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Determination of the Fermi surface by charge density correlations

Zhipeng Sun *

Beijing Computational Science Research Center, Beijing 100193, China

(Received 4 October 2022; revised 17 April 2023; accepted 18 April 2023; published 27 April 2023)

The Fermi surface topology plays a crucial role in the study of high-temperature superconductivity cuprates.
The conventional method for determining the Fermi surface is the maximum spectral intensity method, which
involves numerical analytical continuation of Matsubara data for the one-body Green’s function. However, the
numerical analytical continuation is sensitive to the noise or the precision of the Matsubara data, and hence is not
always reliable. With this in mind, we propose a simple and specific notion as a reference for the Fermi surface. It
is the derivative of the momentum distribution function nk with respect to the chemical potential μ. Our analysis
of the noninteracting system shows that the momentum, at which dnk/dμ takes the maximum value, constitutes
a surface, which coincides with the Fermi surface. The relationship between dnk/dμ and the Fermi surface in
general cases is also analyzed. In order to numerically demonstrate this relationship, we calculate and compare
on the two-dimensional Hubbard model within the HGW method. The results show that, at least in the weak and
intermediate coupling regimes, using the notion of dnk/dμ to determine the Fermi surface is reliable. We further
studied the cases with model parameters standing for realistic materials, and found the surface determined by
dnk/dμ exhibits topological transition with the charge filling, similar to the Fermi surface in the cuprates. We
believe that using the derivative of the momentum distribution function with respect to the chemical potential to
determine the Fermi surface is a reasonable, efficient, and potentially valuable approach.
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I. INTRODUCTION

For the past century, the concept of the Fermi surface
(FS) has played a pivotal role in our understanding of the
physical properties of solid-state materials. For conventional
metals that can be described by Landau’s Fermi liquid theory,
the FS can be obtained from the local density approximation
calculations, and the results are in good agreement with the
experiments. However, in high-temperature superconductiv-
ity cuprates (HTSCs), the FS is not well defined due to the
failure of the quasiparticle picture [1]. Instead, the Luttinger
surface [2], defined through Luttinger’s theorem, is taken
as the underlying FS [3], also commonly referred to as the
FS. Experimental determination of the FS is typically based
on data obtained from angle-resolved photoemission spec-
troscopy (ARPES) measurements [4–6], and the FS of HTSC
exhibits topological changes with the charge fillings [7,8].
These features are believed to be linked to strong correlated
effects such as the pseudogap and superconductivity [9–12],
but their relationship remains a mystery. Therefore, numerical
calculations of FS topology in strongly correlated systems
have become an important research topic.

In numerical studies, the FS is usually determined by
the zero-frequency spectral intensity [13,14], which requires
the use of the numerical analytical continuation (NAC)
procedure [15,16] on the data of the Matsubara Green’s
function. However, NAC is sensitive to the noise or the
precision of the Matsubara data, and, as a result, it is
not always a reliable method. Hence, a method to de-
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termine the FS without NAC is desirable for numerical
calculations.

In this paper, we propose using the derivative of the mo-
mentum distribution function with respect to the chemical
potential, dnk/dμ, as a means to determine the effective
FS. We demonstrated the rationale and effectiveness of this
approach both theoretically and numerically, at least in the
weak and intermediate coupling regimes. We used this ap-
proach to calculate the effective FS of the two-dimensional
(2D) Hubbard model in correlated regimes and found that it
exhibits topological changes with charge filling, similar to the
FS observed in cuprates. These calculations were performed
using the HGW method [17]. Therefore, we believe that the
use of the dnk/dμ notion to determine the FS in correlated
systems is a reasonable, efficient, and potentially valuable
approach.

This paper is organized as follows. In Sec. II, we introduce
the notion of dnk/dμ, and demonstrate its relationship with
the spectral function A(ω, k). Then in Sec. III, we introduce
our testing solver in the 2D Hubbard model, and numerically
verify the validity of the effective FS. After that, we apply
our notion to study the FS topological transition for correlated
systems in Sec. IV. Our results are summarized in Sec. V.

