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Patterned bilayer graphene as a tunable strongly correlated system

Z. E. Krix * and O. P. Sushkov
School of Physics, University of New South Wales, Sydney 2052, Australia

and Australian Research Council Centre of Excellence in Low-Energy Electronics Technologies,
University of New South Wales, Sydney 2052, Australia

(Received 13 October 2022; revised 14 March 2023; accepted 19 April 2023; published 28 April 2023)

Recent observations of superconductivity in moire graphene have led to an intense interest in that system, with
subsequent studies revealing a more complex phase diagram including correlated insulators and ferromagnetic
phases. Here we propose an alternate system, electrostatically patterned bilayer graphene, in which a supermod-
ulation is induced via metallic gates rather than the moire effect. We show that, by varying either the gap or
the modulation strength, bilayer graphene can be tuned into the strongly correlated regime. Further calculations
show that this is not possible in monolayer graphene. We present a general technique for addressing Coulomb
screening of the periodic potential and demonstrate that this system is experimentally feasible.
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I. INTRODUCTION

Superconductivity in twisted bilayer graphene [1] occurs
at a twist angle which turns the lowest-lying energy states
into a flat band [2]. More generally, strongly correlated phases
due to flat-band physics arise in a broad range of materials.
Observations of superconductivity [1,3–6], correlated insu-
lators [3–5,7–9], ferromagnetism [10,11] and nematic order
[8,12,13] have been reported across the family of twisted
graphene systems. This includes twisted bilayer graphene
[1], twisted trilayer graphene [6], and twisted double-bilayer
graphene [13]. Flat bands also arise in twisted transition metal
dichalcogenides (TMDCs) [14] and kagome systems which
exhibit superconductivity, ferromagnetism, and charge den-
sity waves [15–20].

Given the high level of interest in strongly correlated
phases arising from flat-band systems, particularly twisted
bilayer graphene, this work proposes an alternative graphene-
based system which is fully tunable and contains a well-
defined, isolated flat band. The system we consider is a
graphene bilayer with no twist angle and a patterned electro-
static gate a vertical distance z from the bilayer. For brevity
we refer to this system as patterned bilayer graphene (PBG).
The guiding idea is to restructure the bare energy bands of
bilayer graphene via periodic electrostatic gating rather than
with a twist-induced moire superlattice. Conceptually, this is a
continuation of our previous work on semiconductor artificial
crystals [21], which are less efficient than PBG at generating
a strong modulation. A major advantage of this approach is
that it bypasses the issue of twist-angle disorder [22] (i.e.,
long-range spatial variation of the twist angle). The moire flat
band occurs at a precise value of twist angle (θ ≈ 1.1◦) and
a modest amount of twist disorder (�10%) can destroy this
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band [23]. We demonstrate that PBG has no equivalent fine
tuning or disorder problem.

The central advantage of our system is its controllability.
A designed superlattice potential induced by patterned elec-
trostatic gating can have any desired lattice symmetry (e.g.,
square, triangular, honeycomb [24], Lieb, or kagome) and
lattice constants as small as 40 nm [25]. It is also possible to
tune both the strength of the supermodulation and the particle
density independently [25–27]. In contrast, moire graphene
superlattices have a triangular symmetry which is fixed by
the crystal structure of graphene. The superlattice constant
a ≈ 13 nm is also fixed by the flat-band condition θ ≈ 1.1◦.
Tuning the superlattice strength is only possible by applying
hydrostatic pressure [4,28], though in trilayer systems it may
be possible to do this by varying the band gap [9]. Some prior
works have focused on patterning monolayer graphene, either
by etching holes directly into the graphene sheet [29] or by
patterned electrostatic gating [25,30]. Reference [29] demon-
strates, theoretically, that patterning introduces an energy gap
in the graphene dispersion while Refs. [25,30] measure mag-
netotransport properties of a real device and show that the
result of patterning is essentially a correction to single-particle
physics. There is not, however, the possibility for generating
an isolated flat band or strongly correlated phases in these
monolayer graphene systems. Patterned bilayer graphene has
also recently been studied theoretically with regards to its
topological properties [31].

Our results are derived from band structure calculations in
a continuum, bilayer graphene model with imposed superlat-
tice potential. We find that bilayer graphene can be driven
into the Mott regime by inducing a sufficiently strong band
gap and potential modulation. This occurs because a flat band
develops in the lowest-energy band of the PBG dispersion.
By detuning either the band gap or potential modulation the
system can be tuned out of the Mott regime while keeping the
total electron density fixed. Within the flat band it is possible
to mimic the dispersion of many different two-dimensional
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lattices including square, triangular, kagome, and Lieb, by
varying the symmetry of the patterned gate. We show, using
an analogous calculation, that it is not possible to generate a
flat band in monolayer graphene. Lastly, we study electron-
electron screening in bilayer graphene. Current techniques
are not able to address a system with both an unbounded
dispersion and a strong potential modulation; we develop a
general technique to address Coulomb screening in this limit.
The technique we develop is general and could also be applied
to, for example, the problem of impurity screening in bilayer
graphene. We show that screening of the periodic potential is
strong but can be overcome by experimentally realistic gate
voltages. Our results show that patterned bilayer graphene
is an experimentally viable way to engineer an isolated flat
with almost complete control over the underlying effective
Hubbard model.

