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Indirect magnetic signals in Weyl semimetals mediated by a single Fermi arc
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Recently, abundant transport phenomena characterizing the surface states of Weyl semimetals (WSMs) have
been reported. To generate these phenomena, electrons have to complete a closed intersurface orbit. Due to the
unavoidable impurities in real materials, this orbit could be destroyed by the impurity scattering, which limits
the detection of the surface states in WSMs. Here, we investigate the RKKY interaction between magnetic
impurities, solely mediated by a single surface band, in semi-infinite WSMs. It is found that peculiar oscillations
and slowly decaying laws of the RKKY interaction can act as the signals to capture the dispersive nature of
the surface states of WSMs. The underlying physics is attributed to two effects: the band-edge effect and the
bending effect of the surface band, which can control the RKKY interaction individually or compete with each
other to produce more complex magnetic behaviors. In addition, the band-edge effect together with the finite
Fermi energy would result in another interesting oscillation with battering pattern. All the results are significantly
different from that in previous literatures where surface states have to couple with bulk states (or other surface
states of different spins) to generate nonzero magnetic interaction. Compared to the previous models of surface
states, the model here is more practical and is helpful for the deeper understanding of the surface magnetic
properties in WSMs.
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I. INTRODUCTION

Weyl semimetals (WSMs), as the first discovered three-
dimensional topological semimetals, have attracted extensive
attention due to their peculiar electronic structures and po-
tential applications in spintronics. Different from topological
insulators whose topology is protected by a considerable en-
ergy gap, the bulk band of WSMs is gapless but still remains
the topological nature [1]. For the simplest model of WSM,
the corresponding topological property is carried by a pair of
Weyl points with opposite chiralities [2]. Each Weyl point cor-
responds to a magnetic or an antimagnetic monopole, which
supports topological charge 1 or −1 and can be characterized
by the nonzero Berry curvature [3–5]. Due to the crystalline
symmetry, the Weyl points can only be created or annihilated
in pairs. According to the bulk-surface correspondence, topo-
logically protected surface states that would arise as WSMs
with finite size are considered [6,7]. Different from the closed
Fermi surface of topological insulators, the surface states of
WSMs on the Fermi surface form open Fermi arcs connecting
the Weyl points.

To realize the WSM phase, one can split the degenerated
Dirac points into two Weyl points by breaking the time-
reversal symmetry [8–10] or the inversion symmetry [2]. For
example, WSMs with broken time-reversal symmetry can be
obtained by applying a beam of off-resonant light in nodal-
line semimetals (NLSMs) [8] or Dirac semimetals (DSMs)
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[9]. Alternatively, similar WSMs can also be realized by dop-
ing magnetic impurities in DSMs [10]. In addition, various
magnetic materials (HgCr2Se4 [11], Y2Ir2O7 [12], Co3Sn2S2

[13], and Co2-based Heusler compounds [14,15]) have been
proposed as the candidates for WSMs. Specially, Co3Sn2S2

has already been established as a magnetic WSM by using
the angle-resolved photoemission spectroscopy [16]. So far,
WSMs with broken inversion symmetry are mainly focused
on the noncentrosymmetric transition-metal monophosphides
[17], including TaP [18,19], NbP [20], TaAs [21–23], and
NbAs [24].

The verification of WSMs in experiments has further
prompted researchers’ interests on the physical properties
of WSMs. One of the most intriguing topics is how to
detect the surface states of WSMs. To deal with this prob-
lem, many literatures have studied the surface-states-related
transport properties in WSMs and various phenomena are
revealed, e.g., strong Friedel oscillations on the surface of
WSMs [25], anomalous quantum oscillations contributed
by the Fermi arcs [26–28], nonlocal dc voltage and sharp
resonances in the transmission of electromagnetic waves
induced by the unique intersurface cyclotron orbits [29],
peculiar magnetic-field-dependent magnetoconductivity [30],
three-dimensional quantum Hall effect [31], and unusual mag-
netothermal transport [32]. From these nontrivial phenomena,
transport signatures can be extracted for characterizing the
surface states of WSMs. Note that the above phenomena are
induced by the unique intersurface orbit, i.e., electrons should
be transported from one Fermi arc (on one surface) to another
(on the opposite surface) via bulk Weyl monopoles. However,
this orbit could be destroyed by the impurity scattering since
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defects or impurities are unavoidable in real materials. More-
over, to allow electrons to complete this orbit before scattering
off an impurity, a WSM with proper thickness L is required,
i.e., L � l (l denotes the mean free path). This limits the
detection of the surface states in WSMs. Therefore, it is highly
desirable to find another way to identify the surface states of
WSMs, especially for the single surface band in semi-infinite
(or large thickness L) WSMs without considering the intersur-
face process.

The RKKY interaction between magnetic impurities has
attracted our attention since it is sensitive to the behaviors of
the electrons near the Fermi surface. Typically, the oscillation,
the decaying law, and the amplitude of the RKKY interaction
can act as the magnetic signals to characterize the dispersive
nature of materials [33–49]. For examples, the period of the
oscillation of the RKKY interaction in DSMs/WSMs can
be used to evaluate the distance of two Dirac/Weyl points
[33–40], the inversion symmetry of the system can be cap-
tured by the nonzero DM terms [38], the large difference in
the amplitude of the RKKY interaction can act as a signal to
distinguish the topological insulator phase and trivial insulator
phase in silicene [42], and the anisotropic feature of the semi-
Dirac dispersion can be reflected on the direction-dependent
decaying laws of the RKKY interaction [49]. In addition to the
RKKY interaction in static systems, magnetic signals related
to the properties of the Floquet band structure are also found
in irradiated systems [50–52]; e.g., the purely ferromagnetic
RKKY interaction is a result of the light-induced energy shift
in periodically driven two-dimensional electron systems [51].
Recently, Yan et al. have reported that a phase transition from
NLSMs to WSMs can be realized by a circularly polarized
light [8]. By doping magnetic impurities on the surface of
irradiated Ca3P2-like WSM material, it is expected that mag-
netic signals can be extracted from the RKKY interaction to
characterize the features of the surface states of WSMs.

