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Dynamics and asymmetric behavior of loss-induced bound states
in the continuum in momentum space
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Bound states in the continuum (BICs) are peculiar discrete states embedded in the continuous spectrum. It
has been reported that BICs still exist and exhibit new features when parity-time (PT)-symmetric perturbation
is applied to the system supporting BICs. Here, we further study the PT unbalanced system, especially a purely
passive one, and find that a BIC with a divergent radiative Q factor also exists when differential loss is introduced.
Meanwhile, merging of two BICs is observed when varying the strength of the differential loss. Different
from the ordinary BIC, this loss-induced BIC can be excited by an external plane wave, although it will not
radiate to infinity. On the contrary, another mode at the same frequency but opposite wavevector can radiate,
but cannot be excited by an external plane wave, manifesting the asymmetric behavior in momentum space. As
the gain is introduced, the net loss can even be compensated precisely, giving rise to a PT-BICs. The Q-factor
divergence rate of the PT-BICs is anisotropic in the parameter space. These results can be extended to other
systems favorable for experimental implementation and may facilitate applications in light trapping and lasing.
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I. INTRODUCTION

Bound states in the continuum (BICs) are a type of spatially
localized states, although the corresponding frequencies lie
inside the continuous spectrum. It was first proposed in the
custom-made potential in a quantum system [1], and was then
revealed to be a general phenomenon for both quantum and
classical waves [2–19]. For a system containing more than
one resonance and at least one open channel, BICs can be
realized when the leakage via the open channel is canceled
due to the destructive interference between the resonances at
the open channels [2]. When the constituent open channels
are the Bloch waves in the photonic crystal, BICs can be
formed based on the total internal reflection of Bloch waves
[4,5]. From the topological viewpoint, BICs can be interpreted
by the phase singularity of the quasi-mode coupling strength
for the one-dimensional chain [6,7], or the vortex centers of
the polarization directions of the far-field radiation for two-
dimensional photonic crystal slabs [8–14].

On the other hand, the non-Hermitian Hamiltonian has
received considerable research interest recently [20–25].
When the non-Hermitian Hamiltonian possesses the com-
bined parity-time (PT) symmetry, a PT phase transition from
real to complex spectra takes place at the exceptional point
[26]. Non-Hermitian optical systems with both passive and
active media have been intensively investigated in recent
years [27–39]. The non-Hermitian Hamiltonian offers an-
other dimension to the original ε-μ-plane for electromagnetic
metamaterials [20]. Exceptional points and nonreciprocal
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light transmission are extensively investigated in the two-
level systems [27,28]. A lot of interesting phenomena, such
as loss-induced transparency [28], unidirectional propagation
[29], Bloch oscillation [30], single-mode lasing [31,32], rings
of exceptional points [33], nonlinear supermodes [34], and
asymmetric phase-locked states [35], are revealed in non-
Hermitian systems.

Here, we study both numerically and analytically how
BICs evolve when the non-Hermitian perturbation is applied
to the dimerized chain. We begin with the case that common
loss is introduced to two nanoparticles, A and B, in a unit
cell, finding that BICs can still exist, as characterized by the
divergence of the radiative Q factors. Next, the case of differ-
ential loss is considered. When an unequal amount of loss is
introduced to nanoparticles A and B, the BICs shift along the
dispersion band and merge at an off-�-point. A remarkable
property of the differential loss-induced BIC is that it can
be excited by an external plane wave, though it does not
radiate itself. Meanwhile, accompanying each BIC, there is
a radiative mode located the symmetric place in the Brillouin
zone that cannot be excited by the external field. In the end,
we consider the case including both gain and loss. Besides
the BICs, lasing threshold modes with infinite Q factors can
also be supported when the net loss of the system is com-
pensated by the introduced gain. Under certain conditions, the
BIC and the lasing threshold mode can be supported simul-
taneously, resulting in the so-called PT-BICs [40]. Different
from the ordinary BIC, the PT-BICs exhibits an anisotropic
divergence rate for the total Q factor in the parameter space.
The loss-induced BIC and the associated novel properties
mentioned can also be extended to other non-Hermitian
systems and may find applications in light trapping and
lasing.
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FIG. 1. Evolution of BICs in the dimerized chain with the vari-
ation of loss. Upper inset: Schematic of the dimerized chain. Loss
can be introduced into nanoparticles A and B separately. (a) and (b)
Dispersion of the plasmonic mode with common and differential loss
in nanoparticles A and B, respectively. (c) and (d) Simulated radiative
Q factors evaluated along the dispersion band correspond to (a) and
(b), respectively. The black dashed lines correspond to the analytical
result of Prad = 0 according to Eq. (2).

