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Consistent wide-range equation of state of silicon by a unified first-principles method
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Using a unified method of the extended first-principles molecular dynamics, we report a wide-range (density
ρ = 2.329–18.632 g/cm3, temperature T = 1.00 × 104–1.29 × 108 K) equation of state (EOS) and principal
Hugoniot of silicon, which agree well with experimental results, and then evaluate the precision of the results of
first-principles calculations and a universal database. Moreover, we investigate the effects of finite-temperature
exchange-correlation functionals and emphasize their importance and necessity in the warm dense matter
regime, although it vanishes in the nondegenerate and fully degenerate limits. Finally, we show the ionic radial
distribution function and density of electronic states to study the evolution of warm dense Si towards the classic
plasma limit along its principal Hugoniot. The established standard theoretical EOS table of Si provides a bench-
mark for the development of high-precision first-principles methods and may improve radiation-hydrodynamics
simulations of inertial confinement fusion and deepen the understanding of high-energy-density physics.
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I. INTRODUCTION

Silicon has been extensively studied in several fields be-
cause of its rich phase diagram and complex characters. In
modern industry, Si occupies a key position due to its excel-
lent semiconductor performance. Solid Si was discovered to
transform into novel phases at high pressure and temperature.
In condensed matter physics, high-pressure phases, metallic
phases [1–6], and metastable end phases [7] have been well
investigated to explore the phase diagram of Si. In geophysics,
Si is the second richest element in Earth’s crust and is regarded
as one of the most likely light elements in Earth’s inner and
outer core. The equation of state (EOS) and sound veloc-
ity of Fe-Si alloys are fundamental parameters to determine
the composition of Earth’s core [8–12]. In planetary science,
phase transitions and the structural change processes of sil-
icon compounds, including silica and silicates, are of great
importance for understanding the structure and evolution of
planets and exoplanets [13]. In astrophysics, Si widely partic-
ipates in important chemical reactions in interstellar space at
astrophysical conditions [14,15]. At higher temperatures and
pressures in shock experiments, solid Si turns into a fluid state
or plasma state, and silica is widely used as a window to obtain
the EOS of other materials [16,17]. In inertial confinement
fusion (ICF) [18,19], Si is employed as a dopant in the ablator
of the ignition target to reduce the preheating effect [20,21].
Hence, an accurate EOS and phase diagram for Si under

*shenzhang@nudt.edu.cn
†weikang@pku.edu.cn
‡xthe@iapcm.ac.cn

various physical conditions have broad interest for a number
of research fields.

However, obtaining the material properties of Si under
extreme conditions, i.e., extremely high pressures and tem-
peratures, has been a formidable task, owing to the limitation
of even state-of-the-art experimental techniques and calcula-
tion methods. Abundant phenomena with complex underlying
physics, such as bond reconstruction, ionization potential
depression, and phase transition, are expected to occur un-
der extreme conditions, especially in the warm dense matter
regime [22–24]. Both experimental and theoretical physicists
are endeavoring to expand the border of knowledge under
extreme conditions.

For shock experiments, the first experimental measurement
of EOS was carried out in the 1960s by explosive-driven
shock [25] pushing pressure up to ∼200 GPa. Following stud-
ies [26,27] on the shock compression properties of Si provided
more data along principal Hugoniot curves in the 1970s and
1980s. More recently, a laser-driven experiment [28] found the
anomalous elastic response phenomenon of compressed sin-
gle crystals of Si in 2001. The latest milestone of Henderson
et al. [29] on laser shock experiments found a phase transition
of fluid-state Si corresponding to an increase in ionic coor-
dination and average ionization and achieved Hugoniot and
sound speed data up to 2100 GPa.

