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We describe topologically ordered and fracton-ordered quantum systems on geometries which do not have an
underlying manifold structure. Using tree graphs such as the k-coordinated Bethe lattice B(k) and a hypertree
called the (k, n)-hyper-Bethe lattice HB(k, n) consisting of k-coordinated hyperlinks (links defined by # sites),
we construct multidimensional arboreal arenas such as B(k;)UB(k,) using a generalized notion of a graph
Cartesian product [1. We study various quantum systems such as the Z, gauge theory, generalized quantum
Ising models (GQIMs), the fractonic X-cube model, and related X-cube gauge theory defined on these arboreal
arenas, finding several fascinating results. Even the simplest Z, gauge theory on a two-dimensional arboreal
arena is found to be fractonic—an isolated monopole excitation is rendered fully immobile on an arboreal
arena. The X-cube model on a generic three-dimensional arboreal arena is found to be fully fractonic in the
magnetic sector, i.e., all multipoles of magnetic excitations are rendered immobile on the arboreal arena. We
obtain variational ground state phase diagrams of the gauge theories (both Z, and X-cube gauge theories) which
are shown to have deconfined and confined phases. These phases are usually separated by a first-order transition,
while continuous transitions are obtained in some cases. Further, we find an intriguing class of dualities in
arboreal arenas, as illustrated by the Z, gauge theory defined on B(k;)(IB(k,) being dual to a GQIM defined on
HB(2, ky)UHB(2, k). Finally, we discuss different classes of topological and fracton orders that appear on arbo-
real arenas. We find three distinct classes of arboreal toric code orders on two-dimensional arboreal arenas, those
that occur on B(2)OB(2), B(k)UB(2), k > 2, and B(k;)[IB(k»), ki, ko > 2. Likewise, four classes of X-cube
fracton orders are found on three-dimensional arboreal arenas which correspond to those on B(2)[IB(2)CIB(2),

B(k)OB(2)TB(2), k > 2, B(k;)TB(k2)OB(2), k1, ks > 2, and Bk )OB(ka)OB(ks), k1, ko, ks > 2.
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I. INTRODUCTION

A central problem of condensed matter physics is the de-
scription and classification of phases of systems with many
microscopic quantum degrees of freedom. Research over the
last two decades has revealed that, in addition to the ideas
of symmetry, notions of entanglement and topology have a
preeminent role in the description and classification of phases
[1-5]. Broadly, quantum phases realized by many degrees of
freedom can be classified as short-ranged entangled or long-
range entangled with topological order and complex patterns
of entanglement. Examples of unique phases already realized
in the laboratory with short-range entanglement are topo-
logical insulators [4,6,7]. Similarly, fractional hall states [8]
realize states with topological order and associated long-range
entanglement.

Topologically ordered phases have enjoyed particular at-
tention owing to their exotic properties that can be exploited
for topologically protected quantum information processing
[9]. A particularly interesting example of a topologically or-
dered system useful as a quantum memory is the toric code
[10]. The toric code has a ground state degeneracy that de-
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pends only on the topology of the manifold on which it is
defined, and not on the microscopic details such as lattice
structure. For example, the ground state degeneracy of a
toric code defined on a torus is 4 irrespective of whether the
underlying lattice is a square lattice or a triangular lattice.
Excitations of the toric code also have exotic physics—the
two types of excitations, magnetic monopoles (plaquette exci-
tations), and electric charges (vertex excitations) are mutually
semionic, and bound states of these excitations are fermions
(see Ref. [11] that explores interesting consequences and
implications of this). From the perspective of quantum infor-
mation processing/computing, the ground state degeneracy
which is topologically protected is an attractive platform to
store and manipulate quantum information [12-14]. A deeper
understanding of topologically ordered phases was effected
with the formulations of many exactly solvable models, for
example, string-net models [5,15]. Connections to topolog-
ical field theories and modular tensor categories have been
exploited for the classification (see recent work [16] and ref-
erences therein) of topologically ordered phases.

Although topologically ordered phases have degenerate
ground states that are protected, there are issues associ-
ated with the stability of these phases at finite temperatures
[13,14,17-19]. This arises from the fact that the monopole ex-
citations discussed above, when thermally excited in pairs, can
proliferate, owing to the entropy gain. This, and related issues,
have prompted researchers to formulate and explore models
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[20-22,22-29] where the excitations have limited mobility,
possibly offering avenues to address the finite-temperature
issues faced by topological codes, giving way to the discovery
of fracton phases (see reviews [30,31]). Fracton phases are so
named owing to the fact that the excitations in this systems
have fractional mobility. As an example, the excitations of
the exactly solvable X-cube model, the toric-code of frac-
ton physics, has point magnetic monopoles which are fully
immobile, even as the dipoles of these magnetic monopoles
are mobile in a plane. The analogs of electric charges can be
moved along a line by local operations. While the presence of
immobile excitations is a generic feature of all fracton phases,
some, like the X-cube model discussed above, have bound
states of excitations that are mobile. On the other hand, mod-
els such as Haah’s code [23] have only immobile excitations,
leading to further classification of fracton phases as type-I and
type-II fractons (see Ref. [31]). Another intriguing aspect of
fracton phases is that they have a subextensive ground state
degeneracy, i.e., the degeneracy scales as, for example, in the
X-cube model, e**, where L is the length of the side of the
cuboidal box with periodic boundary conditions used to define
the model and a is a numerical constant. In addition, this
ground state degeneracy, although subextensive, depends on
the details of the lattice, leading them to be termed geometri-
cally ordered [32]. Based on these cues, the notion of foliated
fracton order has been formulated and elaborated [33,34]. Yet
another notable point is that discrete fracton models (such as
the X-cube model) which are typically theories with a local
gauge structure have been shown [27] to be dual to discrete
models with global subsystem symmetries where the symme-
try operations act on a subextensive set of degrees of freedom.

