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Tunable correlation effects of magnetic impurities by cubic Rashba spin-orbit coupling
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We theoretically study the influence of the k-cubic Rashba spin-orbit coupling (SOC) on the correlation
effects of magnetic impurities by combining the variational method and the Hirsch-Fye quantum Monte Carlo
(HFQMC) simulations. Markedly different from the normal k-linear Rashba SOC, even a small cubic Rashba
term can greatly alter the band structure and induce a Van Hove singularity in a wide range of energy; thus,
the single impurity local moment becomes largely tunable. The cubic Rashba SOC adopted in this paper breaks
the rotational symmetry, but the host material is still invariant under the operations Rz(π ), IRz(π/2), Mxz,
Myz, where Rz(θ ) is the rotation of angle θ about the z axis, I is the inversion operator, and Mxz (Myz) is
the mirror reflection about the x-z (y-z) principal plane. Saliently, various components of spin-spin correlation
between the single magnetic impurity and the conduction electrons show three- or sixfold rotational symmetry.
This unique feature is due to the triple winding of the spins with a 2π rotation of k, which is a hallmark of
the cubic Rashba effect, and can possibly be an identifier to distinguish the cubic Rashba SOC from the normal
k-linear Rashba term in experiments. Although the cubic Rashba term drastically alters the electronic properties
of the host, we find that the spatial decay rate of the spin-spin correlation function remains essentially unchanged.
Moreover, the carrier-mediated Ruderman-Kittel-Kasuya-Yosida interactions between two magnetic impurities
show twisted features, the ferromagnetic diagonal terms dominate when two magnetic impurities are very close,
but the off-diagonal terms become important at long distances.
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I. INTRODUCTION

Spin-orbit coupling (SOC) is a relativistic effect that locks
the spin of a charge carrier with its angular momentum,
and intense efforts have been made over the past decades to
investigate and utilize SOCs in condensed matter physics.
There exist two representative SOCs, namely, the Dresselhaus
SOC caused by the bulk inversion asymmetry [1] and the
Rashba SOC due to the spatial inversion asymmetry [2,3].
In low-dimensional systems, the Rashba SOC becomes more
important because it is stronger in the heterointerface [4,5],
and it is often described by the k-linear Rashba term, which
can be written as ∝ (k−σ+ − k+σ−), where k± = kx ± iky

denote the wave vectors, and σ± = σx ± iσy are the spin Pauli
matrices [6–8].

Remarkably different from the two-dimensional (2D) elec-
tron systems in which the k-linear Rashba SOC dominates,
in 2D hole systems, the spin splitting can be third order
in momentum and is usually described by the Hamiltonian
∝ (k3

−σ+ − k3
+σ−) [9–11]. The interest in this k-cubic Rashba

SOC is probably triggered by the unique benefits to spin
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transport predicted in such systems [12–21]. From the view-
point of symmetry, the linear and cubic Rashba SOCs can
exist simultaneously [22]. However, in some systems, the
linear term can be tiny; vivid examples are strained-Ge/SiGe
quantum wells [15,23] and SrTiO3 single-crystal surface [16]
and heterostructures [24–27]. The cubic Rashba SOC has
also been reported in various systems such as a 2D hole
gas in InGaAs and GaAs heterostructures [28,29], rare-earth
ternary materials TbRh2Si2 [30] and EuIr2Si2 [31], the irid-
ium silicide surface of GdIr2Si2 [32], and LaAlO3/KTaO3

[33] heterostructures. Density functional theory calculations
show that, in bulk ferroelectric oxide PbTiO3, the linear
and cubic spin splittings coexist, and the magnitude of the
linear/cubic coefficients can be tuned by applying epitaxial
strain in bulk [34]. In asymmetric oxide heterostructures of
LaAlO3/SrTiO3/LaAlO3, a transition from the cubic Rashba
effect to the coexistence of linear and cubic Rashba effects is
controlled by the filling to Ti orbitals [19]. Theoretical calcu-
lations proposed that the magnitude of the linear Rashba SOC
depends on the growth orientation of Ge/Si quantum wells,
so purely k-cubic Rashba SOC can be realized in the [111]-
oriented quantum wells when the linear term vanishes [35].

As a prototypical strong correlation problem, the Kondo
effect in normal metals has been widely studied and well
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understood [36–38]. The Kondo effect is accompanied by the
formation of a Kondo cloud, which is characterized by the
antiferromagnetic spin-spin correlation between the magnetic
impurity and the conduction electrons. This spin-spin corre-
lation function oscillates fast in space and decays as ∼1/rD

when r < ξK , while it decays as ∼1/rD+1 if r > ξK [39–41],
where ξK is the Kondo length that extends to ∼1 μm in typical
metals [42], and has been confirmed recently via Fabry-Pérot
oscillations in conductance [43].

The influence of k-linear Rashba SOC on the Kondo
temperature TK has been studied previously using various
methods; some indicate that TK is not significantly changed
by Rashba SOC [44–46], while others claim an exponential
enhancement of TK [47,48]. Later, a numerical renormaliza-
tion group study found that, for a fixed Fermi energy, the
Kondo temperature TK varies weakly with Rashba SOC. If in-
stead, the band filling is low and held constant, increasing the
Rashba SOC can drive the system into a helical regime where
TK is exponentially enhanced [49]. Basically, one important
reason to change the Kondo temperature is the divergence
of the density of states (DOS) which appears close to the
band edge in the presence of k-linear Rashba SOC [50]. On
the other hand, in 2D superconductors, it is found that TK

is determined by the interplay between the Rashba SOC and
superconducting energy gap, and the quantum phase transition
between the magnetic doublet and Kondo singlet ground states
is significantly affected by the Rashba SOC [51].