II. EFFECTIVE FERMI SURFACE AND ITS PHYSICAL
MEANINGS

Consider a noninteracting Fermi system at finite tempera-
ture T = 1/β, the momentum distribution function nk is given
by

nk = 2

1 + eβ(εk−μ)
. (1)
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The FS is where εk = μ and thus where nk = 1. From Eq. (1),
we directly obtain

dnk

dμ
= −1

2
βn2

k + βnk. (2)

Obviously, dnk/dμ reaches its maximum where nk = 1.
Therefore, FS is where dnk/dμ reaches its maximum.

For interacting cases, FS typically refers to the Luttinger
surface, which can be determined by the maximum of spectral
intensity Ak(ω; μ) at zero frequency ω = 0. It is worth noting
that there is a relationship between nk and Ak(ω; μ) given by
the following equation:

nk = 2
∫ +∞

−∞
dω

Ak(ω; μ)

eβω + 1
. (3)

The spectral function takes the form:

Ak(ω; μ) =
∑

N,α,γ

ρN,α|Mk,N,α,γ |2

× δ[ω − (EN+1,γ − EN,α − μ)]. (4)

Here (N, EN,α ) are eigenvalues of the total particle num-
ber operator N̂ and the Hamiltonian Ĥ , respectively. ρN,α =
e−β(EN,α−μN )/Z and Z = ∑

N,α e−β(EN,α−μN ). Since Mk,N,α,γ is
independent of μ, the derivative of Ak(ω; μ) with respect to μ

contains two parts:

D1 =
∑

N,α,γ

dρN,α

dμ
|Mk,N,α,γ |2

× δ[ω − (EN+1,γ − EN,α − μ)], (5)

and

D2 =
∑

N,α,γ

ρN,α|Mk,N,α,γ |2

× δ′[ω − (EN+1,γ − EN,α − μ)]. (6)

If dρN,α

dμ
= β(N − 〈N〉)ρN,α is negligible, we can focus only

on the contribution of D2 to dnk/dμ, leading to the following
expression:

dnk

dμ
≈ 2β

∫ +∞

−∞
dωAk(ω; μ)sech2

(
βω

2

)
. (7)

When the value of β is large, the function f (ω) =
βsech2(βω/2) becomes sharply peaked at ω = 0 and approx-
imately resembles a Dirac δ function. Subsequently, Eq. (7)
can be simplified to:

dnk

dμ
≈ 2Ak(ω = 0; μ). (8)

That means the derivative of nk with respect to μ is propor-
tional to the zero-frequency spectral intensity. In other words,
the surface determined by the maximum of dnk/dμ will be
similar to FS determined by the maximum spectral intensity.

We now consider the physical interpretation of dnk/dμ.
First, its definition describes the rate of change of the mo-
mentum distribution function nk with respect to the chemical
potential μ, suggesting that the most active particles are lo-
cated where dnk/dμ is the largest, potentially representing the
Fermi surface. Second, averaging dnk/dμ over all momenta

k yields the charge compressibility χ c = dn/dμ, making
dnk/dμ the momentum-dependent compressibility. Finally,
dnk/dμ can be expressed as:

dnk

dμ
=

∑
k′

∫ β

0
dτ ′〈nk(τ = 0)nk′ (τ ′)〉

− 〈nk(τ = 0)〉
∑

k′

∫ β

0
dτ ′〈nk′ (τ ′)〉. (9)

It reflects the correlation between the k-specified charge den-
sity and the total charge density, potentially serving as a bridge
between the Fermi surface and charge correlation functions.

III. NUMERICAL VERIFICATION FOR VALIDITY
OF EFFECTIVE FERMI SURFACE

A. Model and testing solver

We focus on the 2D Hubbard model on a square lattice,
whose Hamiltonian is given by

H = −
∑
i jσ

ti j ĉ
†
iσ ĉ jσ + U

2

∑
iσ

n̂iσ n̂iσ̄ − μ
∑

iσ

n̂iσ . (10)

Here ĉ†
iσ (ĉiσ ) is the creation (annihilation) operator for the

electron with spin σ at lattice site i, and n̂iσ ≡ ĉ†
iσ ĉiσ is the

density operator. ti j is hopping strength for the electron from
site i to site j, U is the on-site repulsive interaction, and μ

is the chemical potential. Here we only consider the nearest-
neighbor hopping strength t and the next-nearest-neighbor
hopping strength t ′, and set t = 1 as the unit of energy. The
noninteracting dispersion is given by

εk = −2t (cos kx + cos ky) − 4t ′ cos kx cos ky. (11)

We employ the HGW method as the testing solver to obtain
the Green’s function due to its low computational complexity
and its ability to qualitatively describe the pseudogap. Al-
though the results for the gap and the temperature for the onset
of pseudogap are highly overestimated (see Appendix B),
traditional approaches like the GW approximation and the
fluctuation-exchange (FLEX) approximation fail to capture
the pseudogap physics. While other many-body methods, such
as the two-particle self-consistent (TPSC) theory [18], can be
used as the testing solvers in principle.