The discrete models discussed above have motivated
long-wavelength descriptions (field-theoretic descriptions) of
topologically ordered and fracton phases. As alluded to above,
topological field theories are used to describe topologically
ordered phases. For example, Chern-Simons theories with
a suitably chosen K matrix, a topological field theory, can
describe topologically ordered phases of the toric code [10]
and the double-semion model [15]. In such theories, the
gauge fields are assigned to every space-time point of the
manifold of interest, and the action depends on these gauge
fields only via a topological invariant associated with these
fields. The field theoretical description of fracton phases have
more interesting underpinnings. Anticipated by work aimed
at providing infrared descriptions of quantum spin liquids
[35,36], Refs. [37,38] elaborated that higher rank tensor gauge
theories offer themselves as natural candidates for the long-
wavelength descriptions of fracton phases. Generalizations to
include extended charges with different types of mobility re-
strictions have also been explored [39,40], and general fracton
gauge principles have been formulated and studied [41,42].
Remarkably, some of these higher rank tensor gauge theories
have been shown to be dual [43-46] to many well-known
and well-studied [47-50] systems. Field theories related to
the discrete fracton models discussed above have also been
postulated [51-54].

As is clear from the discussion above, key advances have
been made possible by the formulation of discrete models.
These discrete models are typically defined on lattices that
tessellate a manifold. For example, the square lattice with

periodic boundary conditions tessellates the two-torus. The
Chern-Simons theory [8] that describes the toric code uses
topological data associated with U(1) gauge fields that are
attached at points of the two-torus (and, of course, the time
coordinate), i.e., the manifold that the discrete square lattice
tessellates. Our point here is that most of the discrete models
defined and studied are on lattices that tessellate a manifold,
and such models often enjoy the advantage of a universal long-
wavelength field theoretical description using fields attached
to points on that manifold. In other words, much of the current
focus has been on systems defined on a manifold arena.

The creation, manipulation, and study of many-body quan-
tum systems have seen spectacular advances in the last decade
(see, for example, Ref. [55] and references in that issue). A
number of platforms offer many opportunities to engineer a
variety of discrete models, for example, circuit quantum elec-
trodynamics [56] can be used to create topological codes and
its excitations (see, for example, Refs. [57-59]). In this con-
text, the unprecedented ability to control individual quantum
degrees of freedom raises the possibility of exploring discrete
quantum systems that are built on nonmanifold arenas. In
other words, systems whose degrees of freedom are placed
in a fashion different from the tessellation of a manifold. The
main thrust of this paper is to explore this direction, i.e., to
study many-body quantum systems that are defined on an
arena that is not a discretization of a manifold.

At first glance, the problem statement seems unwieldy as
there is a myriad of nonmanifold structures on which quantum
models can be defined. Here we focus on those discrete arenas
that are templated on tree graphs [60], which we dub the
arboreal arena. Further, we focus on arenas that allow us to
keep a notion of translational invariance and this restriction
gives us a well-defined class of tree graphs that provide us the
templates for the construction of the arboreal arena studied
here. The key tree graph that we consider in our work is the
k-Bethe lattice, denoted as B(k), which is an infinite graph
where every vertex (or site) has k links/edges (each link,
as usual, is defined by two graph vertices/sites) attached to
it. A generalized tree graph, called a hypertree graph [60],
also plays a crucial role in our discussion. A hypertree is
a tree graph whose links, called hyperlinks, have an arbi-
trary number of sites attached to it. This leads naturally to
a (k, n)-hyper-Bethe lattice denoted as HB(k, n), where each
vertex(site) has k hyperlinks attached and each hyperlink has
n vertices(sites) that define it. Next, we use a generalized
notion of graph Cartesian product, denoted by [, to construct
higher dimensional arboreal arenas, for example, B(3)JB(2)
is a two-dimensional arboreal arena. To explore the physics
of models defined on these arboreal arenas, we also define
finite arboreal arenas made from the ones defined above by
the introduction of surfaces (of course, the sites/links on these
surfaces will have a different environment than than the bulk,
breaking the notion of translational symmetry in a controlled
fashion).

Physics in arenas based on tree graphs have been studied
in the past in various contexts, including classical statistical
mechanics [61,62], physics of interacting fermions [63,64],
etc. to state a few, where, oftentimes, exact solutions are pos-
sible in the limit of large coordination number (for example,
B(k), for large k). Our motivation is to use tree graphs from
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a different perspective—to create connectivities of underlying
microscopic degrees of freedom (qubits) that produce differ-
ent and varied patterns of quantum entanglement which could
possibly offer unqiue opportunities, for example, in quantum
information processing.

