
PHYSICAL REVIEW B 107, 165145 (2023)

Engineering boundary-dominated topological states in defective hyperbolic lattices

Qingsong Pei, Hao Yuan , Weixuan Zhang,* and Xiangdong Zhang
Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education, Beijing Key Laboratory of

Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, 100081, Beijing, China

(Received 7 February 2023; revised 21 March 2023; accepted 14 April 2023; published 25 April 2023)

Topological matters with lattice disclinations have been widely investigated in Euclidean space. In recent
years, exotic topological phases in hyperbolic lattices, which are regular tessellations in the curved space
with a constant negative curvature, have been theoretically proposed and experimentally observed, while the
investigation of topologically defective hyperbolic lattices is still lacking. Here, we study topological states in
the hyperbolic lattice with polygonal defects. It is shown that the topologically one-way boundary state can still
exist in the defective hyperbolic Haldane model. Interestingly, we find that only a single bulk site can induce
the formation of boundary-dominated one-way propagations in defective hyperbolic lattices. In experiments, we
fabricate the defective hyperbolic circuit with a single bulk site to detect the boundary-dominated topological
state. Frequency-dependent impedance responses clearly illustrate the existence of nontrivial band gaps and
midgap topological boundary states. Furthermore, the backscattering-immune propagation protected by a single
bulk site is observed by measuring the dynamics of voltage packet. Our work suggests a useful platform to
study topological phases in defective hyperbolic lattices, and may have potential applications in designing
high-efficient topological devices with an extremely small bulk region.
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I. INTRODUCTION

Defects always exist in natural and artificial materials.
Many investigations have shown that topological defects
can play the unique role in various topological matters,
where topological modes can occur on bulk defects in topo-
logical materials [1–6]. Motivated by previous theoretical
predictions, experimental realizations of nontrivial topolog-
ical defect modes both in condensed-matter systems and
classical wave platforms are reported. For example, the zero-
dimensional topological modes are found at dislocations [7–9]
and disclinations [10,11] in topological crystalline insula-
tors. The one-dimensional helical modes are localized at
dislocations in weak topological insulators [12–14]. Beyond
Hermitian systems, the non-Hermitian skin effects can also
be induced by topological defects [15–18]. To date, all of
the established topological states in defective systems mainly
focus on Euclidean geometry with a zero curvature.

On the other hand, the non-Euclidean geometry widely
exists in nature and plays important roles in various ar-
eas. Hyperbolic lattices, which are regular tessellations in
the curved space with a constant negative curvature, have
been investigated as mathematical objects over past decades
[19]. Recently, using circuit quantum electrodynamics [20]
and electric circuits [21], the experimental realization of
discrete hyperbolic lattices has stimulated many advances
in non-Euclidean geometry and hyperbolic physics, includ-
ing hyperbolic band theory [22,23], the crystallography of
hyperbolic lattices [24], quantum-field theories in continu-
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ous negatively curved spaces [25], hyperbolic flatbands [26],
Bloch bands of hyperbolic graphene [27], and so on [28–32].
Beyond these hyperbolic physical phenomena, there are many
investigations on the construction of hyperbolic topological
states [33–38]. For example, the hyperbolic quantum spin Hall
effect was theoretically proposed based on a treelike design
of the Landau gauge in periodic and open systems [33,34].
Hyperbolic Chern insulators have been theoretically proposed
and experimentally fulfilled by circuit networks [35–37]. One
of the most important advances of hyperbolic topological
states is the boundary-dominated spatial profile, which results
from the finite ratio between the number of boundary sites to
that of total sites in the thermodynamic limit. Motivated by
currently proposed boundary-dominated topological states on
defect-free hyperbolic lattices, it is interesting to ask do topo-
logical boundary states exist in defective hyperbolic lattices?
And, could we further increase the ratio of boundary sites
in defective hyperbolic lattices to create one-way topological
states with much fewer bulk sites than that of defect-free
hyperbolic counterparts?

