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Improved quasiparticle self-consistent electronic band structure and excitons in β-LiGaO2
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The band structure of β-LiGaO2 is calculated using the quasiparticle self-consistent QSGŴ method where the
screened Coulomb interaction Ŵ is evaluated including electron-hole interaction ladder diagrams and G is the
one-electron Green’s function. Improved convergence compared to previous calculations leads to a significantly
larger band gap of about 7.0 eV. However, exciton binding energies are found to be large and lead to an exciton
gap of about 6.0 eV if also a zero-point-motion correction of about −0.4 eV is included. These results are in
excellent agreement with recent experimental results on the onset of absorption. Besides the excitons observed
thus far, the calculations indicate the existence of a Rydberg-like series of exciton excited states, which is
however modified from the classical Wannier exciton model by the anisotropies of the material and the more
complex mixing of Bloch states in the excitons resulting from the Bethe-Salpeter equation. The exciton fine
structure and the exciton wave functions are visualized and analyzed in various ways.
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I. INTRODUCTION

Lithium gallate (β-LiGaO2) is a well-known optical ma-
terial, which has recently also received interest as a potential
ultrawide-band-gap semiconductor. Its crystal structure was
reported by Marezio [1] and consists of a cation-ordered
wurtzite-derived structure with space group Pna21. It can
be grown in bulk form by the Czochralski method [2,3] or
epitaxially on ZnO [4]. It has been studied in the past for
its piezoelectric properties [5,6], can be alloyed with ZnO
[7,8] and CuGaO2 [9], and has been studied as a substrate
for GaN [2,10,11]. Its heat capacity and other thermody-
namic properties were studied by Weise and Neumann [12]
and Neumann et al. [13]. Various studies were also done of
its phase transitions under high pressure [14–16]. Its elastic,
phonon, and piezoelectric properties were calculated using
density functional theory (DFT) by Boonchun and Lambrecht
[17]. Its electronic structure was calculated at the quasiparticle
self-consistent (QS)GW level (where G is the one-electron
Green’s function and W the screened Coulomb interaction)
[16,18] and earlier at the DFT level using the modified Becke-
Johnson exchange-correlation [19,20] functional by Johnson
et al. [21]. Its optical gap was obtained from absorption mea-
surements [3,22] and a combination of x-ray absorption and
emission spectroscopies [21] and found generally to be about
5.3–5.6 eV. Its native defects were recently studied [23], as
well as its potential for n-type and p-type doping [24]. It was
predicted that Si and Ge would be shallow donors, while Sn
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would be a deep donor. Doping by various diatomic molecules
was also investigated but not found to lead to p-type doping
[25]. Electron paramagnetic resonance of Li and Ga vacancies
was reported by Lenyk et al. [26] and analyzed computation-
ally by Skachkov et al. [27].

Recently, the infrared (phonon related) as well as visible ul-
traviolet (interband transition related) optical properties were
studied with reflectivity, transmission, and spectroscopic el-
lipsometry by Tumėnas et al. [28] and indicated the existence
of sharp excitons near 6.0 eV. Luminescence properties were
studied by Trinkler et al. [29,30] and the photoluminescence
excitation spectroscopy confirmed the presence of sharp free
excitons near 6.0 eV. The anisotropic splitting of these ex-
citons, reported in [30], reflects the valence band splitting,
characteristic of the orthorhombic symmetry of the crystal,
and is in good agreement with the recent computational study
by Radha et al. [16]. However, the free excitons at about
6.0 eV imply a band gap significantly higher than most pre-
vious studies indicated [3,21,22]. This led us to reexamine
the QSGW calculations reported in Radha et al. [16]. Fur-
thermore, we here use an improved QSGŴ method which
includes vertex corrections in the polarization, calculate the
dielectric functions using the Bethe-Salpeter equation ap-
proach, and study the thus obtained excitons in some detail.