Following the definition of the arboreal arenas, we de-
fine and study a variety of models on them. In particular,
we provide natural definitions of the Z,-gauge theory, gen-
eralized quantum Ising models (GQIMs) where interactions
are defined on hyperlinks, the X-cube model and related X-
cube gauge theory on arboreal arenas. We summarize here
what we believe are intriguing and exciting results. First,
we find that even the simple Z, gauge theory on a two-
dimensional arboreal arena is fractonic—isolated monopole
excitations are fully immobile. Second, the X-cube model on
a generic three-dimensional arboreal arena is fully fractonic
in the magnetic sector; no multipole of magnetic excitation is
mobile. Third, the gauge theories (both Z, and X-cube gauge
theories) have deconfined and confined phases at zero temper-
ature that are generically separated by a first-order transition
upon tuning of the electric coupling constant (second-order
transitions are also possible). Fourth, we demonstrate a rich
class of dualities between the models defined on an ar-
boreal arena. An illustration: We show that the Z, gauge
theory defined on B(k;)[OB(k,) is dual to a GQIM defined
on HB(2, k) )TJHB(2, k) where the latter model possesses
subsystem symmetries! These dualities are natural gener-
alizations of the dualities formulated in Ref. [27] to the
arboreal arena. Finally, we show a rather intriguing and
aesthetically appealing result. We show that there are only
three distinct classes of arboreal toric code orders on the
two-dimensional arboreal arenas, those that correspond to
B(2)OB(2), B(k)UB(2), k > 2, and B(k;)UIB(k2), k1, ko > 2.
This implies, for example, that the ground state of Z, gauge
theory defined on B(3)LUB(3) in its deconfined phase, can be
transformed to that of B(k;)UB(k,), forany k; > 3, k, > 3 by
a finite depth unitary quantum circuit! Similarly, there are four
classes of X-cube fracton orders on three-dimensional arbo-
real arenas viz., those that correspond to B(2)LIB(2)LIB(2),
B(k)OB(2)UB(2), k > 2, and B(k;)OB(k)UB(2), ki, ky >
2, and B(k])DB(kz)DB(k3), k] , kg, k3 > 2.

In the next section, we present definitions of the various
arboreal arena. This is followed by a discussion of arboreal
Z, gauge theory in Sec. III. The X-cube model and related
gauge theory in the arboreal setting are discussed in Sec. IV.
Arboreal topological and fracton orders and their classifica-
tion are discussed in Sec V. Section VI concludes the paper
with a discussion of arboreal quantum phases and possible
applications, and directions of future research.

II. THE ARBOREAL ARENA

We adopt and adapt notions from graph theory to define
arboreal arenas. A graph G = {S, L} is a set of vertices S
and a set of edges £ that define connections between the
vertices. In our discussion, we use the term sites synonymous
with vertices and links also mean edges. Two sites are called
adjacent if there is a link between them; we sometimes call
adjacent sites neighbors. We consider only graphs whose links
connect distinct sites, i.e., there are no links that start and end
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FIG. 1. Bethe lattice B(k) with k = 3. The tree is infinite, as
indicated by the radial black ellipses. The numbers indicate the
generation g; all the sites on the same dashed circles belong to the
same generation.

at the same site. However, links that connect to only a single
site are allowed. A path on graph G is defined as an ordered
(possibly repeating) list of sites such that adjacent elements in
the ordered list are neighbors in G. A loop is a path that starts
and ends at the same site such that no other site is present
more than once. A tree, denoted by T, is a graph that does not
have any loops.

We focus on tree graphs that possess additional properties,
in particular, a notion of translational symmetry (we avoid a
formal definition of this). Roughly, this means that every site
in the graph has an identical neighborhood. A natural example
of such a tree is a Bethe lattice (referred to as a regular tree
in the mathematics literature). We introduce the notion of a
k-Bethe lattice denoted as B(k) where each site is attached to k
links. Translational symmetry then necessitates that this graph
is infinite (see Fig. 1). We can impose a coordinate system on
B(k) by introducing the notion of generations. Pick any site
and declare it to be the generation g = 0. All sites linked to the
site at generation g = 0 are said to be in generation g = 1, and
similarly for any other generation g. For any generation g > 0,
there are k(k — 1)¢~! sites which can be suitably numbered
using m (see Fig. 1) where m =0, ..., k(k — 1)*~' — 1. The
coordinate of any site in B(k) is then given by (g, m).

An important extension of the tree graph that plays a
prominent role in our paper is the notion of a hypertree.
Hypergraphs [60] are graphs where the links can contain any
number of vertices. The desideratum of translation symmetry
again requires that all the links contain the same number of
vertices (say n). These ideas allow us to generalize B(k) to
a hypertree HB(k, n), called a (k, n)-hyper Bethe lattice. A
general way of stating the no-loop condition for hypertrees
is that there exists no finite subset of links such that every
vertex that touches a link of this subset touches an even num-
ber of distinct links of the subset. Figure 2 shows HB(2, 3)
and HB(3, 3). Again, we can set up a coordinate system on
this hyper-Bethe lattice using the notion of generations (see
Fig. 2). Note that HB(k, 2) is same as B(k).
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FIG. 2. Hyper-Bethe lattices HB(2, 3), and HB(3, 3). Hypertrees
have generalized links (indicated by shaded triangles) which touch
more than two sites (indicated by blue dots). As in Fig. 1, the
numbers indicate the generation to which the sites belongs.