For theoretical calculations, early researches on the be-
havior of Si in solid and liquid phases under shock
compression were carried out using classical molecular
dynamics (MD) [30–32]. Afterward, first-principles meth-
ods without empirical parameters were introduced for a
more accurate description of atomic interactions by solving
quantum Schrödinger-like equations with different physical
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approximations, such as the Kohn-Sham molecular dynamics
(KSMD) method [33–35], the orbital-free molecular dynam-
ics (OFMD) method [36], and the path-integral Monte Carlo
(PIMC) method [37,38]. An EOS of Si at pressures less than
10 Mbar, i.e., states in the range of solid crystals to liq-
uid states located in the phase diagram, was obtained using
KSMD calculations [39,40]. For more extreme conditions,
recently developed high-temperature first-principles methods,
i.e., OFMD and PIMC, have the ability to calculate the
EOS and shock properties of Si with pressures higher than
100 Mbar. First-principles EOS tables of Si ranging from
solid state to ideal plasma were established by combining the
KSMD and high-temperature first-principles methods [41,42]
and were then implemented in radiation-hydrodynamics sim-
ulations of ICF [43], which helps to verify the feasibility of
the fusion ignition scheme.

All of the above first-principles methods have their ad-
vantages and disadvantages according to different treatments
of electrons. The KSMD method can give precise electronic
structure information based on density functional theory, but it
has the problem of dealing with a large amount of high-energy
excited electrons due to the increase in temperature [44,45].
Consequently, the OFMD method adopts well-designed ki-
netic energy functionals to replace the single-particle kinetic
energy operator in the KSMD method [46–50] and remark-
ably improves computational efficiency and simulation size.
However, it leads to inconsistent results at relatively low
temperatures compared with the KSMD method, especially
in describing the electron’s inner shell structure. An alterna-
tive solution is the PIMC method, based on the framework
of the thermal path-integral density matrix in combination
with Monte Carlo sampling [38,41,51–53]. The “Fermion
sign problem” that restricts the applicable region of PIMC
was solved by introducing the Hartree-Fock nodes instead of
previous free-particle nodes in recent efforts [41], making the
PIMC method one of the most efficient and accurate first-
principles methods at high temperatures. As a result of the
limitations of the validity boundaries of the above methods,
the EOS and phase diagram obtained from different methods
are not always consistent for a wide range of conditions, i.e.,
from ambient to extremely high temperature and pressure con-
ditions. Therefore, a unified first-principles method that fully
considers significant physical effects is essential for studying
warm dense matter and high-energy-density physics.

The recently developed extended first-principles molecular
dynamics (ext-FPMD) of Zhang at al. [54] provides a unified
method to get accurate thermodynamic quantities at high tem-
peratures by dealing with the wave function of high-energy
electrons as plane waves. The ext-FPMD method not only
inherts the same high accuracy as the KSMD method naturally
but also provides the wave functions of inner shell electrons,
whereas the OFMD method and the PIMC method do not.
Thus, calculations that cover the entire phase diagram and do
not divide it into several parts for which valid corresponding
methods must be utilized separately can be done with only one
method, i.e., the ext-FPMD method. Previous studies [55–60]
reported its broad applications to low-Z and middle-Z materi-
als at temperatures ranging from ambient temperature to a few
thousand eV.

In this paper, we obtain a consistent first-principles data
set for a wide-range (ρ = 2.329–18.632 g/cm3, T = 1.00 ×
104–1.29 × 108 K) EOS and principal Hugoniot of Si using
the ext-FPMD method. As a benchmark for the EOS of Si
at high temperatures, the results are comprehensively com-
pared with existing first-principles calculations and universal
databases. Along the principal Hugoniot curve, we observe
the thermal ionization process of inner shell electrons and
the influence of the electronic shell structure effect on the
shock compression curves. Moreover, the effect of finite-
temperature exchange-correlation (FTXC) functionals on the
EOS is investigated in the whole phase diagram, emphasizing
the importance and necessity of FTXC in the warm dense
matter regime. Finally, we reveal the microscopic structure
information of ions and electrons extracted using the ext-
FPMD method and obtain the radial distribution functions
(RDFs) and the density of electronic states (DOS) at fourfold
density. It thus helps to verify the accuracy and efficiency
of existing theoretical simulations and establish the standard
EOS database.