The HGW method is a many-body approach based on the
truncation of correlation functions in the Dyson-Schwinger
equations. It can be applied to various systems, including the
Hubbard model. The HGW equations for the Green’s function
in the Hubbard model are as follows:

G−1
σ (k) = H−1

σ (k) + 1

βL2

∑
q

Hσ (k + q)Wσ σ̄ (q), (12)

[W −1]σσ ′ (q) = 1

U
δσσ ′ − δσ̄σ ′

βL2

∑
k

Hσ̄ (k + q)Gσ (k), (13)

with

H−1
σ (k) = −ik0 + (εk − μ) − U

βL2

∑
p

Gσ̄ (p). (14)

The index k here denotes a combination of the Matsubara
frequency ik0 and the quasimomentum k, and L2 is the total
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FIG. 1. The figure shows the momentum distribution function
nk (top), zero-frequency spectral intensity Ak(ω = 0) (middle), and
momentum-dependent compressibility dnk/dμ (bottom) for weak
coupling U = 2.0. The results are presented for different fillings
from left to right, ranging from 0.2–1.0.

number of lattice sites. Gσ (k) represents the one-body Green’s
function, Wσσ ′ (q) acts as the effective dynamical two-body
potential, and Hσ (k) denotes the noninteracting Green’s func-
tion with the Hartree self-energy included.

Numerically, the set of Eqs. (12), (13), (14) can be quickly
solved by Broyden iterations and fast Fourier transformation
algorithms. For each iteration, the computational complexity
is of order ML2 log ML2, where M is the number of Matsubara
time slices. After solving the Green’s function Gσ (k), we use
the Nevanlinna analytical continuation technique [16], which
is efficient for noiseless Matsubara Green’s function data, to
calculate the spectral function, and then obtain the FS by the
maximum spectral intensity method.

B. Comparison of two surfaces at weak
and intermediate coupling

In Ref. [19], the Fermi surface was simulated for the 24 ×
24 Hubbard model at weak and intermediate couplings (U =
2.0, 4.0) and different fillings. Here, we use the HGW method
to calculate the momentum distribution nk, the spectral func-
tion Ak(ω), and the momentum-dependent compressibility
dnk/dμ for the same parameters. This serves as a numerical
verification of the similarity between the two surfaces and also
tests the validity of the HGW method.

Figures 1 and 2 present plots of the momentum distribution
function nk, the zero-frequency spectral intensity Ak(ω = 0),
and the momentum-dependent compressibility dnk/dμ for the
2D square Hubbard model with interaction strengths U = 2.0
and U = 4.0, respectively. The results show that the two
surfaces determined by Ak(ω = 0) and dnk/dμ are almost
identical, providing a numerical verification of the similarity
between them and the validity of determining the FS by the
momentum-dependent compressibility dnk/dμ.

IV. SURFACE TOPOLOGICAL TRANSITION
FOR CORRELATED SYSTEM

A. Numerical results of effective FS

We investigate the U = 6.0 and t ′ = −0.25 parameter
regime, which corresponds to correlated materials studied in

FIG. 2. The plot shows the momentum distribution function nk

(top), zero-frequency spectral intensity Ak(ω = 0) (middle), and
momentum-dependent compressibility dnk/dμ (bottom) at interme-
diate coupling U = 4.0. The fillings range from 0.2–1.0 from left to
right, and the temperature is 1/5.0 for n = 1.0 and 1/8.0 for other
fillings.