To understand the phases that appear on these arboreal
arena, we also find it useful to break translational symmetry
by introducing surfaces. A convenient way to achieve this goal
is by truncating a HB(k, n) at some generation M (typically a
large number), i.e., all sites up to and including generation M
are kept. We call such hypertrees hyper-Cayley trees. A site
of a hyper-Cayley tree is called an interior site if all the k
links connected to it are present in the graph, and is termed a
boundary site if the number of links connected to the site is
less than k. Similarly, a hyperlink is called an interior link if
there are n sites connected to it, and a boundary hyperlink
otherwise. It is useful to define two types of hyper-Cayley
trees. If the links connecting the sites of the Mth generation
sites to the M + 1-generation sites are kept in the graph, then
these trees are termed rough hyper-Cayley trees and denoted
by RHC(k, n)y,. In RHC(k, n)yy, all the sites are interior sites,
while the last set of links (connecting Mth generation sites
to M + 1th generation sites) are boundary links (other links
are interior links). If these boundary links are not included,

then they are called smooth hyper-Cayley trees and denoted as
SHC(k, n)y,. In SHC(k, n)y,, all links are interior links, while
the sites of generation M are boundary sites (other sites are
interior sites). For n = 2, RHC(k, 2),, and SHC(k, 2),, are
denoted, respectively, as RC(k)y, and SC(k)y, i.e., rough and
smooth Cayley trees.

Another important class of finite trees are useful for the
discussion of arboreal quantum phases (especially in the
construction of dual models). Choose a link in the infi-
nite hyper-Bethe lattice HB(k, n) to be the central link, and
declare its center as the origin. The n vertices touching
this link are said to be at generation 1. The vertices ad-
jacent to these links are of generation 2, and so on. This
defines a unique coordinate system for the hyper-Bethe lat-
tice. Now, as above, we can truncate the lattice at some
generation M. For reasons that will become apparent in
Sec. IILF, we will call this lattice a dual smooth hyper-Cayley
tree (SHC(k, n)y). We also define dual rough hyper-Cayley

trees (RHC(k, n)y) as the lattice containing the sites up to
generation M and keeping the boundary links that connect
generation M to generation M + 1 in this coordinate system.
The (hyper)tree structures considered above, summarized in
Table I, act as the building blocking for erecting arboreal
arenas. Higher dimensional arboreal arenas can also be con-
structed in a natural fashion by using a generalization of a
Cartesian product, called ] for any two hypergraphs [60].
Let HT; and HT, be two hypertrees. Then, HT;[JHT, is
also a hypergraph with sites that are the collection of or-
dered pairs of sites (u, v) where u is in HT; and v is in
HT5. A collection of [ vertices {(u;, vy), (U2, v2), ..., (u;, v;)}
represent a hyperedge of HT;JHT, if and only if, one
of the two conditions are satisfied. Either, uj =u, =... =
w; and (v, vp,...,v) is a hyperlink in HT,, or v, =
vp=...=vy and (uj,uy,...,u;) is a hyperlink in HT;.
Indeed, the Ul-product HB(k;, ny)UHB(ky, ny) will result
in two-dimensional arboreal arenas with a hyperplaque-
tte defined by n; x ny sites with n;+n, hyperedges. The
O product naturally generalizes to arbitrary dimensions d,
for HT{OOHT, ... OJHT, is naturally defined recursively ob-
taining a higher dimensional hypertree. As an example,
OYHB(k, n) has d-hypercubes with n sites and dn~'-
hyperedges. We shall term HB(k, 2)[IHB(2, 2) = B(k)OB(2)
as an extruded k tree.

It should be pointed out that the use of the term dimen-
sion here refers to the number of hypertrees used in the
graph cartesian product [J to construct the arboreal arena.
Most importantly, the word dimension does not refer to the
dimension of the underlying space in which these trees can
be embedded. For example, B(2)[1B(2) can be embedded in
a two-dimensional space, while B(3)(JB(2) cannot be em-
bedded in a two-dimensional Cartesian space and requires a
three-dimensional Cartesian space. In our terminology, both
B(2)0B(2) and B(3)IB(2) are two-dimensional arboreal are-
nas.

A key point to be noted is that aside from whenever
both k and n are not equal to 2 (we exclusively apply this
condition when we refer to an arboreal arena), the HB(k, n)
does not represent a tessellation of a manifold, in the sense
a manifold is covered, for example, by simplices/cells [65].
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TABLE I. Notation, nomenclature, and description of the tree graphs used to construct arboreal arenas.

