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Recent developments in quantum hardware and quantum algorithms have made it possible to utilize the
capabilities of current noisy intermediate-scale quantum devices for addressing problems in quantum chemistry
and condensed-matter physics. Here we report a demonstration of solving the dynamical mean-field theory
(DMFT) impurity problem for the Hubbard-Holstein model on the IBM Quantum Processor Kawasaki, including
self-consistency of the DMFT equations. This opens up the possibility to investigate strongly correlated electron
systems coupled to bosonic degrees of freedom and impurity problems with frequency-dependent interactions.
The problem involves both fermionic and bosonic degrees of freedom to be encoded on the quantum device,
which we solve using a recently proposed Krylov variational quantum algorithm to obtain the impurity Green’s
function. We find the resulting spectral function to be in good agreement with the exact result, exhibiting both
correlation and plasmonic satellites and significantly surpassing the accuracy of standard Trotter-expansion
approaches. Our results provide an essential building block to study electronic correlations and plasmonic
excitations on future quantum computers with modern ab initio techniques.
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I. INTRODUCTION

Recent developments on quantum and quantum-classical
hybrid algorithms as well as in the continuous increase in
computational capabilities have enabled significant progress
in simulating interacting fermionic systems on quantum
computers [1–10]. Such simulations have a fundamental
importance in condensed-matter physics, quantum chem-
istry, and material science, since the exponentially increasing
dimension of the Hilbert space has limited classical compu-
tations to rather small systems unless crude approximations
are made. The algorithms developed for these classical com-
putations, however, may benefit from an implementation on
quantum computers. An example of such algorithms is the
dynamical mean-field theory (DMFT) [11–14]. Feasibility of
employing quantum computers for DMFT has already been
demonstrated by simulations and actual implementations on
noisy intermediate-scale quantum (NISQ) devices [15–22].
However, the accuracy of an implementation on quantum
devices is limited by the current NISQ devices, which al-
low only for shallow circuits and exhibit a significant level
of noise due to possible bit-flips or phase-flips [23–27].
This places a significant constraint on methods such as the
Trotter expansion, which often requires deep circuits with
several controlled gate operations [15,16,28]. To reduce cir-
cuit complexity compared to Trotter expansion approaches
and improve the accuracy of the Green’s function obtained
on quantum devices, different algorithms have been pro-
posed. Real-time approaches such as the variational quantum
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simulation [29–33] or the variational Hamiltonian ansatz
[34–36] are based on obtaining a variational form of the
time evolution operator, while a recently proposed Cartan
decomposition-based algorithm represents it via a fixed depth
circuit for all times [20,37]. The Lehmann representation
[17,33], quantum embedding [38,39], or Krylov techniques
[40,41] obtain the Green’s function directly in the frequency
representation. The recently proposed Krylov variational
quantum algorithm (KVQA) [40,41] has been shown in sim-
ulations to be a promising candidate for solving the impurity
problem related to DMFT on quantum hardware, as it requires
circuits significantly shallower than those of other approaches.

At the same time, the DMFT framework has been extended
to include nonlocal interactions and screening effects [42–46]
in terms of a frequency-dependent effective interaction [47].
This model with a dynamical interaction can be represented
in terms of a Hubbard-Holstein impurity model, where the
impurity electrons are coupled to bosonic degrees of freedom.
These extensions of DMFT pose an even greater compu-
tational challenge and thus can be promising candidates to
benefit from utilizing quantum algorithms implemented on
future quantum computers. Although the implementation of
these methods is a necessary step to reach future applications
to more realistic Hamiltonians, it has not yet been done so far.

Here we present (i) an implementation of the KVQA on
a current NISQ device, the IBM 27-qubit Quantum Falcon
Processor Kawasaki, and (ii) the first implementation of the
DMFT impurity problem for the Hubbard-Holstein model on
a quantum computer to obtain the impurity Green’s func-
tion for an electronic system coupled to bosonic degrees of
freedom. Our investigation paves the way for possible ap-
plications of ab initio computational methods for strongly
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correlated electron systems on future quantum computing
devices.

