary (or
higher-order) carriers. The typical length scale of the ex-
cited region is several tens of nanometers when using a thin
sample.

B. Quantum master equation

Considering the above excitation process by electron beam,
we propose the following quantum model of CL.

The system of our interest is composed of N emitters,
which are located in the excited region. Each emitter is
modeled by a two-level system (TLS) with transition energy
h̄ωe. We assume that the density of emitters is low and thus
the interaction among them is absent. Therefore, the system

Hamiltonian is given by

Ĥ =
N∑

j=1

h̄ωe

2
σ̂ z

j . (1)

Here σ̂ z
j is the z component of the Pauli matrix for the jth

TLS. This is expressed as σ̂ z
j = |1〉 j〈1| − |0〉 j〈0| with the

lower-level state |0〉 j and the upper one |1〉 j of the jth TLS.
In this study, we consider CL emission with a contin-

uous electron beam. The emitters are continuously excited
by the incoming electrons and decay with photon emission.
The Lindblad-type QME [42–45] is a suitable method for
describing dynamics in this situation. The QME has the
following form:

d

dt
ρ̂(t ) = Lρ̂(t ), (2)

where ρ̂(t ) is the state (density matrix) of the system at time t
and the Liouvillian L is given by

Lρ̂ = 1

ih̄
[Ĥ , ρ̂] + Dradρ̂ + Dexρ̂. (3)

The first term represents the unitary part of the time evolution
with the system Hamiltonian (1). The second and third terms
represent the nonunitary parts due to the decay and excitation,
respectively, as explained below.

The second term in the Liouvillian (3) describes the ra-
diative decay of the emitters. We here assume that the dipole
moments of the emitters are randomly oriented. In this case,
they are independently damped even though the emitters ex-
cited by the electron beam are located within the excited
region, which is smaller than the wavelength 2πc/ωe. There-
fore, as in the quantum optical master equation [44–46] under
the assumption that the reservoir temperature is sufficiently
smaller than h̄ωe, the second term is given in the following
Lindblad form:

Dradρ̂ = 1

τrad

N∑
j=1

(
σ̂−

j ρ̂σ̂+
j − 1

2
{σ̂+

j σ̂−
j , ρ̂}

)
. (4)

Here σ̂+
j = |1〉 j〈0| and σ̂−

j = |0〉 j〈1| are the raising and low-
ering operators of the jth TLS, respectively. And τrad is the
radiative lifetime of each emitter. We note that we can in-
corporate the nonradiative decay in the same Lindblad form,
in which case we should replace the prefactor 1/τrad with
1/τtot = 1/τrad + 1/τnonrad to include the nonradiative lifetime
τnonrad.

The third term in the Liouvillian (3) describes the exci-
tation of the emitters by an electron beam. As explained in
Sec. II A, the excitation timescale for each electron is suffi-
ciently smaller than the radiative lifetime τrad. Therefore, we
can consider that the multiple emitters are excited simultane-
ously by a single incident electron. In this study, for simplicity,
we assume that the number of emitters simultaneously ex-
cited by an electron is constant and is equal to N that is
introduced in Eq. (1). On the other hand, the excitation rate
γ is connected to the electron-beam current I . The unit-time
number of electrons incident on the sample is (I/e) (e is the
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elementary charge). And the excitation occurs (I/e)pex times
per unit time, where pex is the probability for the excitation
by an electron. Therefore, γ = (I/e)pex. To incorporate this
simultaneous excitation of the N emitters at the rate of γ , we
introduce the following third term:

Dexρ̂ = γ
(
�̂+ρ̂�̂− − 1

2 {�̂−�̂+, ρ̂}), (5)

�̂± =
N⊗

j=1

σ̂±
j . (6)

The Lindblad operator �̂+ of Eq. (6) raises all the TLSs to
the upper levels if all of them are in the lower levels. This
expresses the situation that the emitters are simultaneously
excited by an incident electron. We note that this term induces
no excitation when some of the TLSs are already in the upper
levels. However, such a no-excitation event does not occur
if the excitation rate γ is much smaller than the radiative
damping rate 1/τrad since in such cases all the TLSs are in
the lower levels for most of the time. Therefore, this model is
valid for τradγ � 1. If τrad is around 10 ns, this condition is
fulfilled for the beam current I less than 10 pA.

Here, we make three remarks on this model. First, the
number N of emitters excited by a single incident electron
is independent of the current I while the excitation rate γ is
proportional to I (as explained above). Instead, N depends on
the energy of the electron (acceleration voltage) and on the
sample parameters (film thickness, density of emitters, and
so on).