II. COMPUTATIONAL METHOD

We use here essentially the same computational method as
in Radha et al. [16] but performed additional convergence
studies and also now avoid the somewhat ad hoc correc-
tion of the self-energy by a factor of 80% by using the
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recently developed extension of the GW method in which
the screened Coulomb interaction W is evaluated beyond
the random phase approximation (RPA) by including lad-
der diagrams [31–33]. The QSGW method is based on the
well-known many-body-perturbation theory of Hedin [34,35]
but uses an iteration scheme where a nonlocal but Hermitian
and energy-independent exchange-correlation potential �̃ is
extracted from the GW self-energy �(ω), which is used to
update the noninteracting Hamiltonian H0, and its Green’s
function G0 is used to calculate the self-energy � = iGW
of the next iteration [36]. The implementation of the method
in terms of a mixed interstitial plane-wave product basis set
and other technical aspects are detailed in Ref. [37], and
the full-potential linearized muffin-tin-orbital (FP-LMTO)
band-structure method employed and integrated with the GW
method is fully described in Ref. [38], which describes the
QUESTAAL code [39] used in this work. While electron-
hole effects can also be incorporated through including an
exchange-correlation kernel in the inverse dielectric func-
tion in the framework of time-dependent DFT, that approach
relies on the accuracy of the kernel which typically needs
to be extracted from Bethe-Salpeter-equation (BSE) calcula-
tions [40], or uses the bootstrap kernel [41]. The approach
introduced by Cunningham et al. [31,32] instead calculates
directly the four-point generalized susceptibility by solving a
Bethe-Salpeter equation at each q point rather than only in
the long-wavelength limit q → 0. It does so only for W (ω =
0) and within the Tamm-Dankoff approximation (TDA)
but then contracts the four-point generalized susceptibil-
ity back to the two-point polarizability, P(12) = PRPA(12) −∫

PRPA(1134)W (34, ω = 0)P(3422)d (34), needed to evalu-
ate W = (1 − Pv)−1v. The thus obtained improved screened
Coulomb interaction is here denoted by Ŵ (q, ω). Details of
the approach can also be found in [33] where it was applied to
the case of LiCoO2. The approach was shown to be equivalent
[42,43] to including a vertex correction to the polarizability
propagator extracted from the functional derivative δ�GW /δG
with �GW the GW self-energy within the general Hedin set
of equations. However, we clarify that no vertex corrections
are included in the self-energy itself, which is justified in part
by cancellations of the Z factor in G = ZG0 + G̃ [37], which
measures the quasiparticle versus the incoherent part (G̃) of
the one-particle Green’s function, and in the vertex which
behaves as � → 1/Z in the low-frequency, ω→0, q→0 limit.
This cancellation applies whenever the noninteracting G0 is
used as opposed to the fully self-consistent G. QSGW and
QSGŴ both make use of it, and as shown in Ref. [32] it does
a remarkably good job at predicting both the band gap and ε∞
for a wide range of materials systems. After calculating the
band structure in the GGA using the PBEsol functional [44]
as a starting point, QSGW (which becomes independent of the
starting point) with W calculated in RPA, and QSGŴ with Ŵ
calculated including the ladder diagrams as detailed above, we
calculate the optical dielectric function following closely the
usual BSE approach [45]. Specifically, we use the modified
response function [46]

P̄(1234) = P0(1234)

+
∫

d (5678)P0(1256)K (5678)P̄(7834) (1)
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FIG. 1. Band structure of LiGaO2 in the GGA (PBEsol) (red
dots), QSGW (green dashed), and QSGŴ . The bands are all referred
to the valence band maximum of the GGA band structure, thereby
showing how much the gap change occurs in the valence and con-
duction bands separately.

with the kernel

K (1234) = δ(12)(34)v̄ − δ(13)δ(24)Ŵ (12), (2)

with v̄G(q) = 4π/|q + G|2 if G �= 0 and zero otherwise. The
macroscopic dielectric function is then given by

εM (ω) = 1 − lim
q→0

vG=0(q)P̄G=G′=0(q, ω). (3)

Note, that unlike the usual approach, we here use Ŵ in Eq. (2)
rather than the RPA W .

III. RESULTS

A. Energy bands

In Fig. 1 we show the band structure calculated at the
experimental lattice parameters in the three approaches just
mentioned. We can see that using Ŵ only slightly changes
the gap and mostly by shifting the valence band maximum
(VBM) slightly back up compared to the down shift occurring
in QSGW using the RPA W compared to GGA. The gaps are
summarized in Table I. Our results here differ from Ref. [16]

TABLE I. Band gap of LiGaO2 in different methods.

