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Non-Fermi liquid behavior at flat hot spots from quantum critical fluctuations at the onset
of charge- or spin-density wave order
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We analyze quantum fluctuation effects at the onset of charge- or spin-density wave order with a 2kr wave
vector Q in two-dimensional metals, for the special case where Q connects a pair of hot spots situated at high
symmetry points of the Fermi surface with a vanishing Fermi surface curvature. We compute the order parameter
susceptibility and the fermion self-energy in one-loop approximation. The susceptibility has a pronounced peak
at Q, and the self-energy displays non-Fermi liquid behavior at the hot spots, with a linear frequency dependence
of its imaginary part. The real part of the one-loop self-energy exhibits logarithmic divergencies with universal
prefactors as a function of both frequency and momentum, which may be interpreted as perturbative signatures

of power laws with universal anomalous dimensions. As a result, one obtains a non-Fermi liquid metal with a
vanishing quasiparticle weight at the hot spots, and a renormalized dispersion relation with anomalous algebraic

momentum dependencies near the hot spots.
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I. INTRODUCTION

Quantum fluctuations at and near quantum critical points
(QCP) in metallic electron systems naturally lead to non-
Fermi liquid behavior with unconventional temperature,
momentum, and frequency dependencies of physical observ-
ables [1]. The fluctuation effects are most pronounced in
low-dimensional systems. In view of non-Fermi or “strange
metal” behavior observed in various layered compounds, such
as the high-T. cuprates, two-dimensional systems have at-
tracted particular interest. Due to the complex interplay of
critical order parameter fluctuations with gapless electronic
excitations, the theory of such systems is notoriously difficult.

Metals at the onset of charge- or spin-density wave or-
der provide a vast playground of quantum critical non-Fermi
liquids with many distinct universality classes. The most in-
tensively studied case of a Néel antiferromagnet is just one
example [2-5]. A particularly intriguing situation arises when
the wave vector Q of the density wave is a nesting vector of
the Fermi surface, that is, when it connects Fermi points with
collinear Fermi velocities [6]. Charge and spin susceptibilities
exhibit a singularity at such wave vectors due to an enhanced
phase space for low-energy particle-hole excitations. Since
the nesting vectors in continuum systems are related to the
Fermi momentum kr by the simple relation |Q| = 2kr, one
may refer to such nesting vectors also as “2kg” vectors [7].
The wave vector (77, r) of a Néel state (in two dimensions) is
a nesting vector only for special electron densities. Quantum
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critical fluctuations lead to an enhanced quasiparticle decay
rate in this case [8,9], but the decay rate remains parametri-
cally smaller than the excitation energy of the quasiparticles
in the low-energy limit [10].

Recently, non-Fermi liquid behavior at the onset of charge-
or spin-density wave order with incommensurate [11] nesting
wave vectors Q in two-dimensional metals has been analyzed
in a series of papers. In a one-loop calculation of the fermionic
self-energy, a breakdown of Fermi liquid behavior was ob-
tained at the hot spots on the Fermi surface connected by
the ordering wave vector [12]. If the ordering wave vector
Q connects only a single pair of hot spots, in axial or di-
agonal direction, the frequency dependence of the one-loop
self-energy at the hot spots obeys a power law with exponent
%. If Q connects two pairs of hot spots, the imaginary part
of the real frequency one-loop self-energy exhibits a linear
frequency dependence. In none of these two cases the per-
turbative solution is self-consistent, and the feedback of the
non-Fermi liquid self-energy seems to push the ordering wave
vector away from the nesting point [13,14]. Actually it was
argued already long ago, for the case of a single hot spot
pair, that quantum fluctuations spoil the QCP in favor of a
first-order transition [7]. However, a flattening of the Fermi
surface at the hot spots might save the QCP [13], and this
scenario was supported by a systematic ¢ expansion around
the critical dimension d, = % [15]. For the two-hot-spot pair
case, a self-consistent solution with a stable QCP was found
numerically [14]. While fluctuations are naturally stronger in
two-dimensional systems, quantum fluctuation effects at the
onset of density wave order with a 2kr wave vector are special
and intriguing also in three dimensions [16]. In this paper we
analyze quantum fluctuations and non-Fermi liquid behavior
at the onset of density wave order in a two-dimensional system
for a case where the nesting vector connects flat hot spots on
a mirror symmetry axis, where the Fermi surface curvature
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FIG. 1. Hot spots with vanishing curvature on the Fermi surface
for a tight-binding model with nearest and next-nearest neighbor
hopping amplitudes ¢ and ¢’, respectively, on a square lattice. The
ratio of hopping amplitudes has been chosen as #'/t = —0.35, and
the Fermi level leading to flat hot spots is € = 8'[1 — 2(¢'/t)*] =
—2.114¢.

