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Ferromagnetism by p-d exchange spin-orbit coupling in n-type ferromagnetic semiconductors

Kenji Hayashida*

Division of Applied Physics, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan

(Received 16 December 2022; revised 19 February 2023; accepted 14 April 2023; published 26 April 2023)

The exchange interaction between carrier and localized spin in magnets generates intrinsic spin-orbit coupling
induced by the magnetism. Recent studies for the exchange spin-orbit coupling (ESOC) in ferromagnets and
antiferromagnets suggest the ESOC and the transport phenomena for spintronics. However, the study on the
effects of ESOC on the magnetic phase transition has been still lacking especially for ferromagnets even though
the ESOC should be one of the fundamental interactions to stabilize the magnetic phase. In this paper, we study
the role of the ferromagnetic properties of the ESOC induced by the p-d exchange interaction of the valence
band in n-type ferromagnetic semiconductors. Based on the mean-field and k · p methods, our theory explains
the spin polarization of localized and carrier spin, and the Curie temperature Tc for the iron concentration,
electron density, and host semiconductor dependence. The theoretical Tc fits experimental values well in low
iron concentration and intermediate electron density regions, and the p-d exchange interaction is essential for
Tc. Furthermore, the Tc is higher for narrower gap host semiconductors to provide insights into higher Tc. The
theoretical framework of this paper is not limited to the specific materials and will find potential materials for
spintronics and the fundamental aspects.
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I. INTRODUCTION

Exchange spin-orbit coupling (ESOC) is an effect of the
exchange interaction between carrier and magnetic order in an
electronic structure and has attracted much attention for the
mechanisms and spintronics applications [1–11]. In energy
bands, ESOC generates k (wave-vector)-dependent spin split-
ting induced by the exchange interaction of carrier spin with
antiferromagnetic [1,2,4–10,12–14] or ferromagnetic [11] or-
der. Recent theories [1,4,5,7–10] and experiments [2,3,15]
for the ESOC in antiferromagnets suggested the electronic
structure and spin Hall-like effect for spin torque generation.
In our previous paper, we have shown that the ESOC is gen-
erated in the conduction band (CB) of n-type ferromagnetic
semiconductors (n-type FMSs) by the p-d exchange interac-
tion of the valence band [11] through the interband transition
in the same manner as the relativistic spin-orbit coupling is
produced by the LS coupling and that the p-d ESOC shows
a remarkable anomalous Hall effect of the intrinsic origin
as an effect on transport properties. Note that the study on
RuO2 uses the term, altermagnetism, for magnetically induced
k-dependent band structure rather than the term utilized in this
paper, ESOC [6]. Both concepts have been developing and
currently differ in their theoretical foundations and magnetic
structure. Altermagnetism requires a specific group consistent
with crystal symmetry and antiferromagnetic structure. ESOC
is based on interband transition and exchange interaction in
ferromagnets [11]. However, the two terms share magnetism-
induced spin-orbit coupling and nonrelativistic origin as the
fundamental feature.
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However, the role of ESOC in ferromagnetic properties
has not been studied even though the ESOC coexists with
magnetic order and should be one of the fundamental inter-
actions to stabilize the magnetic phase. Especially, the ESOC
effects on the magnetic phase transition in ferromagnets have
been still lacking. The tunneling spectroscopy observing spin
splitting of the conduction band [16] estimated the Curie
temperature Tc of an iron-doped InAs (InFeAs, n-type FMS)
[16–18] from the mean-field theory [19,20] and without the
p-d ESOC. The estimated values were several kelvins and
did not match experimental values, 42 and 65 kelvin for Fe
6 and 8% samples, which the tunneling spectroscopy [16]
simultaneously measured. The p-d exchange interaction in the
valence band, which is larger than the s-d exchange interac-
tion in the conduction band, is expected to account for large
experimental Tc values since the p-d exchange interaction
emerges in the conduction band through the k · p interband
transition.

n-type FMSs (InFeAs [16–18] and InFeSb [21–23]) are
iron-doped ferromagnetic III–V semiconductors [24] showing
ferromagnetism and have been studied for spintronics appli-
cations, such as the manganese-doped III–V semiconductors
[19,20,25–30]. The iron impurity works only as a magnetic
impurity and other impurities introduce carriers. For exam-
ple, the beryllium atom works as a double donor in InFeAs
[16–18]. Interestingly, the Tc of the narrower gap host semi-
conductor (InFeSb) [21–23] is higher than the large gap host
semiconductor (InFeAs) [24].

In this paper, we study the ferromagnetic properties (Tc and
spin polarization of localized and carrier spin) of n-type FMSs
by the p-d exchange interaction and interband transition. We
construct a mean-field theory with the k · p method to investi-
gate the dependences of the Curie temperature Tc on the iron
concentration, electron density, and host semiconductor.
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First, the mean-field theory fits the experimental Tc well
for the low iron concentration region. The calculated Tc in-
creases linearly with the iron concentration, whose behavior
is one of the characteristics of the mean-field approximation
[19,20,30]. We also confirm that the Tc without the p-d ex-
change interaction is lower than 1 kelvin, and this small Tc

is consistent with the tunneling spectroscopy estimation [16].
The p-d exchange interaction with the interband transition
(p-d ESOC) is essential for Tc of n-type FMSs.