Second, as explained for Eq. (5), we assume that the in-
cident electrons always excite the same N emitters. In actual
experiments of CL, the number of emitters excited by each
electron varies around the average. We give an extension
of the model to incorporate this effect in Sec. IV and the
Supplemental Material [47] (Refs. [15,44,48–51] are included
therein). We note that this effect does not essentially alter the
results of the present model if its validity condition τradγ � 1
is satisfied. Moreover, the extended model can be well ap-
proximated by the present model for τradγ � 1, where N is
regarded as the average number of emitters excited by an
electron.

Finally, small excitation volume (i.e., high spatial resolu-
tion of the electron beam), one of the characteristics of CL,
is taken into consideration in the model: the same emitters
are excited every time. Combining this with the second re-
mark, the situation we assume in this model is as follows: we
consider the emitters located within the excited region (Ntot

emitters in total), each incident electron in the beam excites
a part of them (say, Nex emitters, where Nex varies for each
electron), and its average number Nex is N .

C. Semiclassical master equation for the number
of excited emitters

As seen in the next section, the statistics of the number
of excited emitters n̂ = ∑N

j=1 σ̂+
j σ̂−

j is useful to investigate
the second-order correlation function g(2). The statistics is
governed by the probability P(n, t ) that the number of excited
emitters is n at time t . As derived in Appendix A, QME

(2) is exactly reduced to the following semiclassical master
equation for P(n, t ):

d

dt
P(0, t ) = 1

τrad
P(1, t ) − γ P(0, t ), (7)

d

dt
P(n, t ) = n + 1

τrad
P(n + 1, t ) − n

τrad
P(n, t ), (8)

d

dt
P(N, t ) = γ P(0, t ) − N

τrad
P(N, t ), (9)

where Eq. (8) is for 1 � n � N − 1.

III. SECOND-ORDER CORRELATION FUNCTION

A. Steady state

In CL with a continuous beam, the system is in the steady
state ρ̂ss, which is determined by Lρ̂ss = 0. In the following,
we write the steady-state average Tr [ρ̂ss · · · ] as 〈· · ·〉ss.

In the steady state, P(n, t ) also becomes the stationary
distribution Pss(n). We obtain the equations that determine
Pss(n) by setting the left-hand sides of Eqs. (7)–(9) to zero.
We can exactly solve these equations with the normalization
condition

∑N
n=0 Pss(n) = 1 to obtain

Pss(0) = 1

1 + zNτradγ
, (10)

Pss(n) = τradγ

n(1 + zNτradγ )
(1 � n � N ), (11)

where zN = ∑N
m=1(1/m). From Pss(n), we can calculate the

steady-state moments of n̂. The first two are

〈n̂〉ss =
N∑

n=0

nPss(n) = Nτradγ

1 + zNτradγ
, (12)

〈n̂2〉ss =
N∑

n=0

n2Pss(n) = N (N + 1)τradγ

2(1 + zNτradγ )
. (13)

We use these moments in calculating g(2).
We now investigate the normalized second-order correla-

tion function g(2)(τ ) in the steady state. This is defined by
g(2)(τ ) = 〈T : Îrad Îrad(τ ) :〉ss/〈Îrad〉2

ss, where Îrad is the inten-
sity operator of the radiation field, T is the time ordering, and
:: is the normal ordering [52]. Thanks to the normalization fac-
tor 〈Îrad〉2

ss, collection and detection efficiencies of light and the
linear loss of an optical system do not affect the value of g(2),
and thus defined g(2)(τ ) describes the second-order correlation
that is obtained in the HBT experiments. To proceed further,
we again use the assumption that the dipole moments of the
emitters are randomly oriented. In this case, the intensity
operator reads Îrad ∝ ∑N

j=1 σ̂+
j σ̂−

j = n̂. Therefore, g(2)(τ ) is
given by

g(2)(τ ) =
∑

j1, j2
〈σ̂+

j1
σ̂+

j2
(τ )σ̂−

j2
(τ )σ̂−

j1
〉ss

〈n̂〉2
ss

. (14)

Since the steady-state correlation function is symmetric at τ =
0, we analyze g(2)(τ ) for τ � 0 in the following.

B. Zero-time delay correlation: Superbunching

First, we derive the exact formula for the zero-time delay
correlation function g(2)(0). At τ = 0, we can rewrite the
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FIG. 1. Zero-time delay correlation g(2)(0) [Eq. (16)] as a func-
tion of the excitation rate γ (normalized by the radiative lifetime
τrad). The curves from bottom to top correspond to N = 2, 3, 4, 10,
and 20, respectively. The dotted line is a visual guide proportional to
1/γ .

numerator of Eq. (14) as follows:∑
j1, j2

〈σ̂+
j1
σ̂+

j2
σ̂−

j2
σ̂−

j1
〉ss =

∑
j1 �= j2

〈σ̂+
j1
σ̂+

j2
σ̂−

j2
σ̂−

j1
〉ss = 〈n̂2〉ss − 〈n̂〉ss,

(15)

noting that σ̂±
j1

and σ̂±
j2

are commutative only if j1 �= j2. Ap-
plying Eqs. (12) and (13), we obtain the exact formula for
g(2)(0):

g(2)(0) = 1

2

(
zN + 1

τradγ

)(
1 − 1

N

)
. (16)

From this formula, we can easily show that the super-
bunching, g(2)(0) � 2, is observed for τradγ � 1. Figure 1,
which shows the γ dependence of g(2)(0) for N � 2, illus-
trates this feature clearly. On the other hand, when N = 1,
we have g(2)(0) = 0 indicating the antibunching. This result
implies that excitation of multiple emitters (N � 2) by a single
incoming electron are necessary for the superbunching.

