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Topological phases in the presence of disorder and longer-range couplings
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We study the combined effects of disorder and range of the couplings on the phase diagram of one-dimensional
topological superconductors. We consider an extended version of the Kitaev chain where hopping and pairing
terms couple many sites. Deriving the conditions for the existence of Majorana zero modes, we show that either
the range and the on-site disorder can greatly enhance the topological phases characterized by the appearance
of one or many Majorana modes localized at the edges. We consider both a discrete and a continuous disorder
distribution. Moreover, we discuss the role of correlated disorder which might further widen the topological
regions. Finally, we show that in the purely long-range regime and in the presence of disorder, the spatial decay
of the edge modes remains either algebraic or exponential, with eventually a modified localization length, as in
the absence of disorder.
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I. INTRODUCTION

Topological materials can exhibit boundary modes, topo-
logically protected if the symmetries of the system are not
broken [1,2]. A so-called bulk-boundary correspondence re-
lates the existence of these boundary modes to the topology
of the quantum phase which is fully characterized by bulk
topological invariants. The Kitaev one-dimensional chain [3]
is a paradigmatic model exhibiting a topologically nontriv-
ial quantum phase with two Majorana zero modes (MZMs)
localized at the edges. Experimental realizations of such
topological superconductors employ one-dimensional arrays
of magnetic impurities [4–6] or semiconducting nanowires
[7–10] on top of a conventional superconducting substrate.
MZMs are of some importance for achieving full-scale quan-
tum computation. Actually, they were originally proposed
with the aim to realize a quantum register immune from deco-
herence [11,12]. Theoretically, this goal should be achievable
due to the possibility of fault-tolerant quantum computation
which can be obtained at the physical level instead of using
quantum error-correcting codes. The Kitaev chain is a way
of constructing decoherence-protected degrees of freedom in
one-dimensional systems. The question whether topological
properties, exhibited by this model, are affected by longer-
range couplings or randomness, all phenomena which might
occur in real experimental setups, are therefore of some rel-
evance. Several studies have been performed to understand
the effects on the MZMs of long-range couplings [13–16],
where bulk-boundary correspondence is still under investiga-
tion [16–18], the effects of disorder [19–31] and interactions
[24,32–36], by considering several setups for experimental
realizations [37–55]. Fermionic chains have also been exam-
ined in the presence of next-nearest-neighbor couplings [56]
and long-range pairing with incommensurate potentials [57].
In this paper, we aim at investigating the combined effect
of disorder and longer-distance couplings on the topologi-
cal phase diagrams, considering a chain of fermions which
can host one or many couples of MZMs at the edges. In

the absence of disorder, the effect of longer-range couplings
has been investigated in Ref. [14]. On the other hand, the
effect of uniform disorder, for the Kitaev chain with nearest
neighbor couplings, has been studied in Ref. [24]. We will
show, both numerically and analytically, that the combined
effect of disorder and range of the couplings is that of pro-
moting the topological phases, increasing both their number
and their extension, concluding that these elements, occurring
in the real experimental realizations of the model, can even
better stabilize the topological order. Finally, we note that
longer-range chains can be related to multichannel topolog-
ical superconductors (see, e.g., Ref. [58]), where the role
of disorder has also been investigated [59–62]. In particular,
some positive effects of weak disorder have been originally
observed in the case of multichannel [45] and multiband [63]
topological superconductors.

II. MODEL

To study the interplay between the interaction range and
the strength of an on-site disorder, we consider the extended
version of the Kitaev chain, taking into account r neigh-
bor couplings in the hopping and pairing terms, as done in
Ref. [14], with local random energies μ j . This model is de-
scribed by the following Hamiltonian:

H = −
r∑

�=1

L−�∑
j=1

(w�a†
j a j+� − ��a ja j+� + H.c.)

+
L∑

j=1

μ j

(
a†

j a j − 1

2

)
, (1)

where a j (a†
j ) annihilates (creates) a fermion in the site j, μ j

is the space-dependent chemical potential, w� is the hopping
amplitude, and �� is the superconducting pairing. We can
define the following Majorana operators: c2 j−1 = a j + a†

j and

c2 j = −i(a j − a†
j ), such that {ci, c j} = 2δi, j . The Hamiltonian
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in Eq. (1) can be rewritten as

H = − i

2

L∑
j=1

μ jc2 j−1c2 j + i

2

r∑
�=1

(w� + ��)
L−�∑
j=1

c2 jc2 j+2�−1

− i

2

r∑
�=1

(w� − ��)
L−�∑
j=1

c2 j−1c2 j+2�. (2)

The model belongs to the BDI class and can exhibit a positive
number of MZMs per edge. The case of a homogeneous
chemical potential μ j = μ has been extensively studied in
Ref. [14], where, to find the Majorana modes, a general trans-
fer matrix approach has been introduced.

A recent proposal for realizing a BDI topological su-
perconductor from a AIII topological insulator is reported
in Ref. [64]. The first experimental proposal [7–9], instead,
makes use of a quantum wire put in proximity of an s -wave
superconductor in the presence of spin-orbit coupling and
magnetic field, which generate a topological superconductor
of class D. In this latter case, the BDI class can be reached in
the limit of strong magnetic field compared to the spin-orbit
coupling.

A. Transfer matrix

The transfer matrix approach can be easily generalized to
the case of an inhomogeneous chemical potential. We will
consider the presence of disorder, so μ j is randomly dis-
tributed. To determinate whether MZMs exist, we look for a
MZM of the form b1 = ∑L

j=1 ψ jc2 j . The condition [H, b1] =
0 is satisfied if

r∑
�=1

(w� + ��)ψi−� −
r∑

�=1

(w� − ��)ψi+� + μiψi = 0, (3)

so the mode is localized at one edge, after imposing r bound-
ary conditions (ψi = 0 for −r < i � 0 or L < i � L + r).
One can find an analogous condition for the zero mode at the
other edge, which reads

r∑
�=1

(w� + ��)φi+� −
r∑

�=1

(w� − ��)φi−� + μiφi = 0 (4)

after requiring [H, b2] = 0, with b2 = ∑L
j=1 φ jc2 j−1, and im-

posing r boundary conditions (φi = 0 for L < i � L + r or
−r < i � 0). In particular, Eq. (4) can be expressed as

��i+1 = Ai ��i, (5)

where ��i = (φi+r−1, φi+r−2, · · · , φi, · · · , φi−r )T , and Ai is
the transfer matrix

Ai =

⎛
⎜⎜⎜⎜⎝

t1 t2 · · · t2r−1 t2r

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

⎞
⎟⎟⎟⎟⎠, (6)

where t� = −�r−�+wr−�

�r+wr
for 1 � � < r, tr = − μi

�r+wr
and t� =

��−r−w�−r

�r+wr
for r < � � 2r. By considering the eigenvalues of

the matrix Ãn, defined as

Ãn = AnAn−1 · · ·A2A1, (7)

we get a number N = max(v>, v<) − r of MZMs, where v>

and v< are the numbers of eigenvalues λn that diverge and
tend to zero as n → ∞ (see Ref. [14] for details).