The manuscript is structured as follows: we first present
the model subject to our study and the formalism to obtain
the impurity Green’s function on the quantum device. Next,
we present our results obtained on the Kawasaki quantum
processor and compare them to the exact solution. The last
section of this paper concludes with a summary of the main
points of our work.

II. MODEL AND FORMALISM

The DMFT approximation is based on representing the lo-
cal Green’s function of a lattice system of interacting electrons
by a single-site impurity model, coupled to noninteracting
bath degrees of freedom. The main challenge lies in solving
the interacting impurity problem, which despite the reduction
to a local model remains a formidable many-body problem.
Here we study a two-site DMFT impurity problem of the
Hubbard-Holstein model at half-filling, consisting of one in-
teracting impurity site coupled to a bosonic degree of freedom
and one noninteracting bath site at zero energy which can
exchange electrons with the impurity site. The system is given
by the Hamiltonian

H =Un↑n↓ + V
∑

σ

(c†
σ dσ + d†

σ cσ ) − μ(n↑ + n↓)

+ ω0b†b + λ(b† + b)(n↑ + n↓), (1)

where c†, c and d†, d correspond to the impurity and bath
electronic creation and annihilation operators, respectively,
with the density nσ = c†

σ cσ for the spin σ . μ is the impurity
potential, b† and b represent the bosonic creation and anni-
hilation operators, U is the local Coulomb interaction, V is
the hybridization amplitude, ω0 is the energy of the bosonic
mode, and λ is the coupling strength to the fermionic degrees
of freedom.

Using the Jordan-Wigner transformation [4,48], we rep-
resent the electronic creation and annihilation operators by
corresponding Pauli operators X , Y , and Z via

c†
i = Z0 ⊗ · · · Zi−1 ⊗ (Xi − iYi )/2, (2)

ci = Z0 ⊗ · · · Zi−1 ⊗ (Xi + iYi )/2, (3)

where the index i labels the different flavors (bath or impu-
rity site and possible spin). Introducing the Pauli Z operators
acting on all flavors j < i ensures the fermionic commutation
relations {ci, c†

j } = δi j . For the bosonic degrees of freedom,
which in general involve an infinite number of possible exci-
tations, one has to introduce a cutoff in practice. This cutoff
depends on the number of qubits available for encoding the
bosonic states, and the level of noise of the quantum hardware,
as an increasing number of bosonic excitations lead to more
complex quantum circuits. Different types of bosonic encod-
ing have been discussed, which aim at reducing either the
gate complexity or the number of qubits [3,49,50], and have
been also applied to simulating systems with both fermionic
and bosonic degrees of freedom such as the Holstein polaron
problem [51,52]. Here we restrict our simulation to one pos-
sible boson, represented by one additional qubit, which is

an approximation justified for the large bosonic frequency
ω0. In this case the different encodings become equivalent.
This leads to the following representation for the bosonic
operators:

b†b = (I − Z )/2, (4)

b† + b = X, (5)

where I is the identity operator. Due to the bosonic com-
mutation relations, no additional padding with Z operators is
needed.

With these transformations we map the Hamiltonian in
Eq. (1) on five qubits (q1, q2, q3, q4, q5), using the ordering
(↑imp,↓imp,↑bath,↓bath, B); i.e., the first two qubits represent
the impurity spin up or down component, the third and fourth
qubits represent the bath spin up or down component, and
the last qubit represents the boson. The resulting Hamiltonian
takes the form

H = (U/4 − μ + ω0/2)IIIII + U

4
ZZIII

− V

2
(XZXII + Y ZY II + IXZXI + IY ZY I )

− ω0

2
IIIIZ + λIIIIX. (6)

Terms with vanishing expectation value at half-filling such as
ZIIII have been dropped. To obtain the approximate ground
state for this Hamiltonian we use the variational quantum
eigensolver (VQE) approach [5,6,53,54] with a hardware-
efficient ansatz [55] that exploits the symmetry properties of
the wave function to reduce the number of gates as much
as possible (see further explanation in Sec. III), as shown
in Fig. 1.