Second, we investigate the electron-density dependence of
Tc for InFeAs (Fe 5%). The Tc is independent of the electron
density, and this indicates that the ferromagnetism by p-d
ESOC does not require the Fermi surface.

The theoretical Tc for the electron-density dependence fits
the experimental one in the same order for the intermedi-
ate density region. However, the experiment has revealed
that the Tc rises sharply at the critical electron density of
0.6 × 1019 cm−3 [24]. This drastic increase in Tc indicates the
transition for Anderson localization by disorder [31] and Mott
transition by electron correlation [32] through carrier doping.
The localization transition is typical in doped semiconductors
[33] and has been discussed also for the manganese-doped
p-type FMSs [28,30]. This transition sets the lower bound
for the comparison of the theoretical Tc with the experimental
one in the electron-density dependence since our theory ne-
glects the impurity potential and electron correlation for the
electronic state. We also consider only the conduction band at
the � point in the first Brillouin zone, but other conduction
bands appear for the relatively high-electron doping to induce
the upper bound of the comparable region. We obtain the Tc,
which is on the same order as experimental Tc in the compara-
ble region and attribute the deviation between the theoretical
and the experimental Tc’s outside the region to the localization
effects and higher-conduction bands.

Furthermore, for InFeAs, we investigate the chemical po-
tential μ dependence of Tc to understand the behavior of
the considered k · p model for Tc and show that the model
depending on μ becomes the virtually p-type FMS, bulk band
insulator ferromagnet and n-type FMS.

Finally, we study the Tc of InFeSb to get insights into the
host semiconductor dependence. The mean-field theory shows
the higher Tc of the narrower gap host semiconductor, and
this host semiconductor dependence is consistent with exper-
iments [24]. We explain this dependence from the p-d ESOC
of the conduction band [11] qualitatively. The perturbative
effective Hamiltonian for the ESOC [11] is proportional to
the E−1

g in the lowest order in which Eg is the fundamental
energy gap of the host semiconductor and is assumed to be
the largest energy scale. Therefore, the narrower energy gap
provides larger p-d ESOC and leads to higher Tc.

This paper investigated n-type FMSs. However, the the-
oretical framework combining the k · p method with the
mean-field approximation is applicable to other materials,
for example, itinerant antiferromagnet RuO2 [1–4,6,12–15]
and a doped organic antiferromagnet [34]. One of the in-
teresting materials for the application of the framework is
an FMS quantum well (InFeAs/GaFeSb) since both In-
FeAs and GaFeSb [35,36] have been already fabricated, and
we can expect a quantum anomalous Hall effect [37]. The
manganese-type quantum well (InMnAs/GaMnSb) is pre-
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FIG. 1. (a) Crystal structure of n-type FMSs. The fundamental
structure is the zinc-blende structure. The iron ion spins (Fe3+ spins)
randomly occupy the indium sites and donors introduce conduction
electrons. (b) Schematic energy bands of n-type FMSs and mecha-
nism of spin-orbit coupling in the CB. We depict the spin splitting
originating from the p-d exchange interaction between carrier spin
ŝ and Fe3+ spins in heavyhole (HH) and lighthole (LH) bands (we
omit the spin splitting in CB and SO bands for brevity). Spin-orbit
coupling of CB appears as k (wave-vector)-dependent spin rotation
both for relativistic and exchange SOC. The k · p mechanism follows
a procedure (b1)–(b3). At first, the electron in the CB moves to one of
the valence bands by k-dependent interband transition (b1). Second,
the electron spin rotates by the spin-dependent interaction (exchange
interaction is depicted in the figure) (b2). Finally, the rotating spin
returns to the CB through the interband transition, and we observe
the spin rotation of the CB electron (b3).

dicted to show the quantum anomalous Hall effect [38], but
the experimental realization is hard since the manganese ion
works as an acceptor as well as magnetic impurity [39].
The iron impurity works just as a magnetic ion and we can
independently tune carrier density in InFeAs/GaFeSb to avoid
the problem of InMnAs/GaMnSb. We can investigate the
role of the ESOC for the quantum anomalous Hall effect in
InFeAs/GaFeSb with higher feasibility. Application of the
framework to other materials as the iron-type FMS quantum
well will uncover further ESOCs and central roles in mag-
netism and transport phenomena.

The structure of this paper is the follows. Section II A
represents the crystal structure and the k · p method.
Sections II B–II D explain the Hamiltonian and self-consistent
equations. Finally, Sec. II E shows the energy bands and as-
sumptions for our theory. Sections III A and III B describe the
iron concentration and electron-density dependence of Tc in
InFeAs. Section III C investigates the Tc of InFeSb to discuss
the host semiconductor dependence. Section IV represents the
conclusion of this paper.

II. METHOD

A. Crystal structure and the k · p method

The crystal structure of n-type FMSs, such as In1−xFexAs
and In1−xFexSb is the zinc-blende structure with randomly
distributed iron impurities at the indium atom sites by x
percent [Fig. 1(a)]. The band structure is also the III–V
semiconductor type with spin splitting by the exchange in-
teractions between electrons and localized spins (d orbital)
at each band. The conduction and valence bands host s-d
and p-d exchange interactions at the band edges, respectively,
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since the orbital characters of each band edge are s and p
orbitals [Fig. 1(b)].