Beyond the theoretical interest in understanding the Kondo
physics in systems, the magnetic impurities can even be used
to detect the properties of the host materials. For example,
the Yu-Shiba-Rusinov [52–54] state induced by a magnetic
impurity in a superconductor has long been a major method
to characterize the pairing symmetry of the superconducting
states [55–67]. In the case of systems with SOCs, it has been
proposed to use a magnetic impurity as a way to detect the
Rashba effect through the local magnetization DOS [68]. The
hallmark of the cubic Rashba SOC is the triple winding of
the spins with a complete 2π rotation of k [7,30], and the
spatial patterns of a Kondo screening cloud are mainly af-
fected by the SOCs [69,70]. One can naturally expect that the
Kondo screening cloud can reflect this unique property of the
cubic Rashba SOC and help to identify it from the normal
k-linear term. Considering the indirect exchange couplings
between magnetic impurities, the Ruderman-Kittel-Kasuya-
Yosida (RKKY) [71–73] couplings become twisted in the
presence of SOC. The RKKY interaction in 2D systems with
SOC can be written in a general form with three terms:
Heisenberg, Ising, and Dzyaloshinskii-Moriya (DM) interac-
tions, and this general form is valid for the Rashba SOC, the
Dresselhaus SOC, and even when the two types of SOC are
mixed [74–76].

In this paper, we combine the variational method and
Hirsch-Fye quantum Monte Carlo (HFQMC) [77] simulations
to study the correlation effects of the impurities induced by the
cubic Rashba SOC. The variational method has been widely
used in the ground states of Anderson impurity problems
in normal metals [78,79], systems with SOCs [69,80–84],
and superconductors [85–88]. The HFQMC technique is a
numerically exact method which has been used to study
magnetic impurities in metals [77,89–93], dilute magnetic

semiconductors [94], graphene-based systems [95–98], and
in the presence of SOCs [99,100]. By combining the two
methods, we can obtain not only a heuristic physical picture
but also the numerically exact results about the correlations.
The rest of the paper is organized as follows. In Sec. II, we
introduce the model Hamiltonian and discuss the influence of
the cubic Rashba term on the electronic properties of the host
material. In Sec. III, we show the results obtained using the
variational method and the Hirsch-Fye quantum Monte Carlo
simulations for the single-impurity case. The spin-spin corre-
lation between two magnetic atoms, which is mediated by the
conduction electrons, is given in Sec. IV. Finally, discussions
and conclusions are given in Sec. V.

II. MODEL HAMILTONIAN

We use the Anderson impurity model to study the proper-
ties of magnetic impurities in a system with the cubic Rashba
SOC term; the total Hamiltonian is given by

H = H0 + Hd + HV . (1)

Here, H0 describes the host material with the cubic Rashba
SOC, Hd is the magnetic impurity part, and HV denotes the
hybridization between the local impurities and the conduction
electrons. The low-energy effective Hamiltonian of a host
system with the cubic Rashba SOC is given by

H0 =
∑

k

c†
k[h0(k) − μ]ck, (2)

with

h0(k) = h̄2k2

2m
+ iα

2
(k3

−σ+ − k3
+σ−). (3)

Here, h0(k) is the single-particle Hamiltonian incorporating
cubic Rashba SOC [12,15,101,102], and c†

k = (c†
k↑, c†

k↓) is the
creation operator in spinor representation. The notations k± =
kx ± iky, σ± = σx ± iσy are used to denote the wave vectors
and Pauli spin matrices, μ is the chemical potential, and α is
the cubic Rashba term which can be adjusted experimentally
[103–106].

The Rashba SOC is caused by the spatial inversion asym-
metry of the confining potential, so it is significant in surfaces
and interfaces. As we know, in a heterostructure, the charge
carriers are confined in the 2D interface, and the Rashba effect
depends on the gradient of the confining potential which is
significant in the 2D interface. Thus, our model Hamiltonian
can describe the 2D hole gases with cubic Rashba SOC in the
heterostructures.

Due to the SOC, the single-particle eigenenergy splits from
simple degenerate parabolic bands to two branches:

εk± = h̄2k2

2m
± αk3. (4)

The magnetic impurity part is given by

Hd =
∑

j,s=↑,↓
(εd − μ)d†

jsd js +
∑

j

Ud†
j↑d j↑d†

j↓d j↓, (5)

where j represents the magnetic impurity index. We study
two cases, namely, the single-impurity doping and the two-
impurity doping. When only one magnetic impurity is doped
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FIG. 1. (a) The twofold degenerate band (black line) splits into
two bands due to the cubic Rashba spin-orbit coupling (SOC) α. The
cubic Rashba term has marginal influence on the upper band (blue
line). The red lines correspond to the lower bands with different α

values, and they are drastically modified by α. μ is the chemical
potential, and εd is the magnetic impurity energy level. (b) The
density of states varies with α, and Van Hove singularity emerges.
(c) Spin texture caused by the cubic Rashba SOC in momentum
space. (d) Schematic of the spin-spin interaction as a function of the
distance R between two magnetic impurities. The red curve means
the correlation strength, and the arrows denote the rotation of spin-
spin interaction due to the cubic Rashba SOC.

in the host, j = 1. Otherwise, if two impurities exist, j = 1, 2.
Here, d†

s and ds are the creation and annihilation operators
of the spin-s (s =↑,↓) state on the impurity site, εd is the
impurity energy level which is beneath μ in our calculations,
and U is the on-site Coulomb repulsion which repels the
double occupancy on the impurity site [107].

Finally, the hybridization term between the localized state
and the conduction electrons reads

HV =
∑

k, j,
s=↑,↓

[exp(ik · Rj)Vkd†
jscks + H.c.], (6)

where Vk is the hybridization strength, and R j is the coordi-
nate of the jth impurity. For two-impurity doping, we assume
the two local atoms and conduction electrons have the same
exchange coupling strength Vk for simplification.