Notation Name Description
B(k) k-Bethe lattice Infinite translation invariant lattice with k links to each site (see Fig. 1)
HB(k, n) (k, n) hyper-Bethe lattice Infinite translation invariant lattice with k generalized links to each site, and each
generalized link containing # sites. (see Fig. 2)
SHC(k, n)y (k, n)y hyper-Cayley tree Hyper-Cayley tree with M generations and k generalized links to each site except
(smooth boundaries) at boundary sites, which have only one link to it. All links contain 7 sites.
RHC(k, n)y (k, n)y hyper-Cayley tree Hyper-Cayley tree with M generations and k generalized links to every site. All
(rough boundaries) links except the ones emanating out of the boundary sites (boundary links) contain
n sites, and the boundary links contain only one site.
SfI-\I/C(k, n)y (k, n)y dual hyper-Cayley Hyper-Cayley tree with an edge at the origin and M generations and k generalized
tree (smooth boundaries) links to each site except at boundary sites, which have only one link to it. All links
contain 7 sites.
li?—l_é(k, n)y (k, n)y dual hyper-Cayley Hyper-Cayley tree with a generalized edge at the origin and M generations and k

tree (rough boundaries)

generalized links to every site. All (nonboundary) links contain 7 sites and the

boundary links contain only one site.

These HB(k, n) with k # 2 or n # 2 offer a natural scaffold to
construct nonmanifold arenas to explore possible new physics
in them. Additionally, our construction has the advantage that
O9B(2) indeed is the d-dimensional cubic lattice and so the
physics of models defined on manifold arenas can be accessed
in the same framework.

III. ARBOREAL GAUGE THEORIES
A. Z, gauge theories

In this section, we will construct and study gauge theories
on multidimensional arboreal arenas. We will focus on Z,
gauge structure. We begin with the two-dimensional arbo-
real arena: B(k;)UUB(ky) with k; > 2. The coordinate of any
site s on this arena is given by ((gi,m;), (g2, m»)) where
gi € {0,1,2,...}, m[:0,g[:O or m; € {0,1,...,](,’(](,'—
1)%~1}. The links are defined by unordered pairs of
sites such as [((g1,m1), (g2, m2)), ((g1,m1), (g2 + 1, m}))]
or [((g1,m1), (g2, m2)), (g1 + 1, m}), (g2, m2))]. On each of
these links, labeled by /1, a qubit (spanned by | 1); and | |);)
is placed, and the tensor product of all these two-dimensional
vector spaces define the full Hilbert space of our system
(which could be modified by Gauss’s law, see below).

The Hamiltonian of the system is (see Fig. 3)

H:—JZBp—hZX,, 1)
V4 1

where X; is the Pauli operator (other operator of interest
is Z;) on link I, p stands for a plaquette which consists
of four links denoted by I/p [((g1,m), (g2, m2)), (g1 +
1,m}), (g2,my))] (link along the “l-direction”), [((g1 +
1, m)), (g2, m2)), ((g1 + 1, m)), (g2 + 1, m)))] (link along the
“2-direction”), [((g1, m1), (g2 + 1, m})), ((g1 + 1, m}), (g2 +

I, mé))]’ and [((gh ml)v (g27 m2))7 ((glv ml)s (g2 + 1, m’z))],
such that

B, =12 5)

1/p

Throughout the paper, we use the notation a/b to mean that
all the a that touch b; here, for example, I/p means the set of
all links 7 that bound the plaquette p.

The system is invariant to a local (gauge) transformation
defined at any site s by

Ay =TT % (3)

I/s

where /s are the links that touch the site s. Of course, A;
commutes with B, for all s, p. The question we pose is the
nature of the ground state as a function of //J.

FIG. 3. Illustrating the definition of X;, B, and A used the con-
struction of the Z, gauge theory. Qubits (small black circles) placed
on the links (thin black lines) are labeled by /, and X; is the Pauli X
operator at link /. The term B,, is defined using the plaquette in light
red where the product in Eq. (2) are over the four qubits (marked in
red) that are on the links that define the plaquette. By the same token,
the term Ay at site s of the arboreal lattice is defined using the product
over the blue qubits [see Eq. (3)] connected to the site by the thick
cyan lines.
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B. Ground state and excitations

Taking J > 0, we see that a ground state of the system is
| ) =11, | 1); such that B, = 1 for all p. Excitations above
the ground state are gapped; indeed, flipping the spin on the
link along the 1-direction, e.g., [((g1,m), (g2, m2)), ((g1 +
1, m}), (g2, m))], flips k, plaquettes with an energy penalty of
2kyJ. Similarly, flipping a spin on a link along the 2-direction
produces k; plaquettes with B, = —1 and an energy cost of
2k1J.

The ground state for small i, h < J can be obtained by
noting the gapped nature of the system at 7 = (0. We see,
using standard perturbation theory, that the effective toric code
Hamiltonian is

Hyr=—JY B, — K> A, )
P s
where
hk1+k2
K = C(ki, kz)m &)

and C(ky, ky) is a positive number. We thus see that the ground
state for h < J requires Ay = 1, leading to

IGS, h < J) = [ [ +A0I ), (6)

quite similar to what is found in the usual toric code [10].
Although the ground state bears a strong resemblance to that
found in the usual toric code, there is more interesting physics
in the arboreal arena.

Consider the excitations in the system. First, we have the
electric charges of the gauge theory, described by states where
Ay = —1. Just as in the toric code, a pair of these charges
appear at the sites connected by the link / when we operate
Z; on the ground state, with an energy cost of 4 K. Remark-
ably, these two charges can be moved away” from each other
arbitrarily far away” by successive operation of Z opera-
tors, while keeping the energy fixed. Just as the toric code,
the arboreal Z, gauge theory is thus electrically deconfined
when h < J.