In this work, we report the realization of backscattering-
immune topological states in the hyperbolic lattice with
polygonal defects. It is found that the boundary-dominated
one-way topological states exist in the defective hyperbolic
Haldane model. As for the defective hyperbolic Haldane
model without any bulk sites, the robust boundary propagation
disappears owing to the fact that all lattice sites belong to the
boundary passageway. In this case, there is no way to bypass
the boundary obstacle, making the significant backscattering
appear. Interestingly, we find that by adding a single bulk site,
the backscattering-immune topological states can reappear in
the defective hyperbolic Haldane model. Such a defective
hyperbolic lattice-inspired topological state may be used to
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FIG. 1. Schematic diagram for the {6,4} hyperbolic lattice with a central defect. (a) Finite hyperbolic lattice {6,4} in the form of successive
quasiconcentric rings with L = 3 layers. Hyperbolic lattice sites in the first, second, and third layers are marked by cyan, blue, and green dots,
respectively. (b) The {6,4} hyperbolic lattice with a central pentagonal defect can be constructed by removing a π/3 sector (enclosed by a
dashed block) of the perfect {6,4} hyperbolic lattice and gluing two cutting boundaries together. (c) The {6,4} hyperbolic lattice with a central
heptagonal defect can be constructed by adding a π/3 sector to the perfect {6,4} hyperbolic lattice.

design high-efficient topological devices with an extremely
narrow bulk region. In experiments, we fabricate a defective
hyperbolic circuit to detect the boundary-dominated topo-
logical state. The measurements of impedance and voltage
dynamics clearly demonstrate the realization of one-way topo-
logical states protected by a single bulk site.

II. ENGINEERING BOUNDARY-DOMINATED ONE-WAY
TOPOLOGICAL STATES IN DEFECTIVE HYPERBOLIC

LATTICES

We consider the hexagonal hyperbolic lattice embedded
into the Poincaré disk. The hyperbolic lattice is labeled by
the Schläfli notation of {6,4}, manifesting the tessellation of
a plane by 6-sided regular polygons with the coordination
number being 4. It is noted that the Hamiltonian of {6,4}
hyperbolic tight-binding lattice model is only depending on
the connection pattern of different sites. In this case, the {6,4}
hyperbolic lattice could be illustrated by arranging all vertices
in the form of quasiconcentric rings. Figure 1(a) presents
the three-layer concentric-ring counterpart of the finite {6,4}
hyperbolic lattice, where lattice sites in the first, second, and
third layers are represented by cyan, blue, and green dots,
respectively. By deleting a π /3 sector (enclosed by the dashed
block) and reattaching the seams, a central pentagonal defect
is generated, as shown in Fig. 1(b). Similarly, inserting such a
π /3 sector into the original {6,4} hyperbolic lattices, a central
heptagonal appears, as shown in Fig. 1(c). Such a method can
be used to generate hyperbolic lattices possessing a central
bulk defect with arbitrary N-sided regular polygon.

To construct topological states in the defective {6,4} hyper-
bolic lattice, we extend the Haldane model to this structure.
In particular, we introduce the real-valued nearest-neighbor
hopping (t1) and the complex-valued next-nearest-neighbor
hopping (t2eiϕ) in each hexagon and the central N-sided poly-
gon. In this case, the defective hyperbolic Haldane model can
be effectively described by a tight-binding Hamiltonian as

H =
∑
〈i, j〉

t1a†
i a j +

∑
〈〈i, j〉〉

t2eiϕa†
i a j + H.c., (1)

with a†
i (ai ) being the creation (annihilation) operator at site

i. The brackets < …> and << …>> indicate summations
being restricted within nearest-neighbor and next-nearest-
neighbor sites, respectively. In the following, we focus on the
case with the polygonal defect being a dodecagon, as shown
in Fig. 2(a). Detailed coupling patterns are illustrated in the
right insets of Fig. 2(a), where solid lines and dashed arrow
lines illustrate the nearest-neighbor and next-nearest-neighbor
hoppings, respectively.

To illustrate the topological property of this structure, we
first perform a direct diagonalization of Hamiltonian for the
defective hyperbolic Haldane lattice with three layers. Other
parameters are set as t1 = 1, t2 = 0.2, and ϕ = 2π/3, respec-
tively. Figure 2(b) presents the numerical result of the associ-
ated eigenspectrum. The color map in Fig. 2(b) quantifies the
localization degree on outermost boundary sites, which is rep-
resented by V (ε) = ∑

i∈ 3 |φi(ε)|2/∑
i∈ L=1,2,3 |φi(ε)|2. φi(ε)

corresponds to the probability amplitude on the ith site with
the associated eigenenergy equaling ε. It is clearly shown that
boundary states dominate the whole eigenspectrum, and few
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FIG. 2. Numerical results of backscattering-immune topological states in the hyperbolic lattice with a central dodecagon defect. (a) Finite
hyperbolic lattice {6,4} with a central dodecagon defect. Right insets plot coupling patterns in hexagons composed of lattice sites from different
layers. (b) Calculated eigenspectrum of the system. Color map corresponds to the quantity V (ε) for the localization degree at the boundary.
(c), (d) Profiles of topological-edge state and a bulk state with eigenenergies of −0.318 and −2.882. (e) Calculated real-space Chern number
of each eigenmode. (f) Wave-function dynamics of the three-layered hyperbolic lattice with a central dodecagon defect. Four charts present
spatial distributions of |ϕi(t )|2 at different time.

