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The polariton-polariton interaction strength is an important parameter for all kinds of applications using
the nonlinear properties of polaritons, such as optical switching and single-photon blockade devices. In this
paper, we review and compare the results of a series of experiments on polariton-polariton interactions in
GaAs/AlxGa1−xAs microcavity polariton structures and present an updated analysis of these experiments. We
show that not just the energy shift of the spectral lines but also the results of measurements sensitive to the
polariton scattering rate are important for the calibration of the interaction parameter at low excitation density.
We find that when adjustments are made to correct for recent understanding of the experiments, the value
of the interaction parameter at low density is lower than previous reported, but still significantly higher than
theoretically predicted.
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I. INTRODUCTION

The field of optics of microcavity polaritons has exploded
in recent years, driven both by the fundamental interest in
Bose-Einstein condensation (BEC) of polaritons (for reviews
of previous and current work on BEC of polaritons, see
Refs. [1,2] and references therein), and also the highly nonlin-
ear properties of these systems, which may allow, for example,
single-photon blockade effects [3,4] and unique optoelec-
tronic devices [5–7]. Both the BEC effects and the nonlinear
effects for applications rely crucially on the magnitude of the
polariton-polariton interaction strength.

In terms of the Gross-Pitaevskii equation for condensates,
this interaction strength is parametrized as the constant g,

ih̄
∂ψ

∂t
= − h̄2

2m
∇2

‖ψ + g|ψ |2ψ, (1)

while in terms of optics, the same equation becomes the non-
linear wave equation (for the derivation, see, e.g., Ref. [8],
Sec. 11.13),

ih̄
∂ψ

∂t
= − h̄2

2m
∇2

‖ψ − 2μ0χ
(3)(h̄ω)2

m
|ψ |2ψ, (2)

where the χ (3) term determines the strength of the effective
particle-particle interaction. The form of the Gross-Pitaevskii
Eq. (1) corresponds in many-body theory to the interaction
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Hamiltonian, defined for a two-dimensional polariton system,

Hint = 1

2S

∑
�p,�q,�k

Ua†
�pa†

�qa�q+�ka �p−�k, (3)

where U is the interaction strength, a†
�k and a�k are the field

creation and destruction operators, respectively, and S is the
area. Second-order perturbation theory then gives the renor-
malized particle energy due to interactions as (cf. Ref. [8],
Section 8.1),

�i = 〈i|Hint|i〉 +
∑
n �=i

|〈n|Hint|i〉|2
Ei − En

+ iπ

h̄

∑
n �=i

|〈n|Hint|i〉|2δ(Ei − En). (4)

The first term on the right-hand side is known as the
mean-field energy shift due to interactions, and is normally
presumed to be much larger in magnitude than the real part
of the second term, which is negative. For a condensate, the
mean-field energy is simply Un, where n is the particle den-
sity, while for noncondensed particles, exchange energy adds
another, equal term, giving �E = 2Un, which is typically
written E = gn. The third, imaginary term on the right-hand
side gives Lorentzian line broadening, proportional to the
particle-particle scattering rate (for a proof, see Sec. 8.4 of
Ref. [8]). Exchange for bosons also occurs in this factor for
a noncondensed gas, so the scattering rate is proportional to
(2U )2 (cf. Ref. [8], Sec. 4.8); i.e., the same factor g is used.
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The above analysis implies several different experimental
methods by which the interaction strength g can be estimated.
One is to measure the shift of the ground-state energy as a
function of density. Another is to measure the line broadening
of the particle energy as a function of density. An advan-
tage of optical polariton systems is that both of these are
directly observable in the spectroscopic data, although there
are complicating factors, as discussed below. Another method
of finding g is to deduce the particle-particle scattering rate
from nonequilibrium particle distributions, as discussed in
Sec. IV. Finally, the interaction strength can also be estimated
from the temporal correlation function of the polaritons, as
discussed in Sec. V.

The basic theory of polariton-polariton interactions as-
sumes that they interact entirely through their excitonic
component. One writes the polariton state as

|pol〉 = α|ex〉 + β|phot〉, (5)

where |ex〉 and |phot〉 are pure exciton and photon states, re-
spectively, and α and β are complex factors that depend on the
polariton momentum and the energy difference between the
photon and exciton (the detuning). Figure 1 shows the energy
and exciton fraction |α|2 of the polariton states as a function of
k for a typical microcavity structure when the bare exciton and
cavity photon energies are tune to be equal at k = 0. As seen
in this figure, the lower polariton states evolve continuously
into exciton states at higher energy and momentum. There-
fore, when the particles scatter into different states, they also
change their character of how excitonic they are. If we write
the pure exciton-exciton interaction as gex, then because the
interaction Eq. (3) has four polariton operators, the interaction
strength between polaritons will be g = |α|4gex. (In general, α
is a function of k, which means that there can be four different
values of α involved in a given two-body collision, but we can
generally take an average value of α based on the detuning of
the polaritons near k = 0.)

When multiple, degenerate quantum wells are embedded in
a single microcavity, a single polariton will be a superposition
of one photon and an exciton in each quantum well. The
coefficient of any single quantum-well exciton state within the
polariton state will be α/

√
NQW, where NQW is the number of

quantum wells, and α is the excitonic coefficient for a single
quantum well polariton with the same exciton-photon detun-
ing. If we assume that excitons in separate quantum wells do
not interact, then for a multiple quantum well (MQW) system
we write g = |α|4gex/NQW. We can also define an effective
polariton-exciton scattering rate g̃ = |α|2gex/NQW (i.e., |α| for
the exciton states can be assumed ∼1.)

The pure exciton-exciton interaction strength gex has been
calculated theoretically using a variational approach based on
the exciton wave function in the Wannier limit [9–12]. The
full calculation is difficult, and most prior work has made
significant approximations such as bosonization (treating
the excitons as pure bosons, which has been shown to ignore
important exchange processes [13]), sticking only to a mean-
field calculation (which ignores the possibility of deformation
of the excitons away from their ground-state 1s orbital wave
function), and ignoring electron-hole exchange altogether. In
general, one expects from unit analysis that the interaction
constant should be independent of k as k → 0 and of the order

FIG. 1. Typical polariton properties for a GaAs microcav-
ity structure like those used in the experiments discussed here.
(a) Dashed line: Bare exciton energy. Dotted line: Bare cavity photon
energy, given by Ec = h̄c

√
k2

0 + k2. Solid lines: The upper polariton
(UP) and lower polariton (LP) branches formed by mixing the exci-
ton and photon states with a Rabi coupling of � = 7 meV and index
of refraction n = 3. (b) The exciton fraction of the lower polariton
branch corresponding to the dispersion of (a).

of Ryexa2
B, where Ryex is the exciton Rydberg energy and aB is

the exciton Bohr radius. The excitonic Rydberg is of the order
of 10 meV in III-V semiconductor quantum wells, while the
excitonic Bohr radius is of the order of 100 Å in the same
materials. Specifically for GaAs/AlGaAs structures, which
the majority of microcavity polariton experiments have used,
Refs. [9–12] give gex ∼ 12 − 15 µeV-µm2 for spin-aligned
excitons. This number is positive, corresponding to repulsive
interactions, giving a mean-field energy shift upward, that is,
a blue shift, as density increases. Polaritons with opposite
spins have a much weaker interaction, which can be neglected
to lowest order. For a polariton gas with randomized spin,
this will give an average interaction strength ∼6 µeV-µm2.
On the other hand, as discussed above, boson exchange in a
nondegenerate gas gives an extra factor of 2, so the proper
number to use for a nondegenerate gas is gex ∼ 12 µeV-µm2.

Assuming no interaction between different quantum wells,
for a GaAs structure with 12 quantum wells and exciton
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fraction of 50%, this implies a polariton-polariton interaction
constant g ∼ 0.25 µeV-µm2. For MQW structures with thin
barriers between the wells, of the order of the exciton Bohr
radius or less, the factor to divide by may be less than NQW,
giving a larger effective polariton-polariton interaction. In
typical III-V structures of the type considered here [14–16],
there are three groups of four quantum wells, with each group
placed at an antinode of a 3λ/2 cavity. The width of the
quantum wells is approximately 70 Å and the width of the
barriers is approximately 30 Å, compared to an exciton Bohr
radius of the order of 100 Å. This leads one to expect that
excitons in adjacent quantum wells do interact, and therefore
the dividing factor should not be the full 12 for the total
number of quantum wells, but perhaps as low as 3.