The crucial difference with the usual toric code is in the
magnetic plaquette excitations or monopoles. Action of X; on
the link 7 on the ground state produces k; flipped plaquettes
with an energy cost of 2k;J if the link 7 is in the 2-direction,
and k, flipped plaquettes with energy cost 2k,J if the link
I is in the 1-direction. The difference with the toric code is
most easily seen when k, > 2. The set of k;(k,) monopoles
in the arboreal arena cannot be separated from each other
while staying in the energy degenerate subspace, unlike in
the usual two-dimensional toric code where the monopoles
can be freely separated arbitrarily apart without recourse to
any further excited states. One might suspect that the situation
in the arboreal arena is akin to a toric code on a three-
dimensional cubic lattice [66], but there is, again, a crucial
difference. One can produce an isolated monopole (plaque-
tte excitation) with energy 2J on the infinite arboreal arena,
unlike in the three-dimensional toric code where plaquette
excitations are necessarily associated with looplike entities.
Stated in other words, the plaquette excitations are pointlike
excitations in the two-dimensional arboreal arena (hence, nat-
urally called monopoles), while the plaquette excitations of

FIG. 4. An isolated monopole excitation with energy 2J created
in an arboreal arena B(3)[JB(2) created from the state | {I'). The
links with thick dark blue lines have flipped spins. The monopole
in this case is a lineon. In the general B(k;)OB(ky) (ky, ky > 2)
arena for which an illustration is difficult, it is immobile, i.e.,
a fracton.

the three-dimensional toric code are looplike (not point) exci-
tations. In particular, an isolated monopole with energy 2J can
be created in an arboreal arena. This is readily demonstrated
by an explicit construction. The state (see Fig. 4)

0o (ki—1)¢
M) = X0,0) l_[ l_[ Xigmy |1GS, h < J),  (7)
g=1 mg=0
where
I(g, mg)
_ {[((0, 0), (0, 0)), ((0,0), (1, 0))], g=0,m;=0
[((g, mg), (0,0)), ((g, mg), (1,0))], g#0
3

contains an isolated monopole on the plaquette de-
fined by the sites ((0,0), (0, 0)), ((0,0), (1,0)), ((1, k; —
1), (1,0)), (1, k; — 1), (0,0)). A key observation that fol-
lows is that if k, > 2, then the isolated monopole is completely
immobile, since attempts to move it by local spin flips neces-
sarily produces additional monopoles. However, when k, = 2,
the monopole is mobile solely along the 2-direction as shown
in Fig. 4. When k, > 2, the monopole is, thus, an immobile
fracton, while for k, = 2 (extruded tree) the monopole is
lineon as it can move freely along the 2-direction. We thus
arrive at the inevitable conclusion that even the simplest gauge
theory on the arboreal arena is magnetically fractonic!.

It is evident that arboreal areas can offer advantages of
the toric code on a square lattice, where both electric and
magnetic charges are fully mobile. We also note that we can
achieve fractonicity of both electric and magnetic excitations
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FIG. 5. Boundary operators and global Wilson lines in a finite
arboreal arena. The purple solid line runs over the links such that the
product of Z operators on these links defines a boundary operator.
The orange solid line shows a global Wilson line (again a product of
Z operators of all the links that make up the orange line).

if we construct the two-dimensional arboreal arena using hy-
pertrees, and we leave this direction for future work.

C. Ground-state degeneracy

It is natural to enquire if the unique aspects of gauge theory
on arboreal arenas uncovered above manifest in other proper-
ties such as the ground state degeneracy. This is best studied
focusing on two-dimensional Cayley trees. The ground state
degeneracy, and associated topological order, can be studied
using finite systems with smooth and rough boundaries [67].
An important point to be noted in the construction of gauge
theory on finite arboreal arenas is that, in addition to the B,
terms that are associated naturally to plaquettes that arise
from the Cartesian product of graphs, there are additional
gauge-invariant local operators that arise at the boundary. By

J

kK 2Ms + D) (ky — DM — ki (k) — DM 4+ 2M, + 1) — 4M,

local operators, we here mean the interactions that are defined
on adjacent links (which share a site) such that the number
of links are not more than four (the number of links that
defines a plaquette). An instance of the boundary operator is
illustrated in Fig. 5. One can have gauge-invariant boundary
operators that are products of smaller boundary operators that
are also gauge invariant. We keep only those operators which
cannot be written as a product of other smaller gauge invariant
operators. All such independent boundary operators that arise
in the case of the rough boundaries are collectively denoted
by Hj,

H=-JY B,—h) X/ +H,, )
V4 1

commuting with the Hamiltonian.

We will obtain the ground state degeneracies D¢ of two-
dimensional Cayley trees by considering four cases. First, we
consider completely smooth two-dimensional trees of the type
SC(k1)u,ISC(2)p1,, which is a smooth extruded Cayley tree.
Here the number of qubits are

No(SC(k)ar, LISC2)u,)
k(G = DM Mok — DM = 2) — 1) —4M,

ky —2
(10)
The number of conserved plaquette operators B, is
2k My ((ky — DM — 1)
Np(SC(ki )y, ISC2)y,) = ———- (i

kj —2
and the number of conserved charges are
M, + (ki (ki — DM = 2)

NA(SC(k1 )3, OSC(2)s,) = R

12)

There are no constraints on the B, but [[ A, = 1 when the
boundaries are smooth. Further, there are no boundary opera-
tors, i.e., Hy = 0. In this smooth two-dimensional Cayley tree,
therefore, we see that the ground state is nondegenerate.