bulk eigenstates locate at the high-energy region. Figures 2(c)
and 2(d) illustrate spatial profiles of a topological-edge state
(ε = −0.318) and a bulk state (ε = −2.882), respectively. We
can see that the significant boundary and bulk localizations
appear for these two eigenmodes. Furthermore, we also calcu-
late the real-space Chern number [39,40] at each eigenenergy,
as presented in Fig. 2(e). It is clearly shown that nontrivial
platforms of the real-space Chern number appear around the
zero energy, where the smaller value (<1) is due to the finite-
size effect [35]. In Appendix A, we numerically calculate the
real-space Chern number for the defective hyperbolic Haldane
model with five layers. We can see that the nontrivial real-
space Chern number is converged to C = −1 at a nontrivial
energy.

In addition, we perform time-domain simulations on the
robust propagation of edge states in the defective hyperbolic
Haldane model. The excitation signal, which is in the form
of ψin(t ) = exp[−(t−30)2/1225]sin(εct ), is injected into a
boundary site (marked by the black arrow). To effectively ex-
cite the nontrivial boundary state, we set the excitation energy
to εc = 0. In addition, a large onsite potential (equaling 5) is
also added on a boundary site to act as a scatter (marked by
black stars). Four charts in Fig. 2(f) display spatial distribu-
tions of wave function at increased time. It is clearly shown
that the incident wave pulse unidirectionally propagates on

the boundary of the system, indicating the existence of
one-way edge states. To further quantify the backscattering,
we calculate the ratio (r) between amplitudes of reflected and
transmitted wave packets at two sites, which are clockwise
and counterclockwise with respect to the scatter with equal
distances. We find that the ratio equals r = 0.03, indicating
an extremely weak backscattering.

Then, we turn to the two-layer defective hyperbolic
Haldane model with the first layer being a 24-sided polygon
defect, as shown in Fig. 3(a). We simulate the time-domain dy-
namics of such a structure by exciting a boundary site [marked
by the black arrow in Fig. 3(a)]. The wave packet, which
is the same as that of Fig. 2, is used. Figures 3(b) and 3(c)
present calculated evolutions of wave function in the defective
hyperbolic Haldane model with and without the existence of
a boundary scatter (marked by the black star). It is clearly
shown that the input signal unidirectionally propagates in the
system without the boundary scatter, while different from the
above three-layered condition, the significant backscattering
(marked by red arrows) appears around the boundary scatter.
The ratio between peak amplitudes of reflected and trans-
mitted wave packets at clockwise and counterclockwise sites
(marked by blue and red stars), which possess equal distances
to the scatter, equals 0.53, manifesting a large backscattering.
The disappearance of robust boundary propagation in such
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FIG. 3. Numerical results of boundary-dominated one-way topological states in defective hyperbolic Haldane model with a single bulk
site. (a) Conceptual drawing of the two-layered defective hyperbolic Haldane model. (b), (c) Time-domain dynamics of wave function in the
simplest defective hyperbolic Haldane model with and without the existence of a boundary scatter. (d) Conceptual drawing of the defective
hyperbolic Haldane model with a single bulk site. (e), (f) Time-domain dynamics of the defective hyperbolic Haldane model with a single
bulk node with and without the existence of a boundary scatter. Black stars mark the scatter. Red and blue stars correspond to clockwise and
counterclockwise sites with respect to the scatter with equal distances.

a two-layered defective hyperbolic Haldane model is due to
the lack of any bulk site, where all lattice sites belong to the
boundary passageway. In this case, there is no other way for
the wave function to bypass the boundary scatter, making the
significant backscattering appear.

To eliminate the backscattering, it is interesting to ask how
many bulk sites are needed to recovery the robust one-way
propagation in the defective hyperbolic Haldane model. Here,
we subdivide the central face into six hexagons, which ef-
fectively adds a third layer and recovers a tiling consisting
of only hexagons, as shown in Fig. 3(d). Each hexagon con-
tains nearest-neighbor and next-nearest-neighbor hoppings.
Figures 3(e) and 3(f) present numerical results of wave-
function dynamics in the system with and without a boundary
scatter. We can see that the backscattering around the bound-
ary scatter is nearly zero (highlighted by red arrows), where
the ratio between peak amplitudes of reflected and transmitted
packets equals to 0.03. This phenomenon clearly manifests
that a single bulk site is sufficient to preserve the robust one-
way propagation in the defective hyperbolic Haldane model.