vanishes already in the noninteracting reference system, that
is, before fluctuations are taken into account. Such a situation
may arise at special electron filling factors. For example, for
a tight-binding model with nearest and next-nearest neighbor
hopping on a square lattice, the Fermi surface exhibits zero
curvature points along the Brillouin zone diagonal for a spe-
cific choice of the Fermi level (corresponding to a special
filling factor), as illustrated in Fig. 1. Using relative momen-
tum coordinates k, and &, in normal and tangential directions,
respectively, with respect to the Fermi surface at a hot spot,
the dispersion relation near the hot spot has the form,

& = ex — e = vpk, + bk, e

to leading order in k. and k;. Here vp is the Fermi velocity
at the hot spot, and b is a real constant, which is positive
(negative) if the Fermi surface is convex (concave) at the hot
spot. Due to the mirror symmetry with respect to the Brillouin
zone diagonal there is no term of order k>. Hence, this case
differs from inflection points on the Fermi surface, where the
curvature vanishes, too, but the leading tangential momentum
dependence is of cubic order.

As in the above-mentioned case of Néel order with nested
hot spots, a QCP with flat hot spots connected by an incom-
mensurate wave vector requires tuning to a specific particle
density. In addition, another parameter must be tuned such that
the system is situated at the onset of charge- or spin-density
wave order. In solids, the density of electrons in layered
compounds can be varied over a broad range by chemical
substitution or gate potentials. The tuning of other param-
eters such as the ratio of Coulomb to kinetic energy is in
principle possible by pressure, but in practice limited to a

narrow regime. Alternatively, a QCP with flat hot spots may be
realized by cold fermionic atoms in optical lattices, where the
particle density, interaction strength, and hopping amplitudes
can be tuned at will [17,18].

We compute the order parameter susceptibility, the effec-
tive interaction, and the fermion self-energy at the onset of
incommensurate charge- or spin-density wave order with flat
nested hot spots in a one-loop approximation. The susceptibil-
ity and the effective interaction exhibit pronounced peaks at
the nesting vector. Both the momentum and frequency depen-
dencies of the self-energy develop logarithmic divergencies,
signaling a vanishing quasiparticle weight and non-Fermi lig-
uid power laws with universal critical exponents.

The remainder of the paper is structured as follows. In
Sec. II we compute the order parameter susceptibility and
the effective interaction at the QCP. The momentum and fre-
quency dependence of the fermion self-energy is evaluated in
Sec. III. A conclusion in Sec. IV closes the presentation.

II. SUSCEPTIBILITY AND EFFECTIVE INTERACTION

We consider a one-band system of interacting fermions
with a bare single-particle energy-momentum relation €. We
are dealing exclusively with ground-state properties, that is,
the temperature is fixed to 7 = 0. The bare fermion propaga-
tor has the form,

1

iko — &’
where ky denotes the (continuous) imaginary frequency, and
&k = ex — u. At zero temperature, the chemical potential u
is equal to the Fermi level €. We assume that, in mean-field
theory, the system undergoes a charge- or spin-density wave
transition with an incommensurate and nested wave vector Q,
which connects a pair of hot spots on the Fermi surface. We
further assume that the dispersion relation in the vicinity of
the hot spots has a quartic tangential momentum dependence
of the form Eq. (1).

In random phase approximation (RPA, that is, at one-loop
level), the order parameter susceptibility has the form,

x0(q, iqo)
1+ gxo(q, iqo)’

where g < 0 is the coupling constant parametrizing the in-
teraction in the instability channel. The bare charge or spin
susceptibility g is related to the particle-hole bubble I, by
Xxo0(q, iqo) = —NTly(q, igo), where N is the spin multiplicity,
and [19]

Go(k, iko) = @

x(q, iqo) = 3)

Io(q, iCIo)=// Go(k, iko) Go(K — q, iko — iqo). (4)
k Jk

Here and in the following [ is a shorthand notation for
i %, and [, for [ 2o While keeping the spin multiplic-
ity N as a general parameter in our equations, we choose
N = 2, corresponding to spin-% fermions, in all numerical re-
sults. Continuing I1y(q, igo) analytically to the real frequency
axis from the upper complex frequency half-plane yields
the retarded polarization function Iy(q, w). In Fig. 2 we
show the static (zero frequency) bare susceptibility xo(q, 0) =

—2I1y(q, 0) for a tight-binding model with parameters as in
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FIG. 2. Static bare susceptibility xo(q, 0) as a function of q for a
tight-binding model of spin—% fermions (N = 2) with parameters as
in Fig. 1.

