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Weyl singularities in polaritonic multiterminal Josephson junctions
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We study theoretically analog multiterminal Josephson junctions formed by gapped superfluids created upon
resonant pumping of cavity exciton polaritons. We study the p-like bands of a five-terminal junction in the
four-dimensional (4D) parameter space created by the superfluid phases acting as quasimomenta. We find 4/6
Weyl points in 3D subspaces with preserved/broken time-reversal symmetry. We link the real space topology
(vortices) to the parameter space one (Weyl points). We derive an effective Hamiltonian encoding the creation,
motion, and annihilation of Weyl nodes in 4D. Our work paves the way to the study of exotic topological phases
in a platform allowing direct measurement of eigenstates and band topology.
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I. INTRODUCTION

Topological singularities are singularities of both eigen-
values and eigenstates carrying a topological charge. In
three-dimensional (3D) parameter spaces, Weyl points (WPs)
are Hermitian point degeneracies [1,2] (different from 3D
Dirac points [3,4]). They are robust because any Hermitian
perturbation only moves the WPs in the parameter space,
whereas it can destroy Dirac points. WPs come in pairs [5]
connected by a Fermi arc [2]. The only way to annihilate
WPs is to make points of opposite charge meet [6]. WPs can
appear when time-reversal (TR) symmetry and/or inversion
symmetry is broken. If TR symmetry is preserved, they come
in multiples of 4; they come in multiples of 2 otherwise [7].
Furthermore, additional symmetries make nodal lines rather
than points appear [8–13]. They are line singularities in 3D
giving drumhead surface states [14–16]. Topological bands
and states benefit from outstanding properties such as (in 2D)
one-way edge propagation [17–23], used in topological lasers
[24–28].

Topological singularities described previously lie in a pa-
rameter space which is usually the reciprocal space, because
it naturally comes as the matching of the real space. How-
ever, some parameters that are easily tunable experimentally
can form additional dimensions of the parameter space. This
enriches the exploration of topological phase transitions. Such
systems are called synthetic topological matter. The fantastic
freedom they offer is an enthralling playground for physicists
[29–32]. It enables one to investigate physics beyond three
dimensions [33–36] as well as strongly correlated phenom-
ena [37–39]. Topological photonics [40,41], and especially
polaritonics [42], can take advantage of synthetic topological
matter, notably because it gives an experimental access to
the eigenstates and quantum geometry of topological systems
[43,44].

*Corresponding author: ismael.septembre@uca.fr

Andreev reflection occurs at the interface between a
superconductor and a non-superconducting material [45].
An incoming electron undergoes an anomalous reflection,
becoming a hole excitation with reversed wavevector, charge,
and spin. Usual Josephson junctions [46] contain two in-
terfaces between a nonsuperconducting material (insulator,
semiconductor, or metal) and a superconductor. Such junc-
tions host Andreev bound states whose energy depends on
the phase difference between the superconductors. This de-
pendence can be described in terms of synthetic bands, where
the 1D parameter space is given by the phase difference
[47,48]. Topological superconductors [49–51] are a particu-
larly important class of materials. If they are used as terminals,
the synthetic bands can be topological when the energies
cross at the Fermi energy, forming a topological singular-
ity. In this case, the junction is known to host Majorana
fermions [52], which are very promising for quantum com-
puting [53]. Multiterminal Josephson junctions, where more
than two superconductor wires are connected [54], is now
a well-developed research area [55–65]. The corresponding
synthetic bands demonstrate nontrivial topology (in arbitrary
large dimensions) even with trivial superconductors.

The Andreev reflection has been studied theoretically in
bosonic systems [66]. In cavity exciton-polaritons, an analog
superconductor can be created upon resonant driving. The
driving opens a gap in the energy spectrum of the pumped
modes, creating a “gapped superfluid” [67–70] as recently
measured [71]. It is possible to create analog Josephson junc-
tions by pumping two (or more) regions with different pump
lasers (with well-defined phases), the superfluids being sepa-
rated by a common nonsuperfluid region [72–74]. In [75,76],
we study the polaritonic Andreev reflection and the existence
of Andreev bound state analogs in the normal region between
two gapped superfluids, while the 1D bands parameterized by
the superfluid phase difference are separated by a topological
gap.