So far, two literatures have already discussed the RKKY
interaction on the surface of WSMs [45,46]; it is found that the
surface-states-induced RKKY interaction (i.e., surface con-
tribution) survives only when the surface states couple with
bulk states (or other surface states of different spins). In other
words, no surface contribution arises if a single surface band is
considered in WSMs. To solve this problem, we propose two
mechanisms as origins of the nonzero surface contribution in
WSMs, namely, the band-edge effect and the bending effect
of the surface band. For different mechanisms, significantly
different RKKY behaviors (slowly decaying laws and pecu-
liar oscillations) would be generated. Furthermore, we have
explored the competition of the above two effects, which re-
sults in more complex RKKY behaviors. In addition, the case
of finite Fermi energy is discussed. From these discussions,
various magnetic signals are extracted for characterizing the
surface states of WSMs.

The paper is organized as follows. In Sec. II, a mini-
mal model of the WSMs is introduced and the method for
calculating the surface contribution of the RKKY interac-
tion is presented. In Sec. III, the two mechanisms of the
nonzero surface contribution are analyzed respectively. The
slowly decaying laws, as well as the peculiar oscillations,
are also exhibited. Furthermore, we have explored the effect
of the competition of the two mechanisms on the surface

FIG. 1. Schematic diagram for a WSM with two splitting Weyl
nodes, whose positions at ±k0 along the kx direction are those of red
and yellow spheres. The surface (the shadow face) is at z = 0 and the
model here is infinite in the other two (x and y) directions.

contribution. Additionally, the case of finite Fermi energy is
discussed. Finally, a short summary is given.

II. MODEL AND METHOD

We start with a minimal model of WSM whose low-energy
Hamiltonian is given by

HWSM = v
(
k2
‖ − k2

0

)
τz + vzkzτy + γ kyτx + v0k2

‖τ0, (1)

where k2
‖ = k2

x + k2
y , and τi refers to the Pauli matrix oper-

ating in the orbital space. The first three terms describe a
WSM with the band energy ε± = ±[v2(k2

‖ − k2
0 )2 + v2

z k2
z +

γ 2k2
y ]1/2. The distinctive feature of the bulk band ε± is the two

Weyl nodes, which carry opposite chiralities and are located
at the positions of (±k0, 0, 0). Due to the nontrivial band
topology, there exists a surface band whose projection at zero
Fermi energy is a straight line connecting two Weyl nodes.
This straight line is bent by the last term of Eq. (1), i.e., it is
changed to be an arc (Fermi arc). The model of Eq. (1) can be
realized by considering the effect of a periodic driving to the
NLSMs [8]; a detailed derivation is given in Appendix A.

To consider the effect of the surface states on the RKKY
interaction, a semi-infinite WSM is studied. As shown in
Fig. 1, the WSM is placed in the right half plane (z > 0) and
the other half (z < 0) is assumed to be a vacuum. The surface
is at z = 0 and the model here is infinite in the other two (x and
y) directions. Note that the momentum kz here is not a good
quantum number, which has to be replaced by the operator
kz = −i∂z. An incident wave C e−ikzz is assumed to be injected
along the z direction. Since the wave of the surface states
is mainly bound to the surface of z = 0, the solution of kz

becomes imaginary. By considering the continuity conditions
of the boundary between the left and right regions, the wave
functions and the energy band of surface states at the surface
(z = 0) can be solved as

E (k‖ < k0, v0) = v0k2
‖ + γ ky,

�(k‖ < k0, v0, r) =
√

ζeik‖r
(

1
1

)
,

(2)

where ζ = v(k2
0 − k2

‖ )/vz; E and � vanish for the momentum
out of the circle k‖ = k0. Note that k0 denotes the radius of
the circular Brillouin zone of the surface band. By detecting
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FIG. 2. Dispersion of the surface band E and its projection on the
kx − ky plane with (a) k‖ < k0, v0 �= 0, (b) |kx| < k0, v0 = 0, (c) k‖ <

k0, v0 = 0, and (d) |kx| < k0, v0 �= 0. The red dashed lines denote the
band edges.

the parameter k0, one can determine the size of the Brillouin
zone for the surface states of WSMs. For z �= 0, the wave
� has the form of � ∝ e−v(k2

0−k2
‖ )z/vz eik‖r [r = (x, y)]. As z

(z > 0) is increased, the condition k‖ < k0 [Eq. (2)] has to be
satisfied to obtain the decaying wave �. Substituting k‖ with
|kx| in the limitation k‖ < k0 of E and � (as well as in ζ ), the
band E (|kx| < k0, v0 = 0) recovers to the case discussed in
previous literatures [45,46], where the higher-order momen-
tum v0k2

‖ is ignored and the dispersion is infinite in ky axis,
as shown in Fig. 2(b). The dispersion E (k‖ < k0, v0 �= 0)
is plotted in Fig. 2(a), where the red dashed lines refer to
the band edges. The shape of the dispersion here is signifi-
cantly different from that of E (|kx| < k0, v0 = 0) [Fig. 2(b)].
To figure out the detailed differences, one can consider the
following two cases, respectively. (1) By simplifying the set-
ting v0 = 0, the surface band is simplified as E (k‖ < k0, v0 =
0) = γ ky, as shown in Fig. 2(c). Here, all surface states are
confined to a circle (k‖ = k0), which makes the surface band
look like a tilted disk. This is different from that in Fig. 2(b)
where the dispersion is ribbonlike, i.e., finite in the kx axis but
infinite in the ky axis. (2) By changing the limitation k‖ < k0 to
|kx| < k0 and setting v0 �= 0, the energy of the surface band is
rewritten as E (|kx| < k0, v0 �= 0) = v0(k2

‖ − k2
0 ) + γ ky. Com-

pared to the band in Fig. 2(b), the only difference is that the
band is bent by the term v0(k2

‖ − k2
0 ), as shown in Fig. 2(d).

In the following sections, we will show that the above two
cases can contribute nonzero RKKY interaction individually.
Moreover, more complex RKKY behaviors would be gener-
ated when the two cases coexist.