To investigate the band structure, we can take a k · p
method to fully account for the multiple energy bands or an
effective Hamiltonian method based on a perturbative way
[11]. The effective Hamiltonian method cannot be applied to
a narrower gap or broken gap FMS. We use the k · p and
effective Hamiltonian methods for quantitative and qualitative
understandings of Tc, respectively.

The k · p method incorporates the effects of the valence
band on the conduction band at nonzero k points through
the k · p interband transition, and one of the representative
k · p effects is the effective mass of the conduction band [40].
The k · p method also explains relativistic (Rashba [41–44]
and Dresselhaus [45]) and nonrelativistic (p-d exchange) [11]
spin-orbit coupling. Figure 1(b) depicts the schematic for rela-
tivistic and exchange SOCs in a unified manner. The electron
in the conduction band moves to one of the valence bands
through the k · p interband transition, which is proportional
to k [(b1) in Fig. 1(b)]. The electron spin rotates due to
spin-dependent interaction, such as exchange interaction or
relativistic spin-orbit coupling [(b2)]. After the electron re-
turns to the conduction band, the spin interaction results in the
effective rotation in the conduction band and the k-dependent
spin-orbit coupling [(b3)].

B. Total Hamiltonian

The total Hamiltonian is

H = H0 + Hex,c + Hex,S, (1)

in which H0, Hex,c, and Hex,S describe the k · p Hamiltonian
of the host semiconductor, s, p-d exchange interactions of the
carrier spin with the localized spin polarization,which is pro-
portional to the magnetization of the FMS [11] and exchange
interaction of the localized spins with the carrier spin po-
larization density, respectively. In the exchange interactions,
we include only spacially uniform components of the s, p-d
exchange interaction as the literature [46]. Furthermore, we
employ the virtual crystal approximation and the mean-field
approximation [19,20,30]. The band parameters used in this
paper are summarized in Appendix B. We describe the specific
forms of each term.

C. Hamiltonian of the host semiconductor

Using the quasidegenerate perturbation theory and basis
functions (Table I) [47], we obtain the Hamiltonian of the host
semiconductor,

H0 =
[

Hc Hcv

H†
cv Hv

]
,

with the conduction Hc, valence Hv , and interband Hcv blocks.
We use suggested values for the band parameters [47,48] and
set x, y, and z axes to [100], [010], and [001] directions of the
host semiconductor, respectively.

The conduction-band block Hc is

Hc = h̄2k2

2m′
c

1̂σ , k = |k|

TABLE I. Basis functions for the representation of the total
Hamiltonian. |S〉 is an s-like orbital of the CB edge. |X 〉 , |Y 〉 , and
|Z〉 represent p-like orbitals of the valence-band edges (HH, LH,
and SO). |↑〉 and |↓〉 express up-spin and down-spin states. The
quantization axis is the z axis. We set the phases of the s- and p-like
orbitals as real and pure imaginary, respectively [47].

Band Function

CB |S, ↑〉
CB |S, ↓〉
HH − 1√

2
(|X,↑〉 + i |Y, ↑〉)

LH − 1√
6
(|X,↓〉 + i |Y, ↓〉) +

√
2
3 |Z,↑〉

LH 1√
6
(|X,↑〉 − i |Y,↑〉) +

√
2
3 |Z, ↓〉

HH 1√
2
(|X,↓〉 − i |Y,↓〉)

SO − 1√
3
(|X,↓〉 + i |Y,↓〉) − 1√

3
|Z,↑〉

SO − 1√
3
(|X,↑〉 − i |Y,↑〉) + 1√

3
|Z,↓〉

m0

m′
c

= m0

mc
− EP

3

(
2

Eg
+ 1

Eg + �g

)
,

EP = 2m0

h̄2 P2, (2)

in which k is a wave vector, h̄ is a Planck constant divided by
2π , and m0 is the electron mass in a vacuum. 1̂σ represents
the 2 × 2 identity matrix, mc is the effective mass at the
conduction-band edge and determined from the experimental
value [48]. Eg and �g are the fundamental and split-off gaps,
respectively. P is the Kane matrix [40].

The valence-band block Hv is

Hv =

⎡
⎢⎢⎢⎢⎢⎢⎣

hv11 hv12 hv13 0 hv15 hv16

hv22 0 hv13 hv25 hv26

hv22 −hv12 h∗
v26 −hv25

† hv11 −h∗
v16 h∗

v15
hv55 0

hv55

⎤
⎥⎥⎥⎥⎥⎥⎦

− diag[Eg, Eg, Eg, Eg, Eg + �g, Eg + �g]

+ Ck

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 − 1
2 k+ kz −

√
3

2 k− 1
2
√

2
k+ 1√

2
kz

0
√

3
2 k+ −kz 0 −

√
3

2
√

2
k+

0 − 1
2 k+

√
3

2
√

2
k− 0

0 1√
2
kz − 1

2
√

2
k−

† 0 0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

in which diag[x, y, z, . . .] represents the diagonal matrix con-
taining x, y, z, . . . for the diagonal components. The specific
components in the first term are

hv11 = − h̄2

2m0
(γ ′

1 + γ ′
2)

(
k2

x + k2
y

) − h̄2

2m0
(γ ′

1 − 2γ ′
2)k2

z ,

hv22 = − h̄2

2m0
(γ ′

1 − γ ′
2)