II. THEORETICAL TECHNIQUES

Our starting point is a plain bilayer graphene sheet with
external, perpendicular electric field E inducing an energy
gap �. The relationship between field and gap is roughly
|E| ∝ �, where the constant of proportionality is such that
a displacement field of 1 Vn−1m leads to a gap � = 100 meV
[32]. We find that the value of the gap is important but does
not need to be finely tuned, we discuss conditions on � below.
The low-energy effective Hamiltonian for a single valley of
bilayer graphene is [33]

HBLG =

⎡
⎢⎢⎣

�/2 vp− 0 γ

vp+ �/2 0 0
0 0 −�/2 vp−
γ 0 vp+ −�/2

⎤
⎥⎥⎦, (1)

where v ≈ 1×106 ms−1 is the Fermi velocity of monolayer
graphene, γ ≈ 0.38 eV is the coupling between graphene lay-
ers, and the operator p± is defined by p± = px ± ipy. These
values are taken from Ref. [33]. The Hamiltonian is composed
of 2×2 blocks. Each diagonal block is the Hamiltonian of a
single graphene layer, and each layer has a different energy
shift ±�/2 depending on its position in the external field. The
off-diagonal blocks, which couple the two layers, arise from
the simplest kind of interlayer hopping, between two carbon
atoms which are vertically aligned: γ is the matrix element for
this hopping.

One can also include terms in the Hamiltonian which
describe longer-range interlayer hopping (these are denoted
by γ3 and γ4 in Ref. [33]). As discussed in Ref. [33] they
contribute to trigonal warping and particle-antiparticle asym-
metry of the band dispersion. These additional terms are
secondary to the major terms v and γ , and, for the sake of
physical transparency, we neglect them here.

In the limit |ε| � γ , the two low-energy bands
which arise from Eq. (1) are roughly quadratic:
ε(p) = ±

√
(p2/2m∗)2 + �2/4, where the effective mass

is m∗ = γ /2v2 ≈ 0.03me.
Over the top of this Hamiltonian we wish to introduce a

spatially modulated electrostatic potential U (r), due to the
patterned gating. Suppose, first, that the periodic potential

FIG. 1. Sketch of the two Brillouin zones. The larger is that of
the underlying bilayer graphene system and the smaller is that of the
artificial crystal. Since we use an expansion about the K points of the
bilayer graphene BZ, the artificial BZ is centered at a K point. The
inset shows the artificial crystal in real space.

defined at the gate is given by

Ugate(r) = W
∑

G

eiG·rUG,

where the vectors G are the reciprocal lattice vectors of the ar-
tificial superlattice and W is a parameter taking dimensions of
energy which controls the strength of the superlattice. In our
calculation, the dimensionless parameters UG define a muffin-
tin shaped, periodic potential with square-lattice symmetry
(see the inset to Fig. 1). In this case W is equal to the total
variation in potential energy from minimum to maximum, the
“height” of the muffin tin. For concreteness we study W > 0,
which corresponds to an array of antidots. The opposite limit
W < 0 is very similar and we discuss this below. The potential
U (r) at the plane of the bilayer graphene sheet is then

U (r) = W
∑

G

eiG·re−GzUG, (2)

where z is the vertical distance between the patterned gate
and the bilayer. This exponential suppression of the higher
harmonics follows directly from Poisson’s equation. For a
square lattice, the first harmonic has G = g = 2π/a, where a
is the superlattice period. We choose parameters a = 80 nm
and z = 10 nm which are reasonable from an experimental
standpoint. The suppression of the second harmonic relative
to the first is then e−gz ∼ 0.5 meaning that higher harmon-
ics should not be neglected. For a smaller lattice constant,
a = 40 nm, e−gz ∼ 0.2 and so higher harmonics are slightly
less significant. Given this periodic potential the total Hamil-
tonian becomes

HPBG = HBLG + U (r).

The matrix structure of U (r) is trivial, it is a 4×4 identity
matrix. Strictly speaking there should also be a spatially vary-
ing correction to the gap � due to each graphene layer being
a slightly different distance from the patterned gate. This cor-
rection, however, produces a small effect relative to the major

165158-2



PATTERNED BILAYER GRAPHENE AS A TUNABLE … PHYSICAL REVIEW B 107, 165158 (2023)

contribution U (r), and can be neglected. Note that the applied,
constant field (which induces �) will give a similar, diagonal
contribution to the Hamiltonian. Since that contribution is
spatially invariant, it simply shifts all energy levels by the
same amount, and can be left out of the Hamiltonian.

Since the artificial superlattice period a is larger than the
period of the graphene lattice and since we are focusing on
a single valley, our approach amounts to defining a smaller,
artificial Brillouin zone (either square or hexagonal) around
one of the vertices of the original bilayer graphene Brillouin
zone. This is sketched in Fig. 1.

The energy levels of the Hamiltonian HPBG can be obtained
exactly by numerical diagonalization. We must first compute
the matrix elements of HPBG in a particular basis. For simplic-
ity, we choose basis vectors |k + G, i〉, defined by

|k + G, i〉 = 1√
A

ei(k+G)·r|i〉,

(|i〉) j = δi j, i, j = 1, . . . , 4.

Here |i〉 is a 4-tuple, G is a reciprocal lattice vector of the su-
perlattice, and k is the quasimomentum, which sits somewhere
within the artificial Brillouin zone. The normalization factor
A is just the total area of the sample. For example, at i = 1,
we have

|1〉 =

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦.

The matrix elements of HPBG are then

〈k + G, i|HPBG|k + G′, j〉 = 〈i|HBLG(k + G)| j〉δG,G′

+ δi, jWUG−G′e−|G−G′|z.

In HBLG(k) the operator p± is replaced by the complex num-
ber k± = kx ± iky. The matrix elements of the potential are
given by

UG = 2π
R2

Acell

J1(|G|R)

|G|R ,

where R is the radius of a single antidot, taken to be R =
15 nm in our calculations, and Acell is the unit-cell area of
the artificial crystal; J1 is a Bessel function of the first kind.
The only differences between square and triangular lattices
are the choice of reciprocal lattice vectors G and the size of
Acell in the above equation. To diagonalize this Hamiltonian
numerically we must make the set of basis vectors finite by
choosing a maximal G vector. In practice, we simply increase
the size of the basis until the energy levels or eigenvectors
converge. The result of this procedure is a set of energy lev-
els εn(k) and eigenvectors ψn,k(r), each being a function of
the quasimomentum k of the artificial superlattice. The band
index can take values n = ±1,±2, . . . with the charge neu-
trality point occurring between n = −1 and +1. Each band n
is degenerate across valleys and spins and contains a number
of particles, n0 = 4/Acell, corresponding to complete filling of
one artificial Brillouin zone (accounting for spin and valley
degeneracy). At a = 80 nm we have n0 = 6.25×1010 cm−2,
while at a = 40 nm we have n0 = 2.5×1011 cm−2.