The experimental estimates of g for polaritons in
GaAs/AlxGa−1xAs microcavities, using different methods,
have ranged over more than three orders of magnitude, many
of which are one or two orders of magnitude larger than
the theoretical estimate of g ∼ 0.25 µeV-µm2 discussed above
(e.g., Refs. [17–19]). There are several complicating factors,
the most important of which is the presence of bare excitons
in states at higher energy, also known as the exciton reservoir.
In nonresonant excitation experiments, a laser is tuned to a
photon energy much higher than the polariton energy, creat-
ing hot carriers which then lose energy by phonon emission,
landing in exciton states. These excitons can then scatter
down into polariton states. Depending on the details of the
experiment, there may be many more of these excitons than
polaritons, as discussed below. The exact number of excitons
is hard to measure directly because many of the exciton states
are non-light-emitting, or dark, either because of selection
rules or because they have momentum outside the light cone.
The light cone is given by the angle of incidence at which
photons inside the cavity will be totally internally reflected.
Because the angle of emission has a one-to-one mapping to
the in-plane momentum of the polaritons, this means that there
is a maximum momentum of the exciton-polaritons that can
emit light. In addition to both these effects, many experiments
may simply not have collected light from those exciton states
that do emit photons, by cutoffs in collection angle or photon
energy.

In resonant excitation experiments (e.g., Refs. [20,21]),
polaritons are created directly by tuning an external laser
wavelength to match a polariton energy. One might naturally
assume that no excitons will be generated in such an experi-
ment if the spectral width of the excitation laser is much less
than the energy separation between the lower polaritons and
the bare excitons, but it is also possible for polaritons to scatter
up into exciton states that lie 5–7 meV higher in energy. Once
they are there, they can have a much longer lifetime than
the polaritons because they have much lower rate of photon
emission.

The presence of this background of excitons, or exciton
reservoir, has been shown in numerous experiments (e.g.,
Refs. [5,22–25]). One evidence is the observation of a mean-
field energy shift of the polariton line much greater than
expected from the polariton density. The exciton-polariton
interaction strength is stronger than the polariton-polariton
interaction strength, proportional to |α|2 instead of |α|4; if the
exciton population is comparable to the polariton density, the

FIG. 2. (a) Energy shift of the lower polariton line as a func-
tion of measured polariton density, taken from the peak position
of spectra like those shown in (b). The images in (c) and (d) show
typical momentum-resolved images from the data; the spectra of
(b) correspond to vertical slices through these images at k = 0. (e)
Image of the excitation laser pattern generating the polaritons and the
laser intensity profile across a line through the center. (f) Linewidth
data from a Voigt fit to the same data, with a Gaussian part (blue
symbols) convolved with a Lorentzian function (red symbols). From
Ref. [26].

energy shift of the polariton states at zero detuning due to the
presence of excitons will be twice as large as the effect of
polaritons on each other.

II. SPECTROSCOPIC MEASUREMENTS
OF g AT LOW DENSITY

Reference [26] reported a study aimed at deducing
the polariton-polariton interaction strength under conditions
when the effect of the exciton reservoir was greatly reduced.
Figure 2(e) shows an image of the circular laser pattern used
to generate the polaritons in a GaAs-based microcavity. This
pattern had two functions: First, the excitons created at the
laser excitation ring formed a barrier that trapped polaritons
in an equilibrium in the middle of the ring, without streaming
away. Second, by putting the nonresonant exciton generation
far from the center of the ring, the effect of excitons, which
generally diffuse much more slowly than polaritons, was as-
sumed to be negligible when observing only the polaritons at
the center.

Under the assumption of no excitons at all in the center of
the ring, the results of Ref. [26] for the mean-field blue shift
implied a surprisingly large value of the effective interaction
constant. As seen in Fig. 2(a), a substantial energy shift with
density was seen. Great care was taken to measure the abso-
lute density of the polaritons using a calibrated photon source.
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For the measured polariton densities, the reported interaction
strength when extrapolated to the pure exciton limit corre-
sponded to gex ∼ 1.7 meV-µm2, many orders of magnitude
larger than the theoretical prediction given above.

Several needed corrections to these results were soon iden-
tified. One is the effect of quantum confinement on the kinetic
energy of the polariton states. Even if there were no diffusion
of the excitons at all, the barrier height of the ring would
still increase as the exciton density increases. This in turn
deters the tunneling of the polariton wave function into the
barrier, effectively making the confined region smaller. When
the wavelength of low-energy polaritons is comparable to the
trap size, this can give a small but measurable blueshift of
the polariton energy entirely due to the increase of the kinetic
energy due to the quantum confinement.

This effect had been seen before for very small traps
with short-lifetime polaritons [27]; the results of Ref. [18]
also showed a strong blueshift that increased as the trap size
decreased below 10 µm, indicating the effect of quantum con-
finement. This effect was expected to be negligible for large
traps or 40 − 50 µm diameter with long-lifetime polaritons,
but Pieczarka et al. [28] showed that for polaritons with high
photon fraction [high ratio of |β/α| in Eq. (5)], this effect can
give a blueshift of up to about 50 µeV for the experiments
of Ref. [26]. It cannot explain the much larger blueshifts at
higher exciton fraction, however, nor the line broadening seen
in Fig. 2(b), as discussed below.

Reference [26] made the assumption that bare excitons
stayed within a micron or two of the laser excitation ring,
based on earlier measurements of exciton diffusion in quan-
tum wells with no microcavity [29]. Similarly, Ref. [28] made
no direct measurement of the exciton population; for the the-
ory of that paper, the exciton profile at the barriers of the
ring was estimated from the blueshift, and then the curve
generated from this estimate was extrapolated to the center of
the ring. Subsequent work [25], however, directly measured
the exciton diffusion in the same structure, and found indeed
that a significant fraction of the excitons could diffuse 30
microns or more. This experiment was done by tilting the
sample (and cryostat) to a steep angle, so polaritons and exci-
tons with high in-plane momentum k could be observed. This
corresponded to directly observing emissions from particle
momenta up to 5 × 104 cm−1, which, as seen in Fig. 1, is well
into the excitonic range of the states. As seen in Fig. 3, exciton
emission was observed at spatial positions well away from the
creation point. This population can arise both from thermal
up-scattering from polaritons into exciton states and from high
diffusion constant of the excitons in low-momentum states.
Although the larger exciton fraction makes these particles
more likely to scatter with the lattice, which would imply
a lower diffusion constant, this is compensated by the fact
that excitons in the bottleneck region, at the crossover from
polariton to exciton character of the states, have the highest
group velocity of the whole exciton-polariton band.

Because of this dark exciton population and because the
interaction of the pure excitons with polaritons is stronger
by a factor of 2 at resonance, we can make the assumption
that the polariton interactions in this experiment were domi-
nated by their interaction with excitons, and we can neglect
entirely the interaction of the polaritons with each other. This

FIG. 3. (a) Apparatus for measuring the emissions from exciton-
polaritons at high angle, corresponding to large momentum, in the
exciton bottleneck region. (b) Diamonds: Measured exciton intensity
as a function of distance from a tightly focused laser generation spot.
The squares and solid line give the prediction of a simple theory for
exciton diffusion. From Ref. [25].

at first might seem to make the calibration of the interac-
tions difficult because the total exciton population density
is hard to measure, although it can be estimated both from
the high-angle measurements described above and the kinetic
numerical simulations discussed in Sec. IV. However, there
is a much tighter constraint provided by these measurements
themselves. As seen in Figs. 2(a) and 2(f), there are two
spectroscopic numbers obtained, namely, the blueshift (real
part of the self-energy) and the Lorentzian line broadening
(imaginary part of the self-energy). As discussed in the Intro-
duction and derived in detail in Ref. [8], the two terms are
not independent, but depend on the same polariton-exciton
interaction constant g̃. Since these are first-order and second-
order in g̃, respectively, they have different dependencies on
g̃, which then provides two equations for the two unknown
values of g̃ and the exciton density nex. For a discussion of
the validity of taking the line broadening data of Ref. [26] as
indicative of the collision rate, see Appendix A.

It is immediately clear from the line broadening data like
that shown in Fig. 2(f) that the theoretical number for g̃ can-
not give the line broadening observed, even assuming that
the interactions are dominated by the exciton reservoir. An
analytical calculation of the scattering rate of polaritons with
excitons, derived in Appendix B, gives the formula for the
Lorentzian line broadening half width,

γ = h̄

τ
= 2π g̃2 m

h̄2 nex, (6)

where m is the polariton mass. If we assume that g̃ is given
by the theoretical value gex = 12 µeV-µm2, divided by 12
for the number of quantum wells, and use the measured
polariton mass m = 1.8 × 10−4m0 from the curvature of the
momentum-space data shown in Fig. 1(c), where m0 is the
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vacuum electron mass, then this formula implies a Lorentzian
line broadening around 10−5 meV at an exciton density of
109 cm−2; the corresponding blueshift would be only 10 µeV.
Even if the exciton density is assumed to be 50 times larger,
so the blueshift value is in agreement with the experimental
value of 0.5 meV, this still only implies a line broadening of
50 µeV, far below the measured value of 0.75 meV. Because
the line broadening is proportional to g̃2 while the blueshift is
linear with g̃, it is not possible to get agreement of the blueshift
and line broadening numbers at any density, even assuming
that the interactions are completely dominated by the exciton
population, unless g̃ is increased to around 50–60 µeV-µm2.
In that case, the experimental values of both the blueshift and
the line broadening of around 0.5 meV can be obtained for
an exciton density of 109 cm−2, consistent with the observed
numbers and reasonable estimates of the exciton density, as
discussed below. Taking into account the factor of 12 for the
MQW structure (which is a debatable approach, as discussed
in the Introduction) implies a value for gex ∼ 500 µeV-µm2

from these measurements, about two orders of magnitude
higher than the theoretical value deduced in Sec. I for this
experiment, but well below the originally reported value of
Ref. [26]. As discussed above, if we assume that excitons
in nearby quantum wells interact with each other, then this
number should be reduced to around 150 µeV-µm2, about a
factor of 10 higher than the theoretical value.