For w� = ��, the condition expressed in Eq. (4) reduces to
2

∑r
�=1 w�φi+� + μiφi = 0, which can be expressed as

�φi+1 = Ai �φi, (8)

where now �φi = (φi+r−1, φi+r−2, · · · , φi )T , and Ai is the
transfer matrix

Ai =

⎛
⎜⎜⎜⎜⎝

t1 t2 · · · tr−1 tr
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

⎞
⎟⎟⎟⎟⎠. (9)

where t� = −wr−�

wr
for � = 1, . . . , r − 1, and tr = − μi

2wr
. In-

deed, for w� = ��,

Ai =
(

Ai 0
	+ 	−

)
, (10)

where 	+ is a r × r matrix with all entries equal to zero
except the right-top element equal to 1, while 	− is a r × r
matrix with all entries equal to zero except (r − 1) elements
along the low diagonal, below the main diagonal, which are
equal to 1. Actually 	− does not play any role since it gives
trivial identities. As a result,

Ãn =
(

Ãn 0
. . . 	n

−

)
, (11)

where, analogously to Eq. (7), we define

Ãn = AnAn−1 · · · A2A1, (12)

and for large distances, n � r, we have 	n
− = 0.

Finally, for an infinite range, r → ∞, and an algebraic
decay of the couplings, w� = w/�α and �� = �/�β , for α

and β > 1, we can have only zero or one MZM, algebraically
localized at each edge or exponentially localized for w� = ��

[65,66].

III. NEAREST-NEIGHBOR COUPLINGS (r = 1)

The case of nearest neighbor coupling, r = 1, has been
investigated in Ref. [24]. For w �= �, we get the transfer
matrix

Ai =
(− μi

�+w
�−w
�+w

1 0

)
, (13)

thus there is one MZM per edge if v> = 2 or v< = 2.
For the case w1 = �1, from Eq. (4) we get φi+1 = miφi,

from which

φn+1 = φ1

n∏
i=1

mi, (14)

where we defined

mi ≡ − μi

2w
. (15)
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FIG. 1. Topological phase diagrams σμ-μ, for r = 1 and w = �,
where μ and σ 2

μ are, respectively, the mean value and the variance
of the distribution of the random variables μi. The blue regions are
characterized by one MZM, while the white regions are trivial, with
zero MZMs, for two different distributions of the disorder: bimodal
(left) and uniform box (right) distributions.

The only nonzero eigenvalue of the transfer matrix product
is λ = ∏n

i=1 mi, which is equal to Ãn. Let us now rewrite the
absolute value of φn+1 as follows:

|φ1|
n∏

i=1

|mi| = |φ1| exp

[
n∑

i=1

ln |mi|
]

= |φ1|en〈ln |mi|〉. (16)

In the thermodynamic limit, the topological phase is de-
termined by the behavior of the mean logarithm 〈ln |mi|〉 ≡∑n

i=1 ln |mi|/n, for large n, if this quantity is negative, the
eigenvalue λ vanishes and a topological phase is allowed,
otherwise the phase is trivial, i.e., there is one MZM per
edge if

〈ln |mi|〉 < 0. (17)

This condition can be fixed for any probability distribution of
the random variables.

For instance, for a bimodal distribution, for which mi can
have only two values, m+ = m + ε and m− = m − ε, with
the same probability, so the probability distribution is 1

2δ(m −
m+) + 1

2δ(m − m−). The topological phase is, then, bounded
by the solution of the following equation:

1
2 (ln |m + ε| + ln |m − ε|) = 0. (18)

Strikingly, for this special situation the topological phase ex-
tends indefinitely, even for large disorder, as far as m 	 ∓ε,
namely, for μ 	 ±σμ, where μ is the mean value and σ 2

μ

the variance of the distribution of μi. At the band center,
μ = 0, the topological phase closes at ε = 1, i.e., σμ = 2w

(see Fig. 1).
Another example is the box distribution [24], when mi are

uniformly distributed in the interval [m − ε, m + ε]. We get
a topological phase boundary solving the equation 〈ln |mi|〉 =
0 which, in the continuum, reads 1

2ε

∫ m+ε

m−ε
dm′ ln |m′| = 0, or

more explicitly,

m + ε

2ε
ln |m + ε| − m − ε

2ε
ln |m − ε| − 1 = 0. (19)

This analytical condition gives the boundary for the topologi-
cal phase in terms of the mean chemical potential μ/w = 2m
and of the square root of the variance σμ/w = 2ε/

√
3 for

a uniform distribution, reported in Fig. 1. The plot shows a

peculiar behavior of the response of the system to the presence
of disorder. As the strength of the disorder increases, the
topological phase becomes wider and wider up to an optimal
value beyond which it is suppressed and then disappears at
σμ/w = 2e/

√
3. For w �= �, the behavior of the topological

phase is qualitatively the same, and is simply more or less
extended depending on whether |�| > |w| or vice versa. Also,
the normal distribution gives the same qualitative behavior.

We plan to generalize this study for a longer range of
the couplings, r > 1 to investigate the combined effects of
disorder and long-range couplings.

IV. NEXT-NEAREST-NEIGHBOR COUPLINGS (r = 2)

Let us now consider a range r = 2, namely, involving the
nearest- and next-nearest-neighbor couplings. For simplicity,
we will mainly focus on w� = ��. The case of larger r shares
similar features of the case r = 2, so we will also investigate
the next-nearest neighbor in more detail because it is simpler
from an analytical point of view.

First, let us consider the case with w1 = 0 and w2 �= 0.
From Eq. (4), we get

φi+2 + μi

2w2
φi = 0, (20)

from which we obtain two equations for i0 = 1, 2,

φ2n+i0 =
n−1∏
i=0

(
−μ2i+i0

2w2

)
φi0 , (21)

which generalizes Eq. (14). So, similarly to what is done for
r = 1, we now have two copies of the condition for getting
one MZM, 〈

ln

∣∣∣∣ μi

2w2

∣∣∣∣
〉

i0

< 0, (22)

where we define the averages 〈xi〉i0 = 2
∑n−1

i=0 x2i+i0/n, valid
for large n. If locally the distribution probability of the dis-
order is the same at any site, the two conditions in Eq. (22)
(with i0 = 1 and 2) are equal, and we can get only zero or two
MZMs per edge.

In contrast, things change drastically if also the coupling
w1 �= 0. Let us start considering the case w1 = w2 = w, so
the transfer matrix reads

Ai =
(−1 mi

1 0

)
. (23)

To determinate the eigenvalues λn of Ãn, we consider the
eigenvalue equation

λ2
n − λnTr(Ãn) + det(Ãn) = 0. (24)

Using the property of the determinant of a matrix product, we
have simply

det(Ãn) =
n∏

i=1

det(Ai ) = (−1)n
n∏

i=1

mi, (25)

and taking the absolute value we can write

| det(Ãn)| =
n∏

i=1

|mi| = en〈ln |mi|〉 (26)
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as n → ∞. The calculation of the trace is slightly more in-
volved. As shown in Appendix A, we get

|Tr(Ãn)| 	 en〈ln |Ri|〉, (27)

as n → ∞, where we define the random continued fraction

Ri = 1 + mi

1 + mi−1

1 + mi−2

1 + . . .

, (28)

which is the solution of the following recursive equation:

Ri = 1 + mi

Ri−1
. (29)

We note that the mean values 〈ln |mi|〉 and 〈ln |Ri|〉 can be
evaluated by using the probability distributions of the random
variables mi and of the convergents Ri. Unlike the determi-
nant, the trace depends on disorder in a nontrivial way. As
shown in Appendix A, the trace reads

Tr(Ãn) ≈ 1 + n〈mi〉+ n2

2
〈mi〉2 − n

2

〈
m2

i

〉 − n 〈mimi−1〉 + · · · ,

(30)
where we neglected terms depending on higher moments
and correlations. Clearly, the topological quantum phases can
depend on both moments (e.g., 〈m2

i 〉) and correlations (e.g.,
〈mimi−1〉) of the random variables. As a result, we expect that
correlated and uncorrelated disorder can affect differently the
topological phases. This behavior has to be contrasted to the
case with w1 = 0 where correlations do not play any role.