Ref. [20] for evidence of strange metallicity using DQMC
simulations. We present the plots of dnk/dμ for different
fillings and temperatures in Fig. 3, and we provide the plots
of FS determined by the maximum spectral intensity method
for comparison in Appendix B. The results indicate that the
surface has a holelike feature in the overdoped region (n =
0.7, 0.85) and a small arc in the underdoped region (n =
0.9, 0.95), which is qualitatively similar to the FS in the
cuprates [21,22]. Notably, at n = 1.0, 1/T = 3.0, where the
system is nearly in the Mott phase, the surface matches qual-
itatively with the remnant Fermi surface of the Mott insulator
Ca2CuO2Cl2 [23]. However, we do not observe any indication
of the hole pocket that has been reported in experiments [24]
or predicted by certain theoretical studies [25–27].

To assess the quality of the obtained Fermi arc, we com-
pare it with experimental results on Ca2−xNaxCuO2Cl2 from

FIG. 3. The plot of dnk/dμ for U = 6.0 and t = −0.25 for 24 ×
24 lattice. From left to right, the charge fillings are 0.5, 0.7, 0.85, 0.9,
0.95, 1.0. From top to bottom, the inverse temperatures are 1.0, 3.0,
5.0, and 8.0.
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FIG. 4. Comparison of Fermi arc with the experimental results of
Ca2−xNaxCuO2Cl2 in Ref. [21]. The experimental results are replot-
ted in (a)–(f). (a)–(c) show the distribution of spectral weight in the
Brillouin zone within a ±10 meV window around the Fermi energy
for x = 0.05, 0.10, and 0.12 in one quadrant of the first Brillouin
zone. The backgrounds of (d)–(f) are our numerical results at the
same dopings, and the circles are experimental results used to detect
the FS contours. Note that the distribution of the circles in (d)–(f) has
some deviation from the experimental results, but the position of the
Fermi arc is ensured.

Ref. [21]. We use the same model parameters as before (U =
6.0 and t ′ = −0.25) and a 24 × 24 lattice size. Figure 4 shows
that our results are not quantitatively satisfactory for small
doping levels (x = 0.05), but for doping levels of 0.1 and
0.12, the shape and position of the Fermi arc are in good
quantitative agreement with the experimental results.

In Fig. 3, it is evident that the Fermi surface undergoes
topological transitions as a function of charge filling, passing
through several stages. To highlight these transitions more
clearly, we present a series of surfaces for slowly varying
fillings with a fixed temperature of 1/T = 3.0, as shown in
Fig. 5. At low fillings, the Fermi surface is electronlike, cen-

FIG. 5. The topological transition of the Fermi surface with in-
creasing filling number for fixed temperature 1/T = 3.0. The top
panel shows the transition from an electronlike surface to a holelike
surface. The middle panel shows the transition from a closed surface
to a Fermi arc. The bottom panel shows the transition from a Fermi
arc to a Mott insulatorlike feature.

tered at (0, 0), and the system is typically regarded as a Fermi
liquid. As the filling increases, the electronlike Fermi surface
begins to touch the boundary of the first Brillouin zone, be-
coming holelike. This transition can still be considered as a
Fermi liquid and is likely due to the next-nearest-neighbor
hopping strength t ′. Upon further increasing the filling, the
position of the Fermi surface slows down, and at the junction
of the Fermi surface and the first Brillouin zone, the zero-
frequency intensity begins to decrease, indicating the onset
of the pseudogap. This leads to blurring of the Fermi surface
in that area and the appearance of the Fermi arc. The Fermi
arc shortens with increasing filling until it almost shrinks to a
point near the node ( π

2 , π
2 ). Finally, the system enters the Mott

phase, where the gap is fully opened.

B. View on pseudogap

The HGW method is essentially a weak coupling fluctu-
ation theory, so its view on the pseudogap is similar to that
of TPSC theory [18]. Specifically, when the spin fluctuations
are strong, the effective two-body potential Wσ σ̄ (iq0 = 0, q) is
proportional to the RPA-like spin density correlation function:

Wσ σ̄ (0, q) = − U 2χ0(q)

1 − U 2χ2
0 (q)

∼ −1

2
U 2χ rmsp(q), (15)

with the asymmetric bare correlator

χ0(q) = − 1

βL2

∑
ik0,k

H (ik0, k + q)G(ik0, k) (16)

and the RPA-like spin density correlation function

χ sp(q) = χ0(q)

1 − Uχ0(q)
. (17)

Our numerical calculation (see Appendix B) for the minus of
Wσ σ̄ (0, q) shows that it peaks at a momentum Q near (π, π )
when the system is at near half-filling.