II. THEORY AND RESULTS

We consider an infinite dimerized chain with non-
Hermitian perturbation as specified in the upper inset of Fig. 1.
There are two plasmonic nanoparticles in a unit cell labeled A
and B. The permittivity of each nanoparticle is described by
the Drude model, ε(ω) = 1 − ω2

p/ω(ω + iγ0), where ωp is the
plasma frequency and γ0 is the collision frequency. It is well
known that a BIC is characterized by the divergent radiative Q
factor because it is decoupled from the far-field radiation [41].
Like previous research on BICs, we ignore the intrinsic loss
γ0 and focus on the radiative loss. In the subwavelength scale
k0r0 � 1 (k0 = ω/c0, where c0 is the light speed in a vacuum),
each nanoparticle can be assumed to be an electric dipole with

an inverse polarizability α−1
0 (ω) = 1

r3
0
(
ω2

p−3ω2

ω2
p

) − 2i
3 k3

0, where

the imaginary part denotes the radiative loss [42]. The non-
Hermitian perturbation is introduced by alternating the onsite
gain and loss of the A, B nanoparticles. We first consider a
purely passive system in which no gain is included. In the the-
oretical model, the inverse polarizability with loss can now be
written as α−1

A (ω) =α−1
0 (ω) − iγA, and α−1

B (ω) =α−1
0 (ω) −

iγB, where γA and γB represent the amounts of loss added to
the A and B nanoparticles, respectively. For convenience, the
corresponding losses are normalized and represented by �A

and �B with �A = γAr−3
0 and �B = γBr−3

0 .

The linear response for the transverse plasmonic modes
(the nanoparticles are y-polarized here) of this non-Hermitian

system can be written as [40][
α−1

0 − SAA − iγA −SAB

−SBA α−1
0 − SBB − iγB

][
pA

pB

]
=

[
EA

EB

]
, (1)

or in a more compact form: MP = E, where Si j is the lattice
Green’s function. Since the resonant states of this system
are interested, we set E = 0 in Eq. (1) and look for the
complex frequency solutions of det(M) = 0 for any given
kz, i.e., ω(kz ) =ω′(kz ) + iω′′(kz ). The function ω′(kz ) gives
the dispersion relation of the plasmonic mode, and the ratio
ω′(kz )/2ω′′(kz ) gives the Q factor. Here, only the zero-order
diffraction region, i.e., |kz| < ω/c0 < 2π/a − |kz|, is consid-
ered.

The linear response in Eq. (1) can also be analyzed by the
eigen-decomposition theory via diagonalizing the M matrix:
MP = λP [43]. If the corresponding eigenvalue λ = 0, it will
give rise to an eigenstate with a pure real eigenfrequency. For
the dimerized chain without gain and loss, the real eigenfre-
quency states are exactly BICs [7]. When loss is introduced
into the system, there cannot exist real eigenfrequency states
due to the presence of the net loss. However, states with zero
radiation can still exist. Such states are BICs since the field
is bound to the structure. To identify the evolution of BICs
under the non-Hermitian perturbation, we need to focus on the
periodic part of the Bloch wavefunction, which provides sig-
nificant information [40,44,45]. The matrix M can be unitarily
transformed to M′ = UMU, with U = diag{eikzd/2,e−ikzd/2}.
The periodic part of the Bloch wavefunction is then obtained
as P′ = (p′

A,p′
B)T = (pAeikzd/2,pBe−ikzd/2)