In Fig. 1(a), we show the dispersion relation of the single-
particle energy bands given in Eq. (3). The cubic Rashba
SOC splits the degenerate parabolic band (black solid line)
into two branches. One is εk+ (blue solid line), and the
other is εk− (red lines). The cubic Rashba SOC term has
a minor effect on εk+, but it can alter εk− significantly, as
we can see from the three red lines, which correspond to
εk− for slightly different α values. The DOSs for different

α values are plotted in Fig. 1(b). The cubic Rashba term
largely modifies εk− and consequently induces a Van Hove
singularity (VHS) into the host system, which is expected
to greatly influence the local moment formation of magnetic
impurities. Additionally, the cubic Rashba SOC breaks the
rotational symmetry, but the system remains invariant under
operations such as Rz(π ), IRz(π/2), Mxz, and Myz, where
Rz(θ ) is the rotation of angle θ about the z axis, I is the
inversion operator, and Mxz = IRy(π ) [Myz = IRx(π )] is
the mirror reflection about the x-z (y-z) principal plane, and
the spin operators follow the rules Mxz : {σ± → −σ∓}, Myz :
{σ± → σ∓}. The spin texture given in Fig. 1(c) reflects all
these symmetries, which can be exhibited by the Kondo effect.
Given in Fig. 1(d) is the schematic of our two-impurity case
calculation. One magnetic impurity is fixed at the origin, and
the other is located at a distance R along the x axis. In our
calculations, the length unit is chosen as k−1

0 , which in SrTiO3

is k−1
0 = a/2π ≈ 0.6×10−10 m with the lattice constant

a = 0.3905 nm. The energy unit is h̄2k2
0

2m∗ and the values of

parameters α, U , μ, Vk , and εd are given in units of h̄2k2
0

2m∗ . One
can use the coefficient values given in previous works [106]
to find the relationship between the cubic Rashba coefficient
in realistic systems and α used in our model Hamiltonian.
For example, in a LaAlO3/SrTiO3 quantum well which is
10 nm wide, the electric field is estimated to be 1 meV/nm,
and this can generate a cubic Rashba coefficient of 0.8 meV
nm3. If the effective mass is chosen as m∗ = 0.5 m0 (m0 is
the electron rest mass), one can easily obtain that the cubic
Rashba coefficient corresponds to α ≈ 0.17, which is in the
same order of magnitude as is assumed in this paper.

Note that we have only considered the cubic Rashba term
in the model Hamiltonian given in Eq. (3) to concentrate on
the influence of the cubic Rashba SOC on the correlation ef-
fect of magnetic impurities. From the viewpoint of symmetry,
once the cubic Rashba SOC appears, the linear Rashba SOC
is also allowed by symmetry; thus, both SOCs can coexist
[22]. However, in systems represented by strained-Ge/SiGe
quantum wells [15,23] and SrTiO3 single-crystal surface [16]
and heterostructures [24–27], the linear term is negligible, and
the cubic Rashba term becomes dominate, so they can be well
described by the model Hamiltonian used in this paper. On
the other hand, the property of the doped magnetic impurity is
mainly determined by the DOS and the symmetry of the host
material. Adding the k-linear Rashba SOC term in Eq. (3) will
not change the symmetry of the host system; it is still invariant
under the operations Rz(π ), IRz(π/2), Mxz, and Myz. Thus,
we expect the property of the Kondo screening cloud shall
remain qualitatively unchanged even in the presence of the
k-linear Rashba term.

III. SINGLE-IMPURITY CORRELATION EFFECTS

A. The variational method

We can easily diagonalize H0 and obtain a quasiparticle
operator:

γk± = 1√
2

[
exp

(
i
3

2
θk

)
ck↑ ± i exp

(
−i

3

2
θk

)
ck↓

]
, (7)
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where tan θk = ky/kx, ± denotes the upper and lower energy
bands. First let us discuss the simplest case when HV = 0, in
which the magnetic impurity state decouples from the host
material. Thus, the ground-state wave function of H0 is given
by

|
0〉 =
∏

{k±}∈�

γ
†
k±|0〉, (8)

where |0〉 is the vacuum, and the product runs over all the
states within the Fermi sea �. As for the impurity part, we
assume that the Coulomb repulsion U is large enough, and
the impurity energy level εd is below the chemical potential μ,
so that the impurity site is always singly occupied by a local
moment. The total energy of the system under this decoupled

case is

E0 = εd − μ +
∑
{k±}

(εk± − μ). (9)

Then we consider the case with hybridization, where the trial
wave function of the ground state is

|
〉 =
⎛
⎝a0 +

∑
{k±}

ak±d†
k±γk±

⎞
⎠|
0〉, (10)

where dk± = 1√
2
[exp(i 3

2θk )d↑ ± i exp(−i 3
2θk )d↓]. Here, a0

and ak± are variational parameters to be determined by op-
timizing the ground-state energy. The energy of the system in
the trial state |
〉 is given by

E = 〈
|H |
〉
〈
|
〉 =

∑
{k±}(E0 − εk± + μ)a2

k± + 2Vka0ak± + (εk± − μ)a2
0

a2
0 + ∑

{k±} a2
k±

. (11)

The variational method requires ∂E/∂a0 = ∂E/∂ak± = 0,
leading to

⎡
⎣E −

∑
{k±}

(εk± − μ)

⎤
⎦a0 =

∑
{k±}

Vkak±,

(E − E0 + εk± − μ)ak± = Vka0. (12)

We can define the binding energy as b = E0 − E ; then the
self-consistent equation is given by

(εd − μ) − b =
∑
{k±}

|Vk|2
εk± − μ − b

. (13)

If b > 0, the hybridized state is stable against the decoupled
state. In our variational method calculations, the impurity
energy level is fixed slightly below the chemical potential,
εd = μ − 0.001, and the energy cutoff � is chosen to be far
away from μ, so that the low-energy physical properties will
not be affected by the choice of �.