Here, we propose theoretically a multiterminal polaritonic
Josephson junction, where a pentagonal normal region is
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FIG. 1. (a) 1D superfluid-normal-superfluid junction hosting
bound states and their Andreev counterparts, linked by the phases of
the left/right superfluid φL,R. (b) Sketch of the analog multiterminal
Josephson junction (here five-terminal) organized in a microcavity
with a quantum well (QW) and distributed Bragg reflectors (DBRs)
on a substrate. (c) Top view of the junction. The superfluid density
(brown) with five different phases φi and the potential V (r) (green)
profile. In the normal region, pumping and potential are absent.

connected to five gapped superfluids. Such a junction hosts
Andreev-like bound states which form 4D synthetic bands. We
study the pair of bands corresponding to the p-like confined
states of the pentagonal trap. We study numerically a 3D
subspace and observe four WPs. These WPs enable topolog-
ical transitions in a 2D subspace between distinct topological
phases with different Chern numbers. We model the two p-
like bands by an effective 2×2 Hamiltonian and explore the
full 4D parameter space, leading to additional features such as
3D subspaces with broken TR symmetry, WP annihilation and
creation. This photonic system has the advantage of allowing
the access to the eigenstates, making possible the direct mea-
surement of the Berry curvature and the detailed study of the
WPs. Our results may finally enable the observation of Weyl
singularities in multiterminal Josephson junctions and pave
the way to synthetic topological matter in arbitrarily large
parameter spaces in polaritonics.

II. MODEL

We consider a strongly-coupled planar microcavity host-
ing exciton-polaritons [69,70,72]. The external drive P(r) is
composed of N regions, each pumping a given area with
a homogeneous amplitude Pi = Poe−i(ωpt+φ′

i ) (i ∈ [1,N ]),
where P0 is the pump amplitude and φ′

i the phase of the ith re-
gion of the pump, determining the phase of the corresponding
superfluid φi [73] (see also Appendix A). This forms an analog
N -terminal Josephson junction as depicted in Fig. 1. The
wave function ψ of the coherent pumped mode is described
by the driven-dissipative Gross-Pitaevskii equation [69,77]:

ih̄
∂ψ

∂t
=

[
− h̄2

2m
∇2 − iγ + α(r)|ψ |2 + V (r)

]
ψ + P(r),

(1)

where m is the exciton-polariton effective mass, γ is the
decay (further taken equal to zero, it only adds a global
imaginary part), α > 0 describes the repulsive interactions in

the pumped areas and V (r) is a steplike potential [in green
in Fig. 1(c)] accounting for the etched pattern. We assume
that the stationary wave function ψs is zero in all regions
without pumping. In the N pumped areas, the stationary
wave function is given by the solution of the Gross-Pitaevskii
equation for a spatially homogeneous system and reads:
ψs,i = √

neiφi where n is the superfluid density and φi its
phase. The spectrum of the superfluid weak excitations in
these areas contains a gap � centered around the pump de-
tuning Ep:

� = √
(3αn − Ep)(αn − Ep). (2)

We consider weak excitations of the full system (the nor-
mal and superfluid areas), looking for the solutions of the
following shape:

ψ (r, t ) = e−iωpt (ψs(r) + u(r)e−iωt + v∗(r)eiω∗t ), (3)

where u(r), v(r) are the Bogoliubov coefficients (weak exci-
tations means |u|2 � n, |v|2 � n). We will consider energies
lying in the superfluid gap, so that these coefficients describe
the profile of propagative states in the normal region and
evanescent states in the superfluids, which gives precisely a
bound state. This wave function, inserted in Eq. (1), gives the
Bogoliubov–de Gennes equations:(

L αψ2
s (r)

−αψ∗2
s (r) −L ∗

)(
u(r)
v(r)

)
= h̄ω

(
u(r)
v(r)