The rest of this paper is composed of three sections. In
Sec. II, we briefly review the ext-FPMD method and pro-
vide computational details. In Sec. III, we discuss simulation
results for the EOS, principal Hugoniot, RDF, and DOS of
Si under extreme conditions of temperature and pressure. In
addition, we reveal the effect of the FTXC functionals. In
Sec. IV, we give a summary.

II. METHODOLOGY AND COMPUTATIONAL DETAILS

The ext-FPMD method follows the framework of the
KSMD method and separates the motion of ions and electrons
adiabatically based on the Born-Oppenheimer approxima-
tion [61]. The movement of ions is treated classically using
Newton’s second law, in which the Hellman-Feynman theo-
rem [62] enables the calculation of forces on the ions. At the
same time, the behavior of electrons is described quantum me-
chanically by solving the Kohn-Sham (KS) equations [33–35]
ĤKSψi = εiψi, with

ĤKS = − 1
2∇2 + VH [n] + Vxc[n] + Vei[n],

where the subscript i denotes the ith state, ψi is the wave
function of the ith state, εi is the corresponding eigenenergy,
VH is the Hartree potential, Vxc is the exchange-correlation
potential, Vei is the electron-ion interaction potential, and n
is the electronic density.

The main improvement of the ext-FPMD method [54] at
high temperatures is the treatment of the wave functions of
numerous high-energy-level electrons as plane waves because
of the predominance of the kinetic energy in the total energy
of these electrons. Hence, the contribution of high-energy-
level electrons to electronic charge density, total energy, and
entropy can be analytically described with the plane-wave
approximation as

ncorr(r) = 1

�

∫ ∞

Ec

dε f (ε)D(ε),

Ecorr =
∫ ∞

Ec

dε f (ε)D(ε)(ε − U0),
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and

Scorr = −
∫ ∞

Ec

dεD(ε){ f (ε) ln f (ε)

+ [1 − f (ε)] ln[1 − f (ε)]}.
Here, ε is the energy, � is the volume, U0 is constant back-
ground energy, Ec is the lowest energy of high-energy-level
electrons used in the plane-wave approximation, and f (ε) is
the Fermi-Dirac distribution function. Similar to the free elec-
tron gas model, the density of states of the high-energy-level
electrons is approximately adopted as

D(ε) =
√

2�

π2

√
ε − U0.

All calculations are carried out with an implementation of
the ext-FPMD method [54] based on the QUANTUM ESPRESSO

package [63]. A periodic cubic box containing 8 Si atoms
at temperature T � 2.5 × 105 K and 24 Si atoms at lower
temperatures is established to keep the size of the simulation
system the same as that of the PIMC calculations [41]. For a
given temperature and density, the time step to move the ions
is determined by the empirical formula δt = l/(40vt ), where
l is the average distance between atoms and vt is the aver-
age thermal velocity. Trajectories of the last 3000 steps are
statistically analyzed to calculate the required physical quan-
tities after the system has achieved thermal equilibrium. A
shifted 2 × 2 × 2 Monkhorst-Pack [64] k-point mesh is used
to sample the Brillouin zone; 320 bands are explicitly included
in calculations, of which the 80 bands at the top are used
to determine the value of U0, as required by the ext-FPMD
method [54]. The Perdew-Wang parametrization [65] of the
local-density approximation (LDA) and the Perdew-Burke-
Ernzerhof parametrization [66] of the generalized gradient
approximation (GGA) to the exchange-correlation function-
als are employed. An all-electron pseudopotential for Si in
the projected augmented-wave [67] format is generated us-
ing the ATOMPAW program [68,69]. The small-core cutoff
radius is 0.5 bohr, and the corresponding plane-wave cutoff
energy is 300 Ry. Two more FTXC functionals proposed
by Karasiev, Sjostrom, Dufty, and Trickey [70] and Groth,
Dornheim, Sjostrom, Malone, Foulkes, and Bonitz [71,72],
denoted FTXC-KSDT and FTXC-GDSMFB, respectively, are
also used to investigate the influence of FTXC functionals on
EOS of warm dense Si.