We show the self-consistent results of the binding energy
b for various combinations of Vk , μ, and α in Fig. 2. In
Fig. 2(a), we show the binding energy with respect to the
cubic Rashba term α for different values of Vk when µ = 1.85.
Here, α greatly alters the band structure and thus the DOS,
as is shown in Fig. 1. We find that b shows a peak around
α = 0.1. This is because, for α = 0.1, the VHS occurs close
to the chemical potential µ = 1.85. Additionally, b is larger
for stronger hybridization strength Vk , implying that the bound
state is more easily formed for strong Vk . In Fig. 2(b), we fix
Vk = 0.2 and show similar results for various values of μ. The
energy corresponds to the VHS decrease monotonically with
α, and in a wide range of μ, we can always observe the peak
of b. Figure 2(c) shows the results of b vs Vk for different
combinations of μ and α. In general, b is always positive due
to the finite DOS in this system, and this is consistent with the
previous results obtained using the same method [69,80,81].
Larger values of b imply that the bound state is more stable.
When α = 0.10, the VHS lies around µ = 1.85, such that

the binding energy b (the blue straight line) becomes much
larger than other cases.

Next, we study the effect of the cubic Rashba SOC
on the correlation between the local spin and the con-
duction electrons spins. This spin-spin correlation function
measures the spatial Kondo screening cloud. The spin op-
erator of the magnetic impurity spin is defined as Sd =
1
2

∑
s,s′ d†

s (σ̂)s,s′ds′ , and the conduction electron spin is
Sc(r) = 1

2

∑
s,s′ c†

s (r)(σ̂)s,s′cs′ (r), where s, s′ =↑,↓ and σ̂ =
{σx, σy, σx}. By assuming the magnetic impurity location as
the origin r = 0 and the conduction electron position as r, the
spin-spin correlation function is given by

Juv (r) = 〈
Su

c (r)Sv
d (0)

〉
, (14)

where 〈. . . 〉 is the ground state average, and u, v = x, y, z are
the spin indices. Here, Juv (r) can be calculated by using the
trial wave function in Eq. (10).

The diagonal and the off-diagonal terms take the forms:

Jzz(r) = − 1
8‖B(r)|2 + 1

8 |A(r)|2,
Jxx(r) = − 1

8 |B(r)|2 − 1
8 Re[A(r)]2,

Jyy(r) = − 1
8 |B(r)|2 + 1

8 Re[A(r)]2,

Jxy(r) = − 1
8 Im[A(r)]2,

Jxz(r) = 1
4 Im[B(r)A(r)],

Jyz(r) = − 1
4 Re[B(r)A(r)], (15)

where A(r) = ∑
{k±} ± exp[i(k · r + 3θk )]ak± and B(r) =∑

{k±} exp(ik · r)ak±. Due to the phase factors of γk± given in
Eq. (7), A(r) contains the phase factor 3θk and thus becomes
threefold rotational symmetric about the z direction, while
B(r) is isotropic in the x-y plane.

In Fig. 3, we plot the spatial patterns of the spin-spin
correlation function Juv (r) (u, v = x, y, z), and kc is the mo-
mentum cutoff chosen with respect to the energy cutoff �.
Here, Jzz(r) given in Fig. 3(a) is always isotropic about the
origin, while Jxx(r) and Jyy(r) given in Figs. 3(b) and 3(c)
are anisotropic because of the SOC in the x-y plane. We find
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FIG. 2. Self-consistent results of the binding energy b for dif-
ferent combinations of parameter values. b vs α for (a) different Vk

when µ = 1.85 and (b) different μ when Vk = 0.20. (c) b vs Vk for
various combinations of μ, α. � is the energy cutoff chosen to be far
away from μ.

that the diagonal components Jxx(r) and Jyy(r) have threefold
rotational symmetry about the z direction. Note that the host
system given in Eq. (2) is not threefold rotational symmet-
ric. However, due to the phase factors of eigenstates given
in Eq. (7), the components of spin-spin correlation function
show unique rotational symmetry. In addition, the host system
is invariant under Rz(π ), and consequently, Jxx(r) and Jyy(r)
also satisfy the sixfold rotational symmetry. All the diagonal
terms are negative around r = 0, indicating the antiferromag-
netic coupling between the magnetic impurity spin and the
conduction electron spins. The off-diagonal terms are merely
induced by the SOC, and we find that Jxy(r) = Jxy(−r) in
Fig. 3(d), which can be analyzed using the Rz(π ) symmetry
of the host material. The other two off-diagonal components
have the properties Jxz(x, y) = −Jxz(−x, y) and Jyz(x, y) =
−Jyz(x,−y). Except for the isotropic Jzz(r), all the compo-
nents of spin-spin correlation show either three- or sixfold
rotational symmetry on the x-y plane. The underlying reason
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0
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y
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-40 0 40

-40

0

40
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(c) Jyy(r)
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k c
y
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(a) Jzz(r)

-40 0 40

kcx

-4.8×10-30.04.8×10-3

FIG. 3. The spatial pattern of the spin-spin correlation be-
tween magnetic impurity and conduction electrons with (α = 0.1).
(a) Jzz(r), (b) Jxx (r), (c) Jyy(r), (d) Jxy(r), (e) Jxz(r), and (f) Jyz(r).
The parameters are b = 0.02, α = 0.10, Vk = 1.0, and µ = 1.50. kc

is the momentum cutoff chosen with respect to the energy cutoff �.

for these unique symmetries is the triple winding of the spins
with a complete 2π rotation of k [7,30], which is a hallmark
of the cubic Rashba effect, and can possibly be an identifier
to distinguish the cubic Rashba SOC from the normal k-linear
Rashba term in experiments.

All the components of the spin-spin correlation function
oscillate and decay in space. To analyze the spatial decay rate
of the correlations, in Fig. 4, we show the diagonal compo-
nents of the spin-spin correlation function along the x axis.
The parameters are chosen as b = 0.02, α = 0.10, Vk = 1.0,
and µ = 1.50. Here, Jzz(r) = Jxx(r) �= Jyy(r) along the x axis.
Shown in the subfigure is the result of r2Juu(r) (u = x, y)
along the x axis. According to previous studies, the spin-spin
correlation between the magnetic impurity and the conduction
electrons decays as ≈1/rD+1 if r > ξK [39–41], where ξK

is the Kondo length. However, our variational calculations
support a 1/r2 decay for finite α at long distances. Even for
the simple 2D electron gas (2DEG) with α = 0, the decay
rate of the spin-spin correlation function is still proportional to
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FIG. 4. Diagonal components of the spin-spin correlation func-
tions Juu(r). The subfigure shows that the spin-spin correlation
decays as ∝ 1/r2 along the x axis. The parameters are the same as
those in Fig. 3.