(
k2

x + k2
y

) − h̄2

2m0
(γ ′

1 + 2γ ′
2)k2

z ,

hv55 = − h̄2

2m0
γ ′

1k2,
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hv12 = 2
√

3
h̄2

2m0
γ ′

3kzk−,

hv13 =
√

3
h̄2

2m0
γ ′

2

(
k2

x − k2
y

) − 2i
√

3
h̄2

2m0
γ ′

3kxky,

hv15 = −
√

6
h̄2

2m0
γ ′

3kzk−,

hv16 = −
√

6
h̄2

2m0
γ ′

2

(
k2

x − k2
y

) + 2i
√

6
h̄2

2m0
γ ′

3kxky,

hv25 = −
√

2
h̄2

2m0
γ ′

2

(
k2

x + k2
y − 2k2

z

)
,

hv26 = 3
√

2
h̄2

2m0
γ ′

3kzk−.

The reduced-band parameters γ ′
i [47] to represent remote-

band effects are

γ ′
1 = γ1 − 1

3

EP

Eg
,

γ ′
2 = γ2 − 1

6

EP

Eg
,

γ ′
3 = γ3 − 1

6

EP

Eg
,

in which γi is the Luttinger parameter [48,49]. For the Ck

parameter, we use the value of the literature [47].
The interband block Hcv is

Hcv =
⎡
⎣hcv1 hcv2

1√
3
hcv3 0 −1√

2
hcv2 −

√
2
3 hcv3

0 1√
3
hcv1 hcv2 hcv3

√
2
3 hcv1

1√
2
hcv2

⎤
⎦,

in which

hcv1 = − 1√
2

Pk+ + 1√
2

B′kzk−,

hcv2 =
√

2

3
Pkz + i

√
2

3
B′kxky,

hcv3 = 1√
2

Pk− + 1√
2

B′kzk+.

For the B′ parameter, we use an average value of related
parameters (B+

8v and B7v in Ref. [47]).

D. Exchange interactions and self-consistent equation

The exchange interactions are

Hex,c = −P̂c ŝ · heff,c − P̂v ŝ · heff,v,

Hex,S = −
∑

I

Heff · ŜI , (3)

in which effective magnetic fields are

heff,c = xN0Js−d 〈Ŝ〉 ,

heff,v = xN0Jp−d 〈Ŝ〉 ,

Heff = Js−d

〈
P̂c

ŝ
V

〉
+ Jp−d

〈
P̂v

ŝ
V

〉
.

ŜI represents the localized spin operator with the mag-
nitude S, and I is the index of the localized spin. V is the
crystal volume. ŝ and P̂n(n = c, v) represent carrier spin and
a projection operator restricting the considered states to the
states represented by conduction- (c) and valence- (v) band
edge functions (Table I), respectively. The forms of P̂c,v ŝ are

P̂c ŝ =
[

ŝ(s) Ocv

O†
cv Ov

]
, P̂v ŝ =

[
Oc Ocv

O†
cv ŝ(p)

]
,

in which Oc, Ov, and Ocv are 2 × 2, 6 × 6, and 2 × 6 zero
matrices. ŝ(s) and ŝ(p) are spin operators represented by the
band-edge functions (Table I), and the matrix forms are

ŝ(s)
i = 1

2σi, ŝ(p)
i = 1

6

[
2Ji −6T †

i−6Ti −σi

]
, i = x, y, z,

with the i component of the Pauli matrix σi, matrices Ji and Ti

(please see Appendix A for Ji and Ti).
Js−d and Jp−d are the exchange constants for which we used

values of the first-principles calculation [50]. N0 is the number
of the cation site per unit volume and is equal to the inverse of
the unit-cell volume a3

0/4 in which a0 is the lattice constant of
the host semiconductor [48]. x is the iron concentration.

The localized spin polarization 〈Ŝ〉 is the statistical average
value of the localized spin and follows the equation of state,

〈Ŝ〉 = Heff

Heff
SBS

(
SHeff

kBT

)
,

BS (y) = 2S + 1

2S
coth

(
2S + 1

2S
y

)
− 1

2S
coth

(
1

2S
y

)
, (4)

in which S is the magnitude of the localized spin (S = 5/2
for Fe3+) and BS (y) is the Brillouin function with Boltzmann
constant kB and temperature T .

The carrier spin polarization density 〈P̂ns/V 〉 (n = c, v) is
the statistical average value of the carrier spin density and
obeys the following equation:〈

P̂n
ŝ
V

〉
=

∑
m

∫
d3k

(2π )3
〈um,k|P̂nŝ|um,k〉 fFD(Em,k). (5)

um,k is the periodic part of the Bloch function of the energy-
band Em,k with the band index m and wave-vector k. fFD is
the Fermi-Dirac distribution including chemical potential μ.
We take the integral range as a cube with 2π/a0 length for
simplicity [11]. This range is the first Brillouin zone of the
conventional cell, which is different from the first Brillouin
zone of the zinc-blende structure. However, since the k · p
method is valid near the � point far from the Brillouin zone
boundary, the specific shape of the first Brillouin zone makes
no essential difference in results. For the numerical integration
in the k space, we employ the following discretization and
equation,〈

P̂n
ŝ
V

〉
= ∑

m
(�k)3

(2π )3

∑
K 〈um,K |P̂nŝ|um,K〉 fFD(Em,K ),

in which each axis has the identical discrete width �k at each
discretized K point.