The parameter W has been defined at the patterned gate.
This allows us to fairly compare the strength of a square lattice
with that of a kagome lattice (for example). Still, it is useful
to have a general idea of the amplitude of the potential at
the two-dimensional electron gas (2DEG). Looking at the first
harmonic only, this quantity is

W2DEG = W 2π
R2

Acell

J1(|G|R)

|G|R e−|G|z.

As a rough approximation, keeping only first harmonics, the
potential at the 2DEG is 2W2DEG[cos(gx) + cos(gy)]. For the
parameters we are using the conversion is W2DEG = 0.042W .
At W = 30 meV we have W2DEG = 1.26 meV. If the total
variation in potential energy is 30 meV at the gate, then the
equivalent quantity at the 2DEG is around 8W2DEG = 10 meV.

III. GENERATING A FLAT BAND

We will first demonstrate how the band structure evolves as
W is tuned, keeping the band gap fixed at � = 15 meV. Our
results are summarized in Fig. 2. In the first panel of Fig. 2,
W = 0 and the dispersion is just the result of bandfolding the
bare BLG dispersion into the artificial, square Brillouin zone:
at 	 the electron band starts at +7.5 meV and the hole band
starts at −7.5 meV. We find that as the potential is turned on
the first hole band (n = −1) is separated from the remaining
hole bands (n = −2, −3, . . . ) and develops a total bandwidth
δb = 0.53 meV, which does not change as W is increased
beyond 30 meV. The existence of this flat band is the main
focus of our work. As can be seen, the full dispersion is
electron-hole asymmetric; we address this point later in the
section.

To study the flat band more closely, we plot it individually
in Fig. 3 for a range of W values. We find that the effect of the
potential is not only to separate this band, but to transform its
dispersion into that of a tight-binding model on a square lattice
with nearest-neighbor hopping (green band in Fig. 3). This
dispersion is 2t[cos(akx ) + cos(aky)] where t is the matrix
element for nearest-neighbor hopping. We can thus map the
physics of the flat band to an effective tight-binding model
by equating the total bandwidth δb with 8t : we find that the
effective hopping parameter is t = 0.066 meV. The number
of states within this band is n0 = 4/Acell = 6.25×1010 cm−2,
with the factor 4 arising from spin and valley degeneracy.

The emergence of a flat band is related to the energy gap.
A plain bilayer graphene sheet has two, roughly quadratic
bands with opposite curvature and the effect of an out-of-plane
electric field is not only to open a gap between these bands, but
to flatten the bottom of each band as well. The idea, then, is
to first flatten the bottom of the band using a constant electric
field and then to separate a flat band by imposing a periodic
modulation. The artificial Brillouin zone “cuts out” the flat
part of the hole band. We thus require that the first Brillouin
zone of the artificial lattice fit within the flattened part of the
bare BLG dispersion. To generate a flat band using a smaller
superlattice period, that is, with a larger Brillouin zone, we
must increase the size of the flat region in the bare BLG
dispersion by increasing the gap. The presence of the gap
makes it easier for an external potential to localize electrons,
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FIG. 2. Evolution of dispersion from W = 0 to 30 meV. In each
panel a = 80 nm, � = 15 meV, R = 15 nm, and z = 10 nm. At W =
0 meV we have the bare BLG dispersion bandfolded into the ar-
tificial Brillouin zone. By W = 30 meV a single, flat band (width
≈0.5 meV) has separated from the rest of the hole bands. Points
around the artificial Brillouin zone are defined in the inset.

and also allows for separation between electron and hole
bands so that the resulting flat band is isolated.

This suggests a criterion for the minimum band gap �

which can give a flat band. If we approximate the bare dis-
persion by ε(k) =

√
(p2/2m∗)2 + �2/4 then the “flat region”

of the dispersion is roughly defined by p2/m∗ = �. If we
want the boundary of this region to coincide with the Bril-
louin zone boundary then the condition on the band gap is
� ∼ (π/a)2/m∗ = 3.5 meV.

To demonstrate the importance of the band gap we compute
the evolution of the band structure as � is tuned, keeping
W = 30 meV fixed. The results are plotted in Fig. 4. At
� = 0 the electron and hole bands touch and there is no
isolated flat band. At � = 5 meV the n = −1 band becomes

FIG. 3. Zoom-in of the n = −1 band in Fig. 2. Each curve cor-
responds to a different value of W , with W = 0 meV for the lowest
curve and W = 30 meV for the uppermost curve.

isolated. And, finally, at � = 15 meV (Fig. 2), the dispersion
of the n = −1 band matches that of the square-lattice tight-
binding model: 2t[cos(kxa) + cos(kya)]. Bilayer graphene can
be tuned in and out of the flat-band regime in two ways. First,
one can fix the band gap and increase the potential modulation
from zero. Second, one can fix the potential modulation and
increase the gap.