1/r2 unless b > 0.2, which is unrealistically larger than the
results of b obtained in Fig. 2. We presume this is caused by
the limitation of the variational method, and it is necessary
to perform the unbiased HFQMC simulations to get more
accurate results.

B. Quantum Monte Carlo simulations

The basic strategy of the Hirsch-Fye algorithm is to trans-
form the Coulomb interaction term in Eq. (5), which is
quartic in operators, into quadratic terms. In this process,
the interacting fermion problem is replaced by the prob-
lem of electrons coupled to an auxiliary Ising field. Various
expectation values are obtained from the quantum Monte
Carlo importance sampling of this auxiliary field [77,93,108].
The Hirsch-Fye algorithm naturally returns the imaginary-
time Green’s functions gss′

dd (τ ) = −〈Tτ ds(τ )d†
s′ 〉, Gss′

cd (r, τ ) =
−〈Tτ crs(τ )d†

s′ 〉, Gss′
dc(r, τ ) = −〈Tτ ds(τ )c†

rs′ 〉, and Gss′
cc (r, τ ) =

−〈Tτ crs(τ )c†
rs′ 〉, where s, s′ =↑,↓. In the HFQMC simu-

lations, 〈· · · 〉 means taking the average over the discrete
auxiliary field. Here, τ is the imaginary time range from 0
to β. All the information about the host material is included
in the input noninteracting Green’s functions (U = 0) which
can be obtained analytically. By using the Green’s function
returned from the HFQMC simulations, we can calculate
various quantities such as the expectation values of the total
charge:

nd = 〈nd↑ + nd↓〉,
the local moment squared:

m2
d = 〈(nd↑ − nd↓)2〉,

0.0

1.0

2.0
1.0051.0731.136 0.8650.9320.995

0.0 0.1 0.2

0.0

1.0

2.0
(d) T

(a) nd (c) m2d

(b) nd↑
nd↓

0.0050.0730.136

0.0 0.1 0.2

0.7540.8770.990

FIG. 5. The Hirsch-Fye quantum Monte Carlo (HFQMC) results
of (a) nd , (b) nd↑ nd↓ , (c) m2

d , and (d) T χ for various values of
the chemical potential μ and the cubic Rashba term α. We choose
U = 0.8, Vk = 1.0, and the temperature is kBT = 1

32 .

the double occupancy:

nd↑↓ = 〈nd↑nd↓〉,
and the spin susceptibility:

χ =
∫ β

0
dτ 〈[nd↑(τ ) − nd↓(τ )][nd↑(0) − nd↓(0)]〉.

Here, β = 1/kBT is the inverse temperature. Note that the
local moment squared on the impurity site is given by m2

d =
nd − 2nd↑↓; the closer this value is to one, the more fully
developed the local moment is. In all our QMC simulations,
we fix εd − μ = −U/2, namely, the symmetric case in which
the local moment formation is favored [36].

In Fig. 5, we show the thermodynamic quantities with
respect to the chemical potential μ and the strength of the
cubic Rashba term α. The parameters are chosen as U = 0.8,
Vk = 1.0, and the temperature is kBT = 1

32 . The results for dif-
ferent parameter values shall remain qualitatively unchanged.
As is given in Fig. 1, small values of α can drastically modify
the dispersion relation and thus induce VHS. The energy
corresponds to the VHS decreases as α increases, and this
will influence the single magnetic impurity local moment.
In Fig. 5(a), we can see that the occupation number on the
impurity site becomes larger in some regions, which corre-
sponds to the case that the chemical potential is around the
energy where VHS occurs. The double occupancy given in
Fig. 5(b) shows similar behavior, and the local moment is de-
termined by the competition between the occupation and the
double occupancy. We can see that the local moment plotted in
Fig. 5(c) becomes smaller in the same region. It is natural that,
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m
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U = 0.2
U = 0.5
U = 0.8
U = 2.0
U = 3.0

FIG. 6. The Hirsch-Fye quantum Monte Carlo (HFQMC) results
of local moment squared for (a) U = 3.0 with various Vk values and
(b) Vk = 1.0 for different U values. The chemical potential is µ =
1.0, and the temperature is kBT = 1

32 .

if the DOS at μ is large, the screening of the local magnetic
impurity spin becomes stronger, so the local moment and the
spin susceptibility shown in Fig. 5(d) are suppressed.

To check the tunability of local moment by α, we show
the results of m2

d for different combinations of U and Vk in
Fig. 6. The chemical potential is fixed at µ = 1.0, and the
temperature is kBT = 1

32 . In Fig. 6(a), we choose U = 3.0 and
change the hybridization strength Vk . For all values of Vk , we
can find a dip of m2

d as we switch α. The reduction of local
moment is caused by the increase of DOS due to the cubic
Rashba term α. The change in m2

d is more obvious if Vk is
larger. In Fig. 6(b), we show the local moment for different
U values, while the hybridization is chosen as Vk = 1.0. We
can still see a dip of m2

d as α varies, and the changes in local
moment are more obvious for small U values. In general, for
a magnetic impurity with strong Vk and relatively weak U , the
local moment is largely tunable by switching the cubic Rashba
SOC.