)
, (4)

where L = (εk − Ep + 2αn + V (r)) with εk = h̄2k2/2m.
The case N = 2 is studied in Ref. [75]; N = 2 corre-

sponds to an analog Josephson junction with two terminals,
containing two normal/superfluid interfaces (phases φL,R), as
depicted in Fig. 1(a). A wave incident at each interface un-
dergoes both specular reflection (same energy, reversed wave
vector) and Andreev reflection (opposite energy with respect
to the pump Ep, reversed wave vector), the latter being ac-
companied by a phase shift e±2iφL,R . Considering the complete
scattering process, Andreev bound states can be found. These
states are composed of two parts of different nature. First,
the majority component of profile u(r) and energy E = h̄ω is
qualitatively the state coming from the quantum confinement
provided by the interactions in the pumped regions. It exists
without Andreev process and corresponds to the state found
with a diagonal matrix in Eq. (4). The second part is the
minority component of profile v(r) and energy −E , which
is not (in general) an eigenstate of the quantum well formed
by the junction. It appears only because of the Andreev re-
flections at the interfaces and is therefore very sensitive to
the phase difference between the two superfluids. We call
it the minority component, or Andreev counterpart of the
bound state. The phase difference between the two super-
fluids is a parameter that can be tuned experimentally. Both
the majority component and its Andreev counterpart form
synthetic bands in the 1D space with a dispersion E (a, φ) =
E0(a) cos(2(φR − φL )), where E0(a) decreases with a, as in
a usual quantum well, where the energy levels go down when
the size of the trap is increased. In 1D, only the Andreev coun-
terpart carries topology (nonzero Zak phase [78], a topological
invariant for bandgaps [79], as in the Su-Schrieffer-Heeger
model [80]). Topological transitions occur between bands of
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FIG. 2. (a) Energy spectrum of the two p̃ bands for φ2 = −φ5 = π/2. Note the two linear crossing points (black circles). (b)–(d) Energy
spectra close to a WP for φ2 = −φ5 = π/2 + ε(π/20) with ε = −1 (b), ε = 0 (c), and ε = 1 (d). In (a)–(d), false color shows the pseudospin
S3. Note the gap closing and opening between (b), (c), (d) with opposite S3 at the extrema of the bands. (e) Numerically calculated 3D
pseudospin texture centered around a WP. The sphere represents points at equal distance from the WP. ϕ = (φ − φ(0) )/(π/20) is the reduced
parameter space in the vicinity of a WP of coordinates φ(0).

different nature (majority/minority). They interact through the
off-diagonal terms of the anti-Hermitian matrix (4). Instead of
crossing, the bands merge, forming a Fermi arc connecting
two exceptional points [75].

In the following, we consider a 2D real space with five
terminals. This gives access to 4D synthetic bands and to
regimes forbidden in 1D, in particular the formation of Weyl
singularities.

III. WEYL POINTS

The five-terminal Josephson junction considered is
sketched in Fig. 1(b). The normal region forms a regular pen-
tagonal prism (a regular pentagon in the (x, y) plane) around
which the superfluid regions are regularly placed. Solving
numerically Eq. (4) using the potentials and pumping terms
explained in Fig. 1(c) allows one to find bound states. We
focus on the majority components of the two isolated p̃ states
of the pentagonal potential trap (see Appendix B). The p̃ states
can be decomposed on a (p̃x, p̃y) basis which naturally leads to
three pseudospin components S1,2,3. In photonic systems, the
Berry curvature associated with the polarization pseudospin
has already been extracted experimentally [43,81]. However,
it is also possible to measure both the amplitude and the
phase of the wave function via interference measurements
[82,83], and thus to access the sublattice pseudospin, or, more
generally, a pseudospin associated with the spatial modes,
as suggested recently [84]. Here, we use a similar strategy
for the decomposition of numerically calculated eigenstates,
which can also be applied to experimentally measured wave
functions: the coefficients of the spinor for a state ψ are
obtained as cx,y = 〈p̃x,y|ψ〉 (see Appendix B for more details).
Qualitatively, the components denote linear, diagonal, and
circular (vortex) shape of the state, respectively. We represent
(S2, S1) by arrows and S3 by colors.