The above numbers are consistent with the expected ratio
of polaritons and excitons in the conditions used in Ref. [26].
The highest polariton density in the data of Ref. [26] was
about 3 × 107 cm−2; it could not be much higher because
the onset of Bose-Einstein quantum statistics occurs at around
108 cm−2 for those experimental conditions, giving significant
change to the spectral behavior, including line narrowing. The
exciton density of 109 cm−2, obtained from solving the two
equations for g̃ and nex as discussed above, therefore implies
about 30 excitons per polariton. This is a reasonable number
based on the estimated energy splitting between the polariton
ground state and the bare exciton states of �E 
 2 meV, using
the calibration discussed in Appendix C. We can estimate that
the ratio of excitons to polaritons is given by the Boltzmann
factor times the ratio of the densities of states of the two
species,

nx

n
= e−�E/kBT Dex(E )

DLP(E )
= e−�E/kBT mx

m
, (7)

where mx is the in-plane mass of the bare excitons, equal
approximately to 0.2m0 [30], and m is the lower polariton
mass, measured as 1.8 × 10−4m0 for this case. Assuming an
effective temperature of 10 K gives a Boltzmann factor ∼0.1,
while the ratio of the density of states of the lower polariton
and the bare excitons, given by their mass ratio, is of order
1000, which gives a ratio of the two populations around 100
near equilibrium. Numerical simulations of the polariton sys-
tem like those described in Sec. IV and Appendix D show that
for the case of the long-lifetime structures used in Ref. [26],
the particles should be near equilibrium.

Some experiments have used the S curve, that is, a plot of
the lower polariton population as a function of pump power, to
estimate the ratio of excitons to polaritons. At low density in
nonresonant excitation experiments, the number of polaritons

typically rises linearly with pump power, as the rate of conver-
sion of reservoir excitons into polaritons is nearly constant.
At the BEC threshold, the lower polariton population jumps
up, because the excitons efficiently convert into polaritons
when stimulated down-scattering becomes important. One can
therefore take the jump in the polariton population as a lower
bound on the number of reservoir excitons before condensa-
tion. For short-lifetime systems (e.g., Ref. [31]), the jump can
be a factor of several hundred, consistent with the results of
numerical simulations described in Sec. IV and Appendix D
for a homogeneous, short-lifetime system. In the experiments
of Ref. [26], as in the experiments of Ref. [22], there is a
second mechanism for the jump. In these experiments with
long polariton lifetimes, the pump region was placed far from
the region where the polaritons were observed. Above the
BEC threshold, the excitons in the pump region convert into
polaritons, which can then move quickly into a trap tens of
microns distant, so the jump in density of the polaritons at the
BEC threshold will be more than just the amount expected for
a homogeneous system. In this case, the jump of the S curve in
long-lifetime samples cannot be taken as the ratio of excitons
to polaritons, as in the short-lifetime samples.

The revised number of g̃ ∼ 50 µeV-µm2 derived here from
the data of Ref. [26] applies to polaritons at low density, well
below the threshold for BEC. Two other studies with similar
polariton densities have found similar values. One study [19]
found a value of g ∼ 30 µeV-µm2, which, when accounting
for the exciton fraction and number of quantum wells implies
gex ∼ 200 µeV-µm2, again around two orders of magnitude
higher than expected theoretically. In that study, polaritons
were allowed to propagate in one dimension in a wave guide,
and pulses of different durations were used to account for the
accumulation of an exciton reservoir, which was assumed to
have lifetime much longer than the polaritons.

Ferrier et al. [18] found blueshifts and linewidths of the
polaritons of the order of 0.3 meV when at a density just below
the condensation threshold, similar to the results of Ref. [26]
shown in Fig. 2. They did not attempt to estimate the reservoir
exciton density, and reported a value of the exciton interaction
only for high densities, well above the condensate threshold,
as discussed below.

III. SPECTROSCOPIC MEASUREMENTS
OF g AT HIGH DENSITY

The large values of of gex discussed in the previous sec-
tion were for polaritons at low density. Two other studies
using the same structures at high polariton density have found
low values of g, more consistent with the theoretical value
discussed above. One study [23] used the fact that a polari-
ton condensate stimulates down-conversion from the exciton
reservoir. Therefore, at high enough condensate density, the
exciton reservoir can be greatly depleted, leading to a strong
reduction of the blueshift of the polaritons due to their inter-
action with the excitons. Figure 4 shows that as the pump
intensity is increased, the polariton energy first shifts up as
the number of excitons increases, and then red shifts back
down toward the original ground-state energy as the exci-
tons are increasingly eliminated converted into polaritons by
stimulated scattering. The polariton energy then blueshifts
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FIG. 4. (a) Spectral images of the emission from a polariton condensate at two different densities, sitting in the midst of an exciton cloud,
or reservoir. Note that the polariton condensate in the center has lower energy than polaritons on the sides, where the excitons form a barrier.
As the density increases in the image on the right, the ground-state energy decreases, while the chemical potential increases. (b) Left: Plot of
the polariton intensity as a function of position in the trap. Right: Theoretical and measured intensity profile in the trap. From Ref. [23].

again, with a much weaker dependence on density; at this
point the polaritons are in the Thomas-Fermi regime, with
a well-defined chemical potential. The value of g extracted
in this regime was 0.18 µeV-µm2, corresponding to gex ∼
6 µeV-µm2 when the exciton fraction and number of quantum
wells are taken into account, comparable to the theoretical
value. (As discussed above and in Appendix E, the interaction
term is reduced by a factor of 2 in a condensate, but also
if the condensate is linearly polarized, then the theoretical
value should be multiplied by a factor of 2, since spin is
no longer random). The same experimental group found a
similar value under the same experimental conditions from
the slope of the Bogoliubov linear branches [24]. Earlier
work [32] showed a similar result in the high-density con-
densate regime, when it could be assumed that the dominant
interactions were polariton-polariton interactions within the
condensate. The results of Ref. [18] at high density had much
higher values, with gex over 100 µeV-µm2 when the number
of quantum wells is taken into account, most likely because
those experiments were done in tiny structures in which the
effect of quantum confinement played a major role. Another
recent study [33] used one-dimensional wires etched from
the same original III-V structures as used in Refs. [23,26],
and observed oscillations of the polariton population due to
the interplay between a potential energy gradient (caused by
a wedge in the cavity thickness) and the kinetic energy of
the polaritons. The oscillations in intensity of the polaritons
were measured, which could then be calibrated to an absolute
density oscillation, and this was compared to measurements
of the oscillation of the polariton energy position, as shown
in Fig. 5. This experiment gave a stringent measurement of
the polariton-polariton interaction strength because it could
be assumed that only the polaritons oscillate—the excitons
in the system have mass three orders of magnitude larger,
which for this geometry would give negligible oscillations of
the exciton reservoir. Therefore, the polariton contribution to
the signal can be separated from the slowly varying exciton
contribution. The analysis of this experiment, which was done
at high density in the condensate regime, also gave a value
for the interaction strength very close to the theoretical value,
namely, gex = 12 ± 6 µeV-µm2. There are therefore two dif-
ferent types of experiments done on the same structures that
give a value of the polariton-polariton interaction parameter
up to two orders of magnitude lower than the value at low

density, discussed in Sec. II, even when all the effects of an
exciton reservoir are taken into account.

As discussed in Appendix E, a hard-sphere boson system
has a reduction of the effective interaction of a factor of
2 when in the quantum-degenerate regime, but many-body
physics of bosons alone is not expected to give a greater
reduction than that. It may be that disorder plays an important
role of enhancing the effective interaction at low density;
for example, if the spatial correlation of the excitons is not
uniform but instead involves them being clustered near each
other in local minima. The effects of disorder are reduced
when there are extended coherent states or when there are
only single states involved, as in the case of microphotolu-
minescence from quantum dots.

IV. ESTIMATES OF THE INTERACTION STRENGTH
FROM NONEQUILIBRIUM MEASUREMENTS

The above issues lead us to revisit earlier results from
short-lifetime structures of the same type of III-V structure. A
large number of early experiments were done with structures
that had a cavity photon lifetime of around 1 ps [14–16]. The
only significant difference between those early samples and
the modern samples with a cavity photon lifetime of 100 ps
(and therefore polariton lifetime at resonance of around
200 ps) is the number of periods of the distributed Bragg
reflectors (DBRs) used to make the mirrors of the cavities. The
GaAs quantum wells in both types of sample were the same.