To obtain the impurity Green’s function we make use of
ibm_kawasaki, an IBM Quantum System One with a 27-qubit
Falcon R5.1 processor, and the recently proposed Krylov
variational quantum algorithm (KVQA) [40,41]. Compared
to other approaches such as the Trotter decomposition or
variational algorithms that obtain the Green’s function on the
time axis, or the Lehmann representation that requires the
calculation of excited states, the KVQA has been shown in
simulations to require significantly shallower circuits with less
controlled gate operations. The procedure gives the retarded
Green’s function via a continuous fraction expansion, which
for the half-filled particle-hole symmetric case can be written
as [13,40]

G(z) = 1

2

1

z − a0 − b2
1

z−a1− b2
2

...

, (7)

for each electron and hole part. The coefficients an and bn are
generated by the Krylov algorithm as

b2
n = 〈χn−1|H2|χn−1〉 − a2

n − b2
n−1, (8)

|χn〉 = 1

bn
(H |χn−1〉 − an−1|χn−1〉 − bn−1|χn−2〉), (9)

an = 〈χn|H |χn〉, (10)

where we use |χ0〉− = c|GS〉 (|χ0〉+ = c†|GS〉) for the oc-
cupied (unoccupied) part of the spectral function, given
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FIG. 1. (a) The variational quantum eigensolver circuit for gen-
erating the ground-state wave function of the Hubbard-Holstein
DMFT impurity problem from Eq. (6). The ansatz wave function is
parametrized by two rotation angles θ0 and θ1, indicated by the two
red framed RY rotation gates. (b) The energy landscape of the expec-
tation value of the Hamiltonian operator measured on the Kawasaki
quantum computer, depending on the parameters θ0 and θ1. The
minimum around (θ0, θ1) ≈ (1.0, 5.7) (indicated by the green dot)
corresponds to the approximate ground-state energy E0 = −2.43,
which is close to the exact value of E0,exact = −2.62.

by −ImG(ω + iδ + E0)/π , with δ > 0 being a small con-
vergence parameter. These expressions can be efficiently
evaluated on a quantum computer if generating circuits for
the Krylov basis states |χn〉 can be found. Here we use the
approach outlined in Ref. [40], which is based on a variational
procedure, to find the optimal circuit that generates a quantum
state maximizing the overlap with |χn〉.

III. RESULTS

In the first step we discuss the results for the impurity
Green’s function obtained for a fixed set of parameters, and
in the second step we demonstrate that the approach is robust
enough to obtain a reliable DMFT self-consistent solution on
the Bethe lattice.

We first generate the ground state of the impurity problem
using the VQE circuit as shown in Fig. 1(a) for the parameters
U = 4, ω0 = 5, λ = 1.5, and V = 0.8, which are represen-
tative for the self-consistent DMFT solution, as discussed
below. By exploiting the symmetry properties of the impurity
problem at half-filling, we reduce the VQE circuit to a simpli-
fied ansatz for the ground-state wave function of the following

form:

|ψ〉 = [sin θ0(| ↑↓, 0〉 + |0,↑↓〉) + cos θ0(| ↑,↓〉 − | ↓,↑〉)]

⊗ (cos θ1|0B〉 + sin θ1|1B〉). (11)

This form is only approximately able to represent the true
ground-state wave function but allows for a parametrization
of the ansatz wave function and all resulting quantities such
as the total energy in terms of only two parameters, θ0 and
θ1. This enables us to resort to a two-dimensional scan of
the energy landscape to reliably find the lowest energy and
thus the best ground-state approximation without relying on
an optimization procedure that is hampered by local minima
and barren plateaus [56–58]. The resulting energy potential
landscape obtained on the Kawasaki quantum processor is
shown in Fig. 1(b). We find an energy minimum of E0 =
−2.43 and thus the best possible approximation to the ground
state around (θ0, θ1) = (1.0, 5.7), which is close to the exact
ground-state energy E0,exact = −2.62 for the system with the
same bosonic cutoff. The resulting ground-state energy using
the noise-free Qiskit simulator environment [59], obtained as
E0,sim = −2.58, is in close agreement with the exact value,
indicating that the overestimation of the ground-state energy
on Kawasaki is induced to a large degree by the noise of the
device rather than by the two-parameter approximation used
in Eq. (11). Using error mitigation techniques [60] should
thus be a promising way to make further improvements on
the ground-state energy.