We note that, in formula (16), g(2)(0) is proportional to
1/γ for τradγ � 1. In Fig. 1, this seems valid for τradγ � 0.1.
Since the excitation rate γ is proportional to the electron
current I and the excitation efficiency pex as explained above
Eq. (5), this means that g(2)(0) is proportional to 1/I and
1/pex for τradγ � 1. Therefore, formula (16) reproduces the
properties of g(2)(0) discussed in Refs. [30,31,35].

We also make a remark on the limitation of this formula.
In experiments, g(2)(0) approaches 1 for large electron current
[15,31,35,36]. In comparison, the theoretical formula (16) of
g(2)(0) approaches (1/2)zN (1 − 1/N ) �= 1 for large γ (thus for
large electron current). This discrepancy is attributed to the
limited validity range of τradγ in the present model. As ex-
plained below Eq. (6), the model is applicable for sufficiently
small τradγ because the excitation term in Eq. (5) does not
work for large τradγ . However, note that, in Sec. IV and the
Supplemental Material [47] (Refs. [15,44,48–51] are included
therein), we generalize the present model to apply it even for
large τradγ and show that this discrepancy is resolved in the
generalized model.

C. Finite-time delay correlation

Next, we derive an approximate form of g(2)(τ ) under the
assumption of Nτradγ � 1. To this end, we apply the quantum
regression theorem (QRT) [44,45] to the correlation function∑N

j1=1

∑N
j2=1〈σ̂+

j1
σ̂+

j2
(τ )σ̂−

j2
(τ )σ̂−

j1
〉ss = ∑N

j=1〈σ̂+
j n̂(τ )σ̂−

j 〉ss in

the numerator of Eq. (14). We can derive that this correlation
function shows a multiple exponential decay and approaches
〈n̂〉2

ss [thus g(2)(τ ) → 1] for τ → ∞. Furthermore, if we as-
sume Nτradγ � 1, we can show that the lowest decay rate
is approximately equal to λ1 
 (1/τrad )(1 + Nτradγ ) and the
second lowest is λ2 
 (2/τrad )[1 − N (N − 1)τradγ /4] (see
Appendix B for derivation). Therefore, the decaying behavior
of

∑N
j=1〈σ̂+

j n̂(τ )σ̂−
j 〉ss is dominated by e−λ1τ .

Combining this decaying behavior with the asymptotic
value limτ→∞ g(2)(τ ) = 1, we arrive at an approximate ex-
pression for g(2)(τ ):

g(2)(τ ) 
 [g(2)(0) − 1]e−τ/τ eff
rad + 1

= C

(
1 − 1

N

)
e−τ/τ eff

rad +
(

1 − 1

N
e−τ/τ eff

rad

)
. (17)

In the second line, we used formula (16) for g(2)(0). Here, the
effective lifetime τ eff

rad is given by

1

τ eff
rad

= 1

τrad
+ Nγ , (18)

and the prefactor C is

C = 1

2

(
zN + 1

τradγ

)
− 1. (19)

We note that our approximate expression (17) has a form
similar to that in Ref. [15], which is valid for the small-N
region. In their expression, the decay time is the bare life-
time τrad instead of τ eff

rad and the prefactor C′ corresponding
to C in ours reads C′ = I0/(I × P1

el ). In the notation of this
paper, I0 = e/τrad and the probability of creating electron-
hole pairs by an incoming electron P1

el should be proportional
to pex. Since γ = (I/e)pex as explained above Eq. (5), we
have C′ ∝ 1/(τradγ ). In the small-N region (Nτradγ � 1),
the effective lifetime becomes τ eff

rad 
 τrad and our prefactor
C of Eq. (19) yields C 
 1/(2τradγ ) ∝ 1/(τradγ ). Therefore,
our result from the master equation perspective validates the
formula in Ref. [15].