To derive the conditions for the existence of MZMs,
for w� = �� we have to analyze the eigenvalue equa-
tion, Eq. (24). If det(Ãn) → 0 or det(Ãn)/Tr(Ãn) → 0, from
Eq. (24) we get λn(λn − Tr(Ãn)) → 0 or λn(λn/Tr(Ãn) −
1) → 0, thus in both cases there is at least one eigenvalue
that tends to zero, so there is at least one MZM per edge. If
Tr(Ãn) → 0 and det(Ãn) → 0, for n → ∞, from Eq. (24) we
get λn → 0, thus both the two eigenvalues go to zero, so there
are two MZMs per edge. In summary, we get the following
conditions:

det(Ãn) → 0 or
det(Ãn)

Tr(Ãn)
→ 0 ⇒ ∃ 1 MZM, (31)

det(Ãn) → 0 and Tr(Ãn) → 0 ⇒ ∃ 2 MZMs. (32)

For w1 = w2 = w, using Eqs. (26) and (27), we get

〈ln |mi|〉 < 0 or 〈ln |mi|〉 < 〈ln |Ri|〉 ⇒ ∃ 1 MZM, (33)

〈ln |mi|〉 < 0 and 〈ln |Ri|〉 < 0 ⇒ ∃ 2 MZMs. (34)

We now proceed in studying these conditions for the homoge-
neous case and then applying them to the cases of uncorrelated
and correlated disorder.

A. Homogeneous case

Let us warm up considering first the clean system, namely,
in the absence of disorder, always in the simplest case where

w1 = w2 = �1 = �2 ≡ w. In this case, mi = m = −μ/(2w)
for any i, so we get

det(Ãn) = (−1)nmn, (35)

Tr(Ãn) = (−1)n

2n
[(1 + √

1 + 4m)n + (1 − √
1 + 4m)n].

(36)

For n → ∞, we get det(Ãn )
Tr(Ãn )

→ 0 for m ∈ (−1, 2) so, according
to Eq. (31), we have at least one MZM per edge for μ/w ∈
(−4, 2). Moreover, Tr(Ãn) → 0 for m ∈ (−1, 0), so, using
Eq. (32), we get two MZMs for μ/w ∈ (0, 2). These results
are in perfect agreement with what reported in Ref. [14].

Let us redo the calculation using Eqs. (33) and (34),
introducing the distribution ρ(Ri ) for a continued fraction,
which will be useful also in the presence of disorder. For
m > −1/4, we get Rn → R̄ = 1

2 (1 + √
1 + 4m) for n → ∞,

so ρ(Ri ) = δ(Ri − R̄). To determinate the distribution ρ(x) for
m < −1/4, we consider the Frobenius-Perron equation (see,
e.g., Ref. [67]),

ρ(x) =
∫

ρ(y)δ(x − F (y))dy, (37)

where F (y) = 1 + m/y [see Eq. (29)[ from which we get

ρ(x) = ρ

(
m

x − 1

) |m|
(x − 1)2

. (38)

For m < −1/4, a solution is given by the Lorentzian function

ρ(x) = 1

π

γ(
x − 1

2

)2 + γ 2
, (39)

with γ = √|4m + 1|/2. Using this distribution, we get

〈ln |Ri|〉 =
∫

ρ(x) ln |x|dx = 1

2
ln |m| (40)

for m < −1/4, and

〈ln |Ri|〉 = ln |R̄| = ln
∣∣(1 + √

1 + 4m)/2
∣∣ (41)

for m > −1/4. It is easy to see that, from Eq. (34), there
are two MZMs per edge if m ∈ (−1, 0), and, from Eq. (33),
there is one MZM per edge if m ∈ (−1, 2), in agreement with
Ref. [14].

B. Uncorrelated disorder

Let us now consider uncorrelated random variables mi.
For simplicity, we will consider a bimodal disorder, so mi

can be equal to m+ = m + ε and m− = m − ε, with the same
probability. As shown in Ref. [68], the distribution ρ(Ri ) is
the solution of

ρ(x) = 1

2

∫
ρ(y)[δ(x − F (y; m+)) + δ(x − F (y; m−))]dy,

(42)
where F (y; m±) is the map F (x) with mi = m±, from which
we get the equation

ρ(x) = 1

2
ρ

(
m+

x − 1

) |m+|
(x − 1)2

+ 1

2
ρ

(
m−

x − 1

) |m−|
(x − 1)2

.

(43)
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We look for a nontrivial solution of this equation. For m <

−1/4, we get

ρ(x) = 1

π

γ(
x − 1

2

)2 + γ 2
+ η(x), (44)

where γ = √|4m + 1|/2, and η(x) ∼ ε2 since Eq. (43) is
satisfied for η(x) = 0 up to terms of the order ε2. In particular,
η(x) is solution of

η(x) = g(x) + η

(
m

x − 1

) |m|
(x − 1)2

, (45)

where

g(x) = −
√|1 + 4m|(m2 + 3m(x − 1)2 − (x − 1)3)

2πm2(m + x − x2)3
ε2 + O(ε3).

(46)
Since we are interested only on the mean value 〈ln |Ri|〉, we
can use the following equations:∫

η(x) ln |x|dx = −
∫ (

η(x) − g(x)
)

ln |x − 1|dx,∫
η(x) ln |x|dx = 1

2

∫ (
η(x) ln |x + m|dx + g(x) ln |x|)dx,

which can be easily combined for m = −1, getting∫
η(x) ln |x|dx = − ε2

12
+ O(ε3). (47)

The effect of the disorder on widening or shrinking the bound-
ary of the topological phase can be understood by considering
the critical points in the absence of disorder. For the topologi-
cal phase with two MZMs, we have the boundaries at m = −1
and m = 0 in the absence of disorder.

For m = −1, we get

〈ln |Ri|〉 = − ε2

12
+ O(ε3). (48)

On the other hand, at m = 0, we have that

ρ(x) = 1
4 (δ(x − R+) + δ(x − R−) + δ(x − R′

+)

+ δ(x − R′
−)) + O(ε3)

is the solution of Eq. (43), with R± = 1 ± ε − ε2 + O(ε3),
R′

± = 1 ± ε + ε2 + O(ε3). As a result, we get 〈ln |Ri|〉 =
1
4 (ln |R+| + ln |R−| + ln |R′

+| + ln |R′
−|).

For m = 0 we have, therefore,

〈ln |Ri|〉 = −ε2

2
+ O(ε3). (49)

On both boundaries m = −1 and m = 0, we have 〈ln |Ri|〉 <

0, and since also 〈ln |mi|〉 is negative, from Eq. (34) we find
that the topological region with two MZMs widens on both
sides, switching on a small disorder ε.

On the other hand, for the topological phase with one
MZM, we have the boundaries at m = −1 and m = 2 in the
absence of disorder. At the point m = −1, we get

〈ln |mi|〉 = −ε2

2
+ O(ε3). (50)

At m = 2, we get that, for small ε, ρ(Ri ) is uniform and
equal to 1/(2ε) for Ri ∈ (2 − ε, 2 + ε) and zero otherwise, so

FIG. 2. Topological phase diagrams σμ-μ, for next-nearest-
neighbor couplings, r = 2, and w1 = w2 = �1 = �2, obtained using
the condition reported in Eqs. (33) and (34), averaging over n = 105

random variables. The diagrams are characterized by zero (white
regions), one (blue regions), and two (green regions) MZMs per
edge for two different distributions of the disorder: bimodal (left) and
uniform box (right) distributions. For a better comparison with Fig. 1,
the topological boundaries for r = 1 are reported by red dashed lines.