We use the same approach of scanning the two-
dimensional parameter space for obtaining the Krylov states
and eventually the retarded Green’s function and spectral
function of the impurity site. First, we find the parameters for
a circuit that approximates the state |χ0〉 = c↑,imp|GS〉, which
is composed of the state | ↓, 0, 0B〉, |0,↓, 0B〉, | ↓, 0, 1B〉,
|0,↓, 1B〉 by using a similar hardware-efficient ansatz
parametrized by two rotation angles. The final parameters are
given by the ones that maximize the overlap with |χ0〉. The
best candidate state that we find has an overlap of approxi-
mately 0.95 (overlap of 1 signals exact representation) with
|χ0〉, but we point out that this error is composed both of
the error in finding the right circuit parameters and of the
measurement of the overlap itself; i.e., even an exact repre-
sentation will not result in an overlap of 1 because of the
measurement error on the quantum device.

Then we progressively measure the expectation values for
an and b2

n, and we construct the circuit for next Krylov state
|χn〉, as outlined in Ref. [40]. Exploiting the particle-hole
symmetry at half-filling, we can obtain the unoccupied part
of the spectrum from the same an and b2

n parameters obtained
for the occupied part. We find that we can reliably obtain the
Krylov states up to n = 2 on the quantum computer. With
further iterations the signal-to-noise ratio for b2

n becomes too
small, often resulting in small negative values. Therefore,
we obtain the Green’s function from the parameters for the
first two Krylov iterations, which generates up to three pos-
sible peaks in each the occupied and unoccupied part of the
spectrum.

In Fig. 2 we show the resulting impurity Green’s
function on real frequencies, obtained on the Kawasaki
quantum computer. The spectrum contains renormalized
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FIG. 2. The spectral function of the impurity site obtained on
the Kawasaki quantum computer (red solid line), compared to the
noise-free simulation (blue line) and the exact result with the same
boson-cutoff (black dashed line), using a broadening of δ = 0.1.
The renormalized bonding-antibonding splitting and the correlation
induced satellites at energies around ±3 are well reproduced. A small
plasmon peak is observed at higher energies, with the underestimated
weight being a result of the limitation of the ground-state ansatz wave
function.

bonding-antibonding states close to the Fermi level, correla-
tion satellites at intermediate energies, and a small plasmonic
satellite at higher energies, correctly reproducing the qual-
itative features of the exact spectral function. Because we
calculate the Krylov states up to n = 2, only the first plas-
monic satellite can be accessed, while the exact solution has
infinitely many satellites of exponentially vanishing weight.
The gap around the Fermi level is correctly reproduced on the
quantum device, with a splitting of 
 = 0.9, underestimating
the exact value of 
exact = 1.25 by a minor degree. This
underestimation originates mostly from the overestimation of
the ground-state energy E0 (to a large degree by the simplified
ground-state ansatz) and could be improved by an ansatz
with more parameters in conjunction with error mitigation or
error correction methods. The correlation-induced satellites at
around ±3 are well reproduced by the KVQA, albeit their
energetic position is overestimated (±3.8 compared to the ex-
act ±2.8). Furthermore, on the Kawasaki quantum computer
we are able to observe the first plasmonic satellite at higher
energies in the spectral function at around ±6.5. Even when
the agreement with the exact position and weight is not precise
(the energetic position is overestimated by 1 and is about
25% of the correct weight), this result demonstrates that the
KVQA is able to resolve spectral features with relative spec-
tral weight of less than 1% on current NISQ devices. We want
to point out that such a feature would be especially difficult
to observe with approaches that obtain the Green’s function
in real time, like the Trotter expansion or variational methods.
The Fourier transform from time to frequency space requires
long timescales and fine temporal resolution, which makes it
difficult to obtain on current NISQ devices. We thus conclude
that the KVQA is especially well suited for obtaining subtle
spectral features on noisy quantum devices, as possible errors
manifest mostly in the position and the weight of the spectral
features and thus retain most of the qualitative aspects of the
true spectrum.