We obtain the energy-bands Em,k by diagonalizing the
carrier Hamiltonian H0 + Hex,c. The 〈Ŝ〉 and 〈P̂ns/V 〉 (n =
c, v) [Eqs. (4) and (5)] form a system of equations through
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(a)Fe 0 %

(b)6.5 %

(c)10 %

FIG. 2. Energy bands of InFeSb at the iron concentrations of
(a) 0, (b) 6.5, and (c) 10%. The horizontal k axis is parallel to
the x axis. We also highlight the fundamental energy gap Eg and
the development due to the s, p-d exchange interactions by the
shaded area. The host semiconductor has the energy gap Eg at the
zone center (a). The energy gap becomes closed around the iron
concentration of 6.5% (b). The broken gap opens by the s, p-d
exchange interactions of the relatively heavy iron doping (c). We
plot only the spin-degenerate or spin-split CB, HH, and LH for
simplicity.

H0 + Hex,c, and we have to solve the system of equations self-
consistently at each temperature to obtain 〈Ŝ〉 and 〈P̂ns/V 〉.
We fix the direction of 〈Ŝ〉 to the [001] direction of the host
semiconductor for simplicity and confirmed that there was
no difference for the magnitude | 〈Ŝ〉 | when we changed the
direction. The isotropy arises from the Hamiltonian for the
localized spins [Eq. (4)]. The Hamiltonian solely contains the
effective Zeeman interaction by 〈P̂ns/V 〉, and not anisotropy
terms, for example, single-ion anisotropy. The anisotropy
terms reflecting tetragonal symmetry Td could be incorporated
by the crystal field and the relativistic spin-orbit interaction for
the localized d orbitals [51].

E. Energy bands and assumptions

Using the multiband k · p Hamiltonian [Eq. (1)], we can
explore the electronic structure of n-type FMSs even if the
fundamental energy gap Eg [Fig. 2(a)] at the � point is broken
by s, p-d exchange interactions, and the perturbative effec-
tive Hamiltonian [11] is not applicable. We show the energy
bands of InFeSb at the iron concentrations of 0, 6.5, and 10%
[Figs. 2(a)–2(c), respectively] as a reference. The energy gap
at the � point decreases with the iron concentration due to
the s, p-d exchange interactions and gets closed at the iron
concentration of 6.5% [Fig. 2(b)]. After the gap gets broken,
the band inversion opens the gap [Fig. 2(c)].

We write the assumptions used in the calculations be-
low for clarity. At first, we neglect the carrier Coulomb
interaction [25], which will enhance Tc as the Stoner en-
hancement. Second, we omit the conduction band at the
L point of the first Brillouin zone [48,52], which can
appear in relatively high-electron-density systems. Finally,
we also neglect the superexchange interaction between
iron spins [20,27,53], which is effective in heavy iron-

(a) Localized Spin (b) Carrier Spin Density

Fe: 6 %

FIG. 3. (a) The temperature dependence of the localized spin
polarization | 〈Ŝ〉 | at the iron concentration of 6% and electron
density of ne = 1019 cm−3 for InFeAs. The vertical and horizontal
axes represent the magnitude | 〈Ŝ〉 | and temperature, respectively.
| 〈Ŝ〉 | becomes sufficiently small to show the Curie temperature
Tc = 29.8 K. (b) The temperature dependence of the carrier spin
polarization density in conduction- (the left panel) and valence- (the
right panel) band-edge representations for the z component [Eq. (5)].
We omit both x and y components since we set 〈Ŝ〉 to the z-axis ([001]
direction of the host semiconductor).

doping FMSs. The neglected effects should be included
for quantitative agreement between theory and experi-
ments.

III. FERROMAGNETIC PROPERTIES OF N-TYPE FMS

A. InFeAs: Spin polarization and iron concentration
dependence of the Curie temperature Tc

Figure 3(a) shows the localized spin polarization | 〈Ŝ〉 |
at the experimentally typical iron concentration of 6% and
electron density of ne = 1019 cm−3 [16,24]. We determine
the chemical potential μ from the Fermi gas model for the
conduction electron that has the effective mass of the host
semiconductor CB edge. Starting from the saturation value at
a low temperature (1 K), | 〈Ŝ〉 | decreases with temperature and
vanishes at a certain point. A similar temperature dependence
of the magnetization is reported for the p-type GaMnAs in the
theory [25] and experiment [26,30]. We approximately extract
the Curie temperature Tc at which | 〈Ŝ〉 | becomes sufficiently
small.

Figure 3(b) depicts the carrier spin polarization density in
both conduction- (the left panel) and valence- (the right panel)
band-edge representations [Eq. (5)] for the z component. The
z component is nonzero below Tc. The x and y components
are zero since we fix 〈Ŝ〉 to the z axis. When we set 〈Ŝ〉 to
other directions, we confirmed that the carrier spin density fol-
lowed the change in direction, and there was no change for Tc

and | 〈Ŝ〉 |.
Figure 4 represents the iron concentration xFe dependence

of Tc. The black symbols are experimental values in mea-
surements [16]. The experiment [16] does not show the exact
value of the electron density. However, they estimated the
density as the order of 1019 cm−3 from the donor density
and the emergence of ferromagnetism [24]. Therefore, we
set the carrier density as 1019 cm−3. The red circles are our
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FIG. 4. The iron concentration xFe dependence of the Curie tem-
perature Tc for InFeAs with the carrier density of 1019 cm−3. The
black symbols are the experimental values [16]. The red circles
represent the calculated Tc of this paper, and we draw the solid line
for the guide of the eye. The black dashed line at 1 K represents the
p-d exchange absent case. On setting the electron density, we discuss
in the main text.

calculated values, and we draw the red solid line for the guide
of the eye. The calculated Tc linearly depends on xFe, and this
linear dependence is one of the characters for the mean-field
approximation [19,20,30]. The black dashed line in Fig. 4
represents the p-d exchange absent case, and we confirmed
that the Tc is below 1 K.