Consider the case Q = (π, π ) and assume

1

βL2
Wσ σ̄ (iq0, q) ∼ −γ 2δq0,0δq,Q. (18)

The inverse Green’s function then takes the form

G−1(ik0, k) = −ik0 + (εk − μ′) + γ 2

−ik0 + (εk+Q − μ′)
,

(19)

with μ′ the renormalized chemical potential. This expres-
sion shows the similarity with the antiferromagnetic (AFM)
mean-field theory [28]. For this reason, the HGW method can
qualitatively capture the AFM gap. Equation (19) also allows
the onset of the hole pocket, which is not detected by our
numerical calculation. The emergence of the pseudogap and
the difficulty in detecting the hole pocket can be attributed to
the nonlocal correlation effect and the dynamical effect of the
spin correlation function, which depends on both momentum
and Matsubara frequency.

V. SUMMARY

The importance of FS is not only due to its connection with
strongly correlated effects, but also an important quantity to
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FIG. 6. The spectral function along the antinode to the node at
half-filling for (a) U = 2, t ′ = 0, β = 6.6, (b) U = 4, t ′ = 0, β =
5.0, and (c) U = 6, t ′ = −0.25, β = 3.0.

verify the matching of models and methods with the experi-
ments. However, at present, few many-body methods can well
simulate FS, due to the NAC’s difficulty or other factors. To
this end, we provide a new notion, the momentum-dependent
compressibility dnk/dμ, to determine the effective FS. We
have done theoretical analytical and numerical verification on
the similarity between the effective FS and the common FS
determined by the maximum intensity method. Considering
that for many numerical approaches, it is much more diffi-
cult to calculate the dynamical Green’s function G(ik0, k) or
G(τ, k) than the static momentum distribution nk, the effective
FS will be very beneficial.

In addition, the HGW method, used as the testing solver,
shows the change process of FS with the increase of fill-
ings from Fermi liquid state to Mott state. These results can
qualitatively match with the experiments. Besides, from the
perspective of the HGW method, the strong spin fluctuation
is the origin of the pseudogap, which is consistent with the
mainstream [29].

It is also worth noting that, in addition to FS contour, the
spectral intensity A(ω = 0, k) is also significant. Our work has
shown its connection to the momentum-dependent compress-
ibility, and thus the charge density correlation function. The
spectral intensity might also be related to the charge transport
properties.

APPENDIX A: METHODOLOGY

The HGW method we use for numerical computation is
based on the truncation of correlation functions of the Dyson-
Schwinger equations. To formulate this method, we first write
down the Matsubara action in the path integral formalism:

A[ψ,ψ∗] = −
∑

σ

∫
12

ψ∗
σ (1)Tσ (1, 2)ψσ (2)

+ U

2

∑
σ

∫
1

nσ (1)nσ̄ (1) +
∫

1
φσ (1)nσ (1).

(A1)
Here the label 1 ≡ (x1, τ1) indicates the lattice coordinate
x1 and the Matsubara time τ1. ψσ (1) is the electronic field
with z spin σ at lattice coordinate x1 and Matsubara time
τ1. nσ (1) ≡ ψ∗

σ (1)ψσ (1) is the spin-selective charge density
operator, noting that n↑(1) − n↓(1) is the z-spin density op-
erator and n↑(1) + n↓(1) is the total charge density operator.
Tσ (1, 2) is the inverse noninteracting Green’s function, and
U is the on-site Coulomb repulsive interaction strength. An

TABLE I. Antinodal and nodal gaps for different U ’s.

U 2.0 3.0 4.0 5.0 6.0

1/T 8.0 7.0 5.0 3.0 3.0
gap AN 0.594 1.35 1.96 2.73 3.14
gap N 0.536 1.28 1.82 2.46 2.82

external bosonic source φσ (1) coupled to nσ (1) is introduced
in our formalism, and will be set to zero in the numerical
calculations. Note that φ↑(1) − φ↓(1) corresponds to the mag-
netic field in the z direction and φ↑(1) + φ↓(1) corresponds to
the minus chemical potential.