In Appendix B, the spatial distributions of wave function
at different times are further presented, where the one-way
propagations along boundary sites are clearly illustrated. In
Appendix C, we further calculate wave-function dynamics in
the defective hyperbolic Haldane model with other N-sided
polygon defects and a single bulk site. It is found that a single
bulk site can still maintain the robustness of edge states in the
two-layer defective Haldane model with larger sizes. We note
that defective hyperbolic lattices with three or more layers
already have many bulk sites without adding the extra one.
In this case, the backscattering-immune boundary modes in
three (or larger than three)-layered defective Haldane model
should be protected by many bulk sites. Moreover, we also
calculate the wave-function dynamics by exciting trivial-edge
states (see Appendix D), where the robust one-way propaga-
tion disappears.

The recovery of the one-way propagation can be un-
derstood from the fact that the added single bulk site
provides a way for the wave function to bypass the bound-
ary scatter, maintaining the original one-way propagation. In
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FIG. 4. Observation of boundary-dominated topological states in the defective hyperbolic circuit by impedance spectra. (a) Photograph
image of the fabricated hyperbolic circuit. Enlarged views of front and back sides for the circuit are presented in (b) and (c). (d) Equivalent
schematic diagrams for realizing real-valued and complex-valued coupling strengths in the designed electric circuit. (e), (f) Measured and
simulated impedance responses of bulk (blue lines) and boundary (red lines) nodes. Red region corresponds to the energy range with nontrivial-
edge states. (g). Measured impedance distributions at 1.352, 1.287, and 1.433 MHz.

Appendix E, we present numerical results of the eigenspec-
tra and real-space Chern numbers for defective hyperbolic
Haldane model with a single bulk node. It is shown that the
nontrivial Chern number exists around the zero energy for the
boundary state, indicating the existence of topologically pro-
tected chiral boundary states. Compared to three-layered site-
centered {6,4} lattice, which possesses 72 boundary sites and
5 bulk sites (see Appendix F), our proposed defective hyper-
bolic model with N-sided polygonal defect possesses a single
bulk site and 20N boundary sites. Hence, the ratio of boundary
sites in the defective hyperbolic lattice is much larger than that
of three-layered site-centered {6,4} lattice. In addition, it is
worth noting that the single bulk site protected one-way edge
states cannot be designed based on the {6,3} Euclidean lattice
with polygon defect (see Appendix G for details).

III. OBSERVATION OF BOUNDARY-DOMINATED
TOPOLOGICAL STATES IN DEFECTIVE HYPERBOLIC

LATTICES BY ELECTRIC CIRCUITS

Motivated by recent experimental breakthroughs in real-
izing various quantum phases by electric circuit networks
[41–58], in the following, we design an electric circuit to
observe the boundary-dominated one-way edge states in two-
layer defective hyperbolic Haldane model with an extra bulk
site. Figure 4(a) illustrates the photograph image of the fabri-
cated circuit sample. Figures 4(b) and 4(c) present enlarged

views of front and back sides for the circuit enclosed by
the pink dashed block. Figure 4(d) illustrates the schematic
diagram for realizing the real-valued nearest-neighbor hop-
ping and complex-valued next-nearest-neighbor hoppings,
respectively. Here, three circuit nodes connected by capac-
itors C (enclosed by the red dashed block) are considered
to form an effective lattice site. To simulate the real-valued
nearest-neighbor hopping, three capacitors C1 (enclosed by
the blue dashed block) are used to directly link adjacent nodes
without a cross. Differently, for the realization of next-nearest-
neighbor hopping rate with complex values, three pairs of
adjacent nodes are connected crosswise via three capaci-
tors C2 (enclosed by the green dashed block). Each node is
grounded by an inductor Lg (framed by the white block in the
back side) and a conductor Cu. The scatter in the outermost
ring is achieved by adding an extra grounding capacitor Cd at
three circuit nodes belonging to a single boundary site.