We set φ1 = 0 as a phase reference and start by study-
ing the 3D TR symmetric subspace (φ2 = −φ5, φ3, φ4). We
choose this configuration because it attributes symmetric roles
to φ3,4 and facilitates the numerical study. The 2D bands (ver-
sus φ3, φ4) and their S3 components for φ2 = −φ5 = π/2 are
shown in Fig. 2(a). They are degenerate in two points along
the diagonal direction φ3 = φ4. Figure 2(c) is a close-up of
panel (a) near a linear crossing point. Decreasing (respectively
increasing) slightly φ2, the crossing point disappears and a
gap forms, as depicted in Fig. 2(b) [respectively (d)]. A clear

change in S3 is observable at the extrema of the two bands
(where they are the closest): S3 = +1 (red color) for the lower
band and −1 (blue) for the upper one in Fig. 2(b), whereas it is
the opposite after the band crossing in Fig. 2(d). This suggests
that the gap closure through the WP is indeed a topological
transition. This can be further demonstrated by computing the
band Chern number [54,85,86]:

C = 1

2π

∫∫
Sφ

B(φ3, φ4) dφ3 dφ4, (5)

where B is the Berry curvature and Sφ = [0, π ]2 the first
synthetic Brillouin zone. The gap Chern number (the Chern
number of the lower band in this two-band system, see
Appendix F) is −1 for Fig. 2(b) and +1 for Fig. 2(d), which
proves the occurrence of a topological inversion. Finally,
Fig. 2(e) shows the texture of the effective field on a spherical
isoenergetic surface surrounding the WP, which shows the
expected monopolar texture. Note that the two WPs shown
in Fig. 2(a) show the same monopolar texture: They possess
the same topological charge.

The pentagonal geometry naturally breaks the inversion
symmetry, allowing Weyl points existence. On the other hand,
TR symmetry (which maps φi to −φi) imposes that WPs
appear in groups of 4 [7,54]. It means that there exists
(at least) two other WPs in this 3D subspace. Figure 3(a)
shows the pseudospin texture of the lower band at φ2 = π/2.
The black circles indicate the WPs. Furthermore, there are
two maxima of circular polarization along the axis φ3 =
−φ4 (white ellipses), associated with a nonzero Berry cur-
vature distribution (see Appendix E), due to the presence
of the two additional WPs at φ2 
= π/2 that are gapped for
the phases shown. Moving away from φ2 = −φ5 = π/2, the
degeneracy disappears while a circular polarization appears
[see Fig. 3(b)]. The two other gapped WPs remain on the
φ3 = −φ4 axis. Figure 3(c) shows the gap Chern number ver-
sus φ2 = −φ5. Changes in the Chern number value are linked
with gap closings at WPs. This occurs at φ2 = −φ5 = π/2 as
shown before with the Chern number changing from -1 to +1
(because there are two WPs). The two other transitions occur
at φ2 ≈ ±π/4.5. They are each associated with a decrease
by 1 of the Chern number because they correspond to a band
crossing occurring through a single (negative) WP. Figure 3(d)
summarizes the previous results by showing the coordinates
of the 4 WPs in the subspace (φ2 = −φ5, φ3, φ4). WPs being
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FIG. 3. (a), (b) S3 pseudospin texture for φ2 = π/2 (a) and φ2 =
π/2 − π/20 (b). Arrows: (S2, S1) pseudospin. Black (white) ellipses
surround WPs along the diagonal (antidiagonal) direction. Dashed
ellipses surround gapped WPs. (e) Gap Chern number while varying
the control phase φ2 = −φ5. The black dashed lines indicate the
position of the panels (a), (b) in this figure. (f) WP positions in the 3D
parameter space. Color denotes the sign of their topological charge
(red - positive, blue - negative).

robust against perturbations, moving away from the condition
φ2 = −φ5 only moves them. We will now study the full 4D
parameter space and observe their trajectories.