FIG. 3. The quasiparticle weight Z = (1 − Re ∂�

∂ω
|ω=0 )−1 ob-

tained from the solution of the Hubbard-Holstein DMFT impurity
model for different values of the hybridization strength V . DMFT
self-consistency is obtained at V 2 = Z , i.e., at the intersection of the
two lines indicated by the arrows. The result on the quantum device
shows a self-consistency solution around V = 0.84, close to the exact
result with one boson cutoff (0.79) and no boson cutoff (0.81).

We now focus on obtaining a solution to the self-consistent
DMFT equations for the Hubbard-Holstein model on the
Bethe lattice. We set the bandwidth W = 4, for which the
second energy moment of the noninteracting density of states
is M2 = 1. The self-consistency condition is given by Gimp =
Gloc, i.e., the impurity Green’s function has to be equal to
the local lattice Green’s function. For the two-site DMFT
impurity model at half-filling, the bath energy is fixed to the
Fermi level, and the self-consistency condition is simplified to
a condition for the hybridization amplitude [61]

V 2 = ZM2, (12)

where Z = (1 − Re ∂�
∂ω

|ω=0)−1 is the quasiparticle weight, ob-
tained from the derivative of the self-energy � = G−1

0 − G−1

on real frequencies. For the parameters considered here, the
self-energy shows the Fermi liquid behavior [61], and the
quasiparticle weight Z is well defined [62]. Though, as both
the interacting Green’s function G and the noninteracting
Green’s function G0 approach zero at ω = 0, the derivative
of �(ω) strongly depends on a precise cancellation of two
divergent terms. Similar to previous reports [18], we find this
method to be unreliable due to the finite noise level on the
quantum device. We therefore obtained Z by integrating the
weight of the two peaks closest to the Fermi level. The result-
ing spectral weight as a function of the hybridization strength
V is shown in Fig. 3. The analytical result with a one-boson
cutoff results in a self-consistent solution at V = 0.79, which
is close to the exact result V = 0.81 without any cutoff on
the number of bosons. Comparing to the quasiparticle weight
obtained on the Kawasaki quantum computer, we observe
a good qualitative agreement with the exact solution, albeit
the quasiparticle weight is overestimated by about 10%. A
self-consistent solution can be reliably observed at around
V = 0.84, in reasonable agreement with the exact result.

For comparison we also show the resulting Green’s func-
tion in the time domain obtained on the Kawasaki quantum
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FIG. 4. The imaginary part of the impurity Green’s function ob-
tained from a standard Trotter expansion simulation with one Trotter
step (green), compared to the Trotter expansion performed on the
Kawasaki quantum processor (blue solid curve), and the KVQA
result (red and black curve) for V = 1.0, λ = 1.5, and ω0 = 5. The
Trotter expansion provides a much poorer result than the KVQA for
two main reasons: The expansion converges slowly with the number
of Trotter steps, and it requires much more controlled gate operations
than the KVQA and hence introduces significantly more noise.

processor from a Trotter decomposition approach with one
Trotter step in Fig. 4. The Fourier transform of the KVQA
Green’s function from frequency space to time shows a quali-
tative agreement with the exact result. In contrast, the Trotter
decomposition is significantly less accurate and mostly fluc-
tuates around zero; i.e., it shows no clear oscillatory behavior
and thus provides almost no information about possible spec-
tral features. We identified two main reasons for this. First, the
Trotter decomposition converges very slowly for the current
system with the number of Trotter steps; therefore, only one
step is not sufficient to reproduce the Green’s function, as
already the simulation without any gate noise is far from
the exact result. Second, the Trotter decomposition requires
more controlled gate operations than the KVQA, which in-
troduce significantly more noise and thus reduce the quality
of the obtained data. Therefore, going beyond one Trotter
step and consequently increasing the circuit size would lead
to further loss of accuracy. This result shows that the KVQA
is significantly more robust and can provide a more accurate
result for the Green’s function of the DMFT impurity problem
for the same quantum computing device.