Through the appropriate setting of grounding and con-
necting, the circuit eigenequation is identical with that of
the defective hyperbolic Haldane model. In particular, the
probability amplitude is mapped to the voltage pseudospin
V↑i,↓i = Vi,1 + Vi,2e±i2π/3 + Vi,3e∓i2π/3, where Vi,1, Vi,2, and
Vi,3 are voltages at three circuit nodes at the ith lattice
site. The nearest-neighbor and next-nearest-neighbor hop-
ping strengths equal t1 = C1/C and t2 = C2/C. The complex
hopping phase is ϕ = 2π/3. The eigenenergy (ε) of the
lattice model is mapped to the eigenfrequency ( f ) of the
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FIG. 5. Observation of the robust propagation of boundary-dominated topological states. (a) Frequency spectrum of injected voltage packet.
(b), (c) Measured time tracks of voltage signals at counterclockwise and clockwise boundary nodes and the central bulk node in the circuit
without and with a boundary scatter.

circuit with ε = f0
2/ f 2 − 3 − (6C1 + 12C2 + Cu)/C, with

f0 = (2π
√

CLg)−1. See the detailed derivation of the circuit
eigenequation in Appendix H. In the following, we set circuit
parameters as C = 1 nF, C1 = 1 nF, C2 = 0.2 nF, Cu = 4 nF,
Lg = 1 μH , and CP = 5 nF.

To analyze topological properties of the defective hyper-
bolic circuit with a single bulk site, we first measure the
impedance responses of a bulk node (marked by the blue dot
in the inset) and an edge node (marked by the red dot), as
shown by blue and red lines in Fig. 4(e). It is well known that
the impedance response of a circuit node is related to the local
density of states for the mapped lattice model. We can see
that there is a minimum of the bulk impedance in the region
from 1.25 to 1.29 MHz (marked by the red domain), implying
a bulk gap. The larger edge signal in this region results from
the excitation of in-gap boundary states. Figures 4(f) and 4(g)
plot the simulation results with the effective series resistances
of inductance being RL = 10 and 80 m�. We can see that
the shape of simulated impedance spectra with RL = 80 m�

is consistent with that of measurements. Little deviations of
frequencies and amplitudes for impedance peaks are due to
the disorder and dispersion effects for real circuit elements.
In particular, the disappearance of edge-impedance peaks in
the topological band gap is due to the large loss effect in
experiments. In addition, spatial impedance distributions at
1.287, 1.352, and 1.433 MHz are further measured, as shown
in Fig. 4(h). It is clearly shown that impedance distributions
at these frequencies are matched to spatial profiles of two
edge states (with ε = −1.547 and −0.103) and a bulk state
(ε = −3.06) shown in Appendix E. In particular, the edge-
concentrated impedance profile at 1.287 MHz corresponds
to the nontrivial boundary state. Due to the large amplitude
of trivial-edge states at the measured edge node, the largest
boundary impedance peak corresponds to the excitation of
trivial-edge states.

Except for the frequency-dependent impedance
spectra, we further measure the voltage dynamics to
detect the robust one-way propagation of hyperbolic
edge states. Here, the incident voltages at three circuit
nodes belonging to a boundary site are in the form
of [Vi,1,Vi,2,Vi,3] = V (t )[1, exp(i 2π

3 ), exp(−i 2π
3 )] with

V (t ) = V0exp[−(t − t0)2/td 2]sin(2π fct ), t0 = 100μs,

td = 37μs, and fc = 1.287 MHz, respectively. The frequency
spectrum of the voltage packet is plotted in Fig. 5(a) and
the nontrivial topological band gap is highlighted by the red
region. We can see that a large proportion of the frequency
spectrum is located in the nontrivial band gap. In this case,
the topological-edge state can be dominantly excited by
the voltage packet. Red and blue lines in Fig. 5(b) present
measured voltage signals at two boundary nodes, which are
counterclockwise (marked by the red dot) and clockwise
(marked by the blue dot) with respect to the excitation node
(marked by black arrows), in the circuit without any boundary
scatter. We can see that the counterclockwise circuit node
possesses a significant voltage signal, while the voltage signal
at the clockwise circuit node is very small. The green line in
Fig. 5(b) shows the measured voltage signal at the central bulk
node, where the low-voltage signal exists. These experimental
results indicate that the input voltage packet can propagate
unidirectionally along the boundary of the hyperbolic circuit
sample.

Then, we measure the voltage signals in the circuit with a
boundary scatter (marked by the black star in the inset). Red
and blue lines in Fig. 5(c) display measured voltage signals
of two boundary nodes. We can see that the magnitude of
the voltage packet at the counterclockwise node is still much
larger than that of the clockwise circuit node. The green line in
Fig. 5(c) presents the voltage signal of the central bulk node,
where the relatively low-voltage signal exists. These measured
results indicate the there is no significant backscattering when
the voltage signal is passing through the boundary scatter.
The voltage dynamics dominated by trivial-edge states is pre-
sented in Appendix I, where the robust one-way propagation
of voltage pulse disappears.