IV. 4D PARAMETER SPACE

We go back to the full 4D parameter space φ2,3,4,5. To ef-
ficiently study this vast parameter space, we develop a model
restricted to the two p̃ states describing accurately the simu-
lations shown previously. This model gives the two-band 3D
Hamiltonian:

H = � · σ, (6)

where σ is the three-component vector of Pauli matrices and
� is constructed by interpreting the numerical results. We first
derive the in-plane terms �x,y. For two facing superfluids in
1D, the band is a cosine of twice their phase difference [75].
Thus, looking at the modes profile in real space, we deduce
which phases control them (see Appendix I). For instance,
the energy of the p̃x mode is given by two 1D bands with
phase differences between φ1 and φ3,4 respectively. A similar
reasoning for p̃y leads to

�x = (cos(2φ2,5) + cos(2φ3,4))/4 − cos(2φ1,3) − cos(2φ1,4)

(7)

and (anti)diagonal states to

�y = cos(2φ2,4) − cos(2φ3,5), (8)

where φi, j = φi − φ j . The 1/4 factor appears because the
pentagon orientation favors p̃x. Then, studying the successive
reflections of a wave starting from φ1 to φ3, we see that
they lead to an overall rotating current (see Appendix C,I).

FIG. 4. (a) Chern number of the lowest band in the (φ3, φ4) sub-
space for different φ2,5. The light blue line corresponds to φ2 = −φ5

whereas the pink one represents a 3D subspace with broken TR
symmetry and 6 WPs. (b) φ2,3,4 parameter space for φ5 ∈ [0; π [.
Arrows represent direction of the trajectories of WPs in parameter
space. The hearts represent the birth of WPs and the stars their
annihilation. Red (blue) points denote positive (negative) WPs.

This gives birth to (anti-)vortex states, which are topological
singularities in real space around which there is a winding of
the argument of the wave function. The corresponding term is

�z =
∑

i

sin(2φi,i+2). (9)

Altogether, we obtain the complete Hamiltonian of Eq. (6)
which fits very well the numerical results shown previously
(see Appendix J). This facilitates the exploration of the full 4D
parameter space. In Fig. 4(a) the 2D Chern number [for φ3,4

as in Eq. (5)] is plotted for different values of φ2,5. We see
that the Chern number takes nonzero values for wide areas
in this space. We observe a very good agreement between
the analytical and numerical results: The antidiagonal (blue
line) corresponding to the condition φ2 = −φ5 behaves as
expected. Beginning at φ2 = −φ5 = 0 and increasing it, the
system goes from a zero Chern number to −1 after meeting a
negative WP, then to +1 after meeting two positive WPs, then
going back to the trivial case after a last WP. Note that the
Weyl singularities form lines in 4D that cannot be assigned a
topological charge whereas points in 3D can.

Taking φ5 as a tuning parameter, we can explore the full
4D parameter subspace by plotting the φ2,3,4 space for each
value of φ5, as in Fig. 4(b) (varying φ5 with time gives a short
movie [87]). We can see the trajectories of the four WPs and
the birth and annihilation of additional WPs. There can be six
WPs [see Fig. 4(a)], which is impossible if TR symmetry is
preserved. Indeed, a WP at coordinates (φ(0)

2,3,4,5) has its TR

twin at (−φ
(0)
2,3,4,5), whereas when setting φ5 to a given value,

the WP at (φ(0)
2,3,4, φ5) will have its twin at (−φ

(0)
2,3,4,−φ5) so

it does not exist for φ5 
= −φ5. So, there exist 3D subspaces
with broken TR symmetry leading to an even number of WPs
(not necessarily multiples of 4).