The shape of the flat-band dispersion follows from shape
of the potential energy: a square array of hat functions. We
have defined the potential such that electrons in the upper
BLG band (n > 0) minimize their energy at minimal values
of U (r). Electrons in the lower BLG band thus minimize their
energy by seeking the potential maxima, and can be localized

FIG. 4. Evolution of dispersion from � = 0 to 5 meV. In each
panel a = 80 nm, W = 30 meV, R = 15 nm, and z = 10 nm. The
flat band becomes isolated by � = 5 meV, but the dispersion
2t[cos(kxa) + cos(kya)] does not develop until � = 15 meV (Fig. 2).
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FIG. 5. Particle density of electrons in the flat band for dif-
ferent values W at � = 15 meV. (a) Map of particle density at
W = 30 meV. (b) Cuts of particle density along y = 0 for W = 2
to 30 meV.

to the square lattice by making the imposed potential suffi-
ciently strong. We can investigate localization by computing
the particle density due to the sum of all electrons within the
first hole band. That is, we can compute

ρn(r) =
∑
k,σ

|ψn,k,σ (r)|2,

where the band index is n = −1. Our results are plotted in
Fig. 5. Figure 5(a) shows a map of the particle density for
W = 30 meV. Here, the density is peaked at the antidot sites
and has square-lattice symmetry, electrons are well local-
ized to each site. To quantify this we present some cuts of
the particle density along the nearest-neighbor line between
two antidot sites for different values of W [Fig. 5(b)]. We
find that as W increases the particle density at the midpoint
between two sites, a measure of the wave-function overlap,
decreases until, at W = 30 meV, it is 5% its maximum value.

This strong localization to a square lattice is the reason the
dispersion reproduces that of a tight-binding model with small
t (t = 0.066 meV); it is enabled by the presence of a finite-
energy gap �. The localization does not increase indefinitely
as you increase W : once the electron is squeezed into an area
the size of the antidot, further increase of W does not increase
the degree of localization. Thus, the width of the particle den-
sity peak in Fig. 5(b) is around 0.4a ≈ 30 nm = 2R. Because
localization is limited to the size of the antidot, the effective
hopping parameter t does not change any further.

Note that this explains why the dispersion in Fig. 2 is
particle-hole asymmetric. Our potential (Fig. 1) has a series
of well-defined maxima, which can localize particles in the
hole band. The minima of the potential, which can localize
particles in the electron band, arise from the Poisson factor
e−Gz in Eq. (2) and are thus weak. A larger value of W is
required to localize particles in the electron band, compared
to particles in the hole band. We thus find that a flat dispersion
develops in the hole bands before it develops in the electron
bands, as W is turned on. We could alternatively create a flat
dispersion in the electron bands by imposing an array of dots
rather than antidots: the transformation W �→ −W flips all of
the energy levels like ε �→ −ε.

IV. MAPPING TO HUBBARD MODEL

The dispersion and the particle density of the flat band
suggest a mapping to a tight-binding model on a square lat-
tice. We have already shown that the bandwidth of the flat
band can be used to define an effective hopping parameter
for the artificial crystal t = 0.066 meV. Given the particle
density in Fig. 5 we can also define an effective, onsite
Coulomb repulsion energy UH . We can take the form of the
particle density around a single bright dot in Fig. 5(a) and
treat it as the wave function for a single electron |ψ (r)|2.
This has to be normalized so that there is one electron per
bright dot ∫

cell
d2r|ψ (r)|2 = 1.

Having extracted the function |ψ (r)|2 from Fig. 5 we can
compute the effective Hubbard energy

UH = e2

ε

∫
d2r′d2r

|ψ (r′)|2|ψ (r)|2
|r′ − r| ,

where ε is roughly the dielectric constant of the encapsu-
lating medium, which for the purpose of estimating UH we
take to be hBN so that ε = 4. We find that, at W = 30 meV,
the particle density around a single bright dot is fit by a
Gaussian |ψ (r)|2 ∝ e−r2/σ with σ ≈ (0.25a)2 = 0.063a2. Af-
ter the appropriate normalization this gives a Hubbard energy
UH ≈ 10 meV. We thus have a dramatic ratio UH/t ≈ 150.
Our estimate of t is essentially exact, however, the estimate of
UH is an upper limit, its value will be reduced by higher-order
effects. The actual value of UH/t will then be less than this
estimate.

One factor which reduces UH is screening by the patterned
gate. Any charge in the graphene layers will induce an image
charge in the patterned layer which screens the Coulomb
interaction. The corresponding screening length is roughly the
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distance z ≈ 10 nm between the gate and the bilayer graphene
sheet. Accounting for this effect gives the following, corrected
Coulomb energy:

e2

r
− e2

√
r2 + 4z2

.

Repeating the estimate with this Coulomb energy gives the
reduced value UH ≈ 5 meV, so that the ratio with t becomes
UH/t ≈ 75.1 Additional effects will reduce this number fur-
ther, perhaps by another 50%. What is clear from this rough
estimate, however, is that the Mott regime, defined by UH/t ∼
7 [34], is well within reach of experiments. In all of these
estimates we have fixed the lattice constant at a = 80 nm.
Supposing that we could scale the system down in all direc-
tions by half, so that a = 40 nm and R = 7.5 nm, we would
expect t ∼ 1/a2 to increase by a factor 4 and UH ∼ 1/R
to increase by a factor 2. The scaled Hubbard ratio is then
UH/t ∼ 40. By tuning the value of W from zero to 30 meV
we can turn bilayer graphene from a weakly interacting gas of
delocalized electrons to a strongly interacting, highly local-
ized electron system.

V. OTHER LATTICE SYMMETRIES

So far we have considered only the simplest possible
patterning, a square array of antidots. We have shown that
electrons in bilayer graphene can be localized to antidot sites
by a moderate applied potential. The obvious next step is
to try other kinds of antidot arrays, and to see whether we
can achieve localization on, say, triangular, kagome, or Lieb
lattices. Any of these patterns are experimentally possible.

Figure 6 plots the dispersion of the flat bands for three
different lattice symmetries. In each calculation we have kept
the parameters identical to those in Fig. 2(c); that is, W =
30 meV, � = 15 meV, and a = 80 nm. Figure 6(a) plots the
first hole band (n = −1) for a triangular antidot lattice. This
band replaces the single flat band in Fig. 3 that we computed
for the square lattice. We find that the dispersion of the flat
band matches that of a tight-binding model on a triangular lat-
tice with nearest-neighbor hopping parameter t = 0.067 meV.