Method Eg (eV)

PBEsol 3.31
QSGW 7.22
QSGŴ 7.02
QSGŴ + ZPR 6.66
PBEa 3.36

QSGW a 6.46
0.8� QSGW a 5.81
GW0

b 5.995
GW0 + ZPRb 5.633

aFrom Rahda et al. [16].
bFrom Fang [47].
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FIG. 2. Imaginary part of the macroscopic dielectric function
tensor ε2(ω)αα for three polarizations α within the BSE and
independent-particle approximation (IPA). The quasiparticle gap is
indicated by the dashed line.

even for the QSGW case. We found that was due to converg-
ing the root mean square deviation of the self-energy from
one iteration to the next only to a tolerance of 10−3 in that
paper whereas now it is converged to 10−6. Apparently this
still affects the band gap to the order of 0.1 eV. We further
tested the convergence by using a 4 × 4 × 4 mesh instead of
3 × 3 × 3 for the calculation of the self-energy but this was
found to change the QSGW gap from 7.218 to 7.207 eV,
so the 3 × 3 × 3 mesh was deemed converged to ±0.01 eV
and used for the subsequent calculation of Ŵ . The reduction
of the self-energy shift owing to the ladder diagrams can be
taken as [Eg(QSGŴ ) − Eg(GGA)]/[Eg(QSGW ) − Eg(GGA)]
and amounts to 0.948, so a reduction by only ∼5%.

The zero-point motion band gap renormalization (ZPR)
due to electron-phonon coupling also needs to be consid-
ered. This correction is dominated by the longitudinal optical
phonon Fröhlich interaction and was estimated in Radha et al.
[16] to be about −0.2 eV. It was recently calculated ex-
plicitly by Fang [47] to be −0.36 eV including all phonons
and −0.31 eV using only the Fröhlich contribution. This
author also performed GW0 calculations and obtained a gap
of 5.995 eV without and 5.633 eV with ZPR. Adding the
ZPR correction to our larger gap, the quasiparticle gap is here
obtained to be 6.66 eV.

B. Dielectric function and excitons

Next we calculate the macroscopic dielectric function us-
ing the BSE method. Ŵ , as defined in Sec. II, is used in
Eq. (2). The results are shown in Fig. 2. One can see that
compared to the independent-particle approximation (where
neither electron-hole nor local field effects are included) the
shape of the dielectric function is strongly affected with peaks
in the continuum being redshifted and a sharp exciton peak
occurs below the gap for each polarization direction.
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FIG. 3. Exciton band gaps for each polarization as function of
k-mesh density.

However, to extract an accurate exciton binding energy, it
is important to converge the k-point mesh used in the BSE
two-particle Hamiltonian Hvck,v′c′k′ (see [32]). The results for
the lowest bright exciton of each polarization as function of
the inverse of the number of k points in the Brillouin zone
are shown in Fig. 3. We here used Nk × Nk × Nk meshes
with Nk ∈ {3, 4, 5, 6}. We can see that the 6 × 6 × 6 mesh is
close to being converged and the linear extrapolation yields
the values given in Table II. The line before the last line in
this table gives the final exciton gaps after subtracting the
ZPR correction of the gap. These values agree well with the
experimental values of Trinkler et al. [30]. Of course, there
remains some uncertainty in our calculations resulting from
the extrapolations and various other approximations, such as
completeness of basis set. We estimate these to be of order
0.1 eV.

The polarization dependence results from the splitting of
the valence band maximum with the a1 state (corresponding
to z along c) forming the VBM, followed by the b1 state
(polarized along x or a) and b2 (polarized along y or b).
Our calculated splittings for these excitons are 100 meV
for the a1-b1 splitting and 155 meV for the a1-b2 splitting,
whereas the corresponding band splittings are 106 meV and
147 meV and the experimental splittings are 102 meV and
136 meV. The closeness of the band splittings from the exciton

TABLE II. Exciton gap convergence and comparison with
experiment.

Nk E ‖ c E ‖ a E ‖ b

3 5.908 6.015 6.077
4 6.120 6.226 6.287
5 6.230 6.332 6.390
6 6.280 6.380 6.435
∞ 6.32 6.42 6.48
∞ + ZPR 5.96 6.06 6.12
Expt.a 5.931 6.033 6.067

aFrom Trinkler et al. [30].
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TABLE III. Exciton eigenvalues εi and their polarization λi,
oscillator strength fi (arbitrary units), and Rydberg series quantum
number n.