Fig. 1 [20]. Pronounced peaks are visible at the nesting vectors
connecting the four flat hot spots on the Fermi surface.

The RPA susceptibility diverges when gxo(Q, 0)=—1,
signaling an instability at the critical coupling g. =
—1/x0(Q, 0) toward charge- or spin-density wave order with
one of the nesting wave vectors Q at which y(q, 0) has a
(finite) peak. We note that in the case of “perfect nesting”
[6] the bare susceptibility at zero temperature diverges at the
nesting vectors Q, so that any finite coupling g leads to an
instability already at some finite critical temperature in RPA.

To analyze the behavior of the susceptibility near the sin-
gularity, we expand

5“0((1, C()) = HO(qv (1)) - HO(Q? O)» (5)

for q near Q and small w. Momenta near Q are parametrized
by relative momentum coordinates g, and ¢, parallel and
perpendicular to Q, respectively. The leading contributions to
6T1p(q, ) come from fermionic momenta near the hot spots
connected by Q, where the dispersion relations in Eq. (4) can
be expanded as in Eq. (1), that is, & = vrk, + bk,4 and &_q =
—vg(k, — q,) + b(k, — g,)*. In the following we assume that
b is positive. Our derivations and results can be easily adapted
to negative b. The integrals over k,, k;, and kq are evaluated in
Appendix.
For ¢, = 0, the integral in Eq. (4) is elementary, yielding

— DY 0+ —
Frop oy Ve e

+ (14 i)y —w —i0F —vpg, 1. (6)

In the static limit w — 0, one obtains

51—10(% Os w) =

_ [rlg DY/ 2ror @B forg, <0,
HMotar, 0.0)= {(vmr)”“/[ﬁnw(zbﬂ“] for g, > 0.
)

The static particle-hole bubble thus exhibits a cusp with infi-
nite slope as a function of g, at g, = g, = 0. For ¢, # 0, the
particle-hole bubble can be expressed in a scaling form as (see
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FIG. 3. Real and imaginary parts of the scaling function 7(x).

Appendix)
|G | ® — Vpqy —® — Vpqy
§Mo(qy, g;, @) = — | I| ————— I'f —— ||,
0(qr, G:, @) top bat + ba
3
where

®dkg| 14i
1(x) :/ o0 $
b 27 | 20

1 1

+

V-T2t =3/ T(a2ik) ©)
V2(1 + x + 2ikg)

is a dimensionless scaling function, shown graphically in
Fig. 3. The graph of I(x) exhibits a cusp at x = %, and the

imaginary part of /(x) vanishes for all x < %. While 7(x)
cannot be expressed by elementary functions, 71(0) and [ (%)

are given by the simple numbers +/2/7 and \/g /7, respec-
tively. Since 1(0) is finite, §T14(0, ¢;, 0) is linear in |g,|. For
|x] — o0, the scaling function behaves asymptotically as

1-i /4
ST= X
I(x) ~ iz”“”

24 11/4 3
T+

/4 i _
+ W}C 174 forx > 0,

1
7114 o

forx < 0.

Inserting the leading asymptotic behavior into Eq. (8) one re-

covers the result Eq. (6) for ¢, = 0. The next-to-leading order

yields the leading g, dependence for b|q,|* < | + © — vrg,|,
Ho(gr, g1, @) — To(gr, 0, @)

3(2b)V4g?
= X
327 VF

14+
Jo +i0t — vgpg,

1—1i
+ +0(q}), 11
\‘V—a) — 0t — qu,> (%) (b

Hence, for o # +vrg,, the leading g, dependence is quadratic
in g;.
The RPA effective interaction is given by

8

_— (12)
1+ gxo(q, iqo)

D(q, iqo) =
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on the imaginary frequency axis, and by the same expres-
sion with igy — @ on the real frequency axis. At the QCP,
gx0(Q, 0) is equal to minus one, so that

1
 NSTo(q, @)

Hence, the effective interaction at the QCP does not depend
on the coupling constant g.