The principal Hugoniot curve comes from the Rankine-
Hugoniot relation E1 − E0 = 1

2 (P1 + P0)(V0 − V1), where E
is the internal energy, P is the pressure, and V is the specific
volume. Subscripts 0 and 1 indicate the uncompressed and
shocked states, respectively. The initial state of Si is a face-
centered diamond-cubic lattice structure at ρ0 = 2.329 g/cm3,
and the initial pressure P0 ≈ 0, while the initial energy E0 de-
pends on the choice of exchange-correlation functionals listed
in the Supplemental Material [73]. The equation is solved with
Newton’s polynomial interpolation formula.

III. RESULTS AND DISCUSSION

A. Equation of state of silicon

We obtain a wide-range EOS for Si under various density
and temperature conditions that range from a cold condensed

FIG. 1. Principal Hugoniot curve of Si calculated using the ext-
FPMD method, compared with results from theoretical calculations
and experimental measurements, including the combination of the
KSMD and PIMC methods [41], the combination of the KSMD and
OFMD methods [42,43], QEOS, SESAME-3810, and shock experi-
ments by Pavlovskii [25], Gust and Royce [26], Goto et al. [27], and
Henderson et al. [29].

matter state to warm or hot dense matter state (densities ρ

in the range from solid ambient density ρ0 = 2.329 g/cm3

to eightfold solid density ρ = 8ρ0 = 18.632 g/cm3 and tem-
peratures T in the range from 1.00 × 104 to 1.29 × 108 K)
using the unified ext-FPMD method, assembled in the EOS
table in the Supplemental Material [73]. The internal energy
E and pressure P for ext-FPMD simulations with different
exchange-correlation functionals are listed for different den-
sity and temperature conditions.

Recently, Militzer and Driver [41] provided a set of the
EOS and the shock Hugoniot curve for Si by combining the
KSMD and PIMC methods, and then Hu et al. [42,43] estab-
lished another first-principles EOS and shock Hugoniot curve
for Si by combining the KSMD and the OFMD methods. Now,
we show a detailed comparison of the above sets of EOSs
using different first-principles methods.

Figure 1 displays the principal Hugoniots of Si obtained
with several experimental measurements and theoretical cal-
culations. Simulation results for the pressure P range from
102 to 107 GPa, including for the ext-FPMD method (red
points), the combination of the KSMD and PIMC methods
(blue points), and the combination of the KSMD and OFMD
methods (green points). Lines under the first-principles EOS
points are fitted curves using the interpolation code from
Ref. [53]. Compared with existing experimental data, i.e.,
when P < 2100 GPa, our result and that of the KSMD method
are in good agreement with experimental measurements by
Pavlovskii [25], Gust and Royce [26], Goto et al. [27], and
Henderson et al. [29]. Compared with commonly used EOS
models, e.g., SESAME-3810 and quotidian equation of state
(QEOS), all the results of the three first-principles methods
converge with each other and manifest softened Hugoniots,
which may have a considerable effect on the implosion
process, which was systematically studied using radiation-
hydrodynamic simulations in the work of Hu et al. [43].
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FIG. 2. Calculated EOS points of Si using the ext-FPMD method (red stars with dashed lines) compared with the KSMD (black circles)
and PIMC (blue squares) methods [41], where (a) shows the energy differences �E = E − E0 and (b) shows pressure P. Energy differences
in (a) and pressures in (b) at different η are multiplied by corresponding coefficients for a better display.