We can also reproduce the dispersion of a kagome lattice
and a Lieb lattice. The potentials are plotted around one unit
cell in the insets of Figs. 6(b) and 6(c). In these calculations
we have kept the nearest-neighbor distance the same, at a =
80 nm, however, the overall lattice constant for these patterns
is double that. Formally, the Brillouin zones in Figs. 6(b) and
6(c) are not the same as those in Figs. 6(a) and 3. Since the
kagome and the Lieb patterns each have three antidot sites per
unit cell, the corresponding tight-binding models each have
three energy bands. In our calculation for bilayer graphene
we thus expect three bands instead of one; the single, isolated
flat band in Fig. 2 becomes a triplet of isolated bands in
Figs. 6(b) and 6(c) whose total bandwidth is roughly the same
as the single flat band in Fig. 2. We find that the dispersion

1In other systems, such as twisted bilayer graphene, gate screening
can drive the system below the Mott point. See Refs. [44–46]. In our
case, however, the value of UH/t is so large that even with account
of gate screening the system is still above the Mott point.

FIG. 6. Dispersion of the first holelike bands for different lattice
symmetries. These replace the single, flat band in Fig. 2(c). All
parameters are the same as in Fig. 2: W = 30 meV, a = 80 nm,
and � = 15 meV. (a) Band n = −1 for a triangular lattice potential.
(b) Bands n = −1, −2, −3 for a kagome lattice potential. (c) Bands
n = −1, −2, −3 for a Lieb lattice potential. Each inset plots the
potential energy at the gate in real space, as well as the Brillouin
zone. Vertical scale is 0.8 meV in each panel.

for a kagome antidot lattice [Fig. 6(b)] mimics that of a
kagome tight-binding model with effective hopping parameter
t ≈ 0.033 meV. And the dispersion for a Lieb antidot lattice
[Fig. 6(c)] matches that of a Lieb tight-binding model with the
same value t ≈ 0.033 meV. Note that these dispersions do not
map perfectly onto a nearest-neighbor tight-binding model,
there is an additional, small, next-nearest-neighbor hopping
term t ′. While t ′ is small it can still qualitatively change the
behavior of the system [35].

In addition to these patterns one could also create an artifi-
cial honeycomb lattice. This would produce two graphenelike
bands. Or, to mimic hexagonal boron nitride (hBN), one could
create a honeycomb lattice with broken sublattice symmetry,
for example, by giving each sublattice a different antidot
radius. Given the existence of high-quality devices based on
real graphene, one may ask why there is a need to engineer
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FIG. 7. Dispersion of patterned monolayer graphene for W = 0
and 60 meV. All other parameters are identical to those used for
computing Fig. 2: a = 80 nm, R = 15 nm, and z = 10 nm.

artificial graphene. The artificial system gives an opportunity
to study the strongly correlated regime, which does not exist
in natural graphene.

VI. COMPARISON WITH PATTERNED
MONOLAYER GRAPHENE

We can demonstrate that bilayer graphene is uniquely
suited for this kind of artificial crystal by repeating our cal-
culations for patterned monolayer graphene. In this case the
Hamiltonian will be

H =
[

0 vp−
vp+ 0

]
+ U (r),

which can be numerically diagonalized by almost exactly the
same technique that we described in Sec. II.

The results for patterned monolayer graphene are given in
Fig. 7. To be able to compare this directly with our results
for bilayer graphene we have kept all parameters identical
to those used for Fig. 2: the only difference is that two,
stacked sheets of graphene have been replaced by one sheet
only. Clearly, over the same range of W , the linear bands of
monolayer graphene are not heavily reconstructed by the peri-
odic potential. Even extending the calculation to W = 60 meV
does not provide a significant change in the band structure.
The reason for this is partly the difference in energy scales
between MLG and BLG, and partly because MLG has no
band gap. If K is the magnitude of momentum at the artificial
Brillouin-zone vertex, then the bare MLG energy at this point
is vK , and the bare BLG energy at the same point is roughly
K2/2m∗. To significantly restructure the energy bands the
applied potential has to be larger than each of these energy
scales. Since vK � K2/2m∗, MLG requires a much larger
potential strength. We have also shown that the development
of the flat band in BLG is related to the band gap �. The fact
that no such equivalent gap exists in MLG is another reason
why it is difficult to localize electrons in this system.

FIG. 8. Typical diagrams for screening of an external potential.
The dashed line represents the external potential, the wavy line
represents the electron-electron Coulomb interaction, and the solid
line represents the electronic Green’s function. The first line is the
usual RPA summation while the second line shows some diagrams
of higher order in the external potential.

VII. METHOD FOR ADDRESSING COULOMB
SCREENING IN BILAYER GRAPHENE

The amplitude of the imposed (external) potential is re-
duced by electron-electron screening, and since our results
depend on a sufficiently large potential amplitude, it is neces-
sary to check that screening does not kill the effects described
above entirely. While this issue is practically important, our
approach to screening in bilayer graphene has a broader theo-
retical importance; the technique that we develop is applicable
to bilayer graphene in general, and not just to the patterned
system we focus on here.

Generally, one of two methods can be used to account
for Coulomb screening of an external potential in a many-
body system. These methods are (i) a brute-force Hartree
or Hartree-Fock method, and (ii) a summation of screening
diagrams.

The brute-force method (i) originates from atomic physics
where it is widely used [36]. The method is conceptually
simple and is valid for an arbitrarily strong potential, however,
it requires a self-consistent procedure for all single-electron
states from the chemical potential down to the bottom of the
valence band. Within this procedure even bound states below
bottom of the valence band can be important. For example, if
one places a Pb atom in a strong external electric field then
one needs to self-consistently recalculate all 82 electron states
starting from the deepest 1s state. For this reason the method
(i) is computationally expensive and is therefore seldom used
in condensed matter physics. It has, however, been used to
analyze supercritical, charged impurities in graphene [37].