Two magnetic impurities are assumed to be placed on the
surface (z = 0) of the WSM with the positions r1 and r2. Con-
sidering the spin-exchange interaction (s − d model) between
impurities and host electrons, the system Hamiltonian H0 is
rewritten as

H = H0 + Hint = H0 − J0

∑
i=1,2

Si · si, (3)

where J0 stands for the strength of the exchange interaction,
Si is the spin of impurity at site i, and si = 1

2 c†
iασαβciβ refers

to the spin of host electrons with σαβ being the matrix ele-
ment of the Pauli operator in real spin space. Mediated by
the itinerant host electrons, an indirect exchange interaction
(i.e., RKKY interaction) between two impurities is generated.
Considering the case of weak coupling J0 between impurities
and electrons, Hint can be regarded as a perturbation. Using
the perturbation theory by keeping exchange interaction J0 to
the second-order term [53–56], the effective coupling between
the magnetic impurities can be written as

HRKKY = − λ2

π
Im

∫ uF

−∞
Tr[(S1 · σ )G(ω, R)(S2 · σ )

× G(ω,−R)]dω, (4)

where R = r1 − r2, uF is the Fermi energy, and G(±ω, R) is
the retarded Green’s function with respect to H0 in real space.

To calculate the RKKY interaction, the retarded Green’s
function of real space has to be derived. In Lehmann’s rep-
resentation [42,43], G(ω, R) can be constructed by using the
energy E and the corresponding wave function � of Eq. (2),
given by

G(ω, R) =
∑

k

�(k‖ < k0, v0, r1)�†(k‖ < k0, v0, r2)

ω − E + iη

=g(ω, R)(τ0 + τx ),

(5)

with

g(ω,±R) =
∑

k

ζe±ikR/(ω − E + iη). (6)

Plugging the above equations into Eq. (4) and tracing the spin
and orbital degrees of freedom, the RKKY interaction can be
rewritten in the form of HRKKY = JS1 · S2, where J reads as

J = −8λ2

π
Im

∫ uF

−∞
[g(R, ω)g(−R, ω)]dω. (7)

For the sake of simplicity, we still regard g(ω, R) as the
Green’s function since it preserves the main properties of
G(ω, R). To obtain the maximum surface contribution, we
focus on the structural configuration of the model at z = 0.
The reason is that the surface contribution would display an
exponential decay if the impurities are moved from the surface
to the bulk (i.e., z �= 0), as mentioned in previous literatures
[45,46]. In this configuration, we can only consider the surface
contributions since they (especially for the case with impu-
rities in the y axis) decay much more slowly than the bulk
contributions and would play a leading role in the long range
(i.e., large impurity distance).
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FIG. 3. (a),(b) Spatial dependence of the Green’s function g(ω, R) with ω = −0.01ω0 and R = (0, Ry ). The dependence of the angle ϑ on
the energy ω in the cases of (c) E (k‖ < k0, v0 = 0) and (d) E (|kx| < k0, v0 �= 0) with Rk0 = 15. The solid (dashed) lines refer to the case with
impurities placed along the y (x) axis. Here, we set γ = −0.2vz, h̄ω = 2 eV, ω0 = −γ k0, and other parameters v = 4.34 eV Å2, vz = 2.5 eV Å,
κ0 = 0.206 Å−1, and v0 = −0.993 eV Å2 (if v0 �= 0) are extracted from Ca3P2 [58] material.

III. RESULTS AND DISCUSSION

A. Mechanisms of nonzero RKKY interaction by a single
surface band in WMSs

Physically, the Green’s function g(ω, R) (R = r1 − r2) de-
scribes the scattering process of electrons from one impurity
(S1 with position r1) to another (S2 with position r2) and
g(ω,−R) corresponds to the inverse process. Thus, before
showing the nonzero surface contribution, one can study the
Green’s functions to capture the related mechanisms.

First, we review the Green’s function g(ω,±R) of the
surface band E (|kx| < k0, v0 = 0) [Fig. 2(b)], which has been
explored in previous literatures [45,46]. For impurities placed
in the y axis, g(ω,±Ry ) reads as

g(ω,±Ry ) = 2vk3
0

3πvzγ
ie±iRyω/γ �(∓Ry). (8)

Here, �(x) is the Heaviside step function and we set Ry > 0
for simplicity. According to the above equation, one can see
that electrons of surface states can be scattered from r2 to r1

by the nonzero Green’s function g(ω,−Ry), while the inverse
process cannot be realized due to the vanished g(ω, Ry). In
other words, the trajectory of the electrons is always open,
which naturally does not generate effective RKKY interaction
[57]. The case is different when impurities are placed in the x
axis, where the Green’s function is solved as

g(ω,±Rx ) = i
v

πvzγ

sin(k0Rx ) − k0Rxcos(k0Rx )

R3
x

. (9)

Although the nonzero g(ω, Rx )g(ω,−Rx ) constructs a closed
loop for the itinerate electrons, no effective interaction arises.
The reason is that g(ω, Rx )g(ω,−Rx ) here is a real number,
while the interaction [Eq. (7)] is determined by the imagi-
nary part of g(ω, R)g(ω,−R). Taking into account the above
scenarios, the mechanism for generating the nonzero interac-
tion can be summarized in two steps. First, electrons should
display a round trip between impurities. Second, a nontrivial
phase factor eiϑ (ϑ �= 0, π ) has to be accumulated after the
round trip. eiϑ is defined as

eiϑ = g(ω, R)g(ω,−R)

|g(ω, R)g(ω,−R)| . (10)

Here, we set −π < ϑ � π . ϑ = π corresponds to the case of
Eq. (9). The first condition can be easily met by the modified
dispersions in Figs. 2(c) and 2(d). To confirm this point, one
can check the amplitude of the Green’s function. Note that
g(ω,−R) is always nonzero for arbitrary values of v0 (or for
arbitrary limitations of kx,‖). Thus we only plot the Green’s
function g(ω, R), which bears full responsibility for the open
trajectory of the electrons [Eq. (8)]. For comparison, the case
of E (|kx| < 0, v0 = 0) is also plotted. As shown in Figs. 3(a)
and 3(b), the original vanished Green’s function (red lines)
is changed to be a finite one (black and blue lines) by either
changing the limitation of |kx| < k0 to k‖ < k0 or turning
on the parameter v0. Thus nonzero g(ω, R) together with
g(ω,−R) would provide electrons a round trip between im-
purities. For E (k‖ < k0, v0 = 0), the corresponding nonzero
g(ω, R) is a result of the band-edge effect, i.e., the band
edge [dashed line in Fig. 2(c)] acts like a wall and allows
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FIG. 4. (a) R-dependent RKKY interaction contributed by
E (k‖ < k0, v0 = 0) with impurities placed in the y axis. The solid
line denotes the numerical result calculated from Eqs. (6) and (7)
and the dashed line refers to the analytical result from Eq. (12).
C = λ2/(2π )3 and other parameters are the same as that in Fig. 3(c).
(b) DOS ρ(ω) with c0 = vk3