The Matsubara Green’s function is defined as:

Gσ (1, 2) = −〈ψσ (1)ψ∗
σ (2)〉. (A2)

Here 〈...〉 is the ensemble average. The equation of motion
takes the form:

0 =
∫

3
H−1

σ (1, 3)Gσ (3, 2) + U
δGσ (1, 2)

δφσ̄ (1)
. (A3)

Note that the quantity δGσ (1, 2)/δφσ ′ (3) means the variation
of the Matsubara Green’s function Gσ (1, 2) with the external
source φσ ′ (3), and satisfies:

δGσ (1, 2)

δφσ ′ (3)
= −〈ψσ (1)ψ∗

σ (2)ψσ ′ (3)ψ∗
σ ′ (3)〉

+ Gσ (1, 2)Gσ ′ (3, 3). (A4)

The quantity Hσ (1, 2) is called the Hartree propagator, which
is the noninteracting Green’s function containing the Hartree
self-energy

H−1
σ (1, 2) = Tσ (1, 2) − δ(1, 2)φσ (1) − Uδ(1, 2)Gσ̄ (1, 1).

(A5)

By functional derivative of Eq. (A3) with respect to φ, one
obtains

δ

δφσ ′ (3)

[∫
4

H−1
σ (1, 4)Gσ (4, 2)

]
= −U

δ2Gσ (1, 2)

δφσ ′ (3)δφσ̄ (1)
.

(A6)

Truncation would be made on Eq. (A6) to form a closed
system of equations.

FIG. 7. The plot of momentum distribution function nk (top), and
momentum-dependent compressibility dnk/dμ (bottom) for U = 0
and t ′ = 0. From left to right, the fillings are 0.2, 0.4, 0.6, 0.8, 0.9,
1.0.
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FIG. 8. The plot of momentum distribution function nk (top), and
momentum-dependent compressibility dnk/dμ (bottom) for U = 0
and t ′ = −0.25. From left to right, the fillings are 0.2, 0.4, 0.6, 0.8,
0.9, 1.0.

1. HGW equations for Green’s function

Equation (A3) shows a relationship between the Green’s
function G and its derivative δG/δφ, and Eq. (A6) relates
δG/δφ to a higher-order derivative δ2G/δφ2. We truncate
δ2G/δφ2 in Eq. (A6) due to the clustering property of cor-
relation functions. Then Eq. (A6) becomes

δGσ (1, 2)

δφσ ′ (3)
= −

∫
d (45)Hσ (1, 4)

δH−1
σ (4, 5)

δφσ ′ (3)
G(5, 2). (A7)

Arranging Eqs. (A3), (A5), (A7), then one obtains the HGW
equations:

G−1
σ (1, 2) = H−1

σ (1, 2) + Hσ (1, 2)Wσ σ̄ (2, 1), (A8a)

[W −1]σσ ′ (1, 2) = 1

U
δσσ ′ − δσ̄σ ′Hσ̄ (1, 2)Gσ (2, 1). (A8b)

For translational invariant systems in absence of external
source, the HGW equations read

G−1
σ (k) = H−1

σ (k) + 1

N
∑

q

Hσ (k + q)Wσ σ̄ (q) (A9a)

[W −1]σσ ′ (q) = 1

U
δσσ ′ − 1

N
∑

k

Hσ (k + q)Gσ̄ (k) (A9b)

with H−1
σ (k) = Tσ (k) − U

N
∑

p Gσ̄ (p). Here N is a normal-
ization factor.

2. Calculation of momentum-dependent compressibility

The momentum-dependent compressibility is defined as
the derivative of momentum distribution function nk ≡
1
β

∑
n,σ Gσ (k, iωn) with respect to the chemical potential.

One can calculate the Green’s function Gσ (k, iωn; μ) for
different chemical potentials μ. By definition, the momentum-
dependent compressibility equals to

dnk

dμ
= lim

�μ→0

1

β

∑
n,σ

Gσ (k, iωn; μ + �μ) − Gσ (k, iωn; μ)

�μ
.

(A10)
Then one obtains dnk/dμ by the numerical differentiation.