This drastic decrease is consistent with the estimation in
the tunneling spectroscopy [16] in which only the s-d ex-
change interaction of the conduction band was considered.
The calculated Tc including the p-d exchange fits experimen-
tal values well. Therefore, the p-d exchange interaction and
interband transition, which appear as the p-d ESOC [11], are
essential for Tc of n-type FMSs.

Furthermore, the calculated Tc becomes 127 K at Fe 1%
when we neglect remote-band effects (γ ′

1 = −1, γ ′
2 = γ ′

3 =
0, and B′ = 0). This Tc value is not realistic since the experi-
mental value of Tc at Fe 6% is 42 K. The remote-band effects
are also necessary to explain Tc.

B. InFeAs: Electron density dependence of Tc

Figure 5 shows the calculated Tc for the electron density ne

dependence for InFeAs at the iron concentration of 5%. The
Tc of this paper is constant for the electron density, and the
ferromagnetism of our k · p model is not a carrier-mediated
type. Since the ferromagnetic phase emerges from the p-d
exchange and interband transition, the Tc does not require the
Fermi surface unlike typical carrier-mediated ferromagnets.

The electron-density dependence of Tc was experimentally
investigated for InFeAs at the iron concentration of 5% [24],
and Tc drastically rises at ne = 0.6 × 1019 cm−3. This behav-
ior indicates a transition between the Bloch state and the
localized state. The transition is typical in doped semicon-
ductors [33], which is known as a localization phenomenon
due to Anderson localization [31] and Mott transition [32]
by disorder and electron correlation. The localization has been
discussed also for the manganese-doped III–V FMSs [28,30].

FIG. 5. The electron-density ne dependence of the Curie tem-
perature Tc for InFeAs at the iron concentration of 5%. The black
circles represent the experimental values [24]. The red circles are the
calculated Tc of this paper The horizontal arrow and vertical dashed
line show the comparable region between the theoretical and the
experimental values. Since our theory neglects the localization and
other conduction bands, the localization and other conduction-band
minima determine the lower and upper bounds, respectively.

To analyze Tc through the transition point, we have to account
for the interplay among the disorder, electron correlation, and
magnetic phase transition. For simplicity, our theory neglects
disorder due to the impurity potential and carrier Coulomb
interaction for the electronic state since our interest in this
paper is in the ferromagnetism by p-d ESOC. Therefore,
there is a lower bound due to the localization (depicted as
the dashed line in Fig. 5), for example, 0.6 × 1019 cm−3 in
InFeAs (Fe 5%) when we compare the Tc of our k · p model
with the experimental values.

An upper bound also exists due to other conduction-band
minima. Our theory considers the energy bands located near
the � point. However, the other conduction-band minima ap-
pear in the relatively high-electron density and the second
lowest conduction band in InAs is the L-point conduction
band. The L-point conduction-band edge is higher than the
� point minimum by 0.71 eV [48,52]. The Fermi energy
intersects with the L point conduction band at the electron
density of 2 × 1019 cm−3. In this calculation, we estimate the
Fermi energy from the Fermi gas model in which the effective
mass is the host semiconductor CB edge value.

The above discussions clarify the comparable region for
the comparison of the theoretical Tc with the experimental
values, and the region is approximately from 0.7 × 1019 to
2 × 1019 cm−3 for InFeAs (Fe 5%). The horizontal arrow and
vertical dashed line show the comparable region in Fig. 5.
The calculated Tc in the comparable region is on the same
order as the experimental values despite using the mean-field
approximation and neglecting various effects (for example,
disorder and carrier Coulomb interaction). This agreement
is sufficient for the investigation of ferromagnetism by p-d
ESOC. Although the several points in experimental Tc are
higher than those of the theoretical one in the comparable
region, the calculated value could be enhanced through the
carrier Coulomb interaction [25], which is neglected in this
paper for simplicity. Our calculation deviates from the ex-
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(a1) (a3)

(a2)(a) Overall (b) Zoom in (a2-a3)

(a2)
(a3)

FIG. 6. The chemical potential μ dependence of the Curie tem-
perature Tc. The host semiconductor and iron concentration are the
same as the ne density dependence [Fig. 5]. (a) shows the overall
behavior of Tc to separate the region into (a1)–(a3). μ crosses the
valence-bands (a1) and conduction-bands (a3) but locates in the bulk
band-gap (a2). (b) extracts the (a2) and (a3) region.

perimental Tc below the transition point, and we attribute the
deviation to the complex localization as discussed above for
the lower bound.