In the following, the spin-spin correlation between the
local magnetic impurity and the conduction electron is stud-
ied for different combinations of α, Vk , and U values. The
spin-spin correlation between the magnetic impurity and con-
duction electron can be calculated from the Green’s functions
as [108]

Jzz(r) = 〈
Sz

d Sz
c

〉
= 〈(g↑↑

dd − g↓↓
dd )×(g↑↑

cc − g↓↓
cc ) − g↑↑

dc

·g↑↑
cd − g↓↓

dc · g↓↓
cd + g↑↓

dc · g↓↑
cd + g↓↑

dc · g↑↓
cd 〉,

-0.04

-0.03

-0.02

-0.01

0.00

0.0 0.1 0.2

-0.03

-0.02

-0.01

0.00 (b)

J z
z(
k c
r=
1
.0
)

Vk = 1.0, = 1.50
Vk = 1.0, = 1.85
Vk = 1.0, = 2.00
Vk = 0.6, = 1.50
Vk = 1.3, = 1.50

(a)

J z
z(
k c
r=
1
.0
)

Vk = 1.0, U = 2.0
Vk = 1.0, U = 3.0
Vk = 1.0, U = 4.0

FIG. 7. The Hirsch-Fye quantum Monte Carlo (HFQMC) results
of Jzz(r = {1.0, 0}) with various combinations of Vk , μ, and U .
(a) The results of Jzz(r) vs α for (a) fixed value of U = 3.0, (b) for
fixed µ = 1.5 and Vk = 1.0. The temperature is chosen as kBT = 1

16 .

Jxx(r) = 〈
Sx

d Sx
c

〉
= 〈(g↑↓

dd + g↓↑
dd )×(g↑↓

cc + g↓↑
cc ) − g↑↓

dc

·g↑↓
cd − g↓↑

dc · g↓↑
cd − g↑↑

dc · g↓↓
cd − g↓↓

dc · g↑↑
cd 〉,

Jyy(r) = 〈
Sy

d Sy
c

〉
= 〈−(g↑↓

dd − g↓↑
dd )×(g↑↓

cc − g↓↑
cc ) + g↑↓

dc

·g↑↓
cd + g↓↑

dc · g↓↑
cd − g↑↑

dc · g↓↓
cd − g↓↓

dc · g↑↑
cd 〉,

Jxy(r) = 〈
Sx

d Sy
c

〉
= 〈i[(g↑↓

dd + g↓↑
dd )×(g↑↓

cc − g↓↑
cc ) − g↑↓

dc

·g↑↓
cd + g↓↑

dc · g↓↑
cd + g↑↑

dc · g↓↓
cd − g↓↓

dc · g↑↑
cd ]〉,

Jxz(r) = 〈
Sx

d Sz
c

〉
= 〈(g↑↓

dd + g↓↑
dd )×(g↑↑

cc − g↓↓
cc ) + g↑↓

dc

·g↓↓
cd − g↓↑

dc · g↑↑
cd − g↑↑

dc · g↑↓
cd + g↓↓

dc · g↓↑
cd 〉,

Jyz(r) = 〈
Sy

d Sz
c

〉
= 〈i[(g↑↓

dd − g↓↑
dd )×(g↑↑

cc − g↓↓
cc ) + g↓↑

dc · g↑↑
cd + g↑↓

dc

·g↓↓
cd − g↑↑

dc · g↑↓
cd − g↓↓

dc · g↓↑
cd ]〉.

We assume that the magnetic impurity is located at the origin
of the coordinate, and r is the position of the conduction
electron. In Fig. 7, we show the results of Jzz(r = {1.0, 0})
with various combinations of Vk , μ, and U . Given in Fig. 7(a)
are the results of Jzz(r) vs α for a fixed value of U = 3.0. For
all parameters, we see that Jzz(r) becomes stronger in a region
as α increases. This region corresponds to the cases when the
VHS emerges around the chemical potential μ. In general, the
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FIG. 8. The Hirsch-Fye quantum Monte Carlo (HFQMC) results
of the spin-spin correlation between the magnetic impurity and the
conduction electrons in the x-y plane. (a) Jzz(r), (b) Jxx (r), (c) Jyy(r),
(d) Jxy(r), (e) Jxz(r), and (f) Jyz(r). The parameters are fixed as
µ = 1.5, α = 0.1, Vk = 1.0, and U = 3.0, and the temperature is
kBT = 1/16.

values of Jzz(r) grow with the hybridization strength Vk . In
Fig. 7(b), we fix the chemical potential as µ = 1.5, Vk = 1.0,
and present the results for different U . For all values of U ,
we see similar behavior, that is, the increase of Jzz(r) in a
certain region of α. This indicates that the increase of spin-
spin correlation is common for intermediate U values. Note
that the relative magnitude of Jzz(r) does not always decrease
monotonically with U , and it depends on the choice of r.

In Fig. 8, we show the HFQMC results of the spin-spin
correlation between the magnetic impurity and the conduc-
tion electrons in the x-y plane. The parameters are fixed as
µ = 1.5, α = 0.1, Vk = 1.0, and U = 3.0, and kc is the mo-
mentum truncation. We can see that the HFQMC results of
the spin-spin correlation exhibit basically the same symmetry
as those obtained using the variational method, as in Fig. 3.
Here, Jzz(r) given in Fig. 8(a) is isotropic in the x-y plane.
The other two diagonal components Jxx(r) and Jyy(r) given
in Figs. 8(b) and 8(c) are sixfold rotational symmetric, and
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J z
z(
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kcr

= 0.0
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FIG. 9. The red solid lines show the results of r3Jzz(r) along the
x axis, while α = 0.1 for (a) µ = −1.0, (b) µ = 0.5, (c) µ = 1.5,
and (d) µ = 3.0. We use the symmetric case εd − μ = −U/2 in
our Hirsch-Fye quantum Monte Carlo (HFQMC) simulations, so εd

varies with respect to μ. The blue dashed line in (d) is the result
for 10×r3Jzz(r) in a two-dimensional electron gas (2DEG) with
α = 0 for comparison. The parameters are U = 3.0, Vk = 1.0, and
the temperature is kBT = 1

16 .

Jxx(r) = Jyy[Rz( π
2 )r], which is consistent with the symme-

try property of the host material, except for minor statistical
errors caused in the QMC simulations. Here, Jxy(r) given in
Fig. 8(d) generally has the same symmetry property with that
obtained from the variational method. Although Jxz(r) and
Jyz(r) in Figs. 8(e) and 8(f) show opposite signs in comparison
with the counterparts in Fig. 3, all of them follow the threefold
rotational symmetry.