D(q, w) = 13)

III. FERMION SELF-ENERGY

To leading order in the effective interaction D, the fermion
self-energy is given by the one-loop integral,

S(k, iko) = M / / D(q. ido) Go(k — . iko — iqo). (14)
q Y90

with M = 1 for a charge-density and M = 3 for a spin-density
instability [13]. Analytic continuation of this expression to the
real frequency axis yields [21]

2k, w +i07)
M
= ——/dv/[b(v)ImD(q,v+i0+)
T q

xGo(k — q, v + w + i0™)
—f()D(q,v — » —i0") ImGo(k — q, v +i07)],
(15)

where b(v) = [ef* — 117! and f(v) = [e#” + 117! are the
Bose and Fermi functions, respectively. At zero tempera-
ture (B = oo) these functions become step functions b(v) =
—O(—v) and f(v) =O(—v). In the following we de-
note X(k, w +i0%), Gk, w +i0%), and D(q, v +i0") by
Y (k, w), Gk, w), and D(q, v), respectively. Note, however,
the negative infinitesimal imaginary part in one of the fre-
quency arguments in Eq. (15).

We analyze X(k, w) at the QCP for low frequencies w and
momenta k near one of the hot spots on the Fermi surface,
which we denote as ky. The effective interaction D at the
QCP is given by Eq. (13) with §I1y from Eq. (8). The dom-
inant contributions come from momentum transfers q near
Q, so that k — q is situated near the antipodal hot spot —Kp.
Using relative momentum variables as above, the dispersion
relation in the fermion propagator can be expanded as §x_q =
—vp(ky — q,) + b(ke — g1)*.

To evaluate the self-energy, it is convenient to first consider
its imaginary part, and then compute the real part from a
Kramers-Kronig relation. The imaginary part of Eq. (15) reads

ImX((k, w) = —g/dv / [b(v) + f(v + )] ImD(q, v)
q

x ImGy(k — q, w + v). (16)

Note that ImD(q, v — i0") = —ImD(q, v + i0™). Using the
Dirac identity ImGy(k, ) = —7§(w — &k ), the frequency in-
tegral in Eq. (16) can be easily carried out, yielding

ImE(k, 0) = M / b(Eq — ©) + f(Eq)]
q

x ImD(q, §k_q — w). a7y

At zero temperature, the sum of Bose and Fermi functions in
Eq. (17) is given by
-1 for0 <éyq <o,

bdkgq — o)+ f(Eg) =1 1 forw<fq <0, (I8)
0 else,

restricting thus the contributing momentum region. The in-
tegral in Eq. (17) is convergent even if the momentum
integration over g, and g; is extended to infinity.

The real part of the self-energy can be obtained from the
Kramers-Kronig-type relation,

o0 /
shoo)= -+ [ do TMEE )
T J o w—w +i0T

The last term in this relation is a real constant.

+ const. (19)

A. Frequency dependence at hot spot

The frequency dependence at the hot spot (for k = kg ) can
be derived by a simple rescaling of the integration variables in
Eq. (17). Substituting g, = |w/vr|§, and ¢, = |w/b|'/*G,, one
obtains

M
ImX(ky, w) = —y Al (20)

where A, and A_ are two positive dimensionless numbers
depending on the sign of w. These numbers are determined
by the integral,
! 4s
Asw) = _/ Im o, ©) T )
O 1@l () + 1 (P
where the prime at the integral sign indicates a restriction of
the integration region to 0 < g, + G < 1 for @ > 0, and to
—1 < g, + g' < 0 for w < 0. Note that the frequency depen-
dence of the self-energy at the hot spot depends neither on v,
nor on b. A numerical evaluation of the integral in Eq. (21)
yields Ay = 0.049 and A_ ~ 0.072. Hence, ImX(ky, w) is
slightly asymmetric in w. For the generic situation with a
finite Fermi surface curvature, a linear frequency dependence
of ImX(ky, w) with asymmetric coefficients has also been
found in a one-loop calculation of the self-energy at the onset
of charge- or spin-density wave order with rwo pairs of nested
hot spots connected by the same wave vector Q [12,14]. In that
case, however, the coefficients are not universal—they depend
on a dimensionless combination of model parameters.