Besides, one can also calculate dnk/dμ using the func-
tional derivative scheme. Take μ as a variable, and note that

δTσ (k) = δμ. The variation of Eq. (A9a) is

δG−1
σ (k) = δH−1

σ (k) + 1

N
∑

q

δHσ (k + q)Wσ σ̄ (q)

+ 1

N
∑

q

Hσ (k + q)δWσ σ̄ (q), (A11)

the variation of H−1
σ (k) is

δH−1
σ (k) = δμ − U

N
∑

p

δGσ̄ (p), (A12)

and the variation of Eq. (A9b) is

δ[W −1]σσ ′ (q) = −δσ̄σ ′

N
∑

q

δHσ̄ (k + q)Gσ (k)

−δσ̄σ ′

N
∑

q

Hσ̄ (k + q)δGσ (k). (A13)

Letting �σ (k) ≡ −δG−1
σ (k)/δμ and �H

σ (k) ≡ −δH−1
σ /δμ,

one obtains

�σ (k) = �H
σ (k) + �MT

σ (k) + �AL
σ (k), (A14)

with the Maki-Thompson component

�MT
σ (k) = 1

N
∑

q

Hσ (k + q)Hσ (k + q)Wσ σ̄ (q)�H
σ (k + q),

(A15)
and the Aslamazov-Larkin component

�AL
σ (k) = 1

N
∑

q,σ1,σ2

Hσ (k + q)Wσσ1 (q)Wσ2σ̄ (q)�σ1σ2 (q),

(A16)
with �σ1σ2 (q) ≡ −δ[W −1]σ1σ2 (q)/δμ. From Eq. (A13), one
obtains

�σσ ′ (q) = −δσ̄σ ′

N
∑

q

Hσ̄ (k + q)Hσ̄ (k + q)Gσ (k)�H
σ̄ (k + q)

− δσ̄σ ′

N
∑

q

Hσ̄ (k + q)Gσ (k)Gσ (k)�σ (k). (A17)

Then �σ (k) can be obtained by solving the vertex equa-
tions Eq. (A14), and thus the variation of the Green’s function
Gσ (k) with respect to the chemical potential μ

δGσ (k)

δμ
= Gσ (k)Gσ (k)�σ (k), (A18)

can be calculated. The momentum-dependent compressibility
dnk/dμ is then carried out.

3. Discretized Matsubara time path integral formalism

For numerical implementation, we use the discritized Mat-
subara time path integral formalism where the Matsubara time
length β is divided into finite M pieces of intervals. The action
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FIG. 9. The plot of FS determined by the maximum intensity method for U = 6.0 and t = −0.25 for 24 × 24 lattice. From left to right,
the charge fillings are 0.5, 0.7, 0.85, 0.9, 0.95. From top to bottom, the inverse temperatures are 3.0, 5.0. and 8.0.

with finite M for the L × L Hubbard model takes the form

AM[ψ,ψ∗] = −
∑

σ,x,x′,l,l ′
ψ∗

σ (xτl )Tσ (xτl , x′τl ′ )ψσ (x′τl ′ )

+ U

2
�τ

∑
σ

∑
xl

nσ (x, τl )nσ̄ (xτl ). (A19)

Here x indicates the lattice site, τl ≡ l�τ refers to the Matsub-
ara time and �τ = β/M is the length of integral. As M tends
to infinity, the summation �τ

∑M−1
l=0 becomes the integral∫ β

0 dτ , i.e., the continuous Matsubara time limit.
The Hamiltonian for the Hubbard model reads

H = −
∑
σ,x,x′

txx′c†
σ,xcσ,x′ + U

2

∑
σ,x

nσ,xnσ̄ ,x − μ
∑
σ,x

nσ,x.

(A20)

Here c†
σx (cσx) is the creation (annihilation) operator for the

fermion at lattice site x with z spin σ , and nσx ≡ c†
σxcσx is

the density operator. txx′ is the hopping strength between sites
x and x′. The corresponding inverse noninteracting Green’s

function is then:

Tσ (xτl , x′τl ′ )

= �τ

(
− 1

�τ
δxx′ (δl,l ′−1 − δl,l ′ ) + txx′δl,l ′ + μδxx′δl,l ′

)
.

(A21)

Due to the antiperiodicity at the Matsubara time axis, the
Fermionic arraylike quantity XF takes the form:

XF(xτl , x′τl ′ ) = 1

N
∑
k,m

XF(k, m)eik·(x−x′ )ei 2m+1
Mβ

π (τl −τl′ )
.