T
. The solution of

a BIC must have the form of P′
BIC = (1, − 1)T to ensure the

perfect cancellation of radiation from lattices A and B [7,40].
To reveal the evolution of the BIC, we directly derive the
radiation power analytically based on the Green’s function
method, and the details are given in Supplemental Material
Sect. S1 [46]. The radiation power of the dimerized chain in
the radial direction is obtained as

Prad = k0
(
k2

0+k2
z

)
c0|p′

A + p′
B|2

16aε0
, (2)

where ε0 is the vacuum permittivity.
For the dimerized chain shown in the upper inset of Fig. 1,

the geometric parameters are set as r0 = 20 nm, d = 70 nm,
and a = 230 nm; and the material parameter is set as ωp =
6.18 eV. For the plasmonic mode, the inverse of the eigenvalue
of the matrix M, αkz(ω) = 1/λkz(ω) can be regarded as the
effective mode polarizability [40]. It has been shown that the
locus for the peak of Im[αkz(ω)] or the locus of Re[λkz(ω)] =
0 gives the dispersion of the plasmonic modes [7]. For the
dimerized plasmonic chain, the dispersion has two branches:
the antibonding one and the bonding one [7]. Here, we focus
on the bonding mode since it corresponds to the less radiative
band.

First we discuss the simple case that common loss is intro-
duced into the nanoparticles A and B, that is, �A = �B(� 0).
With the increase of loss, the locus of Re[λkz(ω)] = 0 shifts
accordingly and forms a dispersion band, as indicated by the
blue sheet shown in Fig. 1(a). The corresponding radiation
power Prad can be calculated analytically by Eq. (2). In the
case of no loss, the radiation power Prad drops to zero at
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three discrete kz-points (kz = 0, ±0.225), manifesting the ex-
istence of three BICs in the dimerized chain. With the increase
of the loss strength, the zeros of Prad shift accordingly in
the dispersion band, as indicated by the black dashed line in
Fig. 1(a). It is worth noting that the locations of kz for the
zeros is unchanged as the symmetry of the system is preserved
in this process. For the BICs here, the stored energy decays
exponentially in time due to the existence of net loss in the
system. To improve the total Q factor of the BICs, gain can be
introduced into the systems, as will be discussed later.

Next, we discuss the case of differential loss. For simplic-
ity, the loss in nanoparticle A is fixed as zero and the loss
strength in nanoparticles B, �B, is a continuous variable. The
dispersion of the plasmonic mode with different �B is shown
by the blue sheet in Fig. 1(b). Strikingly, as �B increases,
the two BICs with positive kz move toward each other and
then merge into a single BIC at a certain critical value �c

B.

Above this �c
B, the merging BIC disappears and the system is

left with only one BIC in the negative kz space. Because of
the breaking of inversion symmetry, the BICs are no longer
symmetrically located on the kz-axis. We will see later that
the differential loss leads to peculiar behavior of the BIC,
violating the equivalence between zero coupling strength and
zero radiative loss.

The analytical results for Prad can be verified numerically
by the corresponding Q factors. Figure 1(c) and 1(d) shows
the simulated radiative Q factors based on the finite-element
method. Here, the radiative Q factor is defined as Qrad =
ω(q)Ueff/Prad, where Ueff is the stored energy and Prad is the
radiation power [40,44]. Either for the common loss case or
the differential loss case, one can see that the zeros of Prad and
the loci of the divergent Qrad factor are highly consistent.

Another notable thing is that the BIC induced by differ-
ential loss can be excited by the external plane wave. It is
well known that an ordinary BIC cannot radiate, nor can
it be excited by an external field [6–8]. However, this is
no longer true for the BICs discussed here. The coupling
strength between the external field and the eigenstate is de-
fined as W (kz,ω) = 〈P̄|E〉= p̄AEA+ p̄BEB [40,47]. Here, |E〉
is the external field and 〈P̄| is the left eigenvector of matrix
M in Eq. (1). Due to the symmetry properties of M, i.e.,
M( − kz,ω) =MT(kz,ω), it is easy to show that the left eigen-
vector at kz shares the same entries with the right eigenvector
at –kz, namely, 〈P̄|kz