A numerical study [34] fit the nonequilibrium BEC dis-
tribution using a quantum Boltzmann equation to model the
scattering dynamics. This model was sophisticated, treating
the exciton and polariton populations as one continuous band
rather than as two distinct populations, and taking into ac-
count all the phonon emission processes, screened-Coulomb
scattering with free electrons, and the momentum dependence
of the exciton fraction in the polariton-polariton scattering
cross section. The steady-state distribution of the particles
was calculated by evolving their distribution in time until
the distribution no longer changed. This did not give equilib-
rium distributions with a well-defined temperature but rather
nonequilibrium distributions in steady state, in which the par-
ticle losses due to photon loss equalled the number generated
by the pump laser, which fit the experimentally measured
distributions well.
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FIG. 5. (a) Time-resolved energy spectrum of a polariton condensate in a one-dimensional trap, recorded with a streak camera. The
oscillations arise because the polaritons at late times are effectively in a macroscopic, one-dimensional harmonic potential. (b) Solid line:
Measured density of the polaritons at the potential energy minimum (gray area gives the uncertainty). Dashed line: Estimated exciton reservoir
density. (c) Comparison of the measured energy shift of the lower polariton line and the predicted energy shift deduced from the density data
of (b). The constant of proportionality gives the interaction constant g. From Ref. [33].

The nonequilibrium nature of the data from these early ex-
periments actually gives a strong constraint on the polariton-
polariton interaction strength that equilibrium distributions
do not give. In equilibrium (seen, e.g., in Ref. [35]), the
distribution depends only on the chemical potential and the
temperature, and is independent of the details of the scattering
processes. When the lifetime is short, however, comparable
to the scattering time, then the shape of the nonequilibrium
distribution is highly sensitive to the exact details of the scat-
tering cross section.

In the experiments reported in Ref. [34], no measurement
was made of the absolute polariton density. Instead, the theo-
retical value of Ref. [9] for the polariton-polariton scattering
cross section was assumed, and the density was varied in the
calculations to get a fit. In addition, the assumption that the
theoretical interaction strength must be divided by the number
of quantum wells was not used, and so the value used was
nominally 12 times too large; i.e., the cross section was 144
times larger than the actual theory prediction.

Good fits were obtained, but even with the cross sec-
tion two orders of magnitude larger than the theoretical value,
the densities needed to get fits were well above what we now
know to be typical densities for the polaritons at the BEC
threshold. We have updated the numerical model of Ref. [34]
to include a second population of dark excitons which couple
to the bright exciton-polariton band by phonon emission and
absorption and to account for realistic conditions of lattice
temperature and background free charge (see Appendix D).
Figure 6 shows the results of these new calculations. In each
case, we have fixed the interaction strength g and increased
the pumping density until occupation numbers greater than
1 appear in steady state, that is, to the point when Bose-
Einstein statistics become important. A crucial element of this
model is that it completely describes the entirety of the exci-
ton and polariton populations; the exciton reservoir is fully
taken into account by the higher-energy exciton-polariton and
dark exciton states. Figure 6 shows the steady-state energy
distribution generated for three different exciton-exciton in-
teraction strengths gex for a cavity photon lifetime of 1.2 ps
and other parameters similar to those of the experiments of
Ref. [15] and other similar experiments with short lifetime
cavities. When gex is equal to 6 µeV-µm2, the distribution
function is completely different from the results of Ref. [15]
and other related work (e.g., Refs. [14,16]), which showed

a peak in the ground state and a quasithermal tail to higher
energy. If we keep gex at this value and increase the pumping,
there is no fit to the experimental data at any density; instead,
the exciton states at much higher energy than the polariton
ground state become highly occupied. This can be understood
by a simple estimate: the line broadening of Eq. (6) equal to

FIG. 6. (a) Results of the numerical simulation using a quantum
Boltzmann equation for the steady-state energy distribution of a gas
of polaritons for a spatially homogeneous polariton population, for
three different interaction strengths. Continuous pumping of the exci-
ton population (i.e., states above 7 meV energy) was used to maintain
a steady-state polariton distribution. The labels of the curves give the
exciton-exciton interaction gex in units of meV-µm2. For the three
curves, the case of gex = 0.006 corresponds to a polariton density of
1.8 × 107 cm−2 and total exciton density (dark and bright) of 2.6 ×
1010 cm−2; the case of gex = 0.072 corresponds to a polariton density
4.2 × 107 cm−2 and total exciton density 1.7 × 109 cm−2; the case of
gex = 0.72 corresponds to a polariton density 5.9 × 107 cm−2, total
exciton density 8.0 × 109 cm−2 All three plots used the following
parameters: cavity photon lifetime of 1.2 ps; division of gex by 12 to
account for 12 quantum wells; exciton and cavity modes resonant at
k = 0; lattice temperature of 15 K; phonon emission and screened
scattering with a small free-electron population (4 × 108 cm−2) were
accounted for as in Ref. [34], and dark excitons coupled to the
exciton-polariton band were incorporated as discussed in the text and
Appendix D.
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TABLE I. Estimated values of the polariton-exciton interaction strength g̃ in the low-density (noncondensate) limit; NQW is the number
of quantum wells and h̄� is the Rabi splitting of the upper and lower polariton branches. In cases where a polariton-polariton interaction
g = |α|4gex was reported, this has been adjusted to g̃ = g/|α|2. ∗Value computed from the reported blueshift and linewidth data in the low
density limit, using the method discussed in Sec. II.

g̃ (µeV-µm2) Exciton fraction h̄� (meV) NQW QW material References

50 85% 14 12 GaAs [26], this paper
20 60% 3.5 1 InGaAs [3]
40 60% 9 3 GaAs [19]
50∗ 50% 15 12 GaAs [18]

3 × 10−5 meV at a density of 109 cm−2 calculated in Sec. II
for the theoretical value of gex corresponds to a scattering time
of τ = h̄/γ = 22 ns, far longer than the polariton lifetime of
200 ps, and presumably even longer than the intrinsic exciton
lifetime. The interactions of the excitons are simply too weak
for them to scatter down into polariton states, even when
stimulated scattering into the polariton states is taken into ac-
count. If the density is increased to make this particle-particle
scattering time shorter, the occupation number in excitonic
range of the dispersion will exceed the quantum degenerate
threshold long before their scattering is fast enough to give
significant scattering into polariton states, leading to nonequi-
librium condensation in the excitonic states instead of in the
polariton ground state.

Figures 6 shows the same model when gex is increased by
factors of 10 and 100. For the case of gex increased by a factor
of 10 shown in (b), once again the occupation numbers greater
than 1 appear first in excitonic states at high energy. Only for
the highest value of gex is the curve qualitatively the same as
the experimental data. This is precisely the range of gex which
agrees with the line broadening data discussed in Sec. II.
There is therefore consistency in the numerical modeling fits
of Ref. [34] as updated here, and the blueshift and the line
broadening data of Ref. [26].

Because the scattering rate is proportional to the square of
the interaction energy, the nonequilibrium data discussed here
provide a much more sensitive measure of the value of gex.
Any analysis that presumes that the exciton-exciton interac-
tion strength is as low as the nominal theoretical value must
have an explanation for how so many experiments with short
polariton lifetimes can show any thermalization or quasither-
malization at all, when the theoretical interaction strength
gives such long scattering times.

V. OTHER ESTIMATES OF THE
POLARITON-POLARITON INTERACTION STRENGTH

In Ref. [3], the temporal correlation of photons emitted
from polaritons was measured, which according to theoretical
calculations gives an indirect measurement of the polariton-
polariton interaction because the polaritons repel each other,
making it less likely for two to be in the same place at the
same time. A single quantum well was embedded in a cavity to
maximize the polariton-polariton repulsion; the Rabi splitting
between the upper and lower polariton states was 3.5 meV,
compared to values of 14–15 meV in the structures discussed
above.

Theory [11,36] for polariton-polariton correlations pre-
dicts that the maximum dip in g(2)(τ = 0) (where g(2) = 1
is expected for completely uncorrelated particles) should be
approximately A = g/Sγ , where g and γ are the polariton-
polariton interaction strength and linewidth, as defined above,
and S is the observed area in the measurement. For the ob-
served value of A ∼ 4%, the observed area S = 3 µm2, the
measured linewidth of 0.05 meV, and a correction factor of
about a factor of 2 for nonequilibrium effects, this implied
gex ∼ 40 µeV-µm2, about a factor of 4 higher than the the-
oretical value. The densities used were about an order of
magnitude below the threshold for onset of coherence in this
system. In general, in systems with one or just a few quantum
wells, Bose condensation of the polaritons is not expected,
and the polaritons enter coherence by standard lasing [37],
and the density for this threshold may be higher than the
threshold for BEC [38]. A similar experiment was reported in
Ref. [4], using a single InGaAs quantum well in a microcavity,
and found an experimental value of gex in the range of 3–6
times the expected theoretical value. No polariton density was
reported for this experiment, but it is likely that it was done at
a density similar to that of Ref. [3].