〈ln |Ri|〉 	 ln(2) − ε2/24. Moreover, close to m = 2, for small
ε, from Eq. (18) we get 〈ln |mi|〉 	 ln(2) − ε2/8, so

〈ln |mi|〉 − 〈ln |Ri|〉 = −ε2

8
+ ε2

24
+ O(ε3). (51)

From Eq. (33), we find that also the topological region with
one MZM widens for small ε. We expect this behavior occurs
also for other distributions of the disorder, namely, that the
disorder increases the topological phase, since only the vari-
ance σ 2

m of the random variables appears at the leading order.
Let us consider the case of large disorder. There are

two different behaviors for the case of a continuous or dis-
crete distribution. For the bimodal distribution, as shown in
the left panel of Fig. 2, the topological region with one
MZM per edge survives for large disorder strength, near the
resonances m ≈ ±ε. This behavior can be explained by notic-
ing that 〈ln |mi|〉 = 1/2(ln |m + ε| + ln |m − ε|) → −∞ for
m → ±ε, so the condition 〈ln |mi|〉 < 0 for having one MZM
is always satisfied. This behavior still exists for any discrete
distribution of disorder with a finite number of values, while it
disappears when the values of the distribution become dense
in a certain interval, since in this case 〈ln |mi|〉 cannot diverge
and becomes positive for large disorder. For a box distribution,
for instance, where mi are uniformly distributed in the interval
[m − ε, m + ε], the topological region is limited, as shown
in the right panel of Fig. 2. In any case, upon increasing the
range of the couplings, we observe an increase of the whole
topological phase, as well as the appearance of an additional
phase characterized by two MZMs per edge. In Fig. 2, in the
topological phase diagram for r = 2, also the boundaries for
the case r = 1 are reported (red dashed lines). Finally, we
observe that for the case w� �= ��, we get essentially the same
behavior. The only effect of having a larger or smaller paring
with respect to the hopping parameter is that the topological
phase can be increased or suppressed mainly in the disorder
strength direction as shown in Fig. 3. In this latter case, we
determine the number of MZMs by counting the number v<

(v>) of eigenvalues λn of Ãn such that |λn| < 1 (|λn| > 1), as
explained in Sec. II A.
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FIG. 3. Topological phase diagrams σμ-μ, for next-nearest-
neighbor couplings, r = 2, and for parameters w = w1 = w2 and
� = �1 = �2 but � �= w. We consider a uniform disorder distri-
bution and we average over 100 disorder configurations for a chain
with L = 200 sites. In the left panel, � = w/2, while in the right
panel, � = 2w.

C. Correlated disorder

Let us now investigate the effects of a correlated disorder,
namely, when 〈mimj〉 �= 〈mi〉〈mj〉 for some i and j. A way to
introduce a correlation in the disorder is the following. Let us
consider

mi = m + εxi. (52)

The random variables xi can be chosen conveniently, in turn,
written in terms of two other random variables yi and zi, to
design two kinds of disorder:

(1) uncorrelated disorder, such that xi = (yi + zi )/2 and
(2) correlated disorder, such that x2i−1 = (y2i−1 + z2i−1)/2

and x2i = s (y2i−1 + y2i )/2, where s = ±1,
where zi and yi are uncorrelated random variables which
take values −1 or 1 with equal probability. For both kinds
of disorder, locally, at any site i, we get the same dis-
tribution p(mi ) = 1

2 pbi(mi ) + 1
2δ(mi − m), where pbi(mi ) =

1
2δ(mi − m − ε) + 1

2δ(mi − m + ε) is the bimodal one. As a
result, 〈ln |mi|〉 = 1/2 ln |m| + (ln |m + ε| + ln |m − ε|)/4 <

0, i.e., the first condition in Eqs. (33) and (34), is the same
for both kinds of disorder. In contrast, the second condition in
Eq. (33) for one MZM, 〈ln |mi|〉 < 〈ln |Ri|〉, and the second
condition in Eq. (34) for two MZMs, 〈ln |Ri|〉 < 0, can be
different for the two kinds of disorder. As shown in Figs. 4
and 5, correlations and anticorrelations have opposite effects.

FIG. 4. 〈ln |Ri|〉 as a function of the mean value of the chemical
potential μ for uncorrelated, correlated (s = +1), and anticorre-
lated (s = −) disorder, averaging over n = 106 random variables,
for ε = 0.2 (where σμ/w = 2ε). In the interval under consideration,
〈ln |mi|〉 < 0 is verified, so we get a topological phase with two
MZMs per edge for 〈ln |Ri|〉 < 0.

FIG. 5. 〈ln |Ri|〉 as a function of μ, for uncorrelated, correlated
(s = +1) and anticorrelated (σ = −1) disorder, with ε = 0.2. The
green line shows 〈ln |mi|〉 as a function of μ. We get a topological
phase with one MZM per edge for 〈ln |Ri|〉 > 〈ln |mi|〉.

In detail, for two MZMs, the presence of correlated disor-
der (s = +1) widens the topological phase, while the presence
of anticorrelation (s = −1) shrinks it (see Fig. 4). On the
contrary, for one MZM, the presence of correlation (s = +1)
shrinks the topological phase, while anticorrelation (s = −1)
widens it (see Fig. 5).

D. Power-law coupling

We conclude our investigation for the case r = 2 by con-
sidering a power-law decay of the coupling parameters, w� =
�� = w/�α . In this case, the transfer matrix reads

Ai =
(−2α 2αmi

1 0

)
. (53)

In this case, for n → ∞, the determinant in Eq. (26) becomes

| det(Ãn)| 	 2nαen〈ln |mi|〉, (54)

while the trace in Eq. (27) is modified as follows:

|Tr(Ãn)| 	 2nαen〈ln |Rα
i |〉, (55)

where we define

Rα
i = 1 + mi

2αRα
i−1

, (56)

with Rα
1 = 1, so R0

i = Ri. This can be understood by noting
that Tr(Ãn) for α > 0 is obtained from Tr(Ãn), with α = 0,
by multiplying it by 2nα and by replacing mi with mi/2α .
The condition Eq. (34) for two MZMs, then, is modified as
follows:〈

ln
∣∣Rα

i

∣∣〉 < −α ln 2 and 〈ln |mi|〉 < −α ln 2 ⇒ ∃ 2 MZMs.

(57)

We expect that 〈ln |Rα
i |〉 � − ln 2, where the equality holds

for mi = −2α/4, so the condition 〈ln |Rα
i |〉 < −α ln 2 can be

satisfied only if α < 1. For the homogeneous case, mi = m, it
is easy to see that the inequality 〈ln |Rα

i |〉 � − ln 2 is satisfied.
Furthermore, if |mi| � 2α/4, the convergents are Rα

i � 1/2
(see, e.g., Ref. [69]), therefore, also in this case 〈ln |Rα

i |〉 �
− ln 2. As a result, we expect that, from Eq. (57), we can have
two MZMs per edge only for α < 1.

On the other hand, concerning the topological phase with
one MZM, Eq. (33) is modified, getting the following condi-
tion:

〈ln |mi|〉 < −α ln 2 or 〈ln |mi|〉 <
〈
ln

∣∣Rα
i

∣∣〉 ⇒ ∃ 1 MZM.

(58)
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FIG. 6. 〈ln |mi|〉 − 〈ln |Rα
i |〉, calculated for n = 106, as a function

of α > 1, for a bimodal distributed disorder with strength ε = 0.1
in the left panel and ε = 0.5 in the right panel. The topological
phase with one MZM per edge is for negative values, 〈ln |mi|〉 −
〈ln |Ri|〉 < 0.

Let us discuss the effects of a small disorder on the topological
phases in this case.