εi (eV) λi fi n

6.2800 c 502 1
6.3804 a 428 1
6.4352 b 353 1
6.6822 c 173 2
6.7824 a 149 2
6.7873 dark 2
6.8269 b 141 2
6.8328 dark 2
6.8700 dark 2
6.8773 dark 2
6.8836 c 10 3
6.8944 c 20 3
6.9026 dark 3
7.0066 a 45 3

eigenvalues indicates that the exciton binding energy is almost
constant and ∼0.70 eV. This is a remarkably high value. In the
present calculation only electronic screening is included in
the exciton binding energy. While the gaps themselves were
shifted by a ZPR, the Ŵ only includes electronic screening
without a contribution from the lattice polarization. However,
this is justified by the final binding energies being much larger
than the highest phonon energies. The phonons thus are too
slow to contribute to the screening of the electron-hole corre-
lated motion in the bound exciton.

C. Exciton series analysis

Besides the lowest energy excitonic peaks discussed until
now, we find a series of excited exciton states below the fun-
damental gap. An overview of these exciton energies and their
polarization is given in Table III. From the analysis of these
excitons given below, it becomes clear that these represent a
modified Rydberg series.

First, their oscillator strengths show that a series of exci-
tons with a well-defined predominant polarization exist and
are associated with the top three valence band holes form-
ing an exciton all with the same conduction band minimum
(CBM) at �. These are shown in Fig. 4. They show a decreas-
ing oscillator strength as we move up in the series closer to
the gap. While not exactly corresponding to the hydrogenic
Rydberg series where the binding energies would fall off as
1/n2, they approximately follow a similar series. The exciton
binding energy of the ground state excitons is about 0.7 eV
independent of polarization (or corresponding VB). The dif-
ference in energy to their first excited state is about 0.4 eV
rather than 3/4 of 0.7 eV which would amount to 0.525 eV.
For the second excited state of each polarization it is about
0.6 eV, which is rather close to 8/9 of the ground-state binding
energy, which would amount to 0.62 eV. For a hydrogenic
series one would expect the oscillator strengths to fall off as
1/n3. Here the oscillator strengths seem to fall off somewhat
slower with n. We hence tentatively label these exciton se-
ries by a quantum number n corresponding to their envelope
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FIG. 4. Exciton levels with their oscillator strengths for the three
directions. Dark excitons indicated by crosses, placed arbitrarily in
one of the three panels. The wide blue line indicates the QSGŴ gap.

function. Besides these bright excitons with well-defined po-
larization, we also find several dark excitons.

There are several reasons why the hydrogenic model
is not expected to apply strictly. First, the long-range
screened Coulomb interaction in an anisotropic (orthorhom-
bic) medium is given by

W (r) = 1√
εxxεyyεzz

e2√
x2

εxx
+ y2

εyy
+ z2

εzz

(4)

or in tensor notation W (r) = e2/

√
det(ε)ε−1

i j xix j . However,

the anisotropy of the dielectric constant ε∞ is rather small, as
shown by the experimental values extracted from the extrap-
olation of the index of refraction in the range 1–4 eV to zero
frequency but not including the phonon contributions. They
are εxx = 3.027, εyy = 2.931, and εzz = 3.017 [28].

The BSE calculations presented here also give us the
real part of the electronic contribution to the macroscopic
dielectric tensor ε(q → 0, ω = 0). These values are more
sensitive to the accuracy of the optical matrix elements than
the peak positions in the spectrum, which suffer from the
difficulties in evaluating the contributions of the nonlocal
self-energy d�/dk. The latter represents an additional term
to the momentum operator p/m in the commutator [r, H]
giving the velocity operator. To bypass this problem they
are calculated at finite q and extrapolated to q → 0 using a
model dielectric function [48] for the q dependence of the
form [ε(q) − 1]−1 = [ε(0) − 1]−1 + αq2 + βq4. This proce-
dure using a few q points near q = 0 in each direction gives
εxx = 2.90, εyy = 2.83, εzz = 2.88, using 24 valence bands
and 12 conduction bands. The results depend slightly on
how we interpolate. Using a quadratic interpolation on ε(q)
directly gives εxx = 2.99, εyy = 2.95, εzz = 2.96 even closer
to the experimental results. No matter which extrapolation
to q = 0 is used, these are robustly within ∼2% of the ex-
perimental values, similar to the findings of Ref. [32] for a
wide range of materials systems. In contrast, if we use the W
without ladder diagrams in the BSE, and start from the QSGW
self-energy, we find εxx = 2.81, εyy = 2.75, εzz = 2.81, which
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(a) (b)