(A22)
Due to the periodicity, the Bosonic arraylike quantity XB takes
the form:

XB(xτl , x′τl ′ ) = 1

N
∑
k,m

XB(k, m)eik·(x−x′ )ei 2m
Mβ

π (τl −τl′ )
. (A23)

The normalization factor N equals to the number of values of
(k, m), i.e., N = ML2. Note that Tσ (xτl , x′τl ′ ) is a Fermionic
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FIG. 10. The plot of FS determined by the maximum intensity
method for U = 6.0 and t = −0.25 for 24 × 24 lattice. From left to
right, the charge fillings are 0.5, 0.7, 0.85, 0.9, 0.95, 1.0. From top to
bottom, the inverse temperatures are 3.0, 5.0, and 8.0.

quantity, and its Fourier transformation equals to:

Tσ (k, m) = �τ

(
− 1

�τ
(e−i 2m+1

M π − 1) − (εk − μ)

)
. (A24)

Here εk is the noninteracting dispersion. Noting that if
m/M 
 1, − 1

�τ
(e−i 2m+1

M π − 1) → iπ (2m + 1)/β, i.e., the
Matsubara frequency in the continuous time limit.

APPENDIX B: SUPPORTING NUMERICAL RESULTS

1. Quality of the HGW method: Spectral functions and gaps

Here we display the spectral function in Fig. 6 along the
antinode (π, 0) to the node (π/2, π/2) at half-filling for

FIG. 11. The plot of the minus of Wσ σ̄ (iq0 = 0, q) for U = 6.0 and t = −0.25 for 24 × 24 lattice. From left to right, the charge fillings are
0.5, 0.7, 0.85, 0.9, 0.95, 1.0. From top to bottom, the inverse temperatures are 1.0, 3.0, 5.0, and 8.0.

[Fig. 6(a)] U = 2, t ′ = 0, β = 6.6, [Fig. 6(b)] U = 4, t ′ = 0,
β = 5.0, and [Fig. 6(c)] U = 6, t ′ = −0.25, β = 3.0. Fig-
ure 6(a) shows the onset of double peaks, indicating the end of
the pseudogap. The critical temperature is about T = 0.151,
much higher than 0.065 given by the Monte Carlo [29].
Figure 6(b) shows a deep valley between two peaks, indicating
the nearly Mott phase. The gap between two peaks is about
2.0, larger than 1.4 given by the Monte Carlo for 8 × 8 cluster.
Figure 6(c) indicates the nearly Mott phase, and also displays
some high-energy excitations.

We further list the antinodal gap and the nodal gap for
different U ’s and t ′ = 0 in the Table I. The second line 1/T
means the inverse temperature used. Compared with the re-
sults obtained by DQMC, our results obviously overestimate
the energy gaps. These results give us the positioning of the
HGW method: it qualitatively captures the pseudogap and the
Mott gap, whereas is not quantitatively very good. Therefore,
we expect that the HGW method can qualitatively describe
the physics related to the pseudogap.

2. Noninteracting FS topology

We display the surface topology changes with the charge
fillings for U = 0 model on a 24 × 24 lattice in Fig. 7 for
t ′ = 0 and Fig. 8 for t ′ = −0.25. For U = 0 and t ′ = 0, the
surface topology is similar to the weak coupling U = 2 and
intermediate coupling U = 4 shown in the main text. For U =
0 and t ′ = −0.25, the surface exhibits a transition from the
electronlike one to the holelike one, but does not exhibit the
arc and Mott feature.
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3. Spectral functions and FS for U = 6.0 and t ′ = −0.25

We plot the spectral functions using the Nevanlinna an-
alytical continuation procedure for different fillings and
temperatures at U = 6.0 and t ′ = −0.25, as shown in Fig. 9.
We further plot FS by the maximum spectral intensity
method in Fig. 10. The results are similar to the surface
determined by dnk/dμ on the whole, also exhibit the arc
features.

4. Effective potential in the HGW method

In the HGW method, the effective potential Wσ σ̄ (iq0 =
0, q) plays an important role in capturing the pseudogap
physics. We plot the minus of Wσ σ̄ (iq0 = 0, q) for different
parameters as shown in Fig. 11. At near half-filling, the quan-
tity dominates at a momentum near (π, π ). The qualitative
relationship between Wσ σ̄ (iq0, q) and the pseudogap has been
described in the main text, but quantitative analysis would be
very difficult.
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