For α > 1, instead, we can have zero or one MZM per edge
and we can consider only Eq. (58). In the absence of disorder,
namely, for mi = m, we get α ln 2 + 〈ln |mi|〉 > 0, and from
the condition 〈ln |mi|〉 − 〈ln |Rα

i |〉 < 0 we obtain that there is
one MZM for (2−α − 1) < m < (2−α + 1). For simplicity, let
us consider a bimodal distribution, i.e., mi = m + ε and mi =
m − ε with the same probability and focus on the points m =
±1 + 2−α . As shown in Fig. 6, we get that the topological
phase with one MZM can be suppressed, only at the boundary
m ≈ −1 + 2−α (i.e., at μ/w ≈ 2 − 21−α) for ε small enough,
while it widens otherwise.

For α < 1, we can have zero, one, or two MZMs. In
the absence of disorder, i.e., for mi = m, there is one MZM
for −2−α < m < (1 + 2−α ) and two MZMs if −2−α < m <

(2−α − 1). Let us focus on the phase with one MZM in
the presence of disorder, defined by the condition given
in Eq. (58). For small ε, 〈ln |mi|〉 − 〈ln |Ri|〉 is negative at
both boundaries, m = −2−α and m = 1 + 2−α , which means
that the topological phase widens (see Fig. 7). On the con-
trary, concerning the phase with two MZMs, defined by the
condition in Eq. (57), for small ε, α ln 2 + 〈ln |mi|〉 < 0 at
both boundaries m = −2−α and m = 2−α − 1, while α ln 2 +
〈ln |Ri|〉 is positive only for large α, so in this case the topo-
logical phase shrinks (see Fig. 7).

V. MANY-NEIGHBOR COUPLINGS (r > 2)

Similarly to what we have done for r = 2, let us consider,
for simplicity, �� = w�, starting first with the extreme case

FIG. 7. 〈ln |mi|〉 − 〈ln |Rα
i |〉 (left panel) and α ln 2 + 〈ln |Rα

i |〉
(right panel) calculated for n = 106, as functions of α < 1, for a
bimodal distributed disorder with strength ε = 0.1. The topological
phase with one MZM per edge is defined for 〈ln |mi|〉 − 〈ln |Rα

i |〉 < 0
while the phase with two MZMs for α ln 2 + 〈ln |Rα

i |〉 < 0.

where w� = 0 for any � < r but wr �= 0. From Eq. (4), we get

φi+r + μi

2wr
φi = 0, (59)

from which we obtain r equations for i0 = 1, 2, . . . , r,

φrn+i0 =
n−1∏
i=0

(
−μri+i0

2wr

)
φi0 , (60)

which generalizes Eqs. (14) and (21). We now have r copies
of the condition for getting one MZM,〈

ln

∣∣∣∣ μi

2wr

∣∣∣∣
〉

i0

< 0, (61)

where we define the averages 〈xi〉i0 = r/n
∑

i xri+i0 , valid for
large n. In detail, i = 1, · · · , r so we have r conditions. If
locally the distribution probability of the disorder is the same
at any site, the r conditions in Eq. (61) (with i0 = 1, . . . , r)
are equal, and we can get only zero or r MZMs per edge.
For general couplings, instead, we can have an intermediate
number of MZMs.

Let us now consider nonvanishing w� focusing our atten-
tion, for simplicity, always to the case w� = ��.

For r = 3, for instance, to determinate the eigenvalues λn

of Ãn, we have to solve the following equation:

λ3
n − λ2

nTn + λnT ′
n − Dn = 0, (62)

where, to simplify notation, we define Tn = Tr(Ãn), T ′
n =

((Tr(Ãn))2 − Tr(Ã2
n))/2 and Dn = det(Ãn). From Eq. (62), we

derive the following conditions:

Dn → 0 and T ′
n → 0 and Tn → 0 ⇒ ∃ 3 MZMs, (63)

(Dn → 0 and T ′
n → 0) or

(
Dn

Tn
→ 0 and

T ′
n

Tn
→ 0

)

⇒ ∃ 2 MZMs, (64)

Dn → 0 or
Dn

Tn
→ 0 or

Dn

T ′
n

→ 0 ⇒ ∃ 1 MZM. (65)

As discussed in Appendix B, we expect that these conditions
can be also expressed in terms of random continued fractions
analogously to the next-nearest-neighbor case.

Equations (63)–(65) can be generalized for an arbitrary
r, as shown in Appendix C. In particular, we note that the
condition in Eq. (63) can be easily generalized to

det(Ãn) → 0 and Tr
(
Ãk

n

) → 0,∀k ∈ I1,r−1 ⇒ ∃ r MZMs,

(66)

where Ii, j = {i, i + 1, · · · , j}. Furthermore, for an arbitrary
range r, det(Ãn) → 0 is a sufficient (but not necessary) condi-
tion for getting one MZM per edge, and since | det(Ãn)| ∼
|w1/wr |nen〈ln |mi|〉, we get that the condition 〈ln |mi|〉 <

− ln |w1/wr | implies that there is one MZM. As a result, if
|w1| � |wr |, the topological phase with one MZM for r > 1
cannot be smaller than that for r = 1, for the same disorder
and coupling w1.

Finally, for w� = w, without disorder there are zero, one,
or r MZMs (see Ref. [14]). In detail, there are r MZMs
if m ∈ (−1, 0) and there is one MZM if m ∈ (0, r). In the
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FIG. 8. Topological phase diagrams σμ-μ, for r = 3 (upper pan-
els) and r = 4 (lower panels), for w = w1 = w2 = �1 = �2, with
L = 200. The diagrams are characterized by zero (white), one (blue),
two (green), three (yellow), and four (red) MZMs per edge, for a
bimodal distribution (left panels) and a uniform disorder distribution
(right panels).

presence of the disorder, instead, we can have many phases,
with a number of MZMs which goes from 0 to r, as shown in
Fig. 8. Moreover, we note that a large disorder significantly
increases the topological regions.

VI. INFINITE NUMBER OF NEIGHBORS

To investigate the limit r → ∞ corresponding to an infinite
number of neighbors, we consider the following algebraically
decaying parameters w� = w/�α and �� = �/�β . In the
absence of disorder, namely, for a homogeneous chemical
potential μi = μ, and for α and β greater than 1, in the ther-
modynamic limit, we can have zero or one MZMs per edge,
if the Majorana number M = sgn((μ + g(0)w)(μ + g(π )w))
is 1 or −1, where g(k) = 2Re[Liα (eik )], with Liα (x) the poly-
logarithm. In the presence of disorder, we expect also that, for
exponents larger than one, there are zero or one MZMs per
edge, as for finite r.

We consider an uncorrelated box distribution, namely
where the random variables are uniformly distributed, mi =
m + εxi with xi uniform in [−1, 1]. For an open chain, de-
scribed by the Hamiltonian H = 1

4

∑
l,m clHlmcm, as that in

Eq. (2), we can calculate the following topological invariant:

W = Sig(X� + H), (67)

as defined in Ref. [70]. Specifically, the signature Sig(M ) of
a matrix M is defined as the number of positive eigenvalues
of M minus the number of negative ones. We define the
position operator X = diag(Xj ) ⊗ I2, where the positions Xj

are normalized such that −1/2 � Xj � 1/2, and the grading

FIG. 9. Topological phase diagram σμ-μ for long-range cou-
plings w� = �� = w/�α with α = 2, obtained considering a chain
with size L = 200 and averaging over 100 disorder realizations, with
bimodal distribution (left), with mi = m ± ε, namely, μi = μ ± σμ,
and uniform box distribution (right), mi ∈ [m − ε, m + ε], namely,
μi ∈ [μ − √

3σμ, μ + √
3σμ], characterized by zero (white region)

and one (blue region) MZM.

operator � = IL ⊗ τ3, where τi with i = 1, 2, 3 are the Pauli
matrices and In the n × n identity matrix.