V. CONCLUSIONS

We investigate a polaritonic analog of multiterminal
Josephson junctions with five terminals. We show that it forms
4D synthetic bands with topological 3D Weyl points. A topo-
logical transition can be probed by tuning the phases of pump
lasers. The advantage of photonic systems is in the possibility

165301-4



WEYL SINGULARITIES IN POLARITONIC … PHYSICAL REVIEW B 107, 165301 (2023)

FIG. 5. Phase of the superfluid with respect to the parameters.
γ = 0.1 Ep.

of explicit experimental measurements of the eigenstates and
thus of the band topology. Further studies could explore
higher dimensions and more exotic phases such as 3D Chern
insulators [88] and non-Hermitian degeneracies [89–95].
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APPENDIX A: LINK BETWEEN THE LASER
AND SUPERFLUID PHASES

In the main text, we define the phase of the ith pump laser
by φ′

i and the phase of the ith superfluid by φi, the latter
being determined by the former. In this section, we provide
details on the precise relation between those two phases. The
mathematical relation between the two phases is given by

φ − φ′ = arctan
γ

Ep + αn
. (A1)

(a) (b) (c)

(d) (e) (f)

Max

0

|ψ|2

FIG. 6. (a)–(f) Probability density of the s̃ state (a), p̃x state (b),
p̃y state (c), d̃x2−y2 state (d), d̃xy state (e) and 2s̃ state (f). L = 12 µm
for all panels.

FIG. 7. (a), (b) Vortex state in the five-terminal analog Josephson
junction for φ2 = 0, φ3 = 0 and φ4 ≈ π/4.5. (a) Probability density
distribution in real-space of a vortex state. The distribution for an
anti-vortex is the same. (b) Phase of the wave function in real space.
Note the positive phase winding around the central phase singularity.
(c) Configuration with two antivortices, leading to a total winding
number wtot = −2. (d) Configuration with two vortices, leading to
a total winding number wtot = +2. The red arrows go clockwise
[count for negative winding, see Eq. (C1)], while the magenta ones
go counterclockwise (count for positive winding). For all panels,
a = 1.7 µm and L = 12 µm.

We can plot the difference of the two phases with respect to
the ratio between the interactions and the pump energy, as
shown in Fig. 5.

APPENDIX B: CONFINED STATES IN THE
FIVE-TERMINAL JOSEPHSON JUNCTION

Solving the Bogoliubov–de Gennes equations without
nondiagonal terms approximates a quantum well with no
Andreev-like bound states. The states that come from the
confinement brought by interactions are plotted in Fig. 6.
Formally, any bound state wave function takes the form:

|
〉 =
∞∑

i=1

ci|ψi〉, (B1)

where {|ψi〉} forms a basis of states and ci = 〈
|ψi〉. We
assume that the first six states are sufficient to form an

FIG. 8. (a) s̃ band (yellow) and its Andreev counterpart (blue)
for φ2 = 0 and a = 1.2 µm. (b) Berry curvature distribution of the
Andreev counterpart of the s̃ band. Note that the positive and neg-
ative contributions are symmetric and compensate to give a trivial
topology C = 0.

165301-5



I. SEPTEMBRE et al. PHYSICAL REVIEW B 107, 165301 (2023)

FIG. 9. (a), (b) S3 pseudospin texture for φ2 = π/2 (a) and φ2 =
π/2 − π/20 (b). Arrows direction denote (S2, S1) pseudospin. (c),
(d) Berry curvature distribution for φ2 = π/2 (c) and φ2 = π/2 −
π/20 (d). Black (respectively white) ellipses surround Weyl points
along the diagonal (respectively antidiagonal) direction. Dashed el-
lipses indicate that the point is gapped for this set of parameters.

approximate basis for the states we observe for small traps,
as done in our work. Thus, 
 is rather defined as

|
〉 = cs|ψs〉 + cpx

∣∣ψpx 〉 + cpy

∣∣ψpy〉 + cdx2+y2 |ψdx2+y2 〉
+ cdxy

∣∣ψdxy

〉 + c2s|ψ2s〉, (B2)

and we take |cs|2 + |cpx |2 + |cpy |2 + |cdx2+y2 |2 + |cdxy |2 +
|c2s|2 = 1, which is in our study approximately true (up to the
5th decimal).