The diagrammatic method (ii) is more natural theoretically
but more complex conceptually. The essence of this method
is the summation of all screening diagrams, some of which
are shown in Fig. 8. Within this approach screening comes
only from states close to the chemical potential, electron states
deep in the valence band do not contribute to screening.

Screening to first-order in the external potential is de-
scribed by the first line of Fig. 8. This is standard, random
phase approximation (RPA) screening, the summation is easy
to evaluate, and thus the method is used widely in practice.
When the external potential is strong the RPA approximation
is not sufficient. Multileg diagrams shown schematically in
the second line of Fig. 8 become important. These diagrams
can be generated from the usual RPA chain with the following
electronic Green’s function:
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This situation is somewhat similar to the nonlinear
Heisenberg-Euler action in QED [38] (for an application to
condensed matter systems, see Ref. [39]). In particular cases
the summation of all diagrams beyond RPA is possible, for
example, using a special technique developed in QED. Such
a summation has been performed for the problem of super-
critical, charged impurities in graphene [40]. This diagram
summation is very involved, and for a generic potential shape
the summation is practically impossible.

The purpose of this section is to develop an alternate
method to account for screening of an external potential. The
method is valid for an arbitrarily strong external potential,
and in this sense the method is similar to method (i). On
the other hand, the method does not require explicit account
of very deep electron states. In this sense it is similar to
method (ii). We develop the alternate method specifically for
bilayer graphene, however, the method can in principle be
extended to other semimetals like monolayer graphene. The
method is valid for an external potential of arbitrary shape,
including periodic potentials, which are of practical interest
for this work, and also impurity potentials as in the subcritical
or supercritical impurity problem. We consider only Hartree
screening.

Before presenting the details of our method we briefly
define the quantities which enter into a generic screening
problem. Suppose that we have an imposed, external potential
U0(r), and a self-consistent potential Ũ (r), which accounts for
electron-electron screening. In general, Ũ < U0, and we must
check, for an experimentally realistic U0, that the correspond-
ing Ũ is capable of generating a flat band. We need to address
both the shape of Ũ (r) and its total amplitude. Our approach
is to use the self-consistent Hartree equation

Ũ (q) = U0(q) + 2πe2

εq
nq,

nq =
∫

eiq·rn(r)d2r, (3)

where nq is the Fourier amplitude for the total density of
particles, a functional of Ũ . Fourier amplitudes of Ũ and
U0 are defined similarly. This equation is just an expression
of Coulombs law and is independent of the strength of the
potential.

Lastly, let us quantify the meaning of weak and strong
potentials. The parabolic band approximation is valid in bi-
layer graphene up to an energy scale about Ep � γ , where
γ = 380 meV. We will use the parabolic approximation and
hence assume that the self-consistent potential is smaller than
this scale, Ũ � Ep. Both strong and weak potentials must
satisfy this condition. Now, the potential Ũ has a spatial scale:
in our case this is the period of the superlattice a. The cor-
responding wave vector is g ∼ 2π/a, and the corresponding
energy scale is Ec ∼ g2/2m∗. For a = 80 nm the energy scale
is Ec ∼ 10 meV. A potential with amplitude much smaller
than this value is a weak potential, and the usual RPA approx-
imation is sufficient in this case. However, we saw in previous
sections that generate a flat band one needs a potential with
amplitude comparable to Ec, even somewhat larger. This is
the limit of strong potential amplitude and one cannot rely on
RPA in this case; an alternate method is needed to account

for screening. Note that the potential amplitude defined above
W was defined at the metallic gate. The quantity we need to
compare with Ec is actually e−gzW = 0.46W , the amplitude
within the graphene bilayer.

A. Description of the alternate method

The major challenge in applying Eq. (3) is to compute
the particle density nq. A complete calculation of nq requires
summation over all states from μ down to the bottom of the
band, which is inaccessible in our continuum model. To re-
solve this issue we introduce an intermediate energy scale �,
defined by max(Ec,�) � � � Ep. This scale splits the total
energy range into two regions. The essence of our method
is the following procedure: electronic states within the first
region, −� < ε < μ, are accounted for using exact numerics,
and electronic states within the second region, ε < −�, are
accounted for using exact analytics. Of course, we must check
that the final result is independent of the precise value of �.

Note that the potential is position dependent, and that the
variables μ, ε, and � are global, they are position indepen-
dent. The position-dependent electron density can be written
as

n(r) =
∑
εp<μ

|ψp(r)|2 = nTop(r) + nBot(r),

nTop(r) =
∑

−�<εp<μ

|ψp(r)|2, (4)

nBot(r) =
∑

εp<−�

|ψp(r)|2,

where the notation nTop stands for summation over states in
the top part of the energy range, while nBot stands for sum-
mation over states in the bottom part of the energy range.
The wave function ψp(r) is the Bloch wave calculated in
the self-consistent potential Ũ (r) (strictly speaking, p as it is
written above must be the quasimomentum in the extended
zone scheme, that is, it ranges over the entire Brillouin of the
underlying graphene lattice in Fig. 1).

We can find the Bloch waves with energies −� < ε < μ

numerically, using the techniques described in Sec. II. The
contribution nTop(r) to the total charge density can thus be
computed numerically. On the other hand the remaining con-
tribution nBot(r) is inaccessible to this numerical technique.
We compute nBot analytically using the Thomas-Fermi ap-
proximation. This is valid at εp < −�, when the electron
de Broglie wavelength is much smaller than the superlattice
period a. In other words, the semiclassical picture makes sense
only for states with large momentum, εp ≈ −p2/2m∗ < −�

(where p is measured relative to a particular valley of bilayer
graphene). We can thus disregard the position-momentum
Heisenberg uncertainty relation and can talk about a mo-
mentum distribution at each point in space r. This is shown
schematically in Fig. 9.