Another work [39] used the nonlinearity of the optical
response of a polariton system to deduce the ratio of g to
the cavity linewidth, and reported a value for the interac-
tion strength corresponding to gex = 30 µeV-µm2, which is
above the theoretical value, but not by much. Since these
experiments involved resonant excitation, these experiments
may resemble more closely the results at high density with a
coherent condensate.

Table I gives a summary of the values for g̃ for low density,
incoherent polariton populations.

VI. CONCLUSIONS

After various corrections have been taken into account,
the value of the exciton-exciton interaction constant in
GaAs/AlxGa1−xAs microcavity structures from experiments
at low polariton density ranges from gex ∼ 30 µeV-µm2 to
gex ∼ 500 µeV-µm2, with all values lying above the theoreti-
cal value. As discussed above, lower values of the interaction
strength fail by orders of magnitude to give a thermalization
time of the polaritons adequate to form a condensate within
their lifetime, because the thermalization rate is proportional
to the square of the interaction strength, and therefore drops
off rapidly for low values of g.

In absolute terms, the measured values of the exciton-
polariton interaction strength g̃ in structures with MQWs all
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fall in the same range as those of single quantum wells,
namely, g̃ ∼ 50 µeV-µm2. The high values of gex taken from
measurements in MQW structures come from multiplying the
measured values of g̃ by the number of quantum wells. If
the excitons interact efficiently with each other in the vertical
direction, then a lower correction term should be used, which
would give much less discrepancy. As discussed in Sec. I,
multiplying the measured g̃ by the full number of quantum
wells to get gex is based on the assumption that excitons in
different quantum wells are noninteracting. In typical struc-
tures, however, some quantum wells can be separated only
by distances of the order of the excitonic Bohr radius, and
therefore one expects excitons to interact with other excitons
in nearby wells. For the specific case of Refs. [18,26], a
quantum well structure was used with three groups of four
quantum wells. If we assume excitons within a group of four
wells do interact, while those in different groups do not inter-
act, this gives a correction factor of 3 rather than 12. In this
case, the experiments are consistent with gex ∼ 150 µeV-µm2

compared to the theoretical expectation of 12–15 µeV-µm2.
Also, the simple assumption made in the Introduction

is not absolutley clear, that the polariton-polariton interac-
tion strength is just given by the exciton-exciton interaction
strength times the exciton fraction of the polaritons. The two-
level coupling model for the polaritons is known to break
down when the width of the LP and UP lines is comparable to
their separation; a Feshbach-type resonance with the biexciton
states can also complicate the calculation [40].

Measurements when there are coherent extended states, as
in BEC, consistently give values of the interaction constant
that are lower than the values deduced at low density, and in
the range predicted by the theory. In general, the many-body
effects of screening and anticorrelation are expected to reduce
the effective interaction strength and the blueshift from the
nominal value [41,42], but the values reported at low density
here are still greater than expected and may be an effect of
disorder in these structures. For example, as suggested by
Keeling [43], polaritons may tend to congregate together in
energy minima, causing them to feel an effectively higher
density. This would not by itself explain why the scattering
rates increase even more strongly, since they are proportional
to g̃2n while the blueshift is proportion to g̃n, but it may be part
of the explanation. This effect would not occur for ensembles
of quantum dots because each particle is isolated in its own
dot, so spatial correlation effects will not occur.
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APPENDIX A: LINE BROADENING
IN POLARITON SYSTEMS

The deduction of g from the comparison of blueshift and
line broadening data raises the general question of how to un-
derstand line-broadening data in general in polariton systems.
The Lorentzian line broadening invoked above, giving rise
to Eq. (6), is known as homogeneous broadening, as well as
lifetime broadening or collision broadening. This type of line

broadening can be understood physically as an implication of
the uncertainty principle �E � h̄/�t . When the time spent
by a particle in a given state is �t , the energy of that state
cannot be defined more narrowly than h̄/�t . As discussed in
Sec. I, this type of line broadening arises from an imaginary
self-energy in quantum mechanical theory; Ref. [8], Sec. 8.4,
shows that an imaginary self-energy gives rise to a Lorentzian
line shape.

The total homogeneous linewidth will be proportional to
the sum of all out-scattering rates, i.e.,

γ = h̄

(
1

τR
+ 1

τscatt
+ 1

τphon

)
, (A1)

where τR is the radiative lifetime, τscatt is the particle-particle
scattering rate deduced above, and τphon is the particle-phonon
scattering rate, if any. It has sometimes been claimed that the
line width is a direct measure of the radiative lifetime, but
this is only the case when the lifetime is so short that 1/τR

is larger than all other terms. When the lifetime is long, the
broadening due to lifetime can become negligible compared
to other terms. For example, a lifetime of 200 ps or so, as
in the experiments of Ref. [26], gives only h̄/τR 
 3 µeV,
well below the resolution of most spectrometers. Exciton-
phonon interaction times at low temperature are also very low,
nanoseconds or longer, so the phonon term typically gives
an even smaller contribution to the lower polariton broaden-
ing, although phonon broadening of the upper polariton state
can be significant since there is a direct channel to convert
into lower polaritons by phonon emission. This also explains
why the photoluminescence (PL) from the upper polaritons
is much weaker in high-Q microcavities: in these structures,
the rate of photon emission is much lower than the rate
of phonon emission to drop down into the lower polariton
states.

In addition to homogeneous Lorentzian line broadening,
there are also several types of inhomogeneous line broad-
ening, which must be convolved with the homogeneous line
broadening. Inhomogeneous broadening arises from integra-
tion of signal over a range of energies. This can come about
due to several sources. In semiconductors, there is typically
alloy and impurity disorder and quantum well width disor-
der that give fluctuations of the band gap. These fluctuations
typically have a Gaussian distribution, as expected from the
central limit theorem for random fluctuations. As seen in
Fig. 2(f), the line shape of the polaritons is well fit by a Voigt
profile, which is a convolution of a Gaussian and a Lorentzian.
The Gaussian term is presumably due to inhomogeneous
disorder and is independent of the polariton density, while
the Lorentzian part has a width proportional to the polariton
density.

In addition, there can be a systematic variation of the poten-
tial energy in the area of observation of the PL. For example,
in the polariton structures discussed here, there is almost al-
ways a wedge in the cavity thickness. For a typical gradient
of 5 meV/mm in the Princeton samples used in Ref. [26], an
excitation spot size of 10 µm will have a variation of 50 µeV,
comparable to broadening due to the radiative lifetime given
above. There can also be a gradient of the exciton cloud den-
sity. In Ref. [26], this acted to cancel the effect of the wedge
due to the cavity because as the particle density increased, the
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particles moved to find a common chemical potential, leading
to flattening of the potential to less than 10 µeV over a 10 µm
range.

There can also be temporal variation of the potential energy
due to fluctuations of the pump laser intensity, which then give
a variation in the exciton reservoir density. If the signal is in-
tegrated over a timescale long compared to these fluctuations,
this can give substantial inhomogeneous broadening. Much
early work had line broadening of this type, until work by
Love et al. [44] showed the importance of using a stabilized
laser. All recent work on steady-state populations of polaritons
(e.g., Refs. [25,26]) used a stabilized M-squared laser to make
this effect negligible.

There are two other, more subtle types of inhomogeneous
broadening, as well. One comes from the fact that in all PL
measurements, there is a range of angles of light emission
collected by a lens. Because there is dispersion of the lower
polariton energy, as illustrated in Fig. 1(a), this will give
a range of energies collected by the system. A 5◦ external
collection angle corresponds to around 0.5 meV of energy
range in the parabolic dispersion curve. For the line broaden-
ing data reported in Ref. [26], angle-resolved data were used
to obtain the linewidth at k‖ = 0, with angular resolution of
approximately 0.5◦, corresponding a 5 µeV polariton energy
range.

In a trapped system, there is also the possibility that mul-
tiple quantized trapped states are occupied, as seen, e.g., in
Ref. [28]. If the spacing between these is large, as in a small
trap, then these can each be separately resolved, each with
its own linewidth (see, e.g., Fig. 1(b) of Ref. [33]). If the
spectrometer resolution is not high, however, then these states
can be integrated together to give a broadened line. This
will only be significant if the higher trapped states have a
significant k‖ = 0 component, which occurs in a small trap;
in a large trap, the states will resemble plane-wave states
which are separately resolved by angle-resolved imaging. The
diffraction limit implies that the finite spatial dimension L for
any measurement gives a resolution limit �k‖ ∼ 1/L, which
means that confined states are smeared in k space by this
amount.