= |P〉T
−kz

. Considering a plane-wave

incidence with |E〉 ∝ (e−ikzd/2,eikzd/2)
T

and defining |P〉 =
(pA,pB)T def= (p′

Ae−ikzd/2,p′
Beikzd/2)

T
, we have W (kz,ω) ∝

p̄A(kz )e−ikzd/2+ p̄B(kz )eikzd/2 = p′
A( − kz )+p′

B( − kz ).
Figure 2 shows the calculated W (kz, ω), both the absolute

value and phase, along the dispersion of the plasmonic mode.
The trajectories of the BICs extracted from Fig. 1(b) are also
shown, as indicated by the black dashed lines. One can see
that W (kz, ω) drops to zero continuously at the place where
a phase jump of π takes place, as shown in Fig. 2(b). Ap-
parently, the trajectories of the BICs are not coincident with
those of the zero coupling strength states. Actually, they are
symmetric with each other. Thus, the BICs can be excited
by an external field since the corresponding W (kz, ω) �= 0,
except when �B = 0. In the case of �B = 0, where both gain
and loss are absent, the BICs locate at the zero points of

FIG. 2. Coupling strength W (kz, ω) of the bonding mode. (a)
and (b) The absolute value and phase of W (kz, ω), respectively.
W (kz, ω) drops to zero at the place where a π phase jump happens.
The trajectories of BICs are indicated by the dashed black lines
where W (kz, ω) �= 0 except when �B = 0.

W (kz, ω), indicating they cannot be excited by the external
field. Such ordinary BICs have been investigated in detail in
previous work [7].

The radiation and excitation properties of these peculiar
states can be described in a figurative way. The ordinary BICs
can be described as “deaf-mute modes” since they can neither
be excited by external waves nor can they radiate to infinity.
The differential loss-induced BICs can then be described as
“mute but not deaf modes” as they do not radiate but can
be excited. However, for the zero coupling strength states,
they are “deaf but not mute modes” because they can radiate
but cannot be excited. It should be noted that these peculiar
states, both the “mute but not deaf mode” and “deaf but not
mute mode” are completely different from the quasi-BICs,
which are ordinary BICs with compromised Q factors due
to symmetry breaking or a finite-size structure [16,48,49]. In
fact, the quasi-BIC can radiate and also can be excited by
waves coming from the far field.

The afore-mentioned excitation behaviors can be explained
analytically. When �B = 0, the system is inversion symmet-
ric and W (kz, ω) = W (−kz, ω). It is guaranteed that the
BICs are symmetrically distributed and the corresponding
W (kz, ω) = 0, that is, they cannot be excited. With the in-
crease of �B, the inversion symmetry is broken. Note that
the right eigenvector of a BIC always has the antisymmetric
form, i.e., P′

BIC = (1, − 1)T , but the left and right eigenvec-
tors of a loss-induced BIC have different entries due to the
influence of non-Hermitian components [40]. Meanwhile, as
mentioned previously, we have 〈P̄|kz

= |P〉T
−kz

. Therefore, the
coupling strength, W (kz,ω) ∝ (p′

A+p′
B)−kz

, does not vanish
at the BICs. In contrast, accompanying the BIC at kz, BIC, the
state at –kz, BIC has the coupling strength W ( − kz,BIC,ω) ∝
(p′

A+p′
B)kz,BIC

= 0. Thus, the trajectories of the BICs and the
zero coupling strength states are symmetric with each other. In
this sense, the evolution shown in Fig. 2 can be described as
a splitting and merging process: the original BIC (deaf-mute
mode) splits into a “mute but not deaf mode” and a “deaf
but not mute mode,” then two “mute but not deaf modes”
and two “deaf but not mute modes” merge and disappear
separately.