0/(−π 2γ vz ) for the cases of E (k‖ <

k0, v0 = 0) and E (|kx| < k0, v0 = 0).

the electrons near the band edge to be backscattered. This
explanation would be further verified by our analytical results
in Sec. Sec. III B. To understand the nonzero g(ω, R) of
E (|kx| < k0, v0 �= 0), one can simply check the Fermi veloc-
ity. Due to the bending effect [Fig. 2(d)] of the surface band,
the original negative Fermi velocity vy = γ can be changed
to be a positive one vy = γ + 2v0ky (if ky < −γ /2v0), which
also allows the backscattering behavior for electrons [i.e.,
nonzero g(ω, R) arises]. To check whether the second con-
dition is satisfied, we plot ϑ in Figs. 3(c) and 3(d). Obviously,
almost all energies ω would contribute nontrivial phases (i.e.,
ϑ �= 0, π ) except for the case of E (|kx| < k0, v0 �= 0) with im-
purities placed in the x axis. This means that nonzero RKKY
interaction can be realized by either of the above effects,
which is further verified in the next subsections.

In the following subsections, we only focus on the RKKY
interaction with impurities placed in the y axis since the
slowly decaying law occurs in this configuration. Com-
pared to this configuration, the fast-decaying interaction with
impurities in the x axis is insignificant and is shown in
Appendix B.

B. RKKY interactions mediated by E(k‖ < k0, v0 = 0)

In this section, we focus on the RKKY interaction of zero
Fermi energy (uF = 0). Plugging the function g(ω,±R) of
Eq. (6) into Eq. (7), the RKKY interaction contributed by
E (k‖ < k0, v0 = 0) can be calculated numerically, as plot-
ted in Fig. 4(a). For impurities deposited along the y axis,
the interaction falls off as 1/R7/2 with the impurity distance
R, which decays much more slowly than that of the bulk
contributions (1/R5) of WSMs [38–40]. More interestingly,
the interaction J exhibits a peculiar oscillation, whose period
Ty = 2π/k0 is determined by the distance k0 between the
band edge and the center k‖ = 0 of the band. This oscillation

is quite unexpected since the Fermi wave number here is
kF = uF /γ = 0 and no separated Weyl points are located on
the ky axis. Note that all oscillations of the RKKY interaction
in previous works are usually induced by the finite Fermi wave
number kF �= 0 [33–49] or the splitting of the Weyl/Dirac
points [33–40,45–48]. The underlying physics of the peculiar
RKKY behavior here is attributed to the band-edge effect
[i.e., the scattering behaviors (from r1 to r2) of the electrons
near the band edge, as stated in Sec. III A], which not only
affects the decaying law but also determines the period of
the oscillation. By detecting the period Ty = 2π/k0, the po-
sition of the band edge in momentum space can be accurately
identified.

To further understand the band-edge effect and the result-
ing RKKY behaviors [Fig. 4(a)], we analyze the density of
states (DOS) in Fig. 4(b), where the cases of E (k‖ < k0, v0 =
0) and E (|kx| < k0, v0 = 0) are compared. For E (|kx| <

k0, v0 = 0), the DOS is constant and independent on the en-
ergy ω. Once the limitation of |kx| < k0 is changed to be k‖ <

k0, the DOS ρ(ω) is disturbed. Specifically, as ω moves away
from zero energy (ω = 0), the DOS ρ(ω) decreases rapidly.
The largest perturbation occurs at the band edges (i.e., ω =
±γ k0 or ky = ∓k0), where the DOS vanishes, as highlighted
by the magenta circles in Fig. 4(b). The largest perturbation
at the band edges indicates that the surface-states-mediated
RKKY interaction is not only contributed by the electrons
near the Fermi surface (i.e., ω = 0 or kF = 0) but also by the
electrons near the band edges.

Based on the above disturbed DOSs, one can calculate the
Green’s functions g(ω,±Ry) analytically (see detailed deriva-
tion in Appendix C), which are given by

g(ω,−Ry) = −iπ2

(−3γ vz

2vk3
0

)1/3

ρ(ω)4/3e−iRyω/γ

+ O

(
1

Rm>0

)
,

g(ω, Ry) = 0 − ω−cos(k0Ry) + ω+sin(k0Ry)

(ω+ω− − 2)vzπ2γ /(v
√

πk0)

1

R5/2
, (11)

where ρ(ω) = 2vk3
0 (1 − ω2/γ 2k2

0 )3/2/(−3π2γ vz ) is the DOS
of the surface band and ω± = ω/γ k0 ± i. Compared to the
Green’s functions of E (|kx| < k0, v0 = 0) in Eq. (8), one can
find that the changed limitation k‖ < k0 only modifies the
amplitude of g(ω,−Ry ) via the DOS, but it changes the van-
ished g(ω, Ry) to be a finite one. Note that the first terms
in the right-hand side of Eq. (11) are obtained by applying
the expansion to the integrand of Eq. (6) at the point kF = 0
(i.e., Fermi surface), while the second ones come from the
expansion at the band edges (ω = ±γ k0 or ky = ∓k0). This
means that the finite g(ω, Ry) is completely induced by the
electrons near the band edges [magenta circles in Fig. 4(b)],
which are allowed to complete a trip from r1 to r2, which we
call “the band-edge effect.”

Plugging Eq. (11) into Eq. (7) and integrating out the
energy ω, the analytical result of the surface contribution J
can be solved as

J (Ry) = 128v2k7/2
0 C

3γ v2
z π

1/2

sin(k0Ry) − cos(k0Ry)

R7/2
y

. (12)
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FIG. 5. R-dependent RKKY interaction contributed by E (|kx| <

k0, v0 �= 0) with impurities placed in the y axis. The solid line denotes
the numerical result calculated from Eqs. (6) and (7) and the dashed
line refers to the analytical result from Eq. (15).

The above analytical result explains the decay and the oscil-
lation of the RKKY interaction in Fig. 4(a), as denoted by the
dashed line.