FIG. 5. The qubits used in this work on the IBM 27-qubit Quan-
tum Falcon Processor Kawasaki. The figure is based on the schematic
provided by Ref. [63].

FIG. 6. The optimization surfaces for the circuit shown in Fig. 1
to find (a) the minimal energy to determine the ground-state energy
E0, (b) the maximum overlap to determine the first Krylov vector
|χ0〉, and (c) and (d) the minimum of the error function

∑
i εni(θ )

to find the next Krylov vectors |χ1〉 and |χ2〉, respectively [see
Eqs. (A1)–(A3)].

IV. CONCLUSION

We have presented an implementation of the Krylov vari-
ational quantum algorithm on the IBM Kawasaki 27-qubit
quantum computer to obtain the Green’s function for the
Hubbard-Holstein two-site impurity model, and we have
demonstrated that DMFT self-consistency can be reliably
obtained. This model extends the Hubbard model and cou-
ples the electrons with bosonic degrees of freedom, and
it is the essential building block for impurity models with
frequency-dependent interactions such as in extended DMFT,
GW + DMFT, and further nonlocal extensions of DMFT
which include nonlocal interactions and dynamical screen-
ing effects. We have presented a hardware-efficient ansatz
for the ground-state wave function that exploits the sym-
metry of the wave function and allows a parametrization in
terms of only two parameters. This enabled us to perform a
scan of the full two-dimensional parameter space to reliably
obtain the ground state and Krylov basis states instead of
relying on numerical minimization techniques. The obtained
impurity Green’s function is in good qualitative agreement
with the exact result, exhibiting all major spectral features of
the bonding-antibonding, correlation and plasmonic satellites.
The approach was shown to be robust enough to reliably
obtain the self-consistent solution of the DMFT equations. We
find that the accuracy greatly surpasses previously employed
approaches such as the Trotter expansion. Our work forms
the basis of future studies of electron-boson-coupled systems
and nonlocal extensions of DMFT on near-term quantum
computers, which are not only important for real materials
calculations but also are computationally very intensive on
classical computers, and thus are promising candidates for
harnessing the computational capabilities of future quantum
computers.
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FIG. 7. The imaginary part of the impurity Green’s function as a function of time obtained from a Trotter expansion (red line) and
variational Hamiltonian ansatz (VHA, blue line) on a classical computer, compared to the exact result for the same boson cutoff NB = 1
at V = 1.0 (other parameters as in the main text). Panels (a) and (b) show the results for NT = 1 and NT = 2 Trotterization steps, respectively.
Both results are significantly less accurate than the KVQA one shown in Fig. 4. Increasing the number of Trotter steps to NT = 2 results in
improvement at small times for the Trotter expansion, but actually worsens the agreement with the exact solution for VHA.

APPENDIX A: IMPLEMENTATION DETAILS

For this work we employed the IBM Qiskit environment
version 0.39.2 [59] to implement the quantum circuits and
measurements on the IBM 27-qubit Quantum Falcon Proces-
sor Kawasaki. The characteristics of the device at the time
of the investigation are presented in Table I. For all mea-
surements presented in this work, we employed the Sampler
primitive, and used the maximum number of shots possible
N = 32 000 (resulting in a single-measurement duration of
10–30 s including transfer of the data). Error mitigation or
further postprocessing of the data was not applied. For the
layout we chose the qubits that showed the lowest readout
assignment error and were connected with the smallest CNOT

error as much as possible, as shown in Fig. 5.
To find the Krylov states |χn〉 in the KVQA, we employed

the variational method as outlined in Ref. [40]: To obtain the
parameter set {θn} that generates the state |χn〉 = U (θn)|0〉 via
the set of unitary gate operations U (θn), we minimize the three
functions

εn0({θ}) =
( |〈0|U †(θ )HU (θn−1)|0〉|

|bn| − 1

)2

, (A1)

εn1({θ}) = |〈0|U †(θ )U (θn−1)|0〉|2, (A2)

εn2({θ}) = |〈0|U †(θ )U (θn−2)|0〉|2, (A3)

TABLE I. The characteristics of the IBM 27-qubit Quantum
Falcon Processor Kawasaki used at the time of this study: Qubit
relaxation time T 1, Qubit dephasing time T 2, Qubit frequency and
Qubit readout error, and single-qubit X-gate and two-qubit CNOT-
gate error. For each quantity the minimal, maximal, and average
values for the qubits used are shown in the corresponding columns.