In Fig. 9, the red solid lines show the results of r3Jzz(r)
along the x axis while α = 0.1. The parameters are U = 3.0,
Vk = 1.0, and the temperature is kBT = 1

16 . When α = 0.1
and µ = −1.0, as shown in Fig. 9(a), only the lower band
εk− is involved in the screening process. We can see the
spatial decay rate of the spin-spin correlation is about r−3.
As μ gradually increases, as in Figs. 9(b) and 9(c), both
bands εk− and εk+ take part in the Kondo screening, and the
oscillation becomes more complicated. If µ = 3.0, as given in
Fig. 9(d), only the upper band εk+ is responsible for the Kondo
screening, and the decay rate of Jzz(x, 0) is still proportional
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to r−3, with different period of oscillation. For comparison,
the results of spin-spin correlation in a 2DEG for α = 0 is
plotted as the blue dashed line in Fig. 9(d). Note that, if α = 0,
the spin-spin correlation is much smaller than the α = 0.1
case, so r3Jzz(x, 0) is multiplied by 10 for clarity. Our results
support the 1/r3 decay of the Kondo screening cloud at long
distances, which is consistent with previous studies [39–41].
We can see that the spatial decay rate obtained by the HFQMC
results is more reliable than those given by the variational
method shown in Fig. 4. Our HFQMC results show that the
decay rate of the spin-spin correlation remains essentially
unchanged in the presence of the cubic Rashba term. However,
the oscillation pattern and period are clearly affected by the
cubic Rashba SOC.

IV. INDIRECT COUPLING BETWEEN TWO
MAGNETIC IMPURITIES

Considering the indirect coupling between two magnetic
impurities, one natural question shall be how the RKKY inter-
action is influenced by the cubic Rashba term. For simplicity,
we assume that one impurity is located at the origin, and the
other impurity is on the x axis with a distance R, as schemati-
cally plotted in Fig. 1(d). HFQMC returns the imaginary-time
Green’s functions Gss′

j j′ (R, τ ), where j, j′ = 1, 2 mark the two
magnetic atoms, and s, s′ =↑,↓ are the spin indices. The spin-
spin correlation between two magnetic impurities measures
the RKKY interaction mediated by the conduction electrons.
The nonzero components of the spin-spin correlation function
along the x axis are [99]

〈
Sz

1Sz
2

〉 = 〈
Sx

1Sx
2

〉
= 〈(g↑↑

11 − g↓↓
11 )×(g↑↑

22 − g↓↓
22 ) − g↑↑

12 · g↑↑
21

− g↓↓
12 · g↓↓

21 + g↑↓
12 · g↓↑

21 + g↓↑
12 · g↑↓

21 〉,〈
Sy

1Sy
2

〉 = 〈−(g↑↓
11 − g↓↑

11 )×(g↑↓
22 − g↓↑

22 ) + g↑↓
12 · g↑↓

21

+ g↓↑
12 · g↓↑

21 − g↑↑
12 · g↓↓

21 − g↓↓
12 · g↑↑

21 〉,〈
Sx

1Sz
2

〉 = −〈
Sz

1Sx
2

〉
= 〈(g↑↓

11 + g↓↑
11 )×(g↑↑

22 − g↓↓
22 ) + g↑↓

12 · g↓↓
21

− g↓↑
12 · g↑↑

21 − g↑↑
12 · g↑↓

21 + g↓↓
12 · g↓↑

21 〉.
In Fig. 10, we show the spin-spin correlation between the two

magnetic impurities with respect to the distance R between
them, and kc is the momentum truncation. The parameters are
chosen as α = 0.1, U = 3.0 and Vk = 1.0, kBT = 1

8 . We con-
sider the symmetric case, with εd − μ = −U/2. Along the x
axis, we can see that 〈Sz

1Sz
2〉 = 〈Sx

1Sx
2〉 �= 〈Sy

1Sy
2〉. This is due to

the cubic Rashba term α, without which all three components
shall be the same. When α = 0.1, the VHS emerges at energy
value µ = 1.85. Figures 10(a)–10(c) are listed in the order of
increasing μ. Here, µ = 0.5, given in Fig. 10(a), corresponds
to relatively low DOS, while µ = 1.50 and 1.85, given in
Figs. 10(b) and 10(c), are close to the energies where VHS
occurs. We can see that the diagonal terms 〈Sz

1Sz
2〉 and 〈Sy

1Sy
2〉

are suppressed when µ = 0.5. As μ approaches the VHS
point, the DOS increases, and so do the diagonal terms 〈Sz

1Sz
2〉

and 〈Sy
1Sy

2〉. For all cases, the diagonal terms are positive and
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FIG. 10. The spin-spin correlation between two magnetic impu-
rities with respect to the distance between them R. (a)-(c) are listed in
the order of increasing μ, and εd − μ = −U/2. kc is the momentum
truncation, and the parameters are chosen as U = 3.0, Vk = 1.0, and
kBT = 1/8. The cubic Rashba spin-orbit coupling (SOC) term is
α = 0.1, and Van Hove singularity (VHS) occurs at energy 1.85.

dominant when the two impurities are close, indicating that
the two magnetic impurities are ferromagnetically correlated,
and the values oscillate and decay in space. The only nonzero
off-diagonal term 〈Sx

1Sz
2〉 = −〈Sz

1Sx
2〉 also changes with respect

to the values of μ. The off-diagonal terms correspond to the
DM interaction [74–76], and it is a manifestation of the SOC
in the host material. At distance kcR ∼ 10, the off-diagonal
correlation 〈Sx

1Sz
2〉 is of the same order of magnitude as the

diagonal terms.