We find that either a discrete bimodal distribution and a
uniformly distribution of the disorder, on a chain with long
range coupling w� = �� = w/�α , for α > 1, induce qualita-
tively similar behaviors as those found for a finite number of
neighbors, supporting and widening the topological phases,
see Fig. 9. As shown in the two panels of Fig. 9, for both
distributions, the topological phases are not symmetric, as
for the cases with finite r > 1, for relatively small α. They
become symmetric around μ = 0 for α � 1, recovering the
short-range results reported in Fig. 1.

Let us now discuss in more detail the small disorder
regime. As shown in Fig. 10, where W is reported varying
μ, always for w� = �� and for very small disorder, the topo-
logical phase widens for μ ≈ −g(π )w > 0 (top panel) and
slightly shrinks for μ ≈ −g(0)w < 0 (bottom panel) for α not
too large. However, since the limit α → ∞ is equivalent to the
case r = 1, we expect that, for α large enough, the topological
region widens again at both boundaries.

In general, this behavior can be explained by considering
the effective Hamiltonian

He = H0 + 	, (68)

where 	 is the self-energy defined such that

〈G〉 = Ge, (69)

FIG. 10. Topological invariant W , Eq. (67), as a function of μ,
for L = 200, and w� = �� = w/�α with α = 2 at fixed small disor-
der ε = 0.2 (fixed σμ/w = 2ε/

√
3), close to the two boundaries for

a clean system. W = 0 corresponds to a trivial phase, W = −1 to a
topological phase. The green dashed lines correspond to the critical
values in the absence of disorder.
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where we have defined the Green’s functions G = (E − H )−1

and Ge = (E − He)−1, and where the average is done over
disorder. H0 is the clean Hamiltonian as in Eq. (2) with homo-
geneous μi = μ, so H = H0 + H1, where H1 is the disorder
term such that 〈H1〉 = 0. To determinate the self-energy, we
define H ′

1 = H1 − 	, then the Green’s function reads

G = 1

E − He − H ′
1

, (70)

and by considering H ′
1 as a small perturbation, we get at

second order

G ≈ Ge(1 + H ′
1Ge + H ′

1GeH ′
1Ge). (71)

By taking the average of this equation, we get

〈H ′
1〉 + 〈H ′

1GeH ′
1〉 ≈ 0, (72)

and since 〈H ′
1〉 = −	 we have

	 ≈
〈
H ′

1
1

E − H0 − 	
H ′

1

〉
. (73)

Since we are interested in small disorder, we consider 	 as a
second-order correction, thus we get

	 ≈ 〈H1G0H1〉, (74)

where G0 = (E − H0)−1. For our model, the self-energy 	, at
E = 0 in the bulk, reads (see Appendix D)

	 ≈ − i

2

∑
j

δμ c2 j−1c2 j + i

2

∑
�, j

[(δw� + δ��)c2 jc2 j+2�−1

− (δw� − δ��)c2 j−1c2 j+2�]. (75)

Adding 	 to H0, we obtain the effective Hamiltonian He

whose parameters are an effective chemical potential, μ + δμ,
where

δμ = −σ 2
μ

π

∫ π

0
dk

μ + wg(k)

(μ + wg(k))2 + (� f (k))2
, (76)

an effective long-range hopping, w� + δw�, where

δw� = −σ 2
μ

π

∫ π

0
dk cos(k�)

μ + wg(k)

(μ + wg(k))2 + (� f (k))2
,

(77)
and an effective pairing, �� + δ��, where

δ�� = −σ 2
μ

π

∫ π

0
dk sin(k�)

μ + wg(k)

(μ + wg(k))2 + (� f (k))2
,

(78)

where μ and σ 2
μ are the mean value and the variance of the

disorder in the chemical potential, g(k) = 2Re[Liα (eik )] and
f (k) = 2Im[Liβ (eik )]. To characterize the topological phases,
we can use the Majorana number of the effective Hamiltonian
He.

Let us consider w� = ��. For μ = −wg(0) < 0, we get
δμ > 0, and δw� ≈ −c′δμ�−α′

where α′ increases with α, and
where c′ > 0. We can, then, calculate the Majorana number

M ≈ sgn[(δμ − c′δμg′(0))(wg(π ) − wg(0))], (79)

where g′(k) = ∑
� cos(k�)�−α′ = 2Re[Liα′ (eik )]. We have

that wg(π ) − wg(0) < 0 and 1 − c′g′(0) < 0 for any α′, if

FIG. 11. Top: Wave function φ j of a MZM, as a function of the
distance j from the edge, for L = 200, w� = �� = w/�α with α = 2,
for different values of the disorder strength ε, at μ/(2w) = 0.01 (left
panel) and μ/(2w) = 0.2 (right panel). We average over 100 disorder
realizations. The plots are in linear-log scale, showing exponential
decays. Bottom: Wave- unction φ j of a MZM, as a function of the
distance j from the edge, for L = 200, with w� �= ��, in particular,
w� = w/�α and � = w/�β with α = 4 and β = 2. We consider
different values of the disorder strength ε, at μ/(2w) = 0.01 (left
panel) and μ/(2w) = 0.2 (right panel). The plots are in log-log scale,
showing algebraic decays.

c′ > 1/2, or for α′ not too large, if c′ < 1/2. We find that
c′ is small, so M > 0 (trivial phase) for α not too large. On
the other hand, for μ = −wg(π ) > 0, we get δμ < 0, and
δw� ≈ c′′δμ(−1)��−α′′

where c′′ > 0. Then, we get

M ≈ sgn[(δμ + c′′δμg′′(π ))(wg(0) − wg(π ))], (80)

where g′′(k) = ∑
� cos(k�)(−1)��−α′′

. We have that g′′(π ) >

0 for any α′′, so M < 0 (topological phase) for any α.
In the end, we note that for wl �= �l and wl = �l the

MZMs wave functions remain algebraically and exponentially
localized, respectively, also in the presence of disorder (see
Fig. 11). This can be explained by using the method of
Ref. [65]. By considering the self-energy for small disorder,
we get the wave function of a MZM,

φ j ∼ Im
∮

|z|=1

z j−1dz

μ + δμ + wg̃(z) + � f̃ (z) + Y (z)
, (81)

where g̃(z) = (Liα (z) + Liα (1/z)), f̃ (z) = (Liβ (z) −
Liβ (1/z)) and where Y (z) is defined by performing an
analytical continuation in the complex plane such that

Y (eik ) =
∑

�

(δw� cos(k�) + iδ�� sin(k�)). (82)

Y (z) has no branch cut for |z| < 1. Then, for �� �= w� we get
a branch cut coming from the polylogarithms. As a result,
we get an algebraically decay of the wave function, while
for �� = w� there is no branch cut and we get a purely
exponential decay, as in the absence of disorder [65,66]. We
note that since the corrections δw� and δ��, and therefore
the effective couplings, are different, also for �� = w�, one
might expect that the MZMs become algebraically localized
in the presence of disorder. However, this case does not occur
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because of the analytic properties of the function Y (z). In par-
ticular, for �� = w�, the MZMs stay exponentially localized
with a localization length which increases upon increasing the
strength of the disorder (see Fig. 11, top panels). In the other
case, for �� �= w� the MZMs remain algebraically localized
(see Fig. 11, bottom panels) as in the absence of disorder.

VII. CONCLUSIONS

We carried out a complete study of the combined effects
related to the interplay of disorder and range of the couplings
on the topological phase diagrams for a one-dimensional
topological superconductor. We considered both a finite and
infinite number of neighbors involved in the couplings.