Next, we consider two-dimensional Cayley trees
with rough boundaries. The first case we consider is
RC(k1)m,ISC(2)p,, a rough extruded tree. The number
of qubits in this case is

NoRC(k1)y,ISC2)p,) =

and the number of conserved plaquettes B), is

2k Mo ((ky — DM — 1)
ki —2 ’
(14)

No(RC(ki)y,dSC2)p,) =

while the number of conserved charges is the same as in
Eq. (12). The new features here, as mentioned above, are the
boundary terms Hj; we keep a number of additional boundary-
independent terms in the Hamiltonian that are gauge invariant
and describe the interactions of four (or less) adjacent links.

2 13)

[
The number of such terms in Hj is
Ny(RC (k1 )y, OSC2)u,) = (ky — ki ks — D172, (15)

each of which commutes with the Hamiltonian Eq. (9). There
are no global constraints on the plaquettes, charges, or the
boundary operators. We thus obtain the ground state degen-
eracy Dg,

h’lzDG = NQ - (NB +Na +NA)
=ky(ky — DH"M=2 — 1, (16)
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which results in a degeneracy of the ground state whose loga-
rithm scales as the exponential of the system size M, ! What is
the origin of such large degeneracies? These degeneracies can
be traced to the global Wilson line operators,

I

WL, 1) =[], (17)

I=I,

where the index / runs over links that provide the shortest
path from boundary link 7, to 1, (see Fig. 5). It must be noted
that these Wilson lines are not all of the same length. The
shortest of them will be six links long, while the longest of
them will contain links of the order M. Due to this rea-
son, the degeneracy of the ground state is not topologically
protected—perturbations that span over six links can mix
states with distinct values of the short Wilson lines. However,
if the perturbations are short ranged, spanning at most over

J

NoRC(k1)y,LIRC(2)p,) =

ki (ki My + 1) + Dk = DM = 2M — 1) = 4(Ms + 1)

L <« M, links, a large number of these degenerate states can-
not be perturbed, and degeneracy survives. This is akin to the
topological protection of the ground state degeneracy in the
toric code giving rise to the notion of topological order [5].
Taking a cue from this, we term the degeneracy induced by the
large number of global Wilson lines to be arboreal topological
order. This notion, along with a fractonic monopole excitation
and a fully mobile charge excitation, provide a unique form of
quantum matter in the arboreal arena.

Most interestingly, the large degeneracy discussed above
is absent if the two-dimensional Cayley tree of the type
SC(k1)u,IRC(2)y, is considered (it be can shown that the
degeneracy in this case is 2). This observation further cor-
roborates in the importance of the tree structure (k; > 2) in
providing for the large number of global Wilson lines.

We now consider the last type of extruded tree
RC(k1)s, ORC(2)p,, where all boundaries are rough. Here the
number of qubits are

The number of conserved plaquettes is

2k (M + D((ky — DM 1)
ky —2

Np(RC(k1)y, LIRC(2)p1,) =

’

19)

along with number charges being given [Eq. (12)]. There are
no independent boundary terms when both Cayley trees are
rough. Notably, there are constraints on B),. Indeed, we have

[]B =1 (20)

peWS

where WP is a Wilson surface whose 1-direction is the global
Wilson line and the 2-direction is along the 1D chain forming
the RC(2)y, Cayley tree. The total number of such constraints
are

Ne(RC(ki )y, ORC)y,) = ki (ky — DM — 1. 2

All these considerations result in the ground state degeneracy
given by

In,Dg = Ny — (Ng + Ny — N¢) = 0. 22)

The ground state of this system on the arboreal arena is non-
degenerate, a feature that it shares with a fully rough square
lattice toric code [67] defined by RC(2)y, IRC(2)sy,, which
is also nondegenerate.

We can extend these considerations to generic two-
dimensional Cayley lattices, i.e., with ki, k; > 2. For
SC(k1)p, ISC(k2)p,, we find that the ground state is nonde-
generate. For RC(k )y, ISC(k2)p,, the ground state degen-
eracy In,Dg(RC(ky )y, OSC(ka)as,) ~ (ki — 1)YM172) with an
analogous result for the smooth-rough case. For the rough-
rough case, we, again, obtain a nondegenerate ground state.

2 (18)

D. Properties of excitations

As noted above, the excitations above the gapped ground
state in the deconfined phase (h <« J) of the gauge theory
are the deconfined electric charges and the fractonic mag-
netic monopoles. We now discuss the generalized braiding
properties of these excitations. Consider an isolated monopole
[as discussed near equation Eq. (7)]. Consider any surface S
(made up of plaquettes) containing this monopole plaquette
such that a site at the boundary of this surface has an electric
charge. We consider this surface to be simply connected in that
it has no holes, etc. This charge can be transported around the
monopole plaquette by the operator

T.=[]z (23)

IedS

such that the set of links on the boundary of S from a closed
loop. The presence of the monopole is detected by the condi-
tion that 7, = —1, i.e., a deconfined electric charge will pick
up an Aharonov-Bohm phase of 7 when transported around a
magnetic monopole. This is most easily seen by using Fig. 6,
where T, the product over the links on the boundary 9§ (cyan
line in Fig. 6), is equal to the product of all B, of the plaquettes
p (shaded plaquettes enclosed by the cyan line in Fig. 6),
which is clearly —1 as the plaquette shaded in red with the
monopole alone contributes a —1.