It is obvious from Fig. 9 that the Thomas-Fermi density
reaches its maximum at the potential minimum, and vice
versa. In other words, the Thomas-Fermi density is exactly
out of phase with Ũ (r). Given that the density of states for a
quadratic dispersion is energy independent, ρ = m∗/2π , we
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FIG. 9. Schematic illustrating the contribution to particle density
from electron states deep within the BLG band. The dashed line
represents the potential energy. The purple lines represent the bare,
bilayer graphene dispersion. The zero of the dispersion is pinned to
the potential energy, giving a position-dependent shift in the energy
bands. This contribution is due to states between −� and the bottom
of the band, it is in antiphase with the potential and can be described
within the Thomas-Fermi approximation.

can write the total particle density due to states below −� as

nBot(r) =
∑

εp<−�

|ψp(r)|2 = −4ρŨ (r) = −2m∗

π
Ũ (r). (5)

The factor 4 comes from spin and valley degeneracy.
Equations (4) and (5) summarize our method. Interestingly,
nBot is independent of �.

B. Testing the alternate method against RPA

The alternate method is valid for for any potential with
amplitude U � Ep. Of course, it is also valid in the limit
U � Ec, where RPA can be applied. The purpose of this
section is to compare the results of the alternate method with
those of RPA and to show that the two methods agree in
the limit of weak potential. Of course, this alternate method
can be applied beyond this limit. To do so we consider the
simplest possible situation: bilayer graphene at the charge-
neutrality point (μ = 0) with an exactly parabolic dispersion
(ε = ±p2/2m∗). We also assume a simpler form for the
screened potential, taking only two Fourier components

Ũ (r) = 2W̃ [cos(gx) + cos(gy)]. (6)

As before, the period of the superlattice is 80 nm and g =
2π/a. We will articulate our answer in terms of W̃ , consid-
ering the range 0 < W̃ < 1 meV where RPA is valid, and also
the range W > 1 meV, where RPA breaks down. The particle
density is a functional of the potential in Eq. (6) and can be
computed using either the alternate method or using RPA.

Let us first recall the textbook results of RPA theory. Sup-
pose that a probe charge with density ρ(r) is added to the
system. The probe charge interacts both with the external
potential and with the particle density n(r) of electrons in the
filled Dirac sea. This interaction energy and its corresponding

diagram chain are given by

(7)

As in Fig. 8, the dashed line represents the external po-
tential U 0

q , the solid line represents the electronic Green’s
function, the wavy line represents the Coulomb interaction,
and the black dot represents the probe charge. Since U 0

q ρq

corresponds to the first diagram in Eq. (7), the remain-
ing diagrams can be summed to obtain an expression for
(2πe2/εq)nqρq. We find that

2πe2

εq
nqρq = U 0

q 
q
1

1 − 2πe2

εq 
q

2πe2

εq
ρq, (8)

where 
q is the static polarization operator, corresponding to
the electron loop in Eq. (7). Hence,

nq = nRPA(q) = U 0
q

1 − 2πe2

εq 
q


q = Ũq
q. (9)

This is the general RPA expression for induced electron den-
sity. For unbiased bilayer graphene the polarization operator
is independent of q [41]:


q = −2 ln(4)
m∗

π
. (10)

For biased bilayer graphene (� > 0) the polarization operator
is q dependent and must be evaluated at q = g [because Ũq

in Eq. (9) is nonzero only for q = g]. This calculation has
been performed, for example, in Ref. [42] and we make use
the general expression for 
q in that work to find 
g at
� = 5 meV and at � = 15 meV. Equations (7), (9), and (10)
solve the RPA screening problem.

For the potential in Eq. (6) the induced RPA density is of
exactly the same shape as Ũ (r) :

nRPA(r) = −2n0[cos(gx) + cos(gy)]. (11)

The total variation in charge density from maximum to mini-
mum is given by δnRPA = 8n0. We find that the charge density
nTop(r) + nBot(r), computed using our method is also sinu-
soidal. It is thus possible to compare RPA with our method
by comparing the values of δn. This comparison is given in
Fig. 10, for the sake of clarity we plot δn/W̃ versus W̃ (rather
than δn itself). We plot this comparison at � = 0 [Fig. 10(a)],
� = 5 meV [Fig. 10(b)], and � = 15 meV [Fig. 10(c)]. In
each panel we plot the RPA result δnRPA/W̃ (pink line), and
the result of our alternate method δnTop+Bot/W̃ (green line).
As expected, the two methods are in exact agreement when
the potential is weak (W̃ � 1 meV). The RPA result deviates
from the result of our alternate method at larger values of W̃ ,
when the assumptions of RPA theory become invalid. Note
that our alternate method is applicable for all values of W̃ .

165158-9



Z. E. KRIX AND O. P. SUSHKOV PHYSICAL REVIEW B 107, 165158 (2023)

FIG. 10. Comparison between two calculations of the total vari-
ation in particle density at (a) � = 0, (b) � = 5 meV, and (c) � =
15 meV. In each panel the pink curve is the RPA result δnRPA/W̃ ,
the green curve is result of the alternate method δnTop+Bot/W̃ , and the
blue curve is the contribution of just the deep electron states δnBot/W̃ .

In Fig. 10 we also present the contribution to the total
particle density from deep electron states δnBot/W̃ (blue line).
From Eq. (5) we expect δnBot/W̃ to be constant. Figure 10
shows that nBot gives the major contribution to particle density.
The contribution due to states near the chemical potential nTop

is at most 50% of the total and can even become zero [when
the green line intersects the blue line in Figs. 10(a) and 10(b)].
The situation in RPA theory is the opposite: spatial variation
in particle density comes exclusively from states near the
chemical potential.

Lastly, note the sign of the particle density. Both nRPA(r)
and nBot(r) have a sign opposite to that of Ũ (r) [see Eqs. (5)
and (9)]. The remaining term nTop(r) can have either sign. If
δnRPA is larger than δnBot then nTop(r) has a sign opposite to
Ũ (r) [this is the case in Fig. 10(a)]. On the other hand, if δnRPA

is smaller than δnBot, then nTop(r) has the same sign as Ũ (r)
[this is the case in Figs. 10(a) and 10(b)]. The sign of nTop(r)
can be positive or negative [relative to Ũ (r)] and can change as
a function of W̃ . The sign of the total charge density nTop(r) +
nBot(r) is, however, always opposite to Ũ (r).