C. RKKY interactions mediated by E(|kx| < k0, v0 �= 0)

For the case of E (|kx| < k0, v0 �= 0), the numerical results
of the surface contribution can also be obtained according
to Eqs. (2) and (6), (7), as plotted in Fig. 5. Compared to
the case of E (k‖ < k0, v0 = 0), the interaction here decays
much more slowly with the impurity distance as 1/R2

y . In
addition, there exists a different oscillation with a period of
T ′

y = π/kF , whose Fermi wave number kF = γ /v0 is induced
by the bending effect of the surface band. Similar oscillations
but induced by the finite Fermi energy (uF �= 0) are also
reported in previous literatures [33–49].

To obtain the analytical result, one has to notice that the
dispersion in the ky axis is infinite, i.e., the band-edge effect
of the ky axis disappears. Thus the interaction here is only
contributed by the electrons at the Kohn-anomaly point [59],
which corresponds to a singular point on the Fermi surface.
According to the properties of the singular point, one can use
the partial differential equations ∂ky/∂kx = 0 [ky = (−γ ±√

γ 2 − 4v2
0k2

x )/(2v0)] to calculate the positions (kxi , kyi ) of the
Kohn-anomaly points, which are solved as

(kx1 , ky1 ) =
(

0,− γ

v0

)
,

(kx2 , ky2 ) = (0, 0). (13)

Since the two Kohn-anomaly points are all located on the ky

axis (i.e., kx = 0), one can expand the integrand of Eq. (6)
at kx = 0 to calculate g(±Ry, ω) (see detailed derivation in
Appendix C) as

g(ω,−Ry) = (1 − i)k2
0v(γ 2 − v0ω)

2
√

2vzγ 2√πv0γ

e−iRyω/γ

R1/2
y

,

g(ω, Ry) = e−i
Ryγ

v0 g(ω,−Ry).

(14)

Plugging the above Green’s functions into Eq. (7) and
integrating out the energy ω, one can solve the surface con-
tribution as

J (Ry) = 8πv2k4
0C

v0v2
z

sin(γ Ry/v0)

R2
y

. (15)

FIG. 6. R-dependent RKKY interaction contributed by E (k‖ <

k0, v0 �= 0) with impurities in the y axis. Different values of v0 are
considered to discuss the competition of the two effects (i.e., the
band-edge effect and the bending effect of the surface band).

The above analytical result explains the decay and the oscil-
lation of the RKKY interaction in Fig. 5, as denoted by the
dashed line.

D. RKKY interaction contributed by the competition of the two
mechanisms [i.e., E(k‖ < k0, v0 �= 0)]

In this section, we study the effect of the competition of
the two mechanisms [i.e., E (k‖ < k0, v0 �= 0)] on the surface
contribution. To facilitate this discussion, the limitation of
k‖ < k0 is kept unchanged and v0 varies. The numerical
results of J (Ry) are shown in Fig. 6. It is found that there
exists a critical value vc

0 = γ /k0 for v0, which determines
the decay and the oscillation of the surface contribution.
For v0 > vc

0, the interaction is completely governed by the
bending effect, while the band-edge effect can be ignored. As
a result, the interaction shares a same decay law (1/R2

y ), as
well as a same oscillation [sin(γ Ry/v0)], as that in Eq. (15).
Once v0 decreases with v0 < vc

0, the interaction decays fast
as 1/R4

y , along with an oscillation sin(k0Ry) determined
by the band-edge effect. For the critical case v0 = vc

0, an
intermediate behavior arises, i.e., J ∝ 1/R3

y = 1/R(2+4)/2
y

with the oscillation sin(Ryγ /v0) [or sin(k0Ry)].
To understand the above phenomenon, one has to notice

that the band-edge effect induced by k‖ < k0 only changes the
Green’s function g(ω, Ry), while the decay and the oscillation
of the other Green’s function g(ω,−Ry ) are completely
controlled by the bending effect (v0 �= 0), which results in
g(ω,−Ry ) ∝ e−iRyω/γ /R1/2

y [Eq. (14)]. Thus the competition
of the two mechanisms is only reflected on g(ω, Ry). We plot
the evolution of g(ω, Ry) with different v0 in Fig. 7, where
the dispersion of the ky axis is also plotted for a better under-
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FIG. 7. (a)–(c) Energy dispersion along the ky axis with different values of v0. The magenta circles denote the momentum of the band edge
and the hollow circle denotes the momentum located on the Fermi energy. The Fermi wave numbers are kF = γ /v0, kc

F = k0 (or γ /v0). (d)–(f)
The R-dependent Green’s function g(ω, R) with different v0. The critical value of v0 is vc

0 = γ /k0.

standing. As shown in Fig. 7(a), the band edge (the magenta
circle) of the surface band is far away from the Fermi energy
for v0 > vc

0. Thus the interaction is mainly contributed by
the bending effect; the resulting Fermi wave number kF (the
black circle) naturally leads to g(ω, Ry) ∝ e−ikF Ry/R1/2

y with
kF = γ /v0 [Fig. 7(d) or Eq. (14)]. Differently, for v0 < vc

0,
the nonzero Fermi wave number disappears [Fig. 7(c)].
Thus the bending effect does not work in this case and the
electrons near the band edge [the magenta circle in Fig. 7(c)]
would play the leading role in contributing g(ω, Ry), which
results in g(ω, Ry) ∝ sin(k0Ry)/R5/2

y [Fig. 7(f) or Eq. (11)]. By
integrating out the energy ω of the product g(ω, Ry)g(ω,−Ry),
an extra factor 1/Ry is generated [60]. Then, the complex
RKKY behaviors arise, i.e., J (v0 > vc

0) ∝ sin(γ Ry/v0)/R2
y

and J (v0 < vc
0) ∝ sin(k0Ry)/R4

y as shown in Figs. 6(a) and
6(c). For the critical case, the two mechanisms would
operate at the same time to result in an intermediate
g(ω, Ry) ∝ sin(k0Ry)/R(1/2+5/2)/2

y = sin(k0Ry)/R3/2
y , which

naturally leads to an intermediate RKKY behavior in
Fig. 6(b).