The real part of the self-energy can be obtained from the
Kramers-Kronig relation Eq. (19). With ImX(ky, ) as in
Eq. (20), the integral in Eq. (19) is logarithmically divergent at
large frequencies w'. This is due to the fact that the linear fre-
quency dependence has been obtained from an expansion that
captures only the asymptotic low-frequency behavior, which
cannot be extended to all frequencies. The imaginary part of
the exact self-energy of any physical system has to vanish
in the high-frequency limit. To compute the low-frequency
behavior of ReX, we mimic the high-frequency decay of ImX
by imposing an ultraviolet frequency cutoff A, so that the
frequency integration in Eq. (19) is restricted to |w'| < Ag.
Defining §¥(k, ) = Z(k, w) — £(kgy, 0), we then obtain

MA,+A_ A,
MA+4- Gy (22)
N b4 |w|

2n

Re$X(ky, w) = —

for |o| < Ag.
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The logarithm in Eq. (22) implies a logarithmic diver-
gence of the inverse quasiparticle weight [19], Z7! =1 —
0X(ky, w)/dw ~ In(A,/|w|). Hence, Landau quasiparticles
do not exist at the hot spots, and Fermi liquid theory breaks
down.

Logarithmic divergencies are frequently a perturbative
manifestation of power-law behavior, especially in (quantum)
critical systems. Assuming that the one-loop result in Eq. (22)
reflects the leading order of an expansion of a power law, one
obtains

o —3X(ky, w) « (Jo|/Ay) 7@ (23)
at low frequencies, with the anomalous dimension,

MA, +A. M
At M 0%, (24)
N T N

Hence, the quasiparticle weight Z vanishes as |w|" in the low-
energy limit. Note that Kramers-Kronig consistency requires
that the real and imaginary parts of the self-energy obey the
same power law if ,, > 0. We emphasize that the power law
in Eq. (23) is only an educated guess. The actual behavior
might be more complicated. To clarify the role of higher order
contributions, a renormalization group analysis might be a
useful next step.

Ne

B. Frequency and momentum dependencies near hot spot

‘We now analyze the momentum and frequency dependence
of the self-energy in the vicinity of a hot spot. We consider
radial and tangential momentum dependencies separately. For
k; = 0, we can express Im¥(k, o) from Eq. (17) in the scaling
form,

M -
— (r)
Im¥(k, ) = N A (k) ol (25)
with the dimensionless scaling functions
A (&)

_ ! I 4s(w)

- P9 m ~ —/;r+17,4—f(w) * /2»'—217»'—6#-"-‘?(60) ’

ol [I(FE) ¢ (g

(26)

where the integration region is restricted to 0 < —k, + g, +
47;‘ < 1forw > 0,andto —1 < —k, + g, —i—cjf < Oforw < 0.
The rescaled variables are defined by g, = |w/vrlG,, q; =
lw/b|"/*G,, and k, = |w/vr|k,. The scaling functions A are
shown graphically in Fig. 4. For k., = 0 we recover Eq. (20),

since AY(0) = Ax from Eq. (21). For small finite k,, the

EL)U)(I;,) is linear,

leading k, dependence of A

AD (k) = Ax + Bik, + O(K7), @7

with By ~ —0.050 and B_ =~ 0.027. In Fig. 5 we show the
frequency dependence of ImX(k, w) for various choices of k,.
For small |w|, the leading frequency dependence is quadratic.
For |w| > vr|k,|, the curves rapidly approach the asymptotic
behavior,

M
ImE(k, a)) ~ _N[Ax(w)|w| + Bs(w)UFkr]v (28)

0.14 - AE:)
0.12 A(T)
— 010
=~
=2
= 008
T_H
‘;C 0.06
0.04 -
0.02
\
0.00
4 2 0 2 4
ky

FIG. 4. Scaling functions A{’ (k). The vertical dashed lines mark
the location of singularities at k, = £1.

which follows from Eq. (27). Inserting this asymptotic depen-
dence in the Kramers-Kronig relation Eq. (19), one obtains
the leading &, dependence of the real part of the self-energy at
zero frequency as

M B, —B_ Ay
8Lk, 0) ~ = ———vrk, In

. 29)
vr k|
Assuming, as before, that the logarithm reflects the leading
contribution from a power law, we expect a momentum de-
pendence of the form,

vrk, + 82(K, 0) o< (ve ke |/ Aw) " vpk,, (30)
for small k,., with the anomalous dimension,
_MB_-B,
N b4
The renormalized Fermi velocity [19] given by vr(k,) =
Z[1 4 08X /0k,]Jup is proportional to |w|™ k.|~ with @ =
vrk,, and thus Vg (k,) o |k,|7>~". This quantity vanishes for
k, — 0, albeit very slowly, since 1, > n,. We now discuss

the tangential momentum dependence of the self-energy. For
k, = 0, we can express ImX (K, w) from Eq. (17) in the scaling

~ M 0005 31)
M  0:025.