Property Min. Max. Avg.

T 1 (µs) 104.0 194.7 136.5
T 2 (µs) 72.06 262.1 159.7
Frequency (GHz) 5.115 5.368 5.250
Readout error 7.70 × 10−03 3.02×10−02 1.64×10−02

X-gate error 1.28 × 10−04 2.13×10−04 1.75×10−04

CNOT-gate error 3.76 × 10−03 1.28×10−02 6.10×10−03

which at the minimum εni = 0 ∀i satisfy that 〈χn|H |χn−1〉 =
bn, 〈χn|χn−1〉 = 0, and 〈χn|χn−2〉 = 0. Specifically we
made use of the Trotter-like expansion discussed in the
Supplemental Material I of Ref. [40] to evaluate the cost
function εn0, which circumvents the introduction of another
controlled ancilla qubit. We used ten steps between t =
0.01 . . . 0.3 to linearly extrapolate the value to t = 0. In prac-
tice we minimized the sum of these three functions, which is
the quantity shown in Figs. 6(c) and 6(d).

Reducing the ansatz wave function to a circuit
parametrized by two parameters as shown in Eq. (11)
allowed us to use a two-dimensional scan of the parameter
space to determine the approximate ground state and Krylov
vectors to obtain the impurity Green’s function. In Fig. 6 we
show the corresponding optimization surfaces obtained on the
Kawasaki quantum processor. The energy surface in Fig. 6(a)
showed a clear minimum indicating a unique solution for
the approximate ground state. Also the obtained overlap to
represent the first Krylov state |χ0〉 = c|GS〉 showed a clear
maximum with an overlap of more than 0.9 [Fig. 6(b)]. The
optimization surface in Fig. 6(c) for the remaining Krylov
states showed two main local minima, corresponding to two
possible Krylov vectors. Choosing either local minima leads
to the other minima becoming the only global minima in
the next iteration, as can be seen in Fig. 6(d). The precise
location of the minima was noticeably affected by noise, but
we found that the resulting spectral function did not strongly
depend on the exact choice of the parameters. While the peak
positions and weights of mainly the two outermost peaks
(correlation-induced and plasmon satellite) at energies above
±3 were affected to a small degree, the qualitative features of
the spectral function stayed the same.

APPENDIX B: TROTTERIZATION
AND VARIATIONAL APPROACH

As discussed in the main text, we found that the
Trotter expansion or the variational Hamiltonian ansatz
(VHA) [34–36], using McLachlan’s variational principle as
detailed in Ref. [36], for the two-site DMFT impurity prob-
lem shows a very poor agreement with the exact result and
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converges very slowly with increasing the number of Trot-
terization steps. To demonstrate this, we show in Fig. 7 the
resulting impurity Green’s function obtained from the Trotter
expansion and the VHA obtained from a classical simulation,
for NT = 1 and NT = 2 Trotterization steps. The agreement
with the exact result is very poor and quickly deviates even
at small timescales. Increasing the number of Trotter steps
improves the result for the Trotter expansion at small times,
but we have found that at least NT ∼ 8–10 steps are needed
in order to obtain a reasonable agreement up to Tmax = 10.
Such a large circuit is currently not feasible for present NISQ
devices. In contrast to that, the VHA obtains an even worse

result when increasing the Trotterization steps to NT = 2. We
found that the result strongly depends on the operator ordering
in the expansion of the time evolution operator

UV HA =
NT∏
i=1

(
NH∏

m=1

eiθm (t )Pm

)
, (B1)

where Pm are the Pauli operators of the Hamiltonian after
the Jordan-Wigner transformation, with the total number of
operator terms NH . For most orderings, the ansatz did not
converge to the correct result when increasing the number of
Trotter steps.
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