For the three first-principles calculations, different shapes
and tendencies of the “bump” structures in principal Hugoniot
curves, corresponding to the transition region, reflect different
descriptions of inner shell electronic structure information
in these methods. The process of the thermal ionization of
multishell electrons from the outer shell to the inner shell can
be quantitatively described by the variation of the average ion-
ization ratios αK and αL of K and L shell electrons, which are
extracted from the ext-FPMD method and displayed along the
principal Hugoniot in Fig. 1. In the region of P <∼ 2100 GPa,
i.e., the maximum pressure that existing experiments can
reach, both αK and αL are nearly zero. With the increase of
temperature and pressure, αL increases, but αK remains zero,
indicating that only the L shell electrons are experiencing
the process of ionization. When αL > 0.39, i.e., the L shell
electrons are nearly half ionized, corresponding to the first
or the lower turning point at the pressure of ∼2.7 × 104 GPa
for the ext-FPMD and PIMC Hugoniots, αK is still zero, and
the L shell electrons dominate the thermal ionization process.
After this point, the number of L shell electrons available to
be ionized is smaller than that of already ionized ones, and the
Hugoniot curves gradually move to the lower-density region.
At αL > 0.89, i.e., when the L shell electrons are mostly
ionized, αK changes from zero, which means K shell electrons
start to become ionized. In the following ionization process,
the K shell electrons become available to be ionized, and
thus, the Hugoniot curves move to the higher-density region
again. When αK ≈ 0.59, i.e., the K shell electrons are nearly
half ionized, it reaches the second or upper turning point at
a pressure of ∼3.6 × 105 GPa, meaning that ext-FPMD and
PIMC results meet once again. Finally, the only remaining K
shell electrons are entirely ionized, and the Hugoniot curves

approach the ideal gas limit (density compression ratio η = 4
or ρ = 9.316 g/cm3), converging with the commonly used
EOS models, e.g., SESAME-3810 and QEOS.

As demonstrated above, the ionization of multishell elec-
trons proceeds shell by shell along the shock Hugoniot curves.
The deviations in the Hugoniot curves correspond to different
physical approximation treatments for multishell electrons by
analytic models and first-principles methods, reflecting the va-
lidity and reliability of those methods and derived results. The
consistent bump structures in the Hugoniot curves from the
ext-FPMD and PIMC methods provide access to an accurate
description of the thermal ionization process of inner shell
electrons, although the treatments of the motion of electrons
by these two methods are pretty different. However, only one
turning point at a pressure of 105 GPa appears in the OFMD
method and SESAME-3810, and the corresponding pressure
is 5 × 104 GPa in QEOS. Appropriate treatments of the shell
structure effect in such methods are required to improve the
completeness of physical methodologies and the accuracy of
physical quantities. When P > 106 GPa, all results of first-
principles methods and SESAME-3810 start to converge, and
the gap between analytic models and first-principles methods
vanishes because most electrons are ionized and the shell
structure effect is negligible.

Figure 2 shows a point-by-point comparison of EOSs in
a wide density-temperature range calculated using the ext-
FPMD method (red stars) and the KSMD (black circles) and
PIMC (blue squares) methods. The two sets of EOS points
distribute in the same grid of density and temperature. To
eliminate the effect of exchange-correlation functionals on
a reference value for energy, Fig. 2(a) displays the internal
energy difference between a high-temperature state and the
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FIG. 3. Relative deviations of (a) the energy difference �E =
E − E0 and (b) pressure P using the FTXC-KSDT and FTXC-
GDSMFB functionals, taking the ZTXC-LDA functional as a
reference.

initial uncompressed state in the Rankine-Hugoniot relation,
defined as �E = E − E0. Conversely, Fig. 2(b) directly dis-
plays pressure P because the pressure of the initial state is
negligible. Dashed lines connect EOS points with the same
compression ratio η = ρ/ρ0, which are multiplied by the
same coefficient (after the multiplication sign in the parenthe-
ses), for a better display. There is hardly any visual difference
between the points of these two sets of EOSs. Relative devia-
tions of �E and P are within 2% except for individual points
near the connecting region, which approaches the applicable
boundaries of the KSMD and PIMC methods. We thus con-
clude that EOS data calculated using the ext-FPMD method
and the combination of the KSMD and PIMC methods are
overall convergent.