In a sequence of WSM materials (or WSMs transformed
from NLSMs) [8,11,58], the parameters k0 and v0 usually vary
within a certain range. Without loss of generality, we plot
the RKKY interaction as a function of k0 and v0. As shown
in Fig. 8, the dark-colored region corresponds to the RKKY
interaction with large amplitude, while the light-colored one
corresponds to the interaction with small amplitude. The two
regions are separated by a curve vc

0 = γ /k0. Far from this
curve, there is about four orders of magnitude difference be-
tween the amplitudes of the RKKY interaction in two regions.
This means that one can obtain a stronger magnetic signal
once large |v0k0| (i.e., |v0k0| 
 |γ |) is considered. Note that
k0 characterizes the size of the circular Brillouin zone for the
surface states of WSMs and v0 is related to the bending effect

of the surface band and can be used to evaluate the curvature
of the Fermi arc. Thus, by detecting the RKKY interaction,
one can roughly capture some of the characteristics of the
Fermi arc. For example, for an almost constant k0, a larger
amplitude of the RKKY interaction implies a larger curvature
for the Fermi arc. Finally, we consider the effect of the finite
Fermi energy. To highlight the oscillating characteristic of the
magnetic interaction, the interaction by subtracting the case
of zero Fermi energy, i.e., J (uF ) − J (0), is plotted in Fig. 9.
Compared to the case of uF = 0, the main difference here is
that the original one-period oscillation is changed to be an
oscillation with two periods, i.e., exhibiting an interesting bat-
tering pattern. The small period Ty = 2π/k0 is originated from

FIG. 8. RKKY interaction as a function of k0 and v0. Here, we
set R = 30 Å and the other parameters γ , v, vz are the same as that
in Fig. 3.
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FIG. 9. R-dependent RKKY interaction �J = J (uF ) − J (0)
with different finite Fermi energies. The large period of the oscilla-
tion is T ′′

y (kF ) = 2π/kF with kF = (γ + √
4uF v0 + γ 2 )/2v0 and the

small one is Ty = 2π/k0. Here, the surface band is E (k‖ < k0, v0 �=
0) with v0 = −0.993 eV Å2 [58].

the band-edge effect, while the large one is induced by the
finite Fermi energy uF , which results in T ′′

y (kF ) = 2π/kF with

the Fermi wave number kF = (γ +
√

4uF v0 + γ 2)/2v0. A
similar battering pattern is also obtained in bulk contributions
of WSMs/DSMs [38,39,45,46] but with different physics,
which is attributed to the combined effect of finite uF and the
splitting of the Weyl/Dirac points.

Overall, our results exhibited in Secs. III B–III D suggest
that the oscillations and the decays of the RKKY interac-
tion are highly sensitive to the shape of the surface band of
WSMs. Under the peculiar mechanisms, these RKKY behav-
iors are unique and significantly different from that of other
2D topological surface bands (e.g., the helical surface states
of topological insulators [41]). Thus the interaction here can
be used to characterize the dispersive nature of the surface
states of WSMs.

IV. SUMMARY

We have explored the RKKY interaction mediated by a
single surface band in WSMs. The nonzero surface contri-
bution can be induced by two mechanisms, i.e., either by
the band-edge effect or by the bending effect of the surface
band. The cases here are significantly different from that of
previous literatures, where surface states should couple with
bulk states [45] or other surface states of different spin [46] to

result in nonzero interaction. For impurities deposited in the
direction perpendicular to the Weyl points splitting, the sur-
face contributions here always decay much more slowly with
impurity distance than that of bulk contribution. Under dif-
ferent mechanisms, the surface contribution exhibits different
decay laws and oscillations. Moreover, these two mechanisms
would compete with each other to result in more complex
RKKY behaviors. In addition, an interesting oscillation with
peculiar battering pattern is obtained due to the combined
effect of the band-edge effect and the finite Fermi energy. Due
to the sensitivity of the RKKY interaction to the shape of the
surface band of WSMs, magnetic signals (peculiar oscillations
and slowly decaying laws) can be extracted to characterize the
dispersive nature of surface states of WSMs. Compared to the
surface bands in previous literatures, our model used here is
more practical and is conducive to the understanding of the
surface magnetic properties in WSMs.
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APPENDIX A: PHASE TRANSITION FROM NLSMs TO
WSMS BY THE CIRCULARLY POLARIZED LIGHT

The model employed in Eq. (1) can be realized by consid-
ering the effect of a periodic driving to the following model of
NLSMs:

HNLSM = v
(
k2
‖ − κ2

0

)
τz + vzkzτy + v0

(
k2
‖ − κ2

0

)
τ0, (A1)

which is extracted from the Ca3P2-like materials [58]. For the
sake of concreteness, a beam of circularly polarized light is
assumed to be injected in the x axis. The corresponding vector
potential is described as A(t ) = A0[0, cos(�t ), sin(�t )] with
period T = 2π/�. By applying the Peierls substitution k →
k + eA/h̄, the system Hamiltonian becomes time dependent.
Using the Floquet theory [8] with the off-resonant condition
of h̄� 
 BW (BW is the bandwidth), the modified part of the
Hamiltonian induced by light reads as

H ′
NLSM = V0 +

∑
n�1

[V+n,V−n]

h̄�
+ O

(
1

�2

)
, (A2)

where Vn = 1
T

∫ T
0 H (t )e−inh̄�t dt . Specifically, V0 can be cal-

culated as

V0 = 1

T

∫ T

0
H (t )dt = 1

T

∫ T

0

{
v

[
k2

x +
(

ky + eA0 cos(�t )

h̄

)2

− κ2
0

]
τz + vz

(
kz + eA0 sin(�t )

h̄

)
τy

}
dt

+ 1

T

∫ T

0

{
v0

[
k2

x +
(

ky + eA0 cos(�t )

h̄

)2

− κ2
0

]
τ0

}
dt . (A3)
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Noting that
∫ T

0 sin(�t )dt = 0 [or
∫ T

0 cos(�t )dt = 0], thus the above equation can be further simplified as

V0 = 1

T

∫ T

0

[
v
(
k2

x + k2
y − κ2

0

)
τz + vzkzτy + v0

(
k2

x + k2
y − κ2

0

)
τ0

]
dt + 1

T

∫ T

0

{
v

[
eA0 cos(�t )

h̄

]2

τz + v0

[
eA0 cos(�t )

h̄

]2

τ0

}
dt,

= 1

T

∫ T

0
HNLSMdt + 1

T

∫ T

0

{
v

[
eA0 cos(�t )

h̄

]2

τz + v0

[
eA0 cos(�t )

h̄

]2

τ0

}
dt = HNLSM + vk2

A

2
τz + v0k2

A

2
τ0, (A4)

where kA = eA0/h̄. As shown above, besides HNLSM, extra
terms vk2

Aτz/2 and v0k2
Aτ0/2 are generated for V0. Similar extra

terms are also found in Ref. [8]. Similarly, one can obtain
other Floquet sidebands as