D. Numerical demonstration

To demonstrate the applicability of the approximate ex-
pression (17), we compare it with results of numerical
simulation. In the simulation, we numerically solve the eigen-
value problem of L to obtain the steady state ρ̂ss as the right
eigenvector corresponding to its zero eigenvalue. Then, we
use the QRT to compute g(2)(τ ). We plot the results for N = 2
and N = 10 in Fig. 2. We also plot Eq. (17) (solid lines) and
its variant where τ eff

rad is replaced with τrad (dotted lines):

g(2)(τ ) 
 C

(
1 − 1

N

)
e−τ/τrad +

(
1 − 1

N
e−τ/τrad

)
. (20)

In the case of N = 2, Fig. 2(a) shows that the approximate
expression (17) describes the numerical data well. In compar-
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FIG. 2. Normalized second-order correlation function g(2)(τ ) for
(a) N = 2 and (b) N = 10. Semilogarithmic plots of g(2)(τ ) − 1 are
shown for excitation rates ranging from τradγ = 0.001 to 0.1. The
symbols, solid lines, and dotted lines represent the numerical results,
approximate formula (17), and decay curves proportional to e−τ/τrad

[Eq. (20)], respectively. For τradγ = 0.1 and N = 10 [solid circles in
(b)], data points for τ/τrad � 2.5 are not shown because g(2)(τ ) − 1
is extremely small [g(2)(τ ) ≈ 1] in this region.

ison, although Eq. (20) deviates from the numerical results for
τradγ � 0.04 (Nτradγ � 0.08), it also describes the numerical
data well for smaller τradγ because τ eff

rad 
 τrad in this regime.
In the case of N = 10, Fig. 2(b) shows that Eq. (17) well

approximates the numerical data for τradγ � 0.004 (Nτradγ �
0.04). As τradγ becomes larger, we observe clearer deviations
between the numerical results and Eq. (17) as well as Eq. (20).

From the results of N = 2 and N = 10, we conclude that
the approximation by Eq. (17) is valid for small Nτradγ . We
also note that the cruder approximation by Eq. (20) is valid
if Nτradγ is sufficiently small, and the decay rate of g(2)(τ )
can be used for estimation of the lifetime τrad of the emitters.
In experiments, one should carefully choose electron-beam
current I in order to obtain the lifetime τrad from the HBT
measurement.

IV. GENERALIZATION OF MODEL

In the model in Sec. II, the same N emitters are excited by
each incident electron. In experiments, however, the emitters
excited are different for each electron. Here, we generalize the
model to incorporate this effect.

Let Ntot be the number of emitters that the electron beam
can excite, so that these emitters are located within the excited
region. We assume that Ntot is a fixed number. A part of these
emitters are excited by an incoming electron. Similarly to

Eq. (5), if j1th, j2th, . . . , jNex th emitters are simultaneously
excited by an electron, the excitation term in the QME should
read


Nex

(
�̂+

j1, j2,..., jNex
ρ̂�̂−

j1, j2,..., jNex

− 1
2

{
�̂−

j1, j2,..., jNex
�̂+

j1, j2,..., jNex
, ρ̂

})
,

where �̂±
j1, j2,..., jNex

= ⊗Nex
i=1 σ̂±

ji
. 
Nex is the rate of this excita-

tion; for simplicity, we assume Nex emitter excitations have the
same rate (i.e., 
Nex depends only on the number of emitters,
Nex, but not on the indices j1, j2, . . . , jNex ). If the emitters
are independently excited by an incident electron, the number
Nex of emitters excited by the electron follows the binomial
distribution ηNex (1 − η)Ntot−Nex , where η is the probability that
a single emitter is excited by an electron (0 < η < 1). There-
fore, it is reasonable to assume


Nex = γ2η
Nex (1 − η)Ntot−Nex ,

where γ2 is a positive constant that is proportional to the rate
of the incoming electron, I/e.

Summing up all the possible excitations, we obtain a gen-
eralized excitation term in the QME,

D(2)
ex ρ̂ = γ2

Ntot∑
Nex=1

ηNex (1 − η)Ntot−Nex

×
∑

j1< j2<··· < jNex

(
�̂+

j1, j2,..., jNex
ρ̂ �̂−

j1, j2,..., jNex

− 1

2

{
�̂−

j1, j2,..., jNex
�̂+

j1, j2,..., jNex
, ρ̂

})
, (21)

where each index in the second sum on the right-hand side
runs from 1 to Ntot , satisfying the constraint of j1 < j2 <

· · · < jNex . We thus obtain a generalized model by replacing
Dexρ̂ in Eq. (3) with D(2)

ex ρ̂ and N with Ntot in Eqs. (1) and (4).
Hereafter, we refer to the model in Sec. II as model 1 and

the generalized model in this section as model 2.