APPENDIX C: VORTICES, ANTIVORTICES
AND WINDING NUMBER

In the main text, the interplay between the phase of a bound
states and the different phases imprinted by the superfluids
is discussed. This leads, for certain phase patterns, to the
presence of bound state vortices and anti-vortices, which are
toplogical singularities characterized by the nonzero winding
number:

w = 1

2π

∮
arg ψ (r)dr, (C1)

where dr forms a close loop around the center of the phase
singularity (abrupt change of 2π ) in the counter-clockwise
direction. The phase pattern allows the formation of vor-
tices and anti-vortices, as well as the existence of several
(anti)-vortices at the same time, associated with nontrivial and
eventually large total winding number, as illustrated by Fig. 7.

APPENDIX D: s̃ BAND AND ITS
ANDREEV COUNTERPART

In this section we will discuss the properties of the s̃ band
and of its Andreev counterpart. The bands are plotted in the

FIG. 10. The interplay of the p̃x,y and (anti)diagonal states and
the phases of the superfluids. (a) p̃x state parametrized by φ1,3 and
φ1,4. (b) p̃y state parametrized by φ2,5 and φ3,4. (c) Diagonal state
parametrized by φ3,5. (d) Antidiagonal state parametrized by φ2,4.

(φ3, φ4) subspace in Fig. 8(a). In 1D [75], only the Andreev
counterpart bands were considered to be topological because
of a π Zak phase whereas the other had a 0 Zak phase. In 2D,
we can still see that the geometry of the Andreev counterpart
bands is nontrivial with a strong Berry curvature distribution
[see Fig. 8(b)]. However, the contribution of positive and
negative sign compensate each other, and the π Zak phase in
1D does not translate into a nonzero Chern number in 2D in
general.

APPENDIX E: BERRY CURVATURE COMPUTATION

The Berry curvature distribution is calculated using the
method duly described in Ref. [96]. This method requires us
to organize a basis of elementary states on which to decom-
pose the solutions found. We used the six states found and
described previously. Since we considered mainly short junc-
tions with a < 2 µm, we encountered only low energy states.
The contribution to the Berry curvature of the projections on
states of higher energy than s̃ and p̃ ones was negligible for

FIG. 11. The formation of the nonzero angular momentum px +
ipy superposition due to the Josephson currents giving rise to the
σz term opening the gaps at the Weyl points. (a) and (b) show two
different configurations where the phase patterns imply the existence
of a global superfluid current circulation.
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FIG. 12. (a), (b) Third pseudospin component S3 for φ2 =
−φ5 = π/2 calculated from numerical simulations (a) and our ana-
lytical model (6) (b). The direction of the arrows indicates the (S2, S1)
pseudospin. (c), (d) Gap Chern number with respect to φ2 = −φ5

calculated from numerical simulations (c) and our analytical model
(6) (d). Note the excellent agreement.

quantum confined states. For the Andreev counterpart of the p̃
states, their contribution is higher.

APPENDIX F: GAP CHERN NUMBER

In general, for a system of N well-separated bands, the n-th
gap (n ∈ [1; N[) separating the n-th from the (n + 1)-th band
is characterized by a gap Chern number:

C gap
n =

n∑
i=1

Ci, (F1)

where Ci refer to the Chern number of the ith band. In our
system, there is an even number of bands with half of them
being below the pump detuning Ep and half of them being
above it. The Andreev counterpart of a band with Chern
number C has a Chern number −C . Moreover, for the two
p̃ bands, topological singularities when removed let appear
a gap separating bands of opposite Chern number. Thus, we
have C gap

N/2 = 0, and the Chern number of a gap separating the
two p̃ bands is always equal to the Chern number of the lower
band.