V±1 = kA

(
v0kyτ0 + vkyτz ± i

vz

2
τy

)
, V±2 = k2

A

4
(v0τ0 + vτz ),

(A5)

and Vn = 0 for |n| > 2. According to the above equations, one
can obtain the following effective Hamiltonian:

H ′
NLSM = HNLSM + vk2

A

2
τz + v0k2

A

2
τ0 − 2vvzk2

A

�
kyτx. (A6)

By applying the parameter transformation (κ2
0 −

k2
A/2,−2vvzk2

A/�) = (k2
0 , γ ) and dropping the constant

term −v0k2
0τ0, one can obtain the same Hamiltonian as that in

Eq. (1). One can see that there are two main effects induced
by the off-resonant light. One is that a new term γ kyτx is
generated, which changes the energy dispersion to be gapped
except at the two Weyl points (±k0, 0, 0). This means that the
original NLSM is changed to be a WSM. Another effect is
that the parameter κ2

0 is slightly modulated by subtracting a
constant term k2

A/2, which means that the positions of Weyl
points are dependent on the light-field parameters. In this
paper, the behaviors of the electrons at the Weyl points attract
us, since the obvious transport signals (characterizing the
surface states) in previous literatures [25–32] would arise

(a)

(b)

FIG. 10. R-dependent RKKY interaction contributed by
(a) E (k‖ < k0, v0 = 0), E (|kx| < k0, v0 �= 0) and (b) E (k‖ <

k0, v0 �= 0); impurities are placed in the x axis. C = λ2/(2π )3 and
other parameters are the same as that in Fig. 3(c) of the main text.

only when the Fermi energy is located on the Weyl points. By
dropping the term −ν0k2

0τ0 and setting uF = 0 in the main
text, we can focus on the RKKY interaction contributed by
the electrons of surface states near the Weyl points.

Here, the driving frequency h̄� and the bandwidth BW
are set as h̄� = 2 eV and BW = 0.2 eV. The off-resonant
condition is satisfied since h̄� 
 BW . The setting of the
bandwidth, as well as the frequency, is reasonable since we
only concern the low-energy behavior with the energy in the
range of |E | < 0.1 eV. Additionally, the amplitude of the
electric field is set as E0 = A0� = 0.43 eV/Å.

APPENDIX B: NUMERICAL RESULTS OF THE RKKY
INTERACTION WITH IMPURITIES IN x AXIS

For the case of E (k‖ < k0, v0 = 0), according to Eqs. (6)
and (7) of the main text, the numerical results of the inter-
action J with impurities in the x axis can be calculated, as
shown by the solid line in Fig. 10(a). Here, the interaction J
decays with R as R9/2, along with an oscillation whose period
is Tx = π/kF (kF = k0). This oscillation is different from the
case of the y axis since it is induced by the Fermi wave number
kF , which characterizes the projection of the edge of the Fermi
surface in the kx axis. The oscillation of the same period can
also be obtained by the bulk contribution but with its mech-
anism attributed to the splitting of the Weyl points [38,39].
Similarly, the interaction J (Rx ) of E (|kx| < k0, v0 �= 0) can
also be calculated numerically, as shown by the dashed line
in Fig. 10(a). It is found that J always vanishes, which echoes
the case of the trivial phase factor ϑ (ϑ = π ) in Fig. 3(d) of the
main text. For the case of E (k‖ < k0, v0 �= 0), the numerical
result of J (Rx ) is shown in Fig. 10(b). Compared to the case
of E (k‖ < k0, v0 = 0), it decays much faster with R.

The interaction here is insignificant since it exhibits a faster
decaying law as compared to the case with impurities in the y
axis. Thus we only focus on J (Ry) in the main text.

APPENDIX C: DERIVATION OF THE ANALYTICAL RKKY
INTERACTIONS

In this section, we show the detailed derivation of the
analytical RKKY interactions. Two cases with different
dispersions E (k‖ < k0, v0 = 0) and E (|kx| < k0, v0 �= 0) are
studied, respectively. For zero Fermi energy uF = 0, the am-
plitude of the RKKY interaction J of Eq. (7) in the main text
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can be written as

J = −8λ2

π
Im

∫ 0

−∞
g(R, ω)g(−R, ω)dω, (C1)

with

g(±R, ω) = 1

(2π )2

∫ k0

−k0

dky

∫ √
k2

0−k2
y

−
√

k2
0−k2

y

dkx
v

vz

k2
0 − k2

x − k2
y

ω − γ ky + iη
e±ikR for E (k‖ < k0, v0 = 0),

g(±R, ω) = 1

(2π )2

∫ k0

−k0

dkx

∫ ∞

−∞
dky

v

vz

k2
0 − k2

x

ω − v0k2
‖ − γ ky + iη

e±ikR for E (|kx| < k0, v0 �= 0),

(C2)

where η is a positive infinitesimal.

1. Case of E(k‖ < k0, v0 = 0)

According to Eqs. (C1) and (C2), for impurities placed along the y axis (i.e., Rx = 0 and Ry �= 0), g(ω,±Ry) can be solved as

g(±Ry, ω) = 1

(2π )2

∫ k0

−k0

dky

∫ √
k2

0−k2
y

−
√

k2
0−k2

y

dkx
v

vz

k2
0 − k2

x − k2
y

ω − γ ky + iη
e±ikyRy = 4v

3vz(2π )2

∫ k0

−k0

dky

(
k2

0 − k2
y

)3/2

ω − γ ky + iη
e±ikyRy ,

= vk3
0

−3γ vzπ2

∫ π/2

−π/2
dx

cos4(x)

sin(x) − (ω + iη)/γ k0
e±ik0Rysin(x) = f (ω,±Ry) + 2

k2
0

d2 f (ω,±Ry)

R2
y

+ 1

k4
0

d4 f (ω,±Ry)

R4
y

,

(C3)

with

f (±Ry, ω) = vk3
0

−3γ vzπ2

∫ π/2

−π/2
dx

1

sin(x) − (ω + iη)/γ k0
e±ik0Rysin(x), (C4)

where a parameter transformation ky = k0sin(x) is used. As addressed in Sec. III B of the main text, the surface contribution
here is not only contributed by the electrons near the Fermi energy (i.e., ky = 0 or x = 0) but also contributed by the electrons
near the band edge (i.e., ky = ±k0 or x = ±π/2). Thus f (ω,±Ry) can be expressed as

f (±Ry, ω) = f0(ω,±Ry) + f+(ω,±Ry) + f−(ω,±Ry), (C5)

where fn(ω,±Ry) refers to the approximate result of f (ω,±Ry) by considering the integrand of Eq. (C4) around the points nπ/2
with (n = 0,+,−).