Our work is in perfect agreement with what is known
in the previous literature, namely, that disorder can stabi-
lize the topological order (see, for instance, Ref. [63] for
one-dimensional models and Ref. [45] for the multichannel
models). In particular, we generalize what has been found in
Ref. [24] for a one-dimensional topological superconductor
described by a short-range Kitaev chain in the presence of
disorder by considering longer finite-range and infinite-range
couplings, with two different kinds of random distributions.
We show that both the coupling range and the disorder can
promote the topological order.

For finite-range couplings, we resorted to a transfer matrix
approach which allowed us to derive the conditions for the
existence of MZMs, and to show that either the range or the
on-site disorder can greatly enhance the topological phases
characterized by the appearance of one or many Majorana
modes localized at the edges. Moreover, we discussed the
role of correlated disorder which can further widen the topo-
logical regions. We always performed a comparing analysis
considering a discrete and a continuous disorder distribution.
In the former case, the topological regions extend to regimes
of infinitely strong disorder. Finally, we show that, for long-
range couplings, the spatial decay of the edge modes remains
algebraic or exponential for equal hopping and pairing, even
in the presence of disorder.

In conclusion, our results show that the combined effects
of disorder and range of the couplings can generate nontrivial
behaviors, increasing the number of phases and greatly widen-
ing their extension.
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APPENDIX A: TRACE OF Ãn for r = 2

Let us calculate Ãn for r = 2 considering the case with
�� = w�, with w1 = w2, and n even. By using the multipli-
cation law,

A2A1 = diag(m2, m1) − A1, (A1)

[which, however, can be easily generalized for w1 �= w2 to
A2A1 = diag(m2, m1) − t1A1 , with mi = −μi/(2w2) and t1 =
−w1/w2], where diag(m2, m1) is the diagonal matrix with
elements m2 and m1, we get

Ãn = dn,1 − An dn−1,1 − An−1 dn−2,1 − · · · − A3 d2,1 − A1,

(A2)

where we define d2,1 = diag(m2, m1), d3,1 = diag(m3, m1),
d4,1 = diag(m4, m1) + diag(m4, m3) diag(m2, m1) and so on.
In general terms, di,1 is the diagonal matrix obtained
by summing all the products of the form diag(mi, mik )
diag(mik−1, mik−1 ) · · · diag(mi1−1, m1), where i j > i j−1 + 1
and i1 > 2. The trace is

Tr(Ãn) = Tr(dn,1) − Tr(Andn−1,1) − Tr(An−1dn−2,1) − · · ·
− Tr(A3d2,1) − Tr(A1). (A3)

Since Tr(Ai diag(a, b)) = −a, we get

Tr(Ãn) = Tr(dn,1) + d1
n−1,1 + d1

n−2,1 + · · · + d1
2,1 + 1, (A4)

where d1 is the element (1,1) of the diagonal matrix d . In
particular,

d1
i,1 =

∑
l

pu
i (l ), (A5)

where pu
i (l ) are all the products of the upper endpoints

of the noncrossing partitions of (mi, mi−1, · · · , m1) with
at least two elements, e.g., the noncrossing partitions of
(m5, m4, m3, m2, m1) are (m5, m4, m3, m2, m1), (m5, m4) ∪
(m3, m2, m1), and (m5, m4, m3) ∪ (m2, m1), then d1

5,1 = m5 +
m5m3 + m5m2. We get the relation

d1
i,1 = mi

(
1 + d1

i−2,1 + d1
i−3,1 + · · · + d1

2,1

)
. (A6)

By defining p�
i (l ) as all the products of the lower endpoints,

we get

d2
i,1 =

∑
l

p�
i (l ). (A7)

Since Tr(di,1) = d1
i,1 + d2

i,1, the trace of Ãn is then given by

Tr(Ãn) = 1 +
n∑

i=1

mi +
n∑

j=4

j−2∑
i=2

mjmi + m1

n−1∑
i=3

mi + · · · ,

(A8)
where we omitted products with more than two terms. We can
rewrite it as

Tr(Ãn) = 1 +
n∑

i=1

mi + 1

2

(
n∑

i=2

mi

)2

− 1

2

n∑
i=2

m2
i

−
n∑

i=3

mimi−1 + m1

n−1∑
i=3

mi + · · · , (A9)

and, therefore, for large n, we can write Eq. (30). To evaluate
the large n limit of the trace, we note that, if mn �= 0,

Tr(Ãn−2) = d2
n−2,1 + d1

n,1

mn
, (A10)

and d2
n,1 can be obtained from d1

n,1 by permuting the site
indices as follows: n ↔ 1, n − 1 ↔ 2, and so on. Thus, we
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have to calculate the large-n limit of d1
n,1. Actually, we have to

determine when limn→∞ d1
n,1 = 0. We get

d1
i,1 = mi

mi−1
Ri−2d1

i−1,1, (A11)

where we have defined

Ri = 1 + ∑i
j=2 d1

j,1

1 + ∑i−1
j=2 d1

j,1

, (A12)

which fulfills Eq. (29), with R1 = 1, and therefore, can be
written as a random continued fraction, Eq. (28). Thus, we
get |Tr(Ãn)| ∼ ∏n

i=1 |Ri| = en〈ln |Ri|〉 as n → ∞, where the av-
erage can be evaluated using the probability distribution of the
convergents Ri.

An alternative way to derive the trace Tr(Ãn) is the follow-
ing. Performing the products, we get

Tr(Ãn) = (−1)n{m2[m4(m6(· · · ))

+ m5(· · · )] + m3(m5(· · · )) + m4(· · · )

+ m1[m3(m5(· · · )) + m4(· · · )]}. (A13)

This expression can be obtained rewriting Ai as

Ai = B − miC, (A14)

where B = (−1 0
1 0) and C = (0 −1

0 0). The matrices C, B, CB,
and BC form a closed algebra and are such that

BB = −B, CC = 0, BCB = −B, CBC = −C (A15)

and

Tr(B) = Tr(CB) = Tr(BC) = −1, Tr(C) = 0. (A16)

Making the product AiAi−1, we get B → −B or B → −miCB,
and CB → −B, while C → BC and BC → −BC or BC →
miC. We can draw two graphs which are two trees of de-
scendants with ancestors B and C: the first generates only
a cascade of B and CB while the latter generates BC and
C. The trace is, therefore, equal to the sum of all possible
paths along the tree graphs, excluding those which end with
C, since Tr(C) = 0. The number of these paths, after n steps,
are Fn + 2Fn−1, where Fn are the Fibonacci numbers. From
Eq. (A13) or by counting the paths as described above, we get
that, after relabeling i ↔ n − i, we have to solve the following
recursive equations:

Fi = Fi−1 + miFi−2, (A17)

with initial conditions F0 = 0 F1 = 1, such that, given the
solution Fn, the trace of Ãn, for large n, is

Tr(Ãn) = (−1)n(Fn + 2mFn−1), (A18)

which can be also written as Tr(Ãn) = (−1)n(2Fn+1 − Fn).
Notice that, for mi = 1, from Eq. (A17), we get Fn = Fn,
the Fibonacci numbers, then Tr(Ãn) = (−1)n(Fn + 2Fn−1).

Generally, for integer mi = m, the solution Fn of Eq. (A17)
is a Lucas sequence, named the (1, m)-Fibonacci sequence.

Defining the ratio

Ri = Fi

Fi−1
, (A19)

Eq. (A17) can be written as Ri = 1 + mi
Ri−1

, which is Eq. (29).