B. Effects of finite-temperature exchange correlation

We now show the effects of the FTXC on the EOS
of warm dense Si. Using the calculated results with the
zero-temperature exchange correlation (ZTXC) of the LDA
functional as a reference, we investigate relative deviations
of EOSs between ZTXC and different types of FTXC as
a function of the electron degeneracy parameter θ = T/TF ,
where TF ∝ ρ2/3 is the Fermi temperature. Temperature and
density effects are simultaneously included in θ with the
point-by-point comparison. To quantitatively investigate the
effect of different exchange-correlation functionals on the
EOS, we define the relative deviation of the energy difference
�E in the Rankine-Hugoniot relation as δE = (�EFTXC −
�EZTXC)/�EZTXC, where subscript after �E represents the
EOS data obtained with the respective exchange-correlation
functional. Similarly, the relative deviation of the pressure is
directly defined as δP = (PFTXC − PZTXC)/PZTXC.

Figure 3 displays the relative deviation of the energy
difference and pressure with the FTXC-KSDT and FTXC-
GDSMFB functionals as a function of θ , shown as red circles
and blue squares, respectively. The overall trends of δE and δP

varying with θ using the FTXC-KSDT and FTXC-GDSMFB
functionals are basically the same, although individual points

FIG. 4. Principal Hugoniots of Si using different types of
exchange-correlation functionals, including ZTXC-GGA, ZTXC-
LDA, FTXC-KSDT, and FTXC-GDSMFB. The inset shows a
close-up near the maximum compression ratio.

separate because of the subtle differences between the analytic
formulas in the two FTXC functionals. With the increase of
θ , the distribution of these points can be divided into three
parts, in accordance with the horizontal reference lines ±1%.
In the first part, the majority points of δE and δP are located
in the green region between the two horizontal reference
lines when θ < 0.1, indicating that the effect of FTXC is
insignificant in this region and the results for FTXC and
ZTXC converge. In the second part, both δE and δP from
FTXC-KSDT and FTXC-GDSMFB drop down to the min-
imum value of ∼ − 5% at θ ∼ 1, then jump onto the −1%
horizontal reference line at θ ≈ 3, and, eventually, vary from
−1% to +1% when 3 < θ < 10. In the third part, both δE

and δP gradually approach zero when θ > 10, which indi-
cates the results for FTXC and ZTXC converge again because
exchange-correlation energy accounts for little of the total
energy owing to the feature of entirely ionized plasma.

Taking both δE and δP into consideration, the influence of
FTXC on the EOS of Si is worth paying attention to when
0.1 < θ < 10, i.e., in the warm dense matter regime. One
should be able to describe exchange-correlation interactions
accurately using these well-designed FTXC functionals in
such a system with partial ionization and partial degeneracy.

Figure 4 displays principal Hugoniots calculated with the
FTXC-KSDT and FTXC-GDSMFB functionals, compared
with results calculated with the ZTXC of the LDA and
GGA functionals. Calculated Hugoniot points with differ-
ent exchange-correlation functionals coincide in an extensive
pressure range, especially for states below 104 GPa or above
106 GPa. The majority deviation of Hugoniots appears in
the region near the two turning points from θ = 1.26 to θ =
19.54, i.e., the warm dense matter regime, displayed in the
inset of Fig. 4. It is consistent with the tendency of the effects
of FTXC functionals on the EOS displayed in Fig. 3. We
note that Hugoniots with the two FTXC functionals are both
slightly softened compared with those with ZTXC function-
als, indicating a larger maximum compression ratio, as shown
in the inset of Fig. 4. The above shows that fully considering
the effect of FTXC functionals is necessary for obtaining
high-precision thermodynamics parameters, especially in the
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FIG. 5. Radial distribution functions of Si ions at fourfold
density and various temperatures, calculated using the ext-FPMD
method (solid red lines) and the PIMC method (blue dashed lines).

warm dense matter regime. The origin of minor deviations
between the two sets of EOSs calculated using the existing
two types of FTXC functionals should attract interest with
regard to understanding the effect of FTXC functionals and
improving the accuracy of current first-principles simulations.

C. Microscopic structure information

Microscopic structure information, including the ionic
RDF and electronic DOS, obtained from first-principles
methods provides useful information to understand physical
processes corresponding to the variation of thermodynamics
quantities. Meanwhile, the convergence of microscopic struc-
ture information calculated with the above first-principles
methods based on different physical approximations reflects
the consistency and reliability of these methods.