V. CONCLUSIONS

In this paper, we apply the variational method and the
HFQMC technique to study the influence of the k-cubic
Rashba SOC on the correlation effects of magnetic impurities.
The cubic Rashba SOC greatly alters the band structure and
induces a VHS to the host material. The k-linear Rashba
SOC can also cause the divergence of DOS, but the diver-
gence occurs at the bottom of the bands. However, the VHS
induced by the cubic Rashba SOC occurs in a very wide
range of energy, and the single-impurity local moment be-
comes largely tunable, especially for strong Vk and relatively
weak U . Both the variational method and the HFQMC sim-
ulations support the three- or sixfold rotational symmetry of
the various components of spatial spin-spin correlation. This

165148-9



PENG, LIN, CHEN, LI, XU, AND SUN PHYSICAL REVIEW B 107, 165148 (2023)

unique feature is a manifestation of the cubic Rashba SOC
and can possibly be used in experiments to distinguish the
cubic Rashba SOC from the normal k-linear Rashba term.
The HFQMC calculations show that the 1/r3 decay rate of
this spin-spin correlation is essentially unchanged by the cubic
Rashba SOC term α. Moreover, the RKKY couplings between
two magnetic impurities display very complicated forms. In
addition to the normal diagonal components, we still obtain
the finite off-diagonal components, which correspond to the
DM interaction between two magnetic impurities, and they
become the same order of magnitude as the diagonal terms at
distance kcR ≈ 10.

From the viewpoint of symmetry, once the cubic Rashba
SOC appears, the linear Rashba SOC is allowed by symmetry;
thus, both SOCs can coexist [22]. In this paper, the k-linear
Rashba SOC is ignored to concentrate on the influence of
cubic Rashba SOC on the magnetic impurities. Thus, our
model Hamiltonian can be used to describe magnetic doping
in systems such as strained-Ge/SiGe quantum wells [15,23]
and SrTiO3 singlecrystal surface [16] and heterostructures
[24–27], in which the cubic Rashba SOC dominates. How-
ever, adding the k-linear Rashba SOC term will not change
the symmetry property of the host; the system is still invari-
ant under the operations Rz(π ), IRz(π/2), and Mxz, Myz.
Thus, the three- or sixfold rotational symmetry of the Kondo
screening cloud shall still be valid in systems with coexisting
linear and Rashba SOCs. Consequently, the Kondo screening
cloud can still be used to identify the cubic Rashba SOCs in
various systems, with or without the linear Rashba SOC.

Our study is based on a 2D continuous model. The major
results given in this paper, such as the tunability of local
moment by the cubic Rashba SOCs and the unique symme-
tries of Kondo screening cloud, are still applicable to a 2D
lattice model with discrete momentum. So far, most cubic
Rashba spin splittings are studied in 2D materials, such as
quantum wells, surfaces, and interfaces. However, the inves-
tigation on cubic SOCs has been extended to bulk materials,
and the Kondo screening in systems with cubic Rashba SOC
in one-dimensional (1D) or three-dimensional systems might
be an interesting issue. In a 1D system, the Kondo temper-
ature takes the form TK ∝ exp[πεd/N�] [109,110], where N
is the degeneracy at the Fermi energy, and � is the effective
hybridization. Thus, in a 1D (e.g., a 1D ring [111]) system
with cubic Rashba SOC, we expect that the tunable correlation
effect of magnetic impurities can still be observed, and we will
probably investigate it in our future research.

ACKNOWLEDGMENTS

J.-H.S. acknowledges financial support from the Zhejiang
Provincial Natural Science Foundation of China (Grant No.
LY19A040003) and K. C. Wong Magna Fund in Ningbo Uni-
versity. D.-H.X. was supported by the NSFC (under Grants
No. 12074108 and No. 12147102) and the Natural Science
Foundation of Chongqing (Grant No. CSTB2022NSCQ-
MSX0568). L.C. was supported by the NSFC (under Grant
No. 12174101) and the Fundamental Research Funds for the
Central Universities (Grant No. 2022MS051).

[1] G. Dresselhaus, Phys. Rev. 100, 580 (1955).
[2] E. Rashba, Sov. Phys. Solid State 2, 1109 (1960).
[3] F. J. Ohkawa and Y. Uemura, J. Phys. Soc. Jpn. 37, 1325

(1974).
[4] F. Vas’ ko, Pis’ma Zh. Eksp. Teor. Fiz. 30, 574 (1979).
[5] Y. A. Bychkov and É. I. Rashba, Pis’ma Zh. Eksp. Teor. Fiz.

39, 66 (1984).
[6] G. Bihlmayer, O. Rader, and R. Winkler, New J. Phys. 17,

050202 (2015).
[7] A. Manchon, H. C. Koo, J. Nitta, S. M. Frolov, and R. A.

Duine, Nat. Mater. 14, 871 (2015).
[8] G. Bihlmayer, P. Noël, D. V. Vyalikh, E. V. Chulkov, and A.

Manchon, Nat. Rev. Phys. 4, 642 (2022).
[9] L. Gerchikov and A. Subashiev, Sov. Phys. Semiconduct. 26,

73 (1992).
[10] R. Winkler, Spin-Orbit Coupling Effects in Two-Dimensional

Electron and Hole Systems (Springer, Berlin, Heidelberg,
2003), Vol. 191.

[11] R. Winkler, Phys. Rev. B 62, 4245 (2000).
[12] J. Schliemann and D. Loss, Phys. Rev. B 71, 085308 (2005).
[13] O. Bleibaum and S. Wachsmuth, Phys. Rev. B 74, 195330

(2006).
[14] T. Ma and Q. Liu, Phys. Rev. B 73, 245315 (2006).
[15] R. Moriya, K. Sawano, Y. Hoshi, S. Masubuchi, Y. Shiraki, A.

Wild, C. Neumann, G. Abstreiter, D. Bougeard, T. Koga et al.,
Phys. Rev. Lett. 113, 086601 (2014).

[16] H. Nakamura, T. Koga, and T. Kimura, Phys. Rev. Lett. 108,
206601 (2012).

[17] M. Gmitra and J. Fabian, Phys. Rev. B 94, 165202 (2016).
[18] K. V. Shanavas, Phys. Rev. B 93, 045108 (2016).
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