As a result, |Tr(Ãn)| 	 |Fn| = ∏n
i=2 |Ri|.

APPENDIX B: CASE r = 3

Let us investigate the case with r = 3, focusing on �� =
w� = w. It is easy to see that Dn = det(Ãn) = ∏n

i=1 mi, there-
fore |Dn| = en〈ln |mi|〉. To evaluate the trace Tn = Tr(Ãn) and
T ′

n = ((Tr(Ãn))2 − Tr(Ã2
n))/2, we consider n as a multiple of

3, i.e., n = 3k with k a positive integer. For Tn, we get

Tn = 2 +
∑

ie

pn(ie), (B1)

where pn(ie) are all the different products (without rep-
etitions) of the lower endpoints of the noncrossing parti-
tions of (mn, mn−1, · · · , m1) and cyclic permutations, e.g.,
(mn−1, · · · , m1, mn) and so on, with 3k elements with k non-
negative integer, e.g., for n = 6, we get T6 = 2 + ∑6

i=1 mi +
m1m4 + m2m5 + m3m6, where mi comes from the partition
(mi−1, · · · , m1, m6, · · · , mi ), m1m4 comes from the partition
(m6, m5, m4) ∪ (m3, m2, m1), m2m5 comes from the parti-
tion (m1, m6, m5) ∪ (m4, m3, m2), and m3m5 comes from the
partition (m2, m1, m6) ∪ (m5, m4, m3). Concerning T ′

n , we get

T ′
n = 1 +

∑
ie

p′
n(ie), (B2)

where p′
n(ie) are all the different products of the lower end-

points of certain noncrossing partitions of (mn, mn−1, · · · , m1)
and cyclic permutations, e.g., (mn−1, · · · , m1, mn) and so on,
e.g., for n = 3, we get T ′

3 = 1 + ∑3
i=1 mi + m1m2 + m1m3 +

m2m3.
We note that we can write Tn and T ′

n in the forms Tn =
en〈ln |Kl |〉 and T ′

n = en〈ln |K ′
l |〉, where Kl and K ′

l are continued
fractions uniquely determined by (ml , ml−1, · · · , m1). Let us
consider Tn. We define si with i = 1, · · · , n the solutions of
the n equations

2 +
∑

ie

pl (ie) = s1(s1 + s1s2) · · · (s1 + s1s2 + · · ·

+ s1s2 · · · sl )

for l = 1, · · · , n, with pl (ie) as defined above. The terms Kl ≡
(s1 + s1s2 + · · · + s1s2 · · · sl ) can be written as Euler’s con-
tinued fractions, therefore, we can write |Tn| = ∏n

l=1 |Kl | =
en〈ln |Kl |〉. An analogous form can be obtained for T ′

n .

APPENDIX C: ARBITRARY r

For an arbitrary r, for w� = ��, we get the following
generalized eigenvalue equation:

r∑
k=0

(−1)kλr−k
n T (k)

n = 0, (C1)
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where T (k)
n = Tr(

∧k Ãn) is the trace of the kth exterior power of Ãn, which is defined by

T (k)
n = 1

k!
det

⎛
⎜⎜⎜⎜⎜⎝

Tr(Ãn) k − 1 0 · · · 0
Tr

(
Ã2

n

)
Tr(Ãn) k − 2 · · · 0

...
...

...
. . .

...

Tr
(
Ãk−1

n

)
Tr

(
Ãk−2

n

)
Tr

(
Ãk−3

n

) · · · 1
Tr

(
Ãk

n

)
Tr

(
Ãk−1

n

)
Tr

(
Ãk−2

n

) · · · Tr(Ãn)

⎞
⎟⎟⎟⎟⎟⎠.

Then, it is easy to show that

T (k)
n → 0,∀k ∈ I1,r ⇒ ∃ r MZMs,

(
T (k)

n → 0,∀k ∈ I2,r
)
or

(
T (k)

n

T (1)
n

→ 0,∀k ∈ I2,r

)
⇒ ∃ r-1 MZMs,
...

T (r)
n → 0 or

T (r)
n

T (1)
n

→ 0 or · · · or
T (r)

n

T (r−1)
n

→ 0 ⇒ ∃ ,

where Ii, j = {i, i + 1, · · · , j}. On the other hand, for w� �=
��, defining T (k)

n = Tr(
∧k Ãn), we get the eigenvalue equa-

tion

2r∑
k=0

(−1)kλ2r−k
n T (k)

n = 0. (C2)

In this case, the conditions are modified as follows:

T (k)
n → 0,∀k ∈ I1,2r ⇒ v< = 2r,

(
T (k)

n → 0,∀k ∈ I2,2r
)
or

(
T (k)

n

T (1)
n

→ 0,∀k ∈ I2,2r

)
⇒ v< = 2r − 1,

...

T (2r)
n → 0 or

T (2r)
n

T (1)
n

→ 0 or · · · or
T (2r)

n

T (2r−1)
n

→ 0

⇒ v< = 1,

otherwise v< = 0. After defining

T ′(k)
n = T (2r−k)

n

T (2r)
n

, (C3)

we get similar conditions for v>, which read

T ′(k)
n → 0,∀k ∈ I1,2r ⇒ v> = 2r,

(
T ′(k)

n → 0,∀k ∈ I2,2r
)

or

(
T ′(k)

n

T ′(1)
n

→ 0,∀k ∈ I2,2r

)

⇒ v>= 2r − 1,

...

T ′(2r)
n → 0 or

T ′(2r)
n

T ′(1)
n

→ 0 or · · · or
T ′(2r)

n

T ′(2r−1)
n

→ 0

⇒ v> = 1,

otherwise v> = 0. We then obtain the number of MZMs
which is given by max(v<, v>) − r, where typically v> =
2r − v<.

APPENDIX D: CALCULATION OF THE SELF-ENERGY

We write H0 = ∑
m,n cmHmncn, where iH is the real and

skew-symmetric matrix

H =
∑
i, j

|i〉〈 j| ⊗ Hi, j =
∑

j

| j〉〈 j| ⊗ H0

+
∑

j

∑
�

| j〉〈 j + �| ⊗ H� + | j + �〉〈 j| ⊗ (H�)†,

(D1)

where H0 and H� are the matrices H0 = μτ2/4 and H� =
w�−ατ2/4 + i��−βτ1/4, where the nth component of |i〉 is
(|i〉)n = δn,i. We consider periodic boundary conditions, and
we change the basis by defining the vectors |k〉 such that | j〉 =∑

k e−ik j |k〉/√L. We can then write H = ∑
k |k〉〈k| ⊗ H(k),

where H(k) = ((μ + wg(k))τ2 − � f (k)τ1)/4. The inverse of
the matrix H reads

(H)−1 = −4i
∑

k

|k〉〈k| ⊗
(

0 1/X+
−1/X− 0

)
, (D2)

where X± = μ + wg(k) ± i� f (k). We now add a disorder
term H1 = −∑L

j=1 ω jn j to the Hamiltonian H0, where ω j =
μ j − μ, corresponding to the matrix H1 = ∑

i ωi|i〉〈i| ⊗
τ2/4. For E = 0, we get G0 = −(H)−1, and the self-energy
	′ ≈ 〈H1G0H1〉 reads

	′ ≈ δμ

4

L∑
j=1

| j〉〈 j| ⊗ τ2 +
∑

j

∑
�

| j〉〈 j

+ �| ⊗ 	′
� + | j + �〉〈 j| ⊗ (	′

�)† (D3)

with 	′
� = δw�τ2/4 + iδ��τ1/4, where δμ, δw�, and δ��

given by Eqs. (76)–(78), from which we get the self-energy
	 in terms of Majorana operators reported in Eq. (75).
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