Relation between models

We can interpret model 1 as a simplified description of
model 2, where N in model 1 corresponds to an average
number Nex of excitations by an incoming electron in model 2.
Since Nex = ∑Ntot

Nex=0 ηNex (1 − η)Ntot−Nex
(Ntot

Nex

)
Nex = ηNtot in the

binomial distribution, N in model 1 is connected to model 2
by

N = ηNtot. (22)

Furthermore, for model 1 to be an effective description of
model 2, the average number of emitters excited by the
electron beam per unit time must be equal: γ N = γ2Nex. Com-
bining this equation with Eq. (22), we have

γ = γ2. (23)

To investigate the condition that model 1 well approx-
imates model 2, we note the relative fluctuation of the
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FIG. 3. A sequence of random pulses of radiation intensity Irad.
The intensity profile of each pulse is Irad ≈ Ne−τ/τrad on average, so
the mean duration of the pulse is roughly equal to τrad (log N + δ).

excitation number in the binomial distribution:√
N2

ex − Nex
2

Nex
=

√
1 − η

ηNtot
. (24)

This implies that the relative fluctuation of the number of
emitters excited by an incident electron becomes smaller as
Ntot or η increases. Therefore, if the total number Ntot of
emitters in the excited region is sufficiently large or if the
single-emitter-excitation probability η is near 1, we can as-
sume that the excitation number is approximately the same
single value, Nex (= N), for each electron. This is the condi-
tion for model 1 to approximate model 2. In the Supplemental
Material [47] (Refs. [15,44,48–51] are included therein), we
numerically demonstrate this approximate relation between
models 1 and 2.

We also note the difference between models for large exci-
tation rate. Unlike the excitation term (5) of model 1, Eq. (21)
of model 2 can excite emitters even for large τradγ . This
suggests that model 2 is applicable even for τradγ > 1. In
the Supplemental Material [47], we numerically demonstrate
that this is the case. There, we find that g(2)(0) in model 2
approaches 1 − 1/Ntot for large τradγ . Therefore, if Ntot is suf-
ficiently large, g(2)(0) is nearly equal to 1, which is consistent
with the experimental results [15,31,35,36].

V. STATE OF RADIATION FIELD

In the previous section, our analysis on g(2) of the radi-
ation field is based on the steady state ρ̂ss of the emitters.
Understanding the state of the radiation field itself is also
an interesting problem. In this section, to qualitatively un-
derstand the radiation field state in CL, we give a heuristic
argument on this problem under the assumption of zNτradγ �
1 [note that zN = ∑N

m=1(1/m) ≈ log N + δ with an irrelevant
constant δ (0 < δ < 1)].

We first revisit the process of the radiation in CL. Even
though an electron beam irradiates a sample continuously,
each electron in the beam exists discretely. An incoming elec-
tron excites multiple (say, N) emitters and the emitters decay
with radiating photons. The radiation generated in this process
is considered to have a time profile of the intensity Irad(t ) that
is composed of a sequence of random pulses, as schematically
depicted in Fig. 3. In each pulse, the excited emitters radiate
photons within the duration of the emission process. The
duration is random due to the spontaneous emission process
of the emitters, and the mean duration is roughly equal to
τrad(log N + δ) because Irad ≈ Ne−τ/τrad > ε (with some small
positive constant ε) should be satisfied for τ within the dura-
tion. The instance at which a single pulse starts is also random,
reflecting the randomness of the incoming electrons, and the

mean time between successive pulses is equal to 1/γ , where
γ is the excitation rate.

From the above argument, we can classify total time of
photodetection into pulse-existing regions and zero-intensity
regions, and we estimate the ratio q of the former regions
to the total as q ≈ τradγ (log N + δ) (� 1). In the former
regions, the radiation field is in a certain photonic state ρ̂rad

N
whose average photon number is around N . In the latter, it
is in the vacuum state ρ̂rad

vac = |vac〉〈vac|. Therefore, we can
consider the steady state of the radiation field in CL as the
average of ρ̂rad

N and ρ̂rad
vac:

ρ̂rad
avg = qρ̂rad

N + (1 − q)ρ̂rad
vac. (25)

In this case, the zero-time delay correlation function of the
radiation field ρ̂rad

avg yields a (1/q) multiple of that of ρ̂rad
N . In

fact, for single-mode radiation, we have

g(2)(0) = Tr
[
ρ̂rad

avgâ†â†ââ
]

Tr
[
ρ̂rad

avgâ†â
]2 = 1

q

Tr
[
ρ̂rad

N â†â†ââ
]

Tr
[
ρ̂rad

N â†â
]2 , (26)

where â† and â are the creation and destruction operators of
the mode, respectively. This result with q ≈ τradγ (log N + δ)
reproduces the approximate proportionality of formula (16) to
1/τradγ and gives rise to the superbunching, g(2)(0) � 2.