(c) (d)

FIG. 5. Weights of exciton wave function contributed by different bands for (a)–(d) first to fourth excitons. The size of the colored circles
indicates the exciton weight |Aλ

vck|2 for a given exciton λ. The colors have no meaning and only serve to distinguish different bands.

are systematically smaller by ∼3% than using Ŵ indicating
the underscreening of W in the standard QSGW , and which
in the present material is consistent with the corresponding
overestimate of the � or gap correction by about 5% when
using W instead of Ŵ . In several materials, this error in the
screening is somewhat larger, of order 10%–20%. But the
point is that the ε(q → 0, ω = 0) is underestimated in the
same systematic way as the � is overestimated. This provides
another strong indication that the quasiparticle gaps obtained
in the ladder approximation (QSGŴ ) include the right amount
of screening. Both the peak positions of the excitons and the
real parts ε1(0) agree well with experiment.

Returning to the discussion of the applicability of the hy-
drogenic model for the excitons, we note that the effective
mass tensor is strongly anisotropic for each VB with a small
effective mass of order 0.4 for the direction corresponding
to the symmetry of the state, and mass of order 3.5–3.8 in
the other directions. For example, for the VBM of symmetry
a1 corresponding to z, the mass is small in the z direction
but large in the x, y directions. Likewise for the next two
valence bands. The conduction band mass is nearly isotropic
and close to 0.4 eV. So, the reduced mass is about 0.2 for the
direction with the small valence band mass and about 0.4 for
the other directions. The kinetic energy in the relative motion

equation of electron and hole would be h̄2

2
1
μi

∂2

∂x2
i
, with μi the

reduced mass component i = x, y, z and with summation con-
vention. We thus expect excitons of a given symmetry to be
somewhat more extended in the direction of the small reduced
mass. Next, for excitons closer and closer to the gap, or with
smaller binding energies, k-point convergence becomes more
and more challenging and requires a finer mesh. So, there
are increasing errors due to the k-mesh coarseness for higher
excited state excitons. Finally, the excitons are strictly not
corresponding to a single k point and symmetry but are a
mixture of states of different k.

D. Exciton visualization

To verify the association of the excitons with a Rydberg-
like series of different envelope functions and to better
understand the dark excitons, we use three different ap-
proaches. First, we analyze the excitons by considering which
band-to-band transitions primarily contribute to each exciton
and how these are distributed in k space by showing their
intensity on the band structure plot. This is shown for the first
four excitons in Fig. 5. In spite of the relatively high exciton
binding energy, these excitons are clearly Wannier-like with
the main contributions coming from the CBM near � and
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(a)

(b)

FIG. 6. Band weights of the lowest (a) and highest (b) energy
dark excitons.

for excitons 1, 2, 3 the corresponding valence bands 1, 2,
3 counted from the VBM downward. The zoom-in near the
VBM for the first, second, and third excitons confirms that
they are coming from the top three valence bands with a1, b1,
b2 symmetry, respectively. One thus expects these excitons to
be delocalized in real space. Similarly, we also find the fourth
exciton to arise from the top valence band, which clearly
identifies it as part of the Rydberg series of excitons related
to this band edge. Further analysis of the k-space distribu-
tion is given later and shows that it has a k-space envelope
function with a radial node whereas the first exciton has a

nodeless envelope function but in Fig. 5 this is not visible and
exciton 1 and exciton 4 appear identical.

Now, looking at the dark excitons, Fig. 6 shows that the
first dark exciton (at 6.7873 eV) has zero contribution from
� and has contributions only from the top valence and lowest
conduction bands but only along the �-Y symmetry line. This
is readily explained if it is a 2py-like envelope function which
has a nodal plane in the x plane. While spherical symmetry
does not strictly apply, as already discussed above, we can
still classify the excitons according to the irreducible repre-
sentations of the point group at � in so far as the excitons
are dominated by contributions from band-to-band pairs at �.
Thus a py spherical symmetry corresponds to b2 symmetry in
the C2v group and is characterized by odd symmetry relative
to the xz mirror plane perpendicular to y.