To demonstrate the previously mentioned asymmetric be-
havior further, the response of the system to an external field is
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FIG. 3. Excitation of the dimerized chain by an external plane
wave. The system is illuminated by a plane wave, as illustrated by
the upper inset. (a) Dispersion of the resonant mode obtained from
the simulation (yellow line) and the frequencies of the peaks for
the absorption cross section σabs (red circles). The inset shows σabs

corresponding to kz = ±0.05. (b) and (c) The absolute values and
phases of the excited dipole moments at the peaks of σabs, respec-
tively. The zero-coupling strength state and BIC are indicated by the
dash lines at –kz, BIC and kz, BIC, respectively. (d) Decomposition of
the field profiles (Ey ) at kz, BIC into the antisymmetric component and
the symmetric component.

numerically simulated. As shown in the upper inset of Fig. 3,
the system is illuminated by a y-polarized plane wave. Here,
the loss is set as �A = 0 and �B = 4 × 10−4. As an example,
the absorption cross section σabs corresponding to kz = ±0.05
is calculated as shown in the inset of Fig. 3(a) and two peaks
can be observed. The sharp peak with a lower frequency
corresponds to the bonding mode and the broad peak with a
higher frequency corresponds to the antibonding mode. The
peaks of σabs for the bonding mode, as indicated by the red
dots, are shown in Fig. 3(a), with excellent agreement with
the dispersion of the plasmonic mode. The absolute value and
the corresponding phase of excited dipole moments p′

A, B at
the peaks of σabs are calculated and shown in Fig. 3(b) and
(c), respectively. Apparently, the response of the system is
asymmetric along the kz-axis. This asymmetry can be further
confirmed by the corresponding field profiles of the system
when illuminated by a plane wave with a different incident
angle. In fact, this asymmetry can also be reflected by the
corresponding eigen fields. More details about the profiles are
presented in Supplemental Material Sect. S2 [46]. According
to the numerically obtained Q factor shown in Fig. 1(d), a
BIC is located at kz = 0.029 in the bonding band. And the
state at kz = −0.029 corresponds to the “deaf but not mute
state” that cannot be excited. The excited dipole moments
p′

A and p′
B at kz = −0.029 are numerically identical. This

FIG. 4. BICs and lasing threshold modes in the dimerized chain
with both gain and loss. (a) The dispersion band (blue sheet) of the
plasmonic mode under different gain. Here, the loss in nanoparticle
B is fixed as �B = 4 × 10−4. (b) The radiating power Prad (upper
panel) and the imaginary part of the eigenvalue (lower panel) of the
plasmonic modes. The black dashed lines and the red dashed line
are the corresponding nodal lines, indicating the BICs and the lasing
threshold modes, respectively. The three crossing points [black dots
in (a)] of the two nodal lines give rise to the PT -BICs.

excitation is purely from the background of the antibonding
mode, which is dominated by the symmetric mode with the
form of P′ = (1,1)T . As for the excitation at kz = 0.029, both
the symmetric and antisymmetric modes are excited, and the
ratio of the corresponding amplitudes is about 1:2. As shown
in Fig. 3(d), the field profile at kz = 0.029 is decomposed into
an antisymmetric component and a symmetric component.
Note that the background coming from the antibonding mode
is almost a pure symmetric mode; the antisymmetric com-
ponent observed at kz = 0.029 is coming from the bonding
mode, manifesting the excitation of BIC.

In the end, we consider the case with both gain and loss
involved. For simplicity, the loss of nanoparticle B is fixed as
�B = 4 × 10−4 and the gain of nanoparticle A is a variable.
Here, �A < 0, representing the gain added to nanoparticle A.
The dispersion of the system with different gain is shown in
Fig. 4(a), as indicated by the blue sheet. The corresponding
radiation power Prad is shown in the upper panel of Fig. 4(b),
with the dashed lines indicating Prad = 0, namely, the BICs.
With the increase of |�A|, the two BICs in positive kz space
move toward each other, then merge together and finally dis-
appear.

The lower panel of Fig. 4(b) shows the imaginary part
of the eigenvalue, Im(λ). The red dashed line is the nodal
line of Im(λ), on which both Im(λ) and Re(λ) equal zero,
giving the lasing threshold mode with real eigenfrequency.
The trajectories of the lasing threshold mode and BICs, as
marked in Fig. 4(a), intersect at three points, giving rise to
the nonradiative states with real eigenfrequency, namely the
so-called PT -BICs. Strictly speaking, an optical system can
have PT symmetry at isolated frequency points only due to
the dispersion of the permittivity [50,51]. For the PT -BICs
here, they locate in a very narrow frequency range, hence the
PT-symmetry condition holds well approximately.