0.00
—~
3
~ —0.01
(e
I
- —0.02
=
<
= 00 kaV =-0.2
W
E Upkr =0.0
— —0.04
Upkr =0.2
—0.05

“2100 -075 -050 025 0.00 0.25 0.50 0.75 1.00
w

FIG. 5. Imaginary part of the one-loop self-energy as a function
of frequency for various choices of the radial momentum variable &, .
Here M = 1and N = 2.
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form,
M .
M2k, ) =~ AQ, k) o], (32)

with the dimensionless scaling functions (see also Fig. 6),

oo
AL (k)
I
= — / Im
q

where the integration region is restricted to 0 < G, + (k, —
G)* < 1forw>0,andto —1 < g, + (k, — G;)* < 0forw <
0. The rescaled variables are defined by g, = |w/vr|G,, g =
lw/b|'*G,, and k, = |w/b|'/*k;. The scaling functions AL (k; )
are symmetric under k, > —k;. Hence, their Taylor expansion
for small &, contains only even powers of &,

ADE) = As + CoR2 + DR+ O(RS).  (34)

4s(w)
G| [1( B o) ¢ g (2mthiaston) )
(33)

A numerical evaluation of Eq. (33) yields C; =0, C_ =
—0.023, D, ~ —0.008, and D_ = 0.005. The quartic coef-
ficient D_ is less accurate than the others, because the quartic
contribution is superseded by the much larger (for small ;)
quadratic term. In Fig. 7 we show the frequency dependence
of ImX(k, w) for various choices of k,. For small |w|, the
leading frequency dependence is quadratic. For |w| > b|k,|*,
the curves approach the asymptotic behavior,

ImZ(k, w) ~ _%[As(w)lwl + Cyw)V/blolk? + Ds(w)bkf]-
(35)
Inserting this expansion into the Kramers-Kronig relation
Eq. (19), we obtain

M
§2(k, 0) = —ﬁ(q — C_)VbAL K
M 4 Aw 4
— — D+ = D-)bk'In b + O(k'), (36)

for small k;. The leading term is quadratic in k; and depends
strongly on the ultraviolet cutoff A,. This term, along with
generic regular many-body contributions of the same order,
leads to a renormalized dispersion relation & with a quadratic

—0.35 A

-100 -75 =50 -25 00 25 5.0 7.5 10.0
w

FIG. 7. Imaginary part of the one-loop self-energy as a function
of frequency for various choices of the tangential momentum vari-
able k,. Here M = 1 and N = 2.

tangential momentum dependence, in conflict with our orig-
inal assumption. However, the case of a dispersion with a
vanishing quadratic dependence on k; can be restored by
slightly shifting the bare parameters of our system such that
the self-energy corrections cancel the quadratic k, dependence
of the bare dispersion relation. Between parameter regimes
with a locally convex and a locally concave Fermi surface
(at the hot spots), there must be a transition point where the
Fermi surface is flat, in the interacting system as well as in
the noninteracting reference model. Hence, we are left with
the second term in Eq. (36) only, which can be promoted to a
power law of the form,

bk} + 8(k, 0) o (bk!'/A,) " bk, (37)
for small &;, with the anomalous dimension,
e " (38)
=N 2 N

Combining the results on the frequency dependence of the
quasiparticle weight Z with the results on the radial and tan-
gential momentum dependence of the self-energy, we obtain
a renormalized dispersion relation of the form,

&k = a, sgn(k,) k| + a; k|, (39)

where o, = 1 + 1, — 1, and o, = 4(1 + n, — n,), while a,
and a; are nonuniversal coefficients. The anomalous dimen-
sions are relatively small, so that «, and «; remain close to
the bare values one and four, respectively. A renormalized
dispersion of the form Eq. (39) has been obtained earlier in
an € expansion [15] for the standard case of a bare dispersion
with a quadratic tangential momentum dependence. In that
case, the anomalous dimensions turned out to be quite large in
the physical dimension two (corresponding to € = %), leading
to a strongly flattened Fermi surface with an almost quartic
shape k, oc |k, |>%.

We finally note that one-loop vertex corrections are reg-
ular and therefore do not affect the above power laws. For
ordering wave vectors distinct from half a reciprocal lattice
vector, there is no choice of momenta in the vertex correction
at which all the propagators are singular, so that the vertex
correction is finite [7].
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IV. CONCLUSION

We have analyzed quantum fluctuation effects at the onset
of charge- or spin-density wave order with an incommensurate
nesting (2kr) wave vector Q in two-dimensional metals, for
the special case where Q connects a pair of hot spots situated
at flat high symmetry points of the Fermi surface with a
vanishing Fermi surface curvature. The leading tangential mo-
mentum dependence of the bare dispersion is quartic at these
points. The charge or spin susceptibilities form a pronounced
peak at Q.