Our conclusion for the linewidth data of Ref. [26], tak-
ing all these effects into account, is that at high density, but
still below the condensation threshold density, the Lorentzian
line broadening arises from the collisional process controlled
by polariton-exciton scattering. None of the homogeneous
broadening processes discussed here are expected to give a
Lorentzian line shape with density-dependent width as mea-
sured here.

In the condensate regime, when the occupation number of
the ground state is larger than 1, spectral narrowing will occur.
(See Ref. [8], Sec. 9.5 for a derivation.) This has been seen in
all the polariton condensate experiments and is typically used
as a telltale for condensation.

APPENDIX B: DERIVATION OF THE RATE
OF POLARITON-EXCITON SCATTERING

The outscattering rate per particle in a momentum state
�k in a two-dimensional system is written as (cf. Ref. [8],

Chap. 4)

1

Nk

∂Nk

∂t
= 2π

h̄

∑
p,q

4U 2Npδ(Ek + Ep − Eq − E�k+�p−�q )

= 2π

h̄

(
4(UA)2

(2π )4

)∫
d2q

∫ ∞

0
pd p

∫ 2π

0

× dθNpδ(Ek + Ep − Eq − E�k+�p−�q)

= 2π

h̄

g2

(2π )4

∫
d2q

∫ ∞

0
Np pd p 2

∫ 1

−1
d (cos θ )

× 1

sin θ
δ(Ek + Ep − Eq − E�k+�p−�q), (B1)

where the sum over �p is for all possible incoming excitons,
and the sum over �q is for the outgoing exciton in each colli-
sion. Here we use g = 2U/A, where U is bare interaction and
A is the area. As discussed in Sec. I, boson exchange at low
density implies a factor of 2 larger effective interaction. To
resolve the δ function, when �k and �k + �p − �q correspond to the
incoming and outgoing polaritons with mass m, respectively,
and �p and �q correspond to the incoming and outgoing excitons
with mass mx, we compute

E ′ = Ek + Ep − Eq − E�k+�p−�q

= h̄2

2m
(k2 − |�q − �k|2 − 2| �q − �k|p cos θ − p2)

+ h̄2

2mx
(p2 − q2),

which then implies

∂E ′

∂ (cos θ )
= − h̄2

m
| �q − �k|p. (B2)

Then changing variables from cos θ to E ′ and using the δ

function to eliminate E ′ gives

1

Nk

∂Nk

∂t
= 2π

h̄

g2

(2π )4

∫
d2q

∫ ∞

0
Np pd p 2

∫ 1

−1
dx

× 1√
1 − x2

δ(Ek + Ep − Eq − E�k+�p−�q)

= 2π

h̄

g2

(2π )4

m

h̄2

∫
d2q

∫ ∞

0
Npd p

1

| �q − �k|

× 1√
1 − x2

0

�(x0 + 1)�(1 − x0),

with

x0 = (k2 − q′2 − p2) + (m/mx )(p2 − q2)

2q′ p
, (B3)

where �q′ = �q − �k. In the limit mx � m, this becomes

x0 = (k2 − q′2 − p2)

2q′ p
. (B4)
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We apply the limits of x0 to the integration over p, and change the variable of integration to �q′. This gives

1

Nk

∂Nk

∂t
= 2π

h̄

g2

(2π )4

2m

h̄2

∫ ∞

0
2πdq′

⎛
⎜⎝∫ q′

p1

Npd p
1√

1 − x2
0

+
∫ k+q′

p2

Npd p
1√

1 − x2
0

⎞
⎟⎠, (B5)

where p1 = min(q′, |k − q′|) and p2 = max(q′, k − q′).
Setting Np = e−h̄2 p2/2mxkBT eμ/kBT for equilibrium, we also
have

Nx = A

(2π )2

∫ ∞

0
2π pd pNp

= A

(2π )2

∫ ∞

0
2π pd p e−h̄2 p2/2mkBT eμ/kBT

= A

(2π )2
eμ/kBT mxkbT

h̄2 . (B6)

The integrals in (B5) can be done analytically, giving finally

1

Nk

∂Nk

∂t
= g2m

h̄3 2π

(
A

(2π )2

mxkBT

h̄2 eμ/kBT

)
.

= 2π

h̄

g2m

h̄2

Nx

A
. (B7)

This is of the order of magnitude expected from unit anal-
ysis, namely, from Fermi’s golden rule, using 2π/h̄ times
the matrix element squared and the density of states for a
two-dimensional system, D(E )dE = m/2π h̄2.

The same result is obtained if �k and �q correspond to the
incoming and outgoing polariton with mass m, respectively,
and �p and �k + �p − �q correspond to the incoming and outgoing
exciton with mass mx. In this case, the heavy-exciton-mass
approximation means that k � p is assumed.

Note that in this calculation there are no divergences that
need to be addressed, and no use of any cutoffs in the integrals.
These sometimes arise because the scattering rate is cast in
terms of a scattering cross section σ , using 1/τ = nσ v̄, where
n is the density and v̄ is an average velocity. Since the scatter-
ing rate derived here is not proportional to v̄, one might take
this as implying that the cross section σ is proportional to 1/v̄,
that is, proportional to 1/k, which has an infrared divergence.
However, it is more appropriate to take the scattering rate as
proportional to the density of states in all cases and to note that
D(E ) ∝ k ∝ v̄ in three dimensions, while in two dimensions
the density of states is a constant.

APPENDIX C: CALIBRATION OF THE EXCITON
AND PHOTON FRACTIONS IN LONG-LIFETIME

MICROCAVITY STRUCTURES

In short-lifetime microcavity structures, the exact detuning
and exciton fraction of the polariton dispersion can be found
easily at every point in the sample by measuring both the PL
and reflectivity spectra of the upper and lower polaritons. In
the long-lifetime structures developed for the experiments dis-
cussed in Secs. II and III (discussed at length in Refs. [45,46]),
neither of these measurements is easily possible. Reflectiv-
ity is made difficult because the mirrors in these structures
have reflectivity greater than 0.9999. As a consequence, the

linewidths of the dips in the reflectivity are too narrow to re-
solve. At the same time, PL from the upper polariton is nearly
impossible to see. This is because polaritons in the upper state
can scatter into the lower polariton states by efficient phonon
emission. While this rate is essentially the same for upper
polaritons in both short-lifetime and long-lifetime structures,
the rate of radiative emission is around a factor of 100 lower
in the long-lifetime structures. The branching ratio of these
two avenues of depletion of the upper polariton state therefore
implies PL from the upper polariton branch that is 100 times
weaker.

To overcome this, we used photoluminescence excitation
spectroscopy (PLE) to identify the upper polariton state. Typ-
ical results are shown in Fig. 7. Although the upper polariton
state is clearly identified, it is also quite broad due to the line
broadening discussed in Sec. II, which is much stronger for
the upper polaritons than for the lower polaritons due to their
much greater phonon emission rate.

With the lower polariton dispersion of Fig. 7(a) and the
upper polariton measurement at normal incidence of Fig. 7(b),
it is tempting to attempt to fit this data using a simple two-
state model. However, this model quickly stops being simple.
When complex energies are utilized to include the effects of
linewidth into such a model, assuming the cavity linewidth
is negligible (a good assumption in high-Q cavities), at a
resonant detuning such that the exciton energy Ex equals the
cavity photon energy Ec, the lower polariton’s energy would
be

El p = Ex − i

2
γx − 1

2

√
4V 2

p − γ 2
x , (C1)

where γx is the exciton linewidth and Vp is the exciton-photon
coupling strength. In typical GaAs-based structures, the cou-
pling strength is of the order 8 meV, and exciton linewidths in
our system are around 8 meV as well. This means including
the linewidths in the calculation is important, as they represent
a 20–25% correction in Eq. (C1). When the line widths are
comparable to the splitting of the upper and polariton lines,
however, the two-level model breaks down, since it is based
on a perturbation-theory approach that assumes γ � Vp.

We therefore use a more thorough approach to this problem
based on computing the complex susceptiblity directly. This
method starts with the transfer-matrix simulation code which
successfully models the reflectivity spectra of our microcav-
ity samples. It is possible to extract exciton fractions of the
polaritons from this simulation, as discussed below.

In an ideal world, we could simply look up measured index
values for our materials and our transfer matrix simulation
would match our experimental data. Unfortunately, there is
not a lot of index data available for AlGaAs alloys at 4 K and,
even if there were, the exact values can vary based on several
factors, in particular, the absorption coefficient and disorder
due to impurities, which can change between growths and
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FIG. 7. (a) Typical angle-resolved lower polariton luminescence from a long-lifetime polariton microcavity structure, created by pumping
directly into the upper polariton. Because the pump laser is only ∼20 meV away, care must be taken to properly handle background subtraction.
The PL in this image is integrated over angle and divided by the pump laser’s power to give the relative intensity of the lower polariton. (b) A
typical PLE sweep to measure the upper polariton. The data is fit with a Lorentzian to determine a value for the upper polariton at k‖ = 0. This
measurement is performed at many different locations (detunings) on the sample. Data for Princeton sample 4-6-15.1, used in Refs. [22,23,26].

can differ for different molecular-beam epitaxy machines. We
start with the most accurate library we can find [47], and then,
using our measured reflectivity data, we uniformly scale the
index functions and thicknesses of our DBR materials until
the simulation and experimental reflectivity curves are in good
agreement, as shown in Fig. 8.