IV. CONCLUSION

In conclusion, we have studied the backscattering-immune
topological states in boundary-dominated hyperbolic lattice
with a central polygon defect. We find that the one-way
topological states can still exist in the defective hyperbolic
Haldane model. Interestingly, we find that only a single bulk
site can induce the formation of boundary-dominated one-way
propagations in defective hyperbolic lattices. In experiments,
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FIG. 6. (a) Illustration of summation regions I, II, and III in the five-layered defective hyperbolic lattice used for calculating the real-space
Chern number. (b) Calculated real-space Chern number at ε = −0.1424 with different numbers of lattice sites in the summation region.

we fabricate the defective hyperbolic circuit with a single
bulk site to observe the backscattering-immune hyperbolic
topological states. The impedance responses clearly illustrate
the existence of nontrivial band gaps and in-gap topologi-
cal boundary states. Furthermore, the one-way propagation
of topological-edge states in defective hyperbolic lattices is
observed by measuring the dynamics of voltage packets. Our
work suggests a useful platform to study topological phases
in defective hyperbolic lattices, and may have potential appli-
cations in designing high-efficient topological devices with an
extremely narrow bulk region.
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APPENDIX A: NUMERICAL RESULTS OF REAL-SPACE
CHERN NUMBERS FOR LATTICE MODEL WITH A

LARGE SIZE

In this appendix, we numerically demonstrate the
convergence of the real-space Chern number. The
real-space Chern number is defined as C = 12π i

∑
j∈I∑

k∈II

∑
l∈III (PjkPkl Pl j − Pjl PlkPk j ), where j, k, and l are

site indices in three different regions I, II, and III, as shown
in Fig. 6(a). The square of projection operator element
|Pjk|2 measures the correlation at two sites (i and j) with all
eigenstates below the target energy being fully occupied. It
is noted that the real-space Chern number does not converge
well if the lattice site in the summation region is too close to
the boundary of the system or the summation region is too
small to contain sufficient numbers of sites. To ensure the
convergence of the Chern number to a nontrivial integer, we
consider a large defective hyperbolic lattice with five layers,
and calculate the real-space Chern number at ε = −0.1424
(within the nontrivial energy region) with different numbers of
lattice sites in the summation region, as show in Fig. 6(b). We

can see that as the number of lattice sites in each summation
region is increased, the calculated nontrivial Chern number
gradually approaches to −1.

APPENDIX B: SPATIAL DISTRIBUTIONS OF ONE-WAY
PROPAGATION IN DEFECTIVE HYPERBOLIC HALDANE

MODEL WITH A SINGLE BULK SITE

In this appendix, we present detailed spatial profiles of
wave-function dynamics in the 24-sided defective hyperbolic
Haldane model with a single bulk site. Eight charts in Fig. 7
display the spatial distributions of the wave function with
increased time. It is clearly shown that the incident pulse
unidirectionally propagates on the boundary of the system,
indicating the existence of one-way edge state.

APPENDIX C: ONE-WAY PROPAGATIONS IN DEFECTIVE
HALDANE MODELS WITH OTHER TYPES OF N-SIDED

REGULAR POLYGON DEFECTS

In this appendix, we demonstrate that single bulk site-
triggered one-way edge states also exist in defective Haldane
model with other N-sided regular polygon defects. Figure 8(a)
presents the two-layered hyperbolic lattice model with a
48-sided polygon defect and a central bulk site. We calculate
the wave-function dynamics for the structure, as shown in
Fig. 8(b). Figure 8(c) displays spatial distributions of wave
function at different time. It is clearly shown that the incident
wave function unidirectionally propagates on the boundary
with a scatter (marked by black stars), indicating the existence
of one-way edge states in the defective hyperbolic Haldane
model.

For comparison, we also calculate the wave-function dy-
namics for the two-layered 48-sided defective hyperbolic
lattice model without any central bulk site, as shown in
Fig. 9(a). Figures 9(b) and 9(c) display numerical results of
wave-function dynamics. It is clearly shown that the signifi-
cant backscattering appears, as marked by red arrows. We can
quantify the backscattering by the ratio between amplitudes
of reflected and transmitted packets induced by the scatter. It
can be defined by the ratio of peak values of wave packets
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FIG. 7. Spatial distributions of wave function at different time in the defective hyperbolic Haldane model with a single bulk site.

at two sites, which are clockwise and counterclockwise with
respect to the boundary scatter with equal distances [marked
in Fig. 9(b) by blue and red stars]. We find that r = 0.07
(r = 0.65) for the 48-sided defective hyperbolic lattice model
with (without) a central bulk site, corresponding to the weak

(strong) backscattering. From the above results, we can see
that a single bulk site can still remain sufficient to avoid
backscattering for larger flakes.