Similarly (not shown), the second dark exciton (at
6.8328 eV) also has contributions from the top valence band
and bottom conduction band but now has a node in the y plane,
so it must have a envelope function with approximately px

spherical harmonic character, or more precisely, b1 symmetry
in the C2v point group. The next dark exciton (at 6.8700 eV)
has contributions from the second valence band (which has
b1 or x-like symmetry) but has contributions only along �-Y
so it has an x-nodal plane. Finally, the highest energy dark
exciton (closest to the conduction band) is shown in Fig. 6
because it has a somewhat different interesting character. One
can see that here several valence bands participate. The second
valence band has contributions along both �-X and �-Y but
not at � and not along �-Z . We thus conclude it has a z-nodal
plane in terms of these contributions. However, it also has con-
tributions from a deeper valence band which has contributions
in all three directions near � but is nonetheless dark because
of the symmetry of this band, which we checked to be a2 and
therefore not dipole allowed.

As a second approach, the spatial extent of the excitons in
real space is illustrated in Figs. 7 and 8. Here we present iso-
surface plots of |λ(re, rh)|2 = |∑vck Aλ

vckψvk(rh)ψck(re)|2
for the hole position rh chosen on one of the O located above
a Li atom as function of the electron position re. In the expan-
sion of the one-electron eigenstates, only the smooth part of
the muffin-tin orbitals represented on a real-space mesh in the
unit cell is included. The calculation used a 6 × 6 × 6 k-point
mesh and hence obtains the excitons in a 6 × 6 × 6 supercell.
We plot these using the VESTA plotting software [49] and use
an isosurface value, approximately 10% of the maximum of
the function. The latter varies somewhat arbitrarily because
the smooth parts of the basis functions are not normalized.
To extract these real-space probabilities and the band weights

FIG. 7. Spatial distribution of excitons: the yellow isosurfaces correspond approximately to 10% of the maximum value. (a)–(d) correspond
to excitons 1–4 and (e) to the exciton No. 6 in Table III, which is the first dark exciton.
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FIG. 8. Sections through the center of the excitons 1–4 and 6 (of
Table III) from top to bottom and in different planes from left to right.
The data values d are converted to a color index T between 0 and
1, T = (d − Smin )/(Smax − Smin ) with Smin = 0 and Smax ≈ 0.02dmax.
For d > Smax the highest color level T = 1 is used.

we reduced the number of bands included in the BSE calcu-
lation to only 6 valence bands and one conduction band. This
slightly modifies the exciton binding energies and even how
many separate excitons we obtain as eigenvalues but we can
still identify the excitons with those in Table III.

Because of the 3D structure, it is impractical to super-
pose the structure on the isosurface plots and maintain a 3D
perspective view as we do in Fig. 7. The box corresponds
to a 6 × 6 × 6 supercell and the hole is placed near the

center. The isosurface then shows the probability distribution
of finding the electron at a level 10% of the maximum. These
figures give an idea of the overall spread of the exciton and
show a nonmonotonic structure in some cases. The relation
of the structure to the isosurface can be better seen in Fig. 8
where we show sections in the a, b, c planes passing through
the center of the distribution. Here we can still see the overall
spread but in addition we can see that the probability to find
the electron is larger near a few of the Ga atoms close to the
hole located on an O above Li in the center of the box. One
can see that the excitons 1–3 have similar spatial extent, which
is consistent with them being n = 1 excitons corresponding to
different valence bands. The isosurface value is chosen so as
to show sizable contributions near the atoms. The overall size
is somewhat arbitrary but clearly the excitons extend over at
least 10 Å. This is consistent with an effective Bohr radius
of h̄2ε/μe2 with a reduced mass of about 0.2 and dielectric
constant of about 3.

For exciton No. 4 in Table III, which we claim is an n = 2
bright exciton related to the top valence band, we chose the
isosurface value a bit smaller to show more clearly that it
extends farther in space. One can see that it has a central
region similar to exciton 1, then a shell of reduced intensity
(corresponding to a radial node), and then a more extended tail
where the contributions on each atom are significantly smaller.
This is more clearly seen in Fig. 8. This is what is expected
of a 2s-like envelope function. The fact that the tail extends
all the way to the edges of the 6 × 6 × 6 cell may indicate
that this cell does not fully capture the real-space extent of
the exciton and would require a finer k mesh for accurate
convergence.