It is worth noting that unphysical effects may happen for
the PT -BICs in the frame of linear optics. At the PT -BICs,
the energy stored in the system will keep growing with time
when illuminated, as they can be excited by external waves but
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FIG. 5. Behavior of Q factors near a PT-BICs. (a) The zoom-in
view of the kz-�A space, including the lasing threshold modes (red
line) and PT -BICs (black dots) shown in Fig. 4. The normal (k′

z) and
tangent (�′

A) of the red line at the PT-BICs are defined as the axes of
the local coordinate system. A point near the PT-BICs is specified by
δr and θ . (b) The Q factors for the resonant states near the PT-BICs
in the stable region. The Q-factor divergence rate relies on the angle

θ and can be well fitted by the function [k′
z + c�′2

A]
−1

, as shown by
the blue sheet.

do not radiate, leading to energy divergence. This unphysical
effect results from the assumption that the system remains
linear at high power, which is not true for the real situation. At
high light intensity, nonlinear effect such as second- or third-
harmonic generation will appear and give rise to radiation,
hence energy divergence will not happen.

It worth noting that the PT -BICs exhibit an anisotropic
Q-factor divergence behavior in the parameter space.
Figure 5(a) is the zoom-in view of the kz-�A space in
which the lasing threshold modes (red lines) and PT -BICs
(black dots) shown in Fig. 4 are presented. The nodal line
of λ = 0 divides the kz-�A parameter space into the stable
passive region and the unstable lasing region, and we are
concerned with the Q factors in the stable region. We take the
PT-BICs at the point (kz, �A) = (0.0625, −4 × 10−4) as an
example. For convenience, we set a local coordinate system
as shown in Fig. 5(a). At the PT-BICs point, the normal (k′

z)
and tangent (�′

A) of the red line (λ = 0) are defined as the
two coordinate axes in Fig. 5(a). A point near the PT-BICs
is specified by the distance δr from the PT-BICs point and
the position angle θ with respect to the k′

z-axis. Then the Q
factors for the points near the PT-BICs are calculated and
shown in Fig. 5(b), as indicated by the red dots. When θ = 0,
the Q factor diverges at a rate of k′−1

z . When θ = π/2, the Q

factor diverges in the form of �′−2
A . Thus, a generic form of

the Q-factor divergence rate can be written as [k′
z + c�′2

A]
−1

,

where c is a constant. The fitted result is shown in Fig. 5(b) by
the blue surface, which agrees well with the calculated results.
The anisotropic Q-factor divergence rate of the PT-BICs is
rather different from the previously reported behavior of
Q ∝ δk−2 [6,11,12,18] or Q ∝ [δkx+cδk2

y ]−1 [44]. Moreover,
like loss-induced BIC, PT-BICs also possesses the property
that it can be excited by an external field as shown in
Supplemental Material Sect. S2 [46].

III. CONCLUSION

In summary, we have demonstrated the evolution and the
peculiar properties of the BICs under a non-Hermitian pertur-
bation. When differential loss is introduced into the system,
the inversion symmetry of the system is broken, resulting in
the asymmetric behavior of the loss-induced BIC. The original
BIC split into a nonradiative state (BIC) and a zero-coupling
strength state. Different from ordinary BICs, the loss-induced
BICs can be excited by an external plane wave, although they
do not radiate. On the contrary, the zero-coupling strength
states cannot be excited by a plane wave, although they can
radiate. When both gain and loss are included in the system,
lasing threshold modes can be supported if the net loss is
exactly balanced by the gain. The lasing threshold mode and
the BIC can exist simultaneously, forming a PT-BICs. The
PT-BICs carries an anisotropic Q-factor divergence rate in
the parameter space, which is very different from the ordi-
nary BIC. These characteristics can be implemented in other
optical systems and may offer new perspective to BICs in a
non-Hermitian system.
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