We tune the chemical potential μ in Eq. (5) to understand
the behavior of our k · p model for Tc. The host semiconductor
and iron concentration are identical to the ne density depen-
dence. We show the μ dependence in Fig. 6 for the overall
region [Fig. 6(a)] and the specific zone [Fig. 6(b)].

In Fig. 6(a), we separate the zone into (a1)–(a3) regions.
In the region outside (a1) and (a3), all considered bands are
empty or occupied, respectively. The Tc vanishes in the outside
regions. In (a1), μ crosses the valence bands [HH, LH, and
SO in Fig. 1(b)] and Tc gets over 100 K around μ = −5 eV
where μ crosses HH and LH resulting in the relatively large
density of states. This large Tc is comparable to the Curie
temperature of the p-type FMS, such as (III, Mn) As [20],
and the considered model is virtually p type. In the (a2) and
(a3) regions, μ locates in the bulk band-gap (a2) and crosses
the conduction-band (a3).

Figure 6(b) zoom in the (a2) and (a3) region of Fig. 6(a).
Tc in the (a2) region is around 25 K whereas μ is included
in the bulk band gap. This ferromagnetism emerges from the
interband contribution to the spin magnetic susceptibility. The
corresponding situation appears in the anomalous quantum
Hall system [38] and the interband transition term generates
the spin susceptibility in the bulk band insulator. In region
(a3), μ starts to cross the conduction bands, and Tc decreases
to the fully occupied situation in the conduction bands.

C. InFeSb: Iron concentration and host
semiconductor dependence of Tc

We also study the Curie temperature Tc of InFeSb to get
insights into the host semiconductor dependence since exper-
iments observed higher Tc in InFeSb than InFeAs [21,23].
Figure 7(a) represents the calculated Tc with the linear depen-
dence on the iron concentration by the blue circles and solid
line. These calculated Tc in the lower-concentration region are
on the same order as the experimental values [21,23], which
are plotted by the black symbols in Fig. 7(a). For quantitative

Fe 5%
in Bulk Energy Gap

(a) InFeSb vs. InFeAs (b) Energy Gap Dependence

FIG. 7. (a) The iron concentration xFe dependence of the Curie
temperature Tc for InFeSb with the electron density of 1 ×
1019 cm−3. The two-type black symbols are the experimental values
for uniform iron doping [21] and δ doping [23]. The blue circles
are the calculated Tc of this paper, and we draw the solid line for
the guide of the eye. We also plot Tc for InFeAs to clarify the host
semiconductor dependence by the red circles and dashed line, which
is the same as in Fig. 4. (b) Tc dependence on the fundamental energy
gap Eg of the host semiconductor for InFeAs (Fe 5%). Since we can
theoretically easily fix the number of electrons, we fix the chemical
potential μ in the bulk band gap of InFeAs. For the horizontal axis,
we take the ratio between the tuned Eg and original Eg.

agreement in the higher concentration region, we have to in-
corporate further exchange interactions between iron ions, for
example, superexchange interaction. We confirmed that the
calculated Tc became lower than 1 K without the p-d exchange
interaction of the valence band, and the p-d exchange plays a
dominant role also in the Tc of InFeSb.

Figure 7(a) also contains the calculated Tc of InFeAs,
which is the same as in Fig. 4. The calculated Tc values
of InFeSb are higher than those of InFeAs, and this host
semiconductor dependence is consistent with the experiments
[16,21,23,24].

We can attribute the Tc difference between InFeSb and
InFeAs mainly to the energy-band structure of the host semi-
conductor, not to the difference in the magnitude of the
exchange interactions. The s-d and p-d exchange interactions
of InFeSb are slightly larger than the exchange interactions of
InFeAs, and the difference cannot make a large difference for
Tc since Tc is proportional to J2

p−d [19,20,30].
We account for the band parameters of the host semicon-

ductor to get a qualitative understanding of the p-d ESOC
effect on Tc. The important factor in the host semiconductor
parameters is the fundamental energy-gap Eg at the � point
since the effective Hamiltonian of the p-d ESOC depends
on E−1

g in the lowest order of the perturbation form [11].
The effective Hamiltonian contains also Kane matrix element
P representing the interband transition. However, P is just
weakly dependent on the semiconductors [47]. For example,
the material dependence of P is neglected even for the cal-
culation of the electronic structure in heterostructure systems
explicitly containing the material dependence [54]. The dif-
ference in P between InAs and InSb is a minor contribution
to the semiconductor dependence. Therefore, the energy-gap
Eg is one of the fundamental band parameters for Tc, and the
narrower gap host semiconductors obtain larger spin polariza-
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TABLE II. The band parameters of this paper. The braket (· · · )
denotes the unit of the parameter. The parameters without the braket
are dimensionless quantities.

Parameter In(Fe)As In(Fe)Sb

Eg (eV) 0.418 0.235
�g (eV) 0.39 0.81
EP (eV) 21.5 23.3
a0 (nm) 0.605 0.6479
γ1 20 34.8
γ2 8.5 15.5
γ3 9.2 16.5
B′ (eV nm2) −0.0329 −0.2999
Ck (eV nm) −0.0011 −0.00082
As−d (Fe 3.7%) (eV) 0.02/6 0.03/6
Bp−d (Fe 3.7%) (eV) −0.22/6 −0.25/6
N0Js−d = 6As−d/(xS) (eV) 0.2162 0.3243
N0Jp−d = 6Bp−d/(xS) (eV) −2.3784 −2.7027

tion in all energy bands from the p-d exchange interaction and
interband transition to result in higher Curie temperature.