To be more concrete, we assume that the emitters’ pop-
ulation is directly transferred to the single-mode photonic
population as

ρ̂rad
avg =

N∑
n=0

Pss(n)|n〉〈n|, (27)

where |n〉 is the n-photon state of the single mode (in par-
ticular, |0〉 = |vac〉) and Pss(n) is the steady-state probability
of the number of excited emitters [Eqs. (10) and (11)]. This
state with Eq. (26) exactly reproduces formula (16) for g(2)(0).
Moreover, we can write this state in the form of Eq. (25),
where q = 1 − Pss(0) = zNτradγ /(1 + zNτradγ ) and

ρ̂rad
N =

N∑
n=1

Pss(n)

1 − Pss(0)
|n〉〈n| =

N∑
n=1

1

zN n
|n〉〈n|. (28)

For zNτradγ � 1, q ≈ zNτradγ ≈ τradγ (log N + δ) holds as
expected.

To interpret the superbunching effect in different sys-
tems, similar arguments are given in Refs. [53,54] (see also
Ref. [55]): a classical (incoherent) mixture of high- and low-
intensity states with a large weight on the lower as in Eq. (25)
leads to an enhancement of g(2)(0). We note that a quantum
superposition state

√
q|radN 〉 + √

1 − q|vac〉 with some pure
photonic state |radN 〉 such as |N〉 also leads to a similar
enhancement [54] and, only from g(2)(0), it is impossible
to distinguish whether the radiation state is a classical or
quantum mixture. In our model of CL, however, it should
be a classical one because the steady state of the emitters is
diagonal in the standard basis.

On the basis of this argument, we also discuss the differ-
ence between CL and PL photon statistics: the superbunching
is observed in the CL whereas g(2)

PL(0) 
 1 for the PL of the
same sample [15]. While an electron instantly excites multiple
emitters in CL, a continuous-wave laser for PL has a typical
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excitation duration time, which reflects the coherence time.
Thus, the interval of successive excitations in PL is much
shorter than the radiation lifetime, such that the radiation in PL
is continuous without pulsing (unlike Fig. 3 of CL). Therefore,
the state of the PL radiation field can be considered simply as
ρ̂rad

N and not mixed with the vacuum state. Although the form
of ρ̂rad

N given by Eq. (28) cannot correctly express the state of
PL because the present model is not valid under continuous
conditions, the form of ρ̂rad

avg given by Eq. (27) approaches
Eq. (28) for τradγ � 1. This supports the above statement
of g(2)

PL(0) 
 1. If there is almost no difference between CL
and PL in the material response related to the upper state
excitation, once the state of PL is known, we can estimate the
state of CL, providing the calculation of optical systems such
as an interferometer with CL. This opens up application of CL
itself (e.g., superbunched light source) and nanoscale analysis
using the CL photon state property.

VI. DISCUSSION AND SUMMARY

In this study, we have constructed a QME model that
captures essential aspects of CL: simultaneous excitation
and individual decay of emitters. We have derived the exact
formula for the zero-time delay correlation g(2)(0), which
successfully describes the superbunching. We have also de-
rived an approximate form for the finite-time delay correlation
g(2)(τ ), which shows that the radiative lifetime τrad can be
extracted from its τ dependence for small Nτradγ .

In the present model, we have assumed that the properties
(transition energy h̄ωe, radiative lifetime τrad, and excitation
strength) of all the emitters are the same and that there is no
interaction among them. Also, they have randomly oriented
dipole moments. It is expected that introducing inhomogene-
ity of emitters does not drastically alter the main conclusion
of the model (for small τradγ ) on the superbunching in CL.
One interesting direction for future research is introducing
interaction. If there is interaction, the QME is not simply re-
duced to the semiclassical master equation and some genuine
quantum effects may emerge. The present model provides a
simple basis for this direction.

We also note that, although we have not presented the spec-
trum of CL in this work, we can also investigate it in the model
introducing the spectral resolution [56,57]. In calculating it,
we can apply the QRT [44,45] to steady-state correlation
functions.

In the model, the simultaneous excitation of multiple
emitters by an incoming electron is phenomenologically
introduced in Eq. (5). In the Supplemental Material [47]
(Refs. [15,44,48–51] are included therein), we give a justifica-
tion of this excitation term [Eq. (5)], where we derive another
QME from a microscopic model with a stochastic interaction
term emulating the process that an electron, randomly incident
on the sample, randomly excites the emitters while traveling
through the sample. We numerically demonstrate that our
model [Eqs. (2)–(6)] can approximately describe the features
of the microscopically derived QME in the Supplemental
Material [47]. It is an important future work to derive this
excitation effect from a first-principles analysis on the compli-
cated elementary processes in CL starting from nonstochastic
interactions.