Figure 5 displays ionic RDFs of Si at fourfold density
calculated using ext-FPMD (solid red lines) and PIMC (blue
dashed lines) while varying temperature. Numbers next to
each RDF indicate temperatures in units of 106 K. There is
a hardly perceivable distinction between the solid red line
and blue dashed line, indicating that the two methods give
a consistent description of interactions between the partially
ionized particles. Figure 5 shows that only one peak struc-
ture appears in the RDFs at r ≈ 3.5 bohr at relatively low
temperatures. With the increase of temperature, the values
of the RDFs at short and long distances systematically rise
and fall, respectively, and both approach the ideal-gas limit of
g(r) = 1, which indicates that the increase of kinetic energy
leads to a tendency of the system to become an ideal gas. We
can clearly observe the evolution process of the state of Si
from warm dense matter to an ideal plasma with the increase
of temperature.

Another main advantage of ext-FPMD is that it can provide
the relevant structure information produced by the retained
electronic wave function. We obtain the DOS of Si at fourfold
density and temperatures T from 2 × 106 to 129 × 106 K
using the ext-FPMD method, displayed in Fig. 6. To better
display the details, the DOSs of inner shell electrons and other
electrons use different scales on the left and right axes, and the

FIG. 6. Density of electronic states of Si at fourfold density and
various temperatures, calculated using the ext-FPMD method.

DOSs at different temperatures are distinguished by shifting
up one unit. Figure 6 shows that the distribution of the K
shell electronic state in the DOS, energetically separated from
other electrons at relatively low energy, smears out and moves
toward the low-energy region with the increase of tempera-
ture. This is because of the increase of the valance state of Si
ions due to the thermal ionization process along the Hugoniot
curve. For electronic states at relatively high energy, with the
increase of temperature, the same smearing out and moving
process occurs, and the overlapping of electronic states when
T > 32335325 K is the result of intense thermal fluctuations
at such extremely high temperatures.

From the microscopic structure information described
above, one can obtain more material properties, including
electronic conductivity, thermal conductivity, opacity, and
the x-ray absorption spectrum, and then carry out further
experiments in the future, which will help us deepen the
understanding of physical effects at extremely high temper-
atures.

IV. CONCLUDING REMARKS

We reported a set of EOSs and principal Hugoniots of
Si at pressures varying from ∼102 GPa to above 107 GPa
and temperatures varying from ∼104 K to above 108 K
using the unified method of ext-FPMD instead of a combi-
nation technique. A point-by-point comparison of EOS data
and RDFs calculated using ext-FPMD and PIMC showed
the consistency of macroscopic and microscopic quantities
obtained with different first-principles methods based on dif-
ferent physical approximations. This mutually verifies the
accuracy of the most advanced first-principles methods so
far, i.e., ext-FPMD and PIMC, and thus creates a standard
benchmark for the feasibility and accuracy of new theoretical
methods in the future. In addition, the study of the effects
of FTXC emphasized the importance and necessity of FTXC
functionals for the EOS, especially for warm dense matter.

Following the findings concluded above, one can fur-
ther study the effects on the EOS from a higher order of
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exchange-correlation functionals along Jacob’s ladder [74],
including the strongly constrained and appropriately normed
meta-GGA, and hybrid HSE functional, as well as FTXC
functionals beyond the LDA [75]. Current studies [76–79]
have already achieved remarkable results and deepened the
understanding of the physical origin of minor deviations
caused by different exchange-correlation functionals. Even
so, the size of simulated systems is limited by existing
computational capability, considering the large numbers of
parallel tasks need to establish a first-principles database.
We note that recent works on interatomic potentials of
Si may lead to a possible approach to avoid the over-
whelming computational costs of the size effect in the pair
potential model [80] and machine learning model with full

consideration of quantum mechanical effects [81–83]. Mean-
while, the relativistic and radiation effects may play essential
roles in the EOS at extremely high temperatures [53,84,85],
and how significantly the modified EOS database affects
radiation-hydrodynamic models is also a scientific issue worth
studying.
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