Exciton No. 5, which is the first dark exciton in this calcu-
lation, which uses a larger number of k points but fewer bands,
and can be identified with exciton No. 6 in Table III, shows
two distinct regions with a nodal plane perpendicular to the b
axis in between. Although we here plot only the wave function
modulo squared, giving the probability density of finding the
electron at a certain position from the chosen hole position in
the center of the supercell, we may expect this to be an odd
function as we will explicitly show below in the k-space plots
of the real part of the Aλ

vck. This is also clearly seen in Fig. 8,
where in the b plane through the center, the values are very
small. Some of the other excitons become more difficult to
interpret and are also deemed less well converged in terms of
k mesh or number of bands involved, which increases as the
exciton binding energies becomes smaller. They are thus not
shown here.

Finally, our third approach to analyze the excitons is to
look directly at the Aλ

vck coefficients on a k mesh. We here
use an 18 × 18 × 18 k mesh but only 1 conduction band
and 6 valence bands and interpolate the results to an even
finer mesh. We can either inspect individual vc pairs or sum
over all vc pairs for a given exciton Fλ(k) = ∑

vc Aλ
vck and

then display this as function of k. First, we should note that
exciton energies calculated in this way is different from that
in Table III but is deemed to be better converged in k. Since
here we wish to focus on the low-lying excitons, we think
it is more important for convergence to make the k mesh as
fine as possible at the expense of including only a few bands.
Hence, we focus only on the six lowest energy excitons in
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FIG. 9. Absolute value of envelope function F λ(k) for lowest six excitons calculated with an 18 × 18 × 18 k mesh. The kx, ky are in units
2π/a with a the lattice constant.

the present discussion. As discussed above, in most cases
only one pair contributes significantly near �. However, as
we move away from � the band plots indicate that a different
band number may contribute. We will see that this leads to
somewhat intricate fine structure of the exciton eigenstates
in k space. We here examine not only the absolute value but
also the real and imaginary parts of these envelope functions
in k space to evaluate their symmetry by looking for sign
changes. The real and imaginary parts depend somewhat on
an arbitrary phase. So, we divide the Aλ

vck by a constant
phase such that at the maxvck |Aλ

vck|2, the Aλ
vck becomes purely

real.

We note that the Fλ(k) functions provide directly the 3D
Fourier transform of the real-space exciton envelope function
in a Wannier exciton model. For example for a pure spherical
harmonic envelope function they would preserve the spherical
harmonic character but have a radial extent in k space given
by the spherical Hankel function transform proportional to
f̃l (k) = ∫ ∞

0 fl (r) jl (kr)r2dr for a radial function fl (r). Sim-
ilar plots of Wannier function envelope functions in k space
were given for 2D MoS2 by Qiu et al. [50], which are in-plane
isotropic. However, as mentioned earlier, in the present 3D
material, we do not have a pure spherical harmonic envelope
function because of the anisotropy of the screened Coulomb

FIG. 10. Real part of the F λ(k) in three kz planes for lowest six excitons, kx, ky, kz in units of 2π/a.
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interaction and valence band effective masses and possibly the
mixture of bands at k away from �.

Figure 9 shows the absolute value of the six lowest excitons
in the kz = 0 plane indicating also their eigenvalue. We can
see in Fig. 9 that the first three excitons (polarized along
c, a, b, respectively) have an envelope function with similar
extent in k space and they show no radial nodes. In other
words, they are consistent with a monotonic 1s-like function.
Nonetheless, the second and third excitons are already seen to
have a more intricate fine structure, which will be discussed
below. Excitons 4 and 5 in this calculation turn out to be
dark, and absolute value plots show they have a node in the
yz and xz planes, respectively. Exciton 6 is again seen to be
even but shows a radial nodal structure, which is the charac-
teristic feature of a 2s-like exciton. The smaller inner region
in k space indicates a larger extent in real space. The lower
intensity second ring is of similar size as the envelope of the
first exciton and results from the orthogonality to the lower
exciton envelope function. This exciton 6 here corresponds to
exciton 4 in Table III, so apparently the dark excitons 4 and 5,
which are in some sense 2p-like, have actually lower energy
than the 2s exciton when using a finer k mesh, but we can see
that their energies differ by less than 0.01 eV with the two 2p
dark excitons differing by less than 0.001 eV. It is thus not
surprising that the order and number of excitons we obtain are
quite sensitive to the k mesh.