The thickness and index scale factors are not entirely in-
dependent variables, as they are identical in an optical path
length calculation. However, a critical factor in transfer ma-
trix calculations is the ratio of the index values of the DBR
materials, which determines the bandwidth of the stop band.
If this ratio is maintained, scaling the thicknesses of all the
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FIG. 8. (a) Comparison of our transfer matrix simulation to measured power reflectivity of a 20-period bottom DBR with quantum wells
on top (sample 9-3-14.1). This data allows us to get starting values for the exciton energy, linewidth, and the corresponding amplitude inside
our electric susceptibility function for the excitons, given by Eq. (C2). (b) Comparison of our transfer matrix simulation to measured power
reflectivity off a high-Q microcavity sample with quantum wells inside the cavity (sample 4-6-15.1). This data allows us to fine-tune the
thicknesses and index values of the DBR layers.
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index functions of the materials is an interchangeable action
and does not allow a unique fit. However, at larger angles of
incidence this interchangeability breaks down, as the indices
of the materials set the curvature of the Bragg modes. Com-
paring to angle-dependent data therefore allows a unique fit.
We have found that doing a simultaneous fit of the reflectivity
curves at 0, 15, and 30 degrees is sufficient to getting a unique
fit of our DBR parameters.

We also have found that using nominal book values [47] for
the imaginary component of the index never leads to accurate
fits of our reflectivity data. The stop band we measure is
always broader and flatter than the one we would simulate
using such nominal values. We typically have to reduce this
imaginary component by a factor of about 10 in all DBR mate-
rials to get simulated stop bands resembling what we measure.
It is worth noting that we use this same simulation for DBRs
grown via PECVD and do not need to reduce this imaginary
component. This is likely a testament to the ultrahigh purity
of the samples grown by the Pfeiffer group at Princeton using
MBE, which are almost certainly more defect-free than the
samples used to measure the nominal book values.

Once the DBR materials’ thicknesses and index functions
are scaled properly, we turn our attention toward the index
function of the quantum wells inside the microcavity. Al-
though there are many sophisticated models available in the
literature, we chose to use a simple textbook model, as this
simple model lends itself well to quick curve fitting. Fol-
lowing Ref. [8], Sec. 7.1, we model the contribution of the
excitons to the complex electric susceptibility as a function of
photon energy E as

χ (E ) = A
(
E2

x − E2 + iγxE
)

(
E2

x − E2
)2 + γ 2

x E2
, (C2)

where Ex is the exciton energy, γx is the linewidth, and A
is related to the exciton-photon coupling strength Vp (see
Sec. 7.5.3 of Ref. [8]). In principle, the exciton energy is angle
dependent, however, in practice the excitons are so massive as
to have an essentially flat dispersion in the energy range of
interest. The dielectric function created by this susceptibility
is then added to the dielectric function of bulk GaAs below the
band gap, resulting in a final complex index for the quantum
wells. Using a control sample consisting of bottom DBR with
quantum wells on top and no top DBR, we are able to get
initial values for these three parameters. This data and the fit of
the transfer-matrix model with the complex index of refraction
are shown in Fig. 8(a).

The three parameters in Eq. (C2) only affect the quantum
wells, which make up a small percentage of the total micro-
cavity sample. So, in high-Q samples, their value has virtually
no effect on the broad characteristics of the curve shown in
Fig. 8(b). Additionally, we introduce one other parameter to
scale the thickness of only the cavity layers because this can
vary across the wafers. This parameter also has almost no
effect on the majority of the in curve in Fig. 8(b). However,
if we zoom in on that curve, there are two very narrow and
shallow dips in the stop band corresponding to the polariton
branches. Figure 9(b) is a plot of 1 − r, where r is the power
reflectivity, at many angles, using a tight color scale to make
these dips more visible. The four parameters of our model for

the exciton susceptibility are almost entirely in control of the
polariton modes while having almost no effect on the broad
reflectivity curve. So long as the Bragg modes of the cavity
do not begin intersecting the polariton branches, we have
two nearly completely uncoupled fitting problems: polariton
fitting inside the stop band and reflectivity fitting over the
broader wavelength range.

With the broader reflectivity fitting already done using the
DBR materials’ parameters, we move on to tuning our four
parameters for the exciton-polariton effect, namely, the three
parameters in Eq. (C2) and the total thickness of the cavity,
to match our simulation of a low-Q microcavity sample in
Fig. 9(a). Because of the low-Q factor in this sample, we
are able to experimentally extract the entire lower and up-
per polariton curves through both non-resonant pumping PL
measurements and reflectivity measurements. This means in
the low-Q sample we have a larger data set to fit than in the
high-Q samples. Given this successful fit, we then apply it to
the high-Q sample, as shown in Fig. 9(b). The four parameters
have to be tuned to match experimental data at each location
on the sample, as the sample has varying thicknesses. We
find the fitted linewidth of the exciton does not change much
from location to location, and so effectively we have three
parameters to tune to match the simulation to our experimental
data of the two polariton branches, namely the exciton energy,
the exciton-photon coupling strength A, and the thickness of
the cavity (which corresponds to cavity mode’s energy).

Once all this fitting is done and we have a simulation which
agrees well with all the experimental data, we can extract the
lower polariton’s exciton fraction from our simulation. In the
simple two-level model of Eq. (5), one has simply

|α|2 = ∂El p

∂Ex
. (C3)

We can therefore derive the value of the exciton fraction |α|2
(also often called |X |2 in the literature) in the lower polariton
state from our full complex susceptibility model by slightly
varying the exciton energy in Eq. (C2), extracting the energy
of our polariton dips, and finding the shift of the lower polari-
ton as exciton energy varies. This value is the crucial number
for extracting the bare exciton-exciton interaction that gives a
shift of the exciton energy.

In Fig. 10(a), we can see how this small shift in exciton
energy changes the lower polariton branch in the simulation.
Then, by subtracting the two shifted curves to calculate the
numerical derivative, we arrive at the exciton fraction of
the lower polaritons plotted in Fig. 10(b). As expected, this
value is bounded by 0 and 1, approaching 1 at higher angles
where the lower polariton becomes nearly purely excitonic.
The results for the exciton fraction of the lower polariton
line found using this procedure for the GaAs-based micro-
cavity samples produced by the Pfeiffer group are shown in
Fig. 10(c).

It should be noted that this characterization procedure does
not require data from multiple locations; it works at a single
point on the sample. This is quite beneficial for certain ap-
plications and samples. However, the PLE measurement is
cumbersome, and not all labs have access to the necessary
tunable laser. We therefore fit our data to a simple curve given
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FIG. 9. Detailed comparison of the prediction of the model to experimental results. The background images give the reflectivity simulation
results for 1 − r, using a narrow color scale to make the polariton dips more readily apparent. (a) Data (shown by error bars) and theory
for a low-Q microcavity sample (10-5-10.1), which has 20 periods in the top and bottom DBRs, and only three quantum wells. The black
and pink error bars correspond to the full width at half maximum for the PL peaks for the lower and upper polaritons, respectively, for
nonresonant pumping (∼720 nm, low-power CW laser). (b) Data (shown by error bars) and theory for a high-Q microcavity sample (4-6-15.1)
with 12 quantum wells. The lower polariton PL is visible with nonresonant pumping, but the upper polariton PL is unmeasurable due to
down-conversion into lower polaritons via phonon emission, as discussed in Appendix A. Instead, the pink error bar corresponds to PLE
measurement discussed in the text.

by

|α|2 = αo + αse
(

El p−Er
Es

)
, (C4)

where αo, αs, Er , and Es are fit parameters. The best fit with
this function is given by the red line in Fig. 10(c). This fig-
ure shows the data for sample 4-6-15.1, which was used in
Refs. [23,26]. Additionally, we performed the same procedure
on sample P8-10-17.1, which was used in Ref. [22]. The
parameter values for the best fits are given in Table II.

1. Calibration of previous work

. In the past, less accurate characterizations were utilized.
We therefore compare some of our prior characterizations
with the results given here.