Another implication of this phenomenological incorpo-
ration is that the superbunching is not specific to CL
experiments; we can observe superbunching if there could
be simultaneous excitation and individual radiative decay of
multiple emitters and if their timescales are largely differ-
ent. Indeed, giant photon bunching can be observed in other
systems that have cooperative emission [20,58,59]. In these
systems, we can interpret that excitations via dark states play
the role of the simultaneous excitation of multiple emitters.
In a similar manner, we can explain another example of giant
bunching in a system composed of a quantum dot and a metal
nanoparticle [21]: in this system, since the transition rate
is suppressed by the Fano destructive interference, multiple
photons can be efficiently excited through the dark state. This
plays the role of (nearly) simultaneous multiple excitation.

We have also discussed a possible state of radiation field in
the CL. Through a heuristic argument, we have proposed the
state in Eq. (25) and confirmed that it is consistent with the
QME analysis and well describes superbunching. This result
implies that we may observe superbunching with mechanisms
other than the simultaneous excitation of multiple emitters.
Indeed, in Ref. [55], an enhancement of g(2)(0) is discussed
in a train of pulses with a regular interval. Our argument,
schematically depicted in Fig. 3, shows that the same en-
hancement is observed in random pulses and that the state
of the radiation field in CL should be similar to that of the
randomly modulated optical beam. Also, Ref. [53] discusses
superbunching with states similar to Eq. (25) and shows that
a bimodal microcavity laser with an emitter achieves such a
state as its steady state. Indeed, superbunching is reported in
bimodal microlaser systems [23–27].

In other words, a potent way to observe superbunching
is generating a mixture of photonic states as in Eq. (25),
and there are several systems and methods which can gen-
erate these types of states. The present study by the master
equation reveals that the simultaneous excitation of multiple
emitters in CL is one of them and gives quantum insight into
CL photon statistics. Since the time-correlation measurement
of CL has given new functionalities to nanoscale optical imag-
ing, the obtained results imply a potential of CL to reveal and
even utilize the quantum nature of light-matter interaction on
the nanoscale.
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APPENDIX A: MASTER EQUATION FOR P(n, t )

In this Appendix, we derive the master equation for the
number of excited emitters [Eqs. (7)–(9)]. For this purpose, we
introduce some notation. We denote each of the standard basis
states as |s〉 = ⊗N

j=1|s j〉 j with s = ∑N
j=1 2 j−1s j . Then, the

standard basis is represented as {|s〉 | s = 0, 1, 2, . . . , 2N −
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1}. We write the diagonal elements of the system state ρ̂(t )
as ρ(s, t ) = 〈s|ρ̂(t )|s〉. In addition, we define |s j+〉 = σ̂+

j |s〉,
which is also one of the standard basis states if s j = 0.

From QME (2), we can show 〈s|{dρ̂(t )/dt}|s〉 =
〈s|Lρ̂(t )|s〉 yields

∂

∂t
ρ(0, t ) = 1

τrad

N∑
j=1

ρ(0 j+, t ) − γ ρ(0, t ), (A1)

∂

∂t
ρ(s, t ) = 1

τrad

N∑
j=1

[
ρ(s j+, t )δs j ,0 − ρ(s, t )δs j ,1

]
, (A2)

∂

∂t
ρ(2N − 1, t ) = − N

τrad
ρ(2N − 1, t ) + γ ρ(0, t ), (A3)

where Eq. (A2) is for 1 � s � 2N − 2. We note that
Eqs. (A1)–(A3) form a closed set of equations for the diagonal
elements (Pauli master equation [44,60]).

To transform Eqs. (A1)–(A3) to the master equation for
P(n, t ), we note the connection between P(n, t ) and ρ(s, t ):

P(n, t ) =
2N −1∑
s=0

ρ(s, t )δns,n, (A4)

where

ns =
N∑

j=1

s j =
N∑

j=1

δs j ,1 (A5)

is the number of excited emitters in the state |s〉. Differentiat-
ing Eq. (A4) with respect to t and using Eqs. (A1)–(A3), we
obtain the master equation for P(n, t ) [Eqs. (7)–(9)].

APPENDIX B: A PERTURBATIVE ANALYSIS
OF DECAY RATES

In this Appendix, we evaluate the decay rates of∑N
j=1〈σ̂+

j n̂(τ )σ̂−
j 〉ss. To this end, it is sufficient to investigate

each term 〈σ̂+
j n̂(τ )σ̂−

j 〉ss in the sum. In the estimation, we use
the QRT and a perturbative analysis under the assumption of
τradγ � 1.

We first note that n̂ = ∑N
n=0 nP̂n, where P̂n is the pro-

jection operator onto the subspace of states with n excited
emitters. This leads to 〈σ̂+

j n̂(τ )σ̂−
j 〉ss = ∑

n n〈σ̂+
j P̂n(τ )σ̂−

j 〉ss,
so it is reasonable to investigate the decaying behavior of
〈σ̂+

j P̂n(τ )σ̂−
j 〉ss.