Figures 10(a)–10(d) present numerical results of wave-
function dynamics in defective hyperbolic Haldane model

FIG. 8. (a) Two-layered hyperbolic lattice model with a 48-sided polygon defect as well as a central bulk site. (b), (c) Numerical results of
wave-function dynamics.
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FIG. 9. (a) Two-layered hyperbolic lattice model with a 48-sided polygon defect. (b), (c) Numerical results of wave-function dynamics.

with 48-sided and 12-sided regular polygon defects and a
single bulk site. It is clearly shown that the backscattering
around the boundary scatter is always zero in each defective
hyperbolic Haldane model, manifesting that a single bulk site
is sufficient to protect the robust one-way propagation.

FIG. 10. Wave-function dynamics in different types of defective
hyperbolic Haldane model with a single bulk site. (a), (c) Two-
layered hyperbolic lattice model with 48-sided and 12-sided polygon
defects as well as a central bulk site. (b), (d) Numerical results
of wave-function dynamics in defective Haldane model with the
48-sided and 12-sided polygon defects.

APPENDIX D: TRIVIAL-EDGE STATE-DOMINATED
WAVE-FUNCTION DYNAMICS IN DEFECTIVE HALDANE

MODEL

In this appendix, we investigate the wave-function dynam-
ics dominated by trivial-edge states. We set the input wave-
function pules as ψin(t ) = exp[−(t−30)2/1225]sin(εct ),
with εc = −1.547 (corresponding to the trivial-edge state).
Figure 11(a) presents the calculated dynamics of wave func-
tion. Figure 11(b) plots spatial profiles of the probability
amplitude at different time. We can see that the input signal
leaves away from the excited site without chiral behavior,
corresponding to the excitation of trivial-edge states.

APPENDIX E: EIGENSPECTRA AND REAL-SPACE
CHERN NUMBER FOR TWO-LAYER DEFECTIVE

HYPERBOLIC LATTICE WITH AN EXTRA BULK SITE

In this appendix, we clarify the topological property of
24-sided defective hyperbolic Haldane model with a single
bulk node. Figure 12(a) presents the numerical result of the

FIG. 11. (a) Calculated wave-function dynamics with the in-
put wave-function packet being ψin(t ) = exp[−(t−30)2/1225]
sin(−1.547t ). (b) Spatial distributions of |ϕi(t )|2 at different time.
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FIG. 12. Numerical results of defective hyperbolic Haldane
model with a single bulk node. (a) Calculated eigenspectrum of the
system. Color map corresponds to the quantity for the localization
degree at the boundary. (b), (c). Profiles of edge and bulk states with
eigenenergies of −0.103 and −3.06. (d) Calculated real-space Chern
number.

eigenspectrum. The color map quantifies the localization de-
gree on outermost boundary sites. It is clearly shown that
hyperbolic boundary states mainly locate on the low-energy
region. Figures 12(b)–12(d) illustrate spatial profiles of two
edge states (ε = −0.103 and ε = −1.547) and a bulk state
(ε = −3.06), respectively. Additionally, we also calculate the
real-space Chern number, as presented in Fig. 12(e). We can
see that the nontrivial platform around the zero energy ex-
ists, as marked by the red region, indicating the existence of
topological-edge states.

APPENDIX F: THREE-LAYERED SITE-CENTERED {6,4}
LATTICE

In this appendix, we discuss the ratio between boundary
and bulk sites in a three-layered site-centered {6,4} lattice.
As shown in Fig. 13, dark/light blue and black dots present
boundary and bulk sites in the three-layered site-centered
{6,4} lattice. We can see that such a structure possesses
72 boundary sites and 5 bulk sites. Our proposed defective
hyperbolic model with N-sided polygonal defect only pos-
sesses a single bulk site and 20N boundary sites. The ratio of

boundary sites in defective hyperbolic lattice is much larger
than that of three-layered site-centered {6,4} lattice.

APPENDIX G: {6,3} EUCLIDEAN LATTICE WITH N-SIDED
POLYGON DEFECTS

In this appendix, we consider the {6,3} Euclidean lattice
with polygon defect. Figure 14(a) presents the {6,3} Eu-
clidean lattice model with a 24-sided polygon defect and a
central bulk site. We calculate the eigenspectrum, eigenstates,
and the real-space Chern number of the structure, as shown
in Figs. 14(b)–14(d). We can see that topological-edge states
exist in the region highlighted by red. It is important to note
that all of the inner lattice sites work as bulk sites, and only
lattice sites at the outermost layer are edge sites. Hence, it
is not the single bulk site-protected topological-edge states.
Figure 14(e) presents the wave-function dynamics in the sys-
tem with a boundary scatter (marked by black stars), where the
input wave-function pulse is ψin(t ) = exp[−(t−30)2/1225].
We can see that the one-way propagation exists along lattice
sites at the outermost layer, and lattice sites in two inner layers
work as bulk sites.