From the host semiconductor dependence [Fig. 7(a)], Eg

turns out to be fundamental in the band parameters of our
k · p model. To understand the Eg dependence of Tc, we tuned
the Eg in InFeAs (Fe 5%) [Fig. 7(b)]. We fix the chemical
potential μ position in the bulk energy gap since we can tech-
nically easily fix the number of electrons. Figure 7(b) shows
the increasing Tc with decreasing Eg. Therefore, we confirmed
that the Tc by the p-d exchange and interband process includes
Eg as one of the essential factors.

IV. CONCLUSION

We studied the ferromagnetic properties (Curie tempera-
ture Tc and spin polarization of carrier and localized spin)
by p-d ESOC in n-type FMSs, using the mean-field and k · p
methods.

The self-consistent calculation of Tc reaches the same or-
der as the experimental Tc [16,21,23,24] both in InFeAs and
in InFeSb for the low iron concentration and intermediate
electron-density regions, and reproduces the host semiconduc-
tor dependence. The p-d exchange interaction and interband
transition (p-d ESOC) are essential for the Tc of our model for
n-type FMSs.

Since p-d ESOC is based on the interband transition, the
ferromagnetism of our k · p model does not require the Fermi
surface. This feature gives rise to Tc independent of the elec-
tron density. The comparable region for the electron-density
dependence has lower and upper bounds. The lower bound
appears due to the localization of the disorder and electron
correlation, which are neglected in this paper for simplicity.
The upper bound exists since the theory considers the energy
bands near the � point. The chemical potential μ dependence
clarifies the global behavior of the considered k · p model for
the ferromagnetism, and the model depending on μ becomes
p-type FMS, bulk band insulator ferromagnet, and n-type
FMS in each region of Fig. 6.

We confirm higher Tc in the narrower gap host semiconduc-
tor (InFeSb) and qualitatively explain the host semiconductor

dependence from the energy gap of the host semiconductor
with the effective Hamiltonian of the p-d ESOC [11]. The
narrower gap host semiconductors enhance the p-d ESOC to
result in higher Tc. We also confirm the fundamental energy-
gap dependence of Tc in Fig. 7(b) quantitatively. Using a
narrower gap host semiconductor is an effective way to en-
hance Tc in n-type FMSs.

Further quantitative agreement for each dependence may
be achieved by introducing other effects neglected in this
paper: other conduction bands in relatively high carrier doping
[48,52], fluctuation of conduction electron and localized spin,
localization by disorder [31] and electron correlation [32],
magnetic anisotropy due to the tetragonal crystal field and
relativistic spin-orbit coupling of the localized d orbitals [51],
carrier-carrier interaction [25], and superexchange interaction
between iron ions [20,27,53].

The framework of this paper is the combination of the
mean-field and k · p methods with exchange interactions of
the multiple energy bands, and the theory is not limited to
specific materials. Therefore, this framework is useful for
the investigation of both relativistic and exchange spin-orbit
coupling to open the possibility of other materials for the
fundamental properties and spintronics applications.
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APPENDIX A: MATRICES OF Ji AND Ti

The specific forms for matrices Ji and Ti are as follows
[47]:

Jx = 1

2

⎡
⎢⎢⎢⎣

0
√

3 0 0√
3 0 2 0

0 2 0
√

3
0 0

√
3 0

⎤
⎥⎥⎥⎦,

Jy = i

2

⎡
⎢⎢⎢⎣

0 −√
3 0 0√

3 0 −2 0
0 2 0 −√

3
0 0

√
3 0

⎤
⎥⎥⎥⎦,

Jz = 1

2

⎡
⎢⎢⎣

3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3

⎤
⎥⎥⎦,

Tx = 1

3
√

2

[−√
3 0 1 0

0 −1 0
√

3

]
,

Ty = −i

3
√

2

[√
3 0 1 0

0 1 0
√

3

]
,

Tz =
√

2

3

[
0 1 0 0
0 0 1 0

]
.
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APPENDIX B: BAND PARAMETERS

Table II summarizes the band parameters of n-type FMSs
used in this paper. For the host semiconductor band pa-
rameters, we use the recommended values [48] without
any changes since the clear modification of crystal struc-
ture by iron doping has not been observed experimentally
[16–18,24,55–58]. For B′ = (B+

8v + B7v )/2 and Ck , we em-
ploy the values of the literature [47]. We estimate the effective
mass mc in Eq. (2) from the following equation:

m0

mc
= 1 + EP

3

(
2

Eg
+ 1

Eg + �g

)
,

which reproduces the experimental value of the conduction-
band effective mass.

The first-principles calculation [50] gives us spin split-
ting due to the s-d and p-d exchange interactions at the
iron concentration of x = 3.7%. We use the spin split-
ting values for the s, p-d exchange interaction coefficients
As−d , Bp−d and transform them to N0Js−d , N0Jp−d by the
equation,

N0Js−d = 6As−d/(xS), N0Jp−d = 6Bp−d/(xS),

in which S = 5/2, and N0Js−d , N0Jp−d are independent
of the iron concentration. The signs of the coefficients
have remained unknown experimentally and theoretically.
We follow the typical signs of the III–V manganese-type
FMS [20].
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