We have computed the fermion self-energy X(k, w) at the
QCP as a function of (real) frequency and momentum near
the hot spots in RPA, that is, in one-loop approximation. At
the hot spots, the frequency dependence of ImX is linear and
slightly asymmetric, while the quasiparticle weight and the
momentum dependence of the self-energy exhibit logarithmic
divergencies with universal prefactors. Hence, there are no
Landau quasiparticles at the hot spots, giving rise to non-
Fermi liquid behavior.

A tentative resummation of the logarithms leads to power
laws with small universal anomalous dimensions. The quasi-
particle weight vanishes with a small power of frequency.
The renormalized dispersion relation has the form & =
a, sgn(k,)|k.|“ + a;|k;|* near the hot spots, where k, and k;
are radial and tangential relative momentum variables, respec-
tively. The exponents «, and ¢, are close to the corresponding
exponents of the bare dispersion relation one and four, respec-
tively. Since the renormalized dispersion relation has almost
the same form as the bare one, and the quasiparticle weight
vanishes only slowly, the self-energy corrections do not de-
stroy the peak at the nesting vector in the susceptibility. The
2kr QCP is thus stable. In particular, there are no indications
that it might be replaced by a first-order transition, in contrast
to the more delicate situation for a quadratic dispersion [7,13].

The QCP with flat hot spots could be realized experimen-
tally in suitable layered compounds or cold atom systems by
fine tuning two parameters, for example, density and inter-
action strength. In solids, the self-energy is directly related to
the spectral function for single-electron excitations, which can
be measured by angular resolved photoemission spectroscopy.
While the renormalization of the dispersion is probably too
small to be resolved in experiment, the frequency dependence
of the self-energy leads to a sizable broadening of the spectral
function and a suppression of spectral weight at low energies,
which should be observable. Moreover, our model is an in-
structive prototype of a larger class of systems with a bare
dispersion of the form & = a, s%n(k k- |°‘(m ,|k,|"‘f(0).
our case, where a® = 1 and o”’ = 4, the analysis is com-
paratively simple, since several integrations can be performed
analytically, and the renormalized dispersion remains close
to the bare one. From a theoretical point of view it would
be interesting to extend the analysis to more general bare
exponents a(o) and oz(o), and see whether the renormalized
dispersion has universal exponents. In particular, it remains
to be clarified whether in the conventional but delicate case
a® =1 and o =2 the mean-field QCP survives in the
presence of fluctuations, with a renormalized dispersion of
the above form and a flattened Fermi surface, as suggested
by the one-loop € expansion by Halbinger ef al. [15].
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APPENDIX: EVALUATION OF PARTICLE-HOLE BUBBLE

The k, integral in Eq. (4) can be easily carried out by using
the residue theorem. Shifting the remaining integration vari-
ables as k;, — k; 4+ ¢;/2 and kg — ko + qo/2 to symmetrize
the integrand, one obtains

Io(q, igo)

i dko / dk

y ®(—ko - qo/2) — O(ko — q0/2)
2iko — vpq, — blke + q;/2)* — bk — q;/2)*
The k; integration can also be performed via residues. The

denominator in Eq. (A1) has four poles in the complex k,
plane, namely

(AD)

" 3 s/ -
k= s\/—qu + %\/Qf + (2iko — vrq,)/b, (A2)

where s, s’ € {4, —}. Closing the integration contour in the
upper complex half-plane, only the poles in the upper half-
plane contribute. For ky > 0, these are the poles k;”* and k;
and the corresponding residues are

1

R++ —
(o AR (AR D (AR
1
= , (A3a)
2V2k/gf + Qiko — vrg,)/b
P 1
(k7™ =k =k k™ = k)
—1
(A3Db)

2V g+ Qiko — vrg)/b

For ko < 0, the poles k;7~ and k; * are situated in the upper
half-plane, and the corresponding residues are

R = !
(k" = k& =k KT = k)
=-R ", (Ada)
Rt = !
e A (D [y oo
—~R*, (A4b)

where RT™* and R~ are defined by the expressions on the
right-hand sides of Eq. (A3), but now for ky < 0. The numer-
ator in Eq. (A1) partitions the kj axis in three regions,

O(—ko — q0/2) — O(ko — q0/2)

1 for ko< —|qol/2
={ 0 for —lgol/2 <k <lgl/2. (A3
—1  for ko> |qol/2
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Performing the k; integral in Eq. (A1) by using the residue
theorem, one thus obtains

 dky
> Oko| —

o g0 /2)(R*" + R™7).