According to the QRT, 〈σ̂+
j P̂n(τ )σ̂−

j 〉 obeys the differen-

tial equation whose form is the same as that of 〈P̂n(τ )〉 =
P(n, τ ). The latter is the master equation for P(n, t ) [Eqs. (7)–
(9)], which is expressed as dP(t )/dt = −
P(t ) with P(t ) ≡
(P(0, t ), P(1, t ), . . . , P(N, t ))T (T stands for transpose) and
an (N + 1) × (N + 1) matrix 
:


 =

⎛
⎜⎜⎜⎜⎜⎝

γ −1/τrad

1/τrad −2/τrad

2/τrad
. . .
. . . −N/τrad

−γ N/τrad

⎞
⎟⎟⎟⎟⎟⎠. (B1)

Therefore, by using the QRT, we obtain the differ-
ential equation dQ j (τ )/dτ = −
Q j (τ ) for Q j (τ ) ≡
(〈σ̂+

j P̂0(τ )σ̂−
j 〉ss, 〈σ̂+

j P̂1(τ )σ̂−
j 〉ss, . . . , 〈σ̂+

j P̂N (τ )σ̂−
j 〉ss)T.

Moreover, using the eigenvalues λn and its corresponding left
and right eigenvectors, �n and rn, of the non-Hermitian matrix

, we can show

Q j (τ ) =
N∑

n=0

[�n · Q j (0)]rne−λnτ . (B2)

This implies that 〈σ̂+
j n̂(τ )σ̂−

j 〉ss exhibits a multiple exponen-
tial decay with the rates λn (n = 1, 2, . . . , N).

Note that, as shown in Eqs. (10) and (11), 
 has a zero
eigenvalue λ0 = 0 and the corresponding right eigenvector is
r0 = Pss ≡ (Pss(0), Pss(1), . . . , Pss(N ))T. And it is straightfor-
ward to show that the corresponding left eigenvector is �0 =
(1, 1, . . . , 1)T. From this result, we can show that the asymp-
totic value of Q j (τ ) is limτ→∞ Q j (τ ) = [�0 · Q j (0)]r0 =
〈σ̂+

j σ̂−
j 〉ssPss, where we used

∑
n P̂n = 1. Therefore, we ob-

tain limτ→∞
∑

j〈σ̂+
j n̂(τ )σ̂−

j 〉ss = ∑
j

∑
n n〈σ̂+

j σ̂−
j 〉ssPss(n) =

〈n̂〉2
ss, which leads to limτ→∞ g(2)(τ ) = 1.
Now we perturbatively estimate the eigenvalues by assum-

ing τradγ � 1. For this purpose, we decompose 
 as 
 =

0 + γ
1. The unperturbed part 
0 is the matrix where γ in
Eq. (B1) is replaced with zero. The perturbation matrix 
1 has
only two nonzero elements: 
1

0,0 = 1 and 
1
N,0 = −1.

Since 
0 is an upper triangular matrix, its eigenvalues
(the zeroth-order eigenvalues λ0

n) are the diagonal elements
of 
0, that is, λ0

n = n/τrad (0 � n � N). The correspond-
ing (zeroth-order) left and right eigenvectors, �0

n and r0
n, are

determined by

(
0)T�0
n = λ0

n�
0
n, (B3)


0r0
n = λ0

nr0
n, (B4)

with the normalization �0
n · r0

n = 1. After some algebraic cal-
culation, we obtain

�0
n =

(
0, . . . , 0︸ ︷︷ ︸

n

, 1,
(n+1

1

)
,
(n+2

2

)
, . . . ,

( N
N−n

))T
, (B5)

r0
n =

(
(−1)n

(n
n

)
, (−1)n−1

( n
n−1

)
, . . . , (−1)

(n
1

)
, 1, 0, . . . , 0︸ ︷︷ ︸

N−n

)T
,

(B6)

where
(m

k

) = m!/[k!(m − k)!] is a binomial coefficient.
The perturbative analysis for a non-Hermitian matrix is

almost the same as that for Hermitian cases in quantum me-
chanics [61]—the first-order correction to the eigenvalue is

λ1
n = γ �0

n · 
1r0
n

=
{

0 (n = 0)
γ (−1)n+1

( N
N−n

)
(1 � n � N ).

(B7)

Therefore, in the first order of τradγ , we obtain an approximate
form of the eigenvalues of 
 (except for the zero eigenvalue
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λ0 = 0):

λn 
 n

τrad

[
1 + (−1)n+1τradγ

n

(
N

N − n

)]
(1 � n � N ).

(B8)

We thus estimate the decay rates {λn}N
n=1 of 〈σ̂+

j n̂(τ )σ̂−
j 〉ss.

In particular, when Nτradγ � 1, the lowest rate is
λ1 
 (1/τrad )(1 + Nτradγ ) and the second lowest is
λ2 
 (2/τrad )[1 − N (N − 1)τradγ /4].
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