APPENDIX G: PSEUDOSPIN DEFINITION

We define the pseudospin components as follows:

S1 =
∣∣cpx

∣∣2 − ∣∣cpy

∣∣2∣∣cpx

∣∣2 + ∣∣cpy

∣∣2 , (G1)

S2 =
∣∣cpx+py

∣∣2 − ∣∣cpx−py

∣∣2∣∣cpx+py

∣∣2 + ∣∣cpx−py

∣∣2 , (G2)

S3 =
∣∣cpx+ipy

∣∣2 − ∣∣cpx−ipy

∣∣2∣∣cpx+ipy

∣∣2 + ∣∣cpx−ipy

∣∣2 , (G3)

where ci is the scalar product of the bound state with the
state ĩ. For instance, a p̃x state shows |cpx |2 = 1 giving S1 = 1
while an anti-vortex state p̃x − i p̃y shows |cpx−ipy |2 = 1 and
S3 = −1.

APPENDIX H: BERRY CURVATURE NEAR WEYL POINTS

To calculate the Chern number, we compute the Berry
curvature in the full 2D parameter space φ3,4 and integrate
it. Figure 9 shows the S3 component together with the Berry
curvature at the position of two Weyl points and just next to it.
We can clearly see the contributions of the four Weyl points in
the Berry curvature when all Weyl points are gapped, which
gives an overall nonzero Chern number.

APPENDIX I: EXPLANATIONS
ON THE ANALYTICAL MODEL

In the main text, we define the analytical model:

H = � · σ. (I1)

The in-plane contribution �x,y can be deduced by the
analysis of the shape of the p̃x,y and (anti)diagonal states. Con-
sidering Fig. 10, we can clearly see that the different modes
can be decomposed into 1D p states with appropriate phases.
We can then apply the result obtained in 1D [75] that states
form bands of cosine twice the phase difference between the
two phases and find �x,y.

The out-of-plane component is of a different origin because
it comes from the Josephson current. However, we will again
invoke 1D results. The path of a particle going from the face
1 to the face 4 is plotted in Fig. 11. The particle is then
reflected by both normal and Andreev reflections through the
coefficients [75]:

rN = (kI − iκ−)(kA + iκ+)|u|2 + (kA + iκ−)(kI − iκ+)|v|2
(kI + iκ−)(kA + iκ+)|u|2 + (kA + iκ−)(kI + iκ+)|v|2 ,

rA = 2i
√

kI kA(κ+ − κ−)|u||v|
(kI + iκ−)(kA + iκ+)|u|2 + (kA + iκ−)(kI + iκ+)|v|2 e−2iφ. (I2)
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For certain phase configurations, the successive reflections
lead to an overall nonzero current due to the Josephson current
which is a sine of twice the phase difference between the two
facing phases [75]. This current is at the origin of the vorticity
of states associated with topology, and explains the overall
topology of the system.

APPENDIX J: COMPARISON BETWEEN
ANALYTICS AND NUMERICS

In the main text, a first part is devoted to the numerical
study of a particular 3D subspace of the full 4D parameter
space where φ2 = −φ5. As already stated in the main text, this
is more comfortable to study numerically the degeneracies
because the 2D space where we plot the bands (φ3,4) is then
much more symmetric. Furthermore, this helps us to under-
stand how the modes behave and to construct an analytical
model that facilitates the exploration of the full 4D param-
eter space. Figures 12(a) and 12(b) show the S3 pseudospin
textures together with S1,2 computed from numerical solution

of Bogoliubov–de Gennes equations (a) and our analytical
model (b). We clearly see the good agreement between the
two. More precisely, the pseudospin behavior in the vicinity
of the four Weyl points corresponds to what is observed in
numerical simulations. This leads to a very good agreement in
the calculations of the Berry curvature and subsequent Chern
numbers for different values of φ2 = −φ5 [see Figs. 12(c) and
12(d)].

APPENDIX K: PARAMETERS
USED IN THE SIMULATIONS

For all simulations, the values of different parameters
are: Ep = 0.5 meV, αn = 0.56 meV, m = 4.1m0 with m0 =
9.1×10−31 being the free electron mass, V0 = 0.56 meV (such
as V (r) = V0U (r), where U (r) is a step-like potential whose
shape is explained in the main text and just ensures numeri-
cally that the modes do not leak out).

The size of the normal region is given by a unique param-
eter, a, which is always given. In the main text, its value is
always a = 1.7 µm.
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