Io(q, iqo) = 30y |

(A6)

The integral diverges in the ultraviolet, but the integral for

8T1o(q, igo) = Mo(q, iqo) — Tp(Q, 0) is finite.
In the special case g, = 0, the ky integral in Eq. (A6) is
elementary. Setting g, = 0, one obtains

2iky — vrg, \
kf*<q,=0>=(°TFq> :

2ike — vpg,\ /4
kt__(qt =0)= M is(ko), (A7b)
2b
where s(kg) is the sign of k. The residues simplify to

1 ( 2iky — vpg, \ /4
R++(ql — 0) — Z(—Fq> ,

(A7a)

T (A8a)

2ik o\
R (g, =0) = (’Oz—b"”) s(ko).  (ASD)

Inserting this into Eq. (A6) and introducing an ultraviolet
cutoff A, we obtain

1 dko
Mo(gr. 0. ig0) = — g5 |52 Okol = laol/2)
ik — ; —3/4
x(”’z—b””) [1 +s(ko)l.  (A9)

The frequency integration is obviously elementary. Subtract-
ing I1y(0, 0, 0), we can take the limit A — oo, yielding

1
- 1 —_ N\Y; _ -
4nvp(2b)1/4[( DVilgol — vrq
+ (1 + v/ —ilgol — vrg: .

Analytic continuation of this expression in the upper complex
frequency half-plane to real frequencies yields Eq. (6).

For ¢g; # 0 we write Iy as a sum of two terms, [l =
1§ + I, where 1] and I, are obtained from the contri-
butions with ky > 0 and kg < O to the integral in Eq. (A6),
respectively. Shifting the integration variable by =£|qo|/2, one

SHO(QM 05 lqo) =

(A10)

obtains
1 (% dk 1
Mo(q.igy) = ——— | %X
o (9 o) 4bvp f_oo 2 ﬁ\/ 4 2ikoilgol —vrg,
4q; b
1
s=£1 _3%2_{_%\/%1_’_ 2ik0—i\qb0|—qu,.

1

s==+1 + 21ko+l\qo| VFgr

f

J :

/O" dky 1

4bvp Jy 27 f\/ +2lko+l\qol vr g
e

24

(Al1)

The integrals in Eq. (All) are UV divergent. Subtracting
[1£(Q, 0), one obtains finite expressions for & H (q,igo) =
115 (q. iqo) — M5 (Q. 0).

Equation (A1l) can be continued analytically to the en-
tire upper complex frequency half-plane by simply extending
ilgo| = z with Imz > O (note that |gyo| = go in the upper
frequency plane). One can easily check that the integrands
encounter no poles or branch cuts for Imz > 0, for any k.
Hence, the continuation to real frequencies is obtained by
substituting i|go| — @ + i0F. Moreover, since ky and ¢o en-
ter via the linear combinations 2iky — i|qo| for ko < O and
2iko + i|qo| for ky > 0, the infinitesimal imaginary part i0"
is redundant and can be dropped. At this point it is clear that
8T1; and 8TI} depend on g, and w only via the linear combi-
nations —w — vrq, and w — vgq,, respectively. Substituting
ko by —ko in the integral for IT;, the analytic continuation of
Eq. (A11) to real frequencies can be written as

1 / dko
4bUF 0

2 f\/m
<2 -
s==%1 3.2 s 4 +2ikptw—vrg,

J2d+3 /:

(A12)

5 (q, ) =

To obtain the scaling form Eq. (8), we introduce a dimension-
less integration variable ko defined by ko = b|q;|*k, yielding

lg: | [ @ 1
4bvp Jy 27 «/i\/l + Zlic’() + iwl;;ﬂh

Xz_ !

5= 34 s i 4 To—vrar
il\/ +ﬁ\/1:f:21k0+ o

(A13)
Subtracting H(j)E(Q, 0) with the same substitution we obtain

M5(q, ) = —

STE(q, w) =

w——qu,) (A14)
4UF

19: | 1i<i !
bq;
with the dimensionless scaling functions,
> dk 1+i
ro= [ S
o 27 | 2(Ziky)3*

1 1
+
I A R v =)
V201 + x £ 2iko) '

(A15)

Obviously I*(x) and I~ (x) are related by complex conjuga-
tion, that is, IT(x) = [I~(x)]*. Denoting I (x) as I(x), we
obtain Eqgs. (8) and (9).
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