APPENDIX H: DETAILS FOR THE DERIVATION OF THE
CIRCUIT EIGENEQUATION

In this appendix, we give a detailed derivation of the circuit
eigenequation and the correspondence between the electric
circuit and the mapped lattice model. Here, each lattice site
possesses three circuit nodes, where the voltage and current
at the ith site are written as Vi = [Vi,1,Vi,2,Vi,3]T and Ii =
[Ii,1, Ii,2, Ii,3]T , respectively. In addition, the voltage is in the
form of Vieiωt . Here, we focus on circuit nodes corresponding
to the extra bulk site. Carrying out Kirchhoff’s law on three
circuit nodes at the extra bulk site, we obtain the following
equation:

FIG. 13. Three-layered site-centered {6,4} lattice possesses
72 boundary sites (dark/light blue dots) and 5 bulk sites (black dots).
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FIG. 14. (a) The {6,3} Euclidean lattice model with a 24-sided polygon defect and a central site. (b)–(d). Calculated eigenspectrum,
eigenstates, and real-space Chern numbers of the structure. (e) Wave-function dynamics with a boundary scatter marked by black stars.
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⎦

⎞
⎠, (H1)

where C1 and C2 are capacitances linking nodes at i to the nearest-neighbor hoppings and next-nearest-neighbor nodes. C is the
capacitance used for connecting circuit nodes belonging to a same site. Cu is the grounding capacitance at each site. Lg is the
inductor linking circuit nodes to ground. We assume that there is no external current source, so that the current flowing out of
the node is zero. In this case, Eq. (H1) becomes
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⎤
⎦. (H2)

Performing the diagonalization of Eq. (H2) with a unitary transformation:

F = 1√
3

⎡
⎣

1 1 1
1 ei2π/3 ei4π/3

1 ei4π/3 ei8π/3

⎤
⎦, (H3)
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Eq. (H2) becomes

1
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⎤
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The new basis is V(0,↑,↓),i = F [Vi,1,Vi,2,Vi,3]T , being three
decoupled terms. It is noted that two frequency-dependent
terms V(↑,↓),i are acting as a pair of voltage pseudospins V↑i =
Vi,1 + Vi,2ei2π/3 + Vi,3e−i2π/3 and V↑i = Vi,1 + Vi,2e−i2π/3 +
Vi,3ei2π/3. Thus, Eq. (H4) on the basis of two pseudospins can
be expressed as

1

ω2LgC
V↑,i − 3 − (6C1 + 12C2 + Cu)/C

= −
∑
〈i, j〉

C1V↑, j −
∑

�i, j	
C2e±i2π/3Vj,↑. (H5)

1

ω2LgC
V↓,i − 3 − (6C1 + 12C2 + Cu)/C

= −
∑
〈i, j〉

C1Vj,↓ −
∑

�i, j	
C2e±i2π/3Vj,↓. (H6)

In this case, we provide the following identification of
tight-binding parameters in terms of circuit elements:

t1 = C1

C
, t2 = C2

C
, ϕ = 2π

3
, ε = f0

2

f 2

− 3 − (6C1 + 12C2 + Cu)/C, f0 = 1

2π
√

CLg
. (H7)

APPENDIX I: VOLTAGE DYNAMICS WITH EXCITING
TRIVIAL-EDGE STATES

In this appendix, we further illustrate the voltage dynamics
by exciting the trivial-edge state of the defective hyperbolic
circuit with a boundary scatter. Here, parameters of the input
voltage packet are set as t0 = 100μs, td = 37μs, and fc =
1.352 MHz, respectively. The associated frequency spectrum
is plotted in Fig. 15(a). It is clearly shown that the frequency
spectrum locates in the range sustaining trivial-edge states.
Red, blue, and green lines in Fig. 15(b) present measured
voltage signals of two boundary nodes, which are counter-
clockwise and clockwise nodes with respect to the excited
circuit node, and a central bulk node. We can see that the
voltage signal at the circuit node behind the scatter is smaller
than others, manifesting the existence of backscattering.

FIG. 15. (a) Frequency spectrum of input voltage packet to excite
trivial-edge states. (b) Red, blue, and green lines present measured
voltage signals at counterclockwise and clockwise boundary nodes
and a central bulk node.
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