Specifically, around the point x = 0, f0(ω,±Ry) can be approximated as

f0(±Ry, ω) = vk3
0

−3vzγπ2

∫ ∞

−∞
dx

1

x − ω/γ k0
e±ik0Ryx. (C6)

After some algebraic calculations, f0(ω,±Ry) can be solved as

f0(−Ry, ω) = i2vk3
0

3πvzγ
e−iRyω/γ , f0(Ry, ω) = 0. (C7)

Around the point x = π/2, f+(ω,±Ry) can be approximated as

f+(±Ry, ω) = vk3
0

−3vzγπ2

∫ 0

−∞
dx′ 1

1 − ω/γ k0
e±i(1−x′2/2)k0Ry , (C8)

where a parameter transformation x = x′ + π/2 is used. Then, f+(±Ry, ω) can be easily solved as

f+(±Ry, ω) = vk5/2
0 (1 ∓ i)

6π3/2γ vz(ω/γ k0 − 1)

1

R1/2
y

e±ik0Ry . (C9)

Similarly, by applying a parameter transformation x = x′′ − π/2 to f−(±Ry, ω), the approximate result of f−(±Ry, ω) at the
point x = −π/2 can be solved as

f−(±Ry, ω) = vk3
0

3vzγπ2

∫ ∞

0
dx′′ 1

1 + ω/γ k0
e∓i(1−x′′2/2)k0Ry = vk5/2

0 (1 ± i)

6π3/2γ vz(ω/γ k0 + 1)

1

R1/2
y

e∓ik0Ry . (C10)
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Plugging Eqs. (C7), (C9), and (C10) into Eq. (C5) and Eq. (C3), the Green’s function g(±Ry, ω) can be solved as

g(−Ry, ω) = −iπ2

(−3γ vz

2vk3
0

)1/3

ρ(ω)4/3e−iRyω/γ + O

(
1

Rm>0

)
,

g(Ry, ω) = 0 − ω−cos(k0Ry) + ω+sin(k0Ry)

(ω+ω− − 2)vzπ2γ /(v
√

πk0)

1

R5/2
,

(C11)

where ρ(ω) = 2vk3
0 (1 − ω2/γ 2k2

0 )3/2/(−3π2γ vz ) is the DOS of the surface band and ω+ = ω/γ k0 ± i. The first terms in the
right-hand side of the above equations are contributed by the electrons near the Fermi energy (i.e., ky = 0), while the second
ones are induced by the electrons near the band edge (ky = ±k0). Plugging the above equations into Eq. (C1) and integrating out
the energy ω, one can obtain the RKKY interaction

J (Ry) = 16v2k7/2
0 λ2

3γ v2
z π

7/2

sin(k0Ry) − cos(k0Ry)

R7/2
y

. (C12)

2. Case of E(|kx| < k0, v0 �= 0)

Here, we focus on the case of E (|kx| < k0, v0 �= 0) with impurities placed along the y axis. According to Eq. (C2), the Green’s
function g(±Ry, ω) can be rewritten and solved as

g(±Ry, ω) = 1

(2π )2

∫ k0

−k0

dkx

∫ ∞

−∞
dky

v

vz

k2
0 − k2

x

ω − v0k2
‖ − γ ky + iη

e±ikyRy ,

= −iv

πvz
e∓ iγ Ry

2v0

∫ k0

0
dkx

k2
0 − k2

x√
γ 2 + 4v0

(
ω + iη − v0k2

x

)ei
Ry

√
γ 2+4v0

(
ω+iη−v0k2

x

)
2v0 .

(C13)

Note that the RKKY interaction here is mainly determined by the electrons at the Kohn-anomaly point, which corresponds
to a singular point on the Fermi surface. According to the properties of the singular point, one can use the partial differential

equations ∂ky/∂kx = 0 [ky = (−γ ±
√

γ 2 − 4v2
0k2

x )/(2v0)] to calculate the positions (kxi , kyi ) of the Kohn-anomaly points as

(kx1 , ky1 ) =
(

0,− γ

v0

)
, (C14)

(kx2 , ky2 ) = (0, 0). (C15)

Note that the two Kohn-anomaly points are all located on the ky axis (i.e., kx = 0); thus one can expand the integrand of Eq. (C13)
at kx = 0 to calculate g(±Ry, ω) as

g
(±Ry, ω

) = −iv

πvz
e∓ iγ Ry

2v0

∫ ∞

0
dkx

k2
0 − k2

x√
γ 2 + 4v0ω

e
iRy

( √
γ 2+4v0ω

2v0
− v0k2

x√
γ 2+4v0ω

)
,

= 1

γ 2 + 4v0ω

(√
γ 2 + 4v0ω − i2v0k2

0Ry

)(
i +

√
γ 2 + 4v0ω

√
1

γ 2+4v0ω

)
4
√

2πv0vz

√
−v0R3

y/v
e

iRy

( √
γ 2+4v0ω

2v0
∓γ

)
.

(C16)

Expanding the result of g(±Ry, ω) at the energy of ω = 0 and keeping it to the lower order term of ω, g(±Ry, ω) can be further
simplified as

g(±Ry, ω) = −
(

1

γ 2

)1/4 v(1 + i)(v0ω − γ 2)
(
2v0ω + γ 2 + i2v0k2

0γ Ry
)

4
√

2πvzγ 3
( − v0Ry

)3/2 e− iRy (γ 2±γ 2+2v0ω)
2v0γ . (C17)

Plugging the above equation into Eq. (C1) and integrating out the energy ω, one can obtain the RKKY interaction

J (Ry) = v2k4
0λ

2

π2v0v2
z

sin(γ Ry/v0)

R2
y

. (C18)
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