In Ref. [26], Fig. 2, the authors stated that the detuning was
7.7 meV, however, using our present calibration, polaritons at
that energy have a predicted detuning of 17.8 meV (exciton
fraction of 85%). Additionally, in Fig. 4 of that paper, an
approximate formula for the exciton fraction was utilized,
in which very photonic polaritons (detuning of −22.5 meV)
were approximated as being bare cavity photons, giving the
equation |α|2 
 1 − mc/ml p, where mc and ml p are the mea-
sured cavity mass and lower polariton mass, respectively.
However, at such a detuning, the exciton fraction is 11%,

which means the true cavity mass should be about 89% of
the cavity mass which was used. This correction shifts all data
points in the figure to the right in a nonuniform way. A data
point at x = 0.2 would shift to x = 0.3, and a data point at
x = 0.8 would shift to x = 0.826.

In Ref. [22], the data presented in Fig. 2, according to our
current calibration, is at a detuning of 11.7 meV; contrasted
with the 8 meV based on the previous calibration method. The
overall conclusions of that paper are not significantly changed.

In Ref. [23], Fig. 1, the authors state that the detuning of
their polaritons is 2 meV; based on our current calibration,
we find a detuning of 3.4 meV. In Fig. 2(a) of that paper, the
stated detuning was −18 meV, close to our current value of
−18.2 meV. In Fig. 2(c), the stated detuning was 0 meV, while
our current calibration gives a value of 0.2 meV. In Fig. 2(e),
the stated detuning was 20 meV, while our current calibration
gives 17.9 meV. The overall conclusions of that paper are
therefore not significantly changed.

APPENDIX D: UPDATED QUANTUM KINETIC MODEL
OF POLARITON EQUILIBRATION

The code of Ref. [34] has been updated to account for
both dark excitons, which do not couple to light due to se-
lection rules but can convert to and from bright excitons via
transverse phonon absorption and emission, and scatter with
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FIG. 10. (a) Red curve: Results of our simulation after the polariton parameters have been fit to the experimental data for sample 4-6-15.1.
Blue and yellow curves: The same model with the exciton energy Ex shifted slightly up and down. (b) The exciton fraction as defined in
Eq. (C3) found by subtracting the curves of (a) and dividing by the difference in exciton energies. The lower polaritons are more excitonic at
larger angles, as expected. (c) Blue data points: The results for the excitonic fraction found by applying this procedure to several locations on
the sample. In general, the fits are more constrained near resonant detunings, hence the tighter error bars near 50% exciton fraction. Red curve:
The best fit of Eq. (C4) to these data. The fit parameters are given in Table II.

excitons and polaritons. In this model, the lower polariton
band evolves continuously into the bright exciton state; there
is no formal separation of the polariton population and the
bright exciton population. The two bands (dark excitons and
bright-exciton/polariton) use the same mesh in k space and
each uses its respective dispersion curve. The two dispersion
curves overlap for large k as illustrated in Fig. 11.

The general process of the simulation is the same as the
polariton-only simulation described in Ref. [34]. Adding the
new population requires a second Boltzmann equation, so we
have

∂nl p
�k

∂t
= P�k (t ) −

nl p
�k

τ�k
+

∑
�k′

W (i)
�k′→�k (t ) −

∑
�k′

W (i)
�k→�k′ (t ), (D1)

∂nDx
�k

∂t
= −

nDx
�k
τ�k

+
∑

�k′

W (i)
�k′→�k (t ) −

∑
�k′

W (i)
�k→�k′ (t ), (D2)

where n�k is the occupation number, τ is the characteristic
lifetime, P�k is the pumping term, label l p refers to the lower

TABLE II. Fitted parameters for Eq. (C4).

Sample αo αs Er (eV) Es (meV)

4-6-15.1 0.0468 3.3373 1.6162 8.83
P8-10-17.1 0.1758 3.3832 1.6221 11.4

polariton branch, and label Dx refers to the dark exciton
population. The values of �k and �k′ range over each value of
the mesh. The W (i)′s are interaction terms for particle-particle
interactions within each population, the particle-longitudinal
acoustical phonons interactions for a population, the particle-
transverse acoustical phonon interactions for a population,
and the newly added particle-transverse acoustical phonon
interactions between populations. In the last case, �k belongs

FIG. 11. The dispersion curves for the polaritons (filled circles)
and bare excitons (open circles).
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to one population and �k′ belongs to the other, where both
values simultaneously meet the energy requirement stated
above.

The time step of this model is determined as in Ref. [34]
and is based on moving a small fraction of the polariton popu-
lation each iteration. That time step is then directly multiplied
by Eq. (D2) to determine the change in occupation number of
the dark excitons for the iteration being performed.

The model had three free parameters which could be
varied to fit the experimental results: the lattice temper-
ature (which was constrained to be no greater than the
experimentally measured effective polariton temperature), the
bare exciton-exciton scattering parameter gex, and the back-
ground free electron density. The cavity lifetimes had one
of two values: 1 ps, for the short lifetime experiments (e.g.,
Refs. [15,34]), and 100 ps for the long lifetime experiments,
(e.g., Refs. [26,35]). The experimental constraint results that
needed to be modeled with consistent parameters included
the following: (a) For the short-lifetime experiments, both the
occurrence of BEC at high density and the nearly unchang-
ing distribution of n�k at low density had to be reproduced.
As noted in the main text, this was only possible for a
high value of gex; as discussed in the main text, taking
the nominal theoretical value for g badly misses the ex-
perimental result. (b) For the long-lifetime experiments, the
approximately linear growth of the polariton density as pump
power was increased, well below the BEC threshold, and
had to reproduced. (c) The interaction parameter gex had
to be the same for both the short-lifetime and long-lifetime
data, since the structures used in these experiments had the
same quantum well structure and differed only in the cav-
ity lifetime. Since collisional processes scale as the square
of density, the linear growth of the polariton density seen
experimentally meant that conversion processes of excitons
into polaritons used in our simulations had to be domi-
nated by phonon and free-electron scattering at low density.
We found that these could only be reproduced by includ-
ing a background free electron gas with a density of around
108 cm−2.

APPENDIX E: MANY-BODY SCREENING EFFECTS

The hard-core repulsive interactions of the polaritons lead
to a renormalized scattering interaction strength similar to
how the repulsive interactions of electrons lead to screen-
ing. In the case of bosons with hard-core interactions, the
term “screening” may not be appropriate, since that term is
often associated with a long-range Coulomb interaction. How-
ever, the standard Lindhard screening model can be directly
adapted to a Bose gas. As discussed in the main text, the effect
is fundamentally due to spatial anticorrelation of particles
with a repulsive interaction, which spend less time near each
other and therefore give an effectively lower density felt by
any single particle. The diagrams for bosons are the same as
for fermions; the only difference is that the interaction ma-
trix element is changed from the Coulomb electron-electron
interaction to a hard-core repulsion.

Following the procedure of Ref. [48], Secs. 9, 30, and 35,
the effective interaction vertex of bosons is (see Eq. (9.45) and

FIG. 12. Diagram for second-order renormalization of the
particle-particle interaction.

Problem 5.8 on p. 196)

g̃′ 
 g̃
1 − g̃�0

1 − 2g̃�0
, (E1)

where �0 is the polarization bubble taking into account many-
body screening effects, shown in Fig. 12. Using the Matsubara
finite-temperature approach for bosons, discussed in Sec. 8.15
of Ref. [8], we write for this bubble

�
��k = −

∑
�p

1

β

∞∑
m=−∞

1

(ih̄ωm − E �p + μ)

× 1

(ih̄ωm + ih̄ωn − E �p+��k + μ)
, (E2)

where m and n are even integers. Resolving the sum over m
using the standard boson sum rule gives

��k,n =
∑

�p

(
NB(E �p − μ)

ih̄ωn+E �p − E �p+��k
+

NB(E �p+��k − μ − ih̄ωn)

E �p+��k − ih̄ωn − E �p

)

=
∑

�p

(
NB(E �p − μ)

E �p − E �p+��k + ih̄ωn
−

NB(E �p+��k − μ)

E �p − E �p+��k + ih̄ωn

)
,

(E3)

where NB is the Bose-Einstein distribution of the particles for
chemical potential μ and temperature T , and we have used the
rule that NB(E�k + ih̄ωn) = NB(E�k ) for even n. Using analytic
continuation iωn → ω + iε and writing �E = h̄ω, we then
have

�
��k =

∑
�p

N�p − N�p+��k
�E + E �p − E �p+��k + iε

. (E4)

This is the Lindhard formula for bosons. In the long-
wavelength, low-frequency limit, this becomes

��k =
∑

�p

∂NB(Ep)

∂Ep
= Am

π h̄2

∫ ∞

0
dE

∂NB

∂E

= Am

π h̄2 (NB(∞) − NB(0)) = − Am

π h̄2

1

e−μ/kBT − 1
, (E5)

where we have used the two-dimensional density of states for
a gas with twofold degeneracy and area A.
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In the condensate regime, this becomes large and negative.
Then Eq. (E1) becomes g̃′ → g̃/2. This is consistent with
the approximate calculation of Sec. 11.2 of Ref. [8] which

found a factor of 2 reduction of the interaction energy in
going from a thermal gas to a condensate due to bosonic
exchange.
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