The real parts are shown in Fig. 10 for all six excitons in the
kz = 0 and kz = ±δk planes with δk the mesh spacing in the
z direction. These figures clearly show that the dark excitons
4 and 5 are odd with respect to the mirror planes mentioned
earlier, which explains why they are dark. A more intricate
pattern of symmetries is seen in all excitons. For example for
exciton 2, we can see that the function is even under a C2y

operation, a two fold rotation about the y axis, which changes
both kz → −kz and kx → −kx. It is also odd under a twofold
rotation about the z axis. Although C2y is not a symmetry of
the crystal structure, it is a symmetry of the point group of the
lattice vectors, which is D2h and hence of k space. We can see
that in the kz = 0 plane it is stretched in the y direction. This is
consistent with Fig. 5(c) and results from the hole mass being
larger in the y than the x direction for the second band state,
which has b1 (or x-like) symmetry. This means the function
will be spread out more in the x direction in real space, as can
also be seen in Fig. 7(c). From Fig. 5 one can see that this
exciton will also have contributions from the first and third
band beyond the band crossings in k space. This may account
for the complex superposition of different patterns. The same
is true for each of these excitons. Nonetheless, one can see
that the first and sixth excitons are fully a1 symmetric. Their
patterns also look quite similar at larger k but differ closer
to �. Clearly, the Wannier exciton model based on spherical
symmetry does not quite hold because of the more complex
mixing of Bloch states of different k in the BSE theory and
the anisotropies of the present system but still provides an
approximate guidance to understand these excitons.

IV. CONCLUSIONS

The first conclusion of this work is that the quasiparticle
band gap of β-LiGaO2 calculated previously in [16] has to be

revised for three reasons. First, better self-consistency conver-
gence of the QSGW gap increases the gap from 6.46 eV to
7.22 eV. Second, adding ladder corrections to the polarizabil-
ity leads to a QSGŴ gap of 7.02 eV, where the self-energy
is reduced by about 5% rather than the canonical 20%. Third,
the electron-phonon coupling band gap renormalization esti-
mated there was meanwhile fully calculated in [47] and gives
a larger correction of −0.36 eV. Considering all these, the
quasiparticle gap becomes 6.66 eV. However, exciton binding
energies are found to be about 0.7 eV for the ground-state
excitons related to each valence band maximum and the con-
duction band minimum. Taken together, this places the optical
exciton gap at 5.96 eV with a dipole-allowed transition with
polarization along the c axis, followed by a 6.06 eV exciton
polarized along a and 6.12 eV along b. These results are
in excellent agreement with recent spectroscopic ellipsom-
etry [28] and photoluminescence excitation results [29,30].
These results were obtained by extrapolating the calculated
exciton energies as function of the inverse of the number
of k points in the Brillouin zone sampling to zero. Since
only electronic screening is included in the BSE calcula-
tions done here, this excellent agreement with experiment
suggests that indeed only electronic (as opposed to lattice)
screening affects the exciton binding energy. The static real
(electronic-only) dielectric constant ε1(ω = 0) is also found
to be in good agreement with experiment, suggesting that the
method captures the correct amount of screening rather well
by including the ladder diagrams, and that these low-order
diagrams are sufficient to well capture both the one-particle
Green’s function and the two-particle dielectric function. The
excellent agreement could be an artifact of error cancellation
in the various approximations made, in particular the use of
static, RPA W in the vertex for the BSE, use of the TDA, and
the omission of higher order diagrams. We have made a few
checks of the TDA and RPA W in several weakly correlated
systems, and found the effects to be relatively small although
not completely negligible. That being said, the high degree of
fidelity in one- and two-particle properties for many kinds of
materials and the consistency between one- and two-particle
properties suggest that if results are improved by error cancel-
lation, it is not entirely fortuitous but occurs for some reason
akin to the Z-factor cancellation in the self-energy noted
earlier.

Further examination of the excitons below the gap reveals
that the BSE gives approximately a Rydberg-like series of
excitons associated with each band edge. However, it deviates
from the usual Rydberg series because of the anisotropy of the
band states involved in the exciton and the Coulomb energy
and the band mixing in the BSE. Several dark excitons were
also found and they were shown to be associated with the
same bands but with a nodal plane and therefore not fully
symmetric envelope function within the point group of the
system, which explains why they become dark. Rather intri-
cate patterns of the exciton envelope functions were revealed
by using a sufficiently fine k mesh.
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