C. Hartree screening in the flat-band limit

Having established that the particle density can be com-
puted using Eqs. (4) and (5) we can now compute n(r) for
the flat-band system shown in Fig. 2(c). This allows us to
find the relationship between U0 and Ũ via the Hartree equa-

tion [Eq. (3)]. We will work under the assumption that an
applied potential U0 will maintain the same shape after screen-
ing has been accounted for, that is, Ũ (r) differs from U0(r) by
a constant scaling factor. Our goal is to estimate this scaling
factor, which corresponds to a reduction in the effective value
of W . To show that this assumption is reasonable we solve
the Hartree equation in reverse. First, suppose that Ũ (r) has
exactly the same form as the potential energy defined by
Eq. (2); its amplitude is W �→ W̃ . We take this as an ansatz
solution to the Hartree equation. Given the form of Ũ (r) we
can compute U0(r) using the Hartree equation

U0(r) = Ũ (r) −
∫

e2

ε|r − r′|n(r′)d2r′,

where n(r) is a functional of Ũ (r) given by Eqs. (4) and (5).
If this form for Ũ (r) is correct, then U0(r) computed using the
above equation will have the same form as the original po-
tential; that is, U0(r) will differ from Ũ (r) by a multiplicative
factor. We can then characterize the strength of screening in
bilayer graphene by estimating this factor.

Indeed, computing U0(r) in this way gives a function which
is essentially of the same form as Ũ (r). We present a compari-
son of these two functions in Fig. 11 for W̃ = 30 meV and for
μ at the charge-neutrality point (filling fraction f = 0). In the
first panel, which is a cut of both functions along y = 0, we
find that the two functions are identical up to a scaling factor
4.3. In the second panel, a cut along y = a/2 using the same
scaling factor, the two functions are roughly equivalent except
for the structure of their minima. We conclude that screening
has only a small effect on the shape of the potential, and that
its main effect is to scale the amplitude of the potential by a
constant factor.

We can now estimate the strength of electron-electron
screening in patterned bilayer graphene. We focus on two
points of interest: (i) the charge-neutrality point (complete
filling of the flat band) and (ii) the Mott point (one-quarter-
filling of the flat band, or one electron per antidot site). These
correspond, respectively, to the point of weakest screening and
to the point of strongest screening (as far as experimentally
interesting points within the flat band go). Note that typically
the Mott point occurs at half-filling of a band. Here, because
the system is both valley and spin degenerate, we must con-
sider quarter-filling (that is, a filling fraction f = −3n0/4). At
these two filling fractions we fix the self-consistent potential
amplitude W̃ and compute the amplitude W0 that the applied
potential must have to achieve this value of W̃ .

Our results are given in Fig. 12. At the charge-neutrality
point (purple curve) we find that W0 is consistently around
4.3 times larger than W̃ . This means that the effect of screen-
ing is to reduce the applied potential by a factor ≈4.3. At
the Mott point (blue curve) screening is stronger: to achieve
W̃ = 30 meV an applied potential W0 ≈ 8.3W̃ is required. As
the electron density is tuned into the flat band the influence
of an applied potential becomes weaker, and the amplitude of
this potential needs to be increased to maintain the flat band.

The stronger screening at f = −3n0/4 can be under-
stood in terms of the particle density within the flat band
that was presented in Fig. 5. The major contribution to the
spatial variation of nTop(r) comes from the flat band. This
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FIG. 11. Plot of Ũ (r), defined by Eq. (2) with W̃ = 30 meV
(purple line). Also shown is the function U0(r) (blue line) consistent
with the Hartree equation [Eq. (3)]. In the first panel the cut has been
taken along y = 0, and in the second panel the cut is along y = a/2.
In both panels Ũ has been scaled by a factor 4.3.

contribution is in phase with the potential, meaning that its
sign is opposite to that of nBot(r). It thus acts to reduce the
strength of the screening. If we then move μ to the Mott point
we remove a majority of these electrons, which are in phase
with the potential, leading to an increase in the strength of
screening.

While the estimate given here is rough, it gives an idea
of the strength of screening in these systems. In particular it
shows that W̃ = 30 meV is well within reach of experiments.
A PBG device using hBN as a substrate has a breakdown
field of 0.7 Vn−1m [43]. If we take the thickness of hBN

FIG. 12. Applied potential strength W0 as a function of the self-
consistent potential strength W̃ for two different filling fractions f . A
filling fraction f = 0 corresponds to the charge neutrality point and a
filling fraction of f = −3n0/4, or one-quarter -illing of the flat band,
corresponds to the Mott point.

to be z = 10 nm. then the maximum potential amplitude is
7 eV, well above the value W0 = 250 meV required for a fully
developed flat band at the point of strongest screening.

VIII. CONCLUSIONS

We have suggested a simple method for generating a flat
band in bilayer graphene. Within this flat band we find the
following: (i) Bilayer graphene can be driven into the strongly
correlated regime by application of a band gap and long-
wavelength, periodic electric field. (ii) The strongly correlated
regime can be accessed by either tuning the band gap or
the amplitude of the periodic modulation, keeping electron
density fixed. (iii) We present a general technique for ad-
dressing Hartree screening in bilayer graphene. While this
technique has more broad theoretical applications, we use it
to verify that electron-electron screening of the periodic po-
tential is not strong enough to destroy the effects listed above.
(iv) Patterned bilayer graphene can mimic the dispersions of a
variety of different two-dimensional lattices, including square,
triangular, kagome, and Lieb lattices. By appropriate pattern-
ing it is possible to design the underlying effective Hubbard
model.
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