Curiously, the process of transporting a monopole around
an electric charge is not so straightforward on an arboreal
arena. If, for example, the process used for the electric charge
is applied with the role of the electric and magnetic charges
reversed and a transport operator of the form 7, = [, 55 Xi
(where I are now links not in included in the surface S, but
attached to the boundary vertices), 7,,|¥) will not, in general,
restore the state back to |¥) which describes the state with
the electric charge. To alleviate this problem, we consider a
generalized braiding process by the following construction.
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FIG. 6. Mutual statistics of an electric charge and magnetic
monopole. S is a surface made of plaquettes (shown with a yellow
hue) containing the monopole shown in red. The boundary 95 of S
is shown by cyan links. The blue point is the location of the electric
charge, which is transported around the boundary S by the operator
defined in Eq. (23).

Consider an electric charge located at a site s, (i.e., A;, = —1).
Now consider a volume V' that consists of this site. The vol-
ume V consists of a set of sites and links [i.e., is a subgraph of
arboreal arena B(k; )UB(k;)] such that every two sites are path
connected, i.e., the volume is simply connected. Further, for
any link present in V, both sites connected to it are present in
V. Asite in volume V is called an interior point if all the links
incident on the site are present in the subgraph V. Thus, the
boundary of V consists of vertices v in V such that some of the
links of these vertices are not included in V. The links of the
boundary points not included in V are the boundary links and
denoted by L£(dV). The volume V also does not contain any
holes. This is ensured by the condition that there is a boundary
path in connecting any two boundary points which contain
only sites that are boundary sites. Now consider the operator

.= [[ x. (24)

TeL(dV)

which acts on the boundary links of V (see Fig. 7). Al-
though this operator does not enjoy the direct interpretation
of the transport operators of monopole charges, it detects
the presence of electric charges in volume V. Indeed, for
the state |W) with the electric charge at s, discussed above,
T,,|V) = —|W). Further, this operator generalizes to any num-
ber of charges, as is immediately evident from the fact that
T, = ]_[SE‘/ A;. As a concrete example of this, consider Z,
gauge theory defined on B(k;)[IB(k,) with an electric charge
present at the sites ((0,0),(0,0)). Now consider the subgraph
V = SC(k1),SC(k2)g,, which is made of Cayley trees with
G and G, generations. The boundary links of V will now
be those links that are present in RC(k;)g,ORC(k2)g, but
not present in V. Indeed, it is immediate that 7, = —1, i.e.,
this operator detects the presence of the electric charge at
((0,0),(0,0)). This is evident from the fact that 7, is equal to
the product of all A;, where s are the sites in volume V, and
only A;, = —1.

FIG. 7. Detecting the presence of an electric charge. The electric
charge is located at the site s,, i.e., A;, = —1 as indicated by the blue
dot. This site is enclosed by a volume V inside the cyan lines, i.e., all
sites and links enclosed by the cyan lines. The boundary links of this
volume £(dV') are shown in orange and are used in Eq. (24).

E. Ground-state phases

Having established the state in the regime & < J, we in-
vestigate the opposite regime where h > J. For J = 0, the
state is given by a product state | =) =[], | —);, where
X;| —); = | =);. The state is nondegenerate and gapped with
a gap of order h. For finite J (with h/J > 1), we see that
plaquette terms only produce a change of the ground state
energy of order J?/(8h) and the state | =) continues to be the
ground state. Further, the electric charges are confined—two
adjacent charges can be separated over L links only via an
energy penalty of order 2Lh.

These observations raise the natural question apropos the
nature of quantum transition from the deconfined arboreal
ordered state to a confined state up on the tuning of 4. We
explore this question using a variational approach aimed at
understanding the overall physics [68-70]. We work in the
sector of the Hilbert space that imposes the Gauss’s law,
A; = 1. The (unnormalized) wave function we use is

IGS(b)) = l—[(1+be) [ =), (25)
p

where b is a real variational parameter and | =) =
I %ﬂ Mr+14)). The ground state occurs when b =
bgs at which (GS(D)|H|GS(b))/(GS(b)|GS(b)) is minimized.
This variational state recovers the exact ground state for 7 <
J when bgs = 1, and the ground state | =) for & > J when
bgs = 0. Any nonanalytic behavior of bgs = 0 as a function
of h/J is an indicator of a phase transition.

The details of the variational calculations are presented
in Supplemental Material S1 [71]. Here we describe the key
results. First, we note that the variational state Eq. (25) re-
covers the continuous phase transition of the Z,-gauge theory
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FIG. 8. Plot of bgs as a function of i/J for a Z, gauge theory
Eq. (9) defined on SC(k)y[OSC(2)y,—extruded k-Cayley trees with
smooth-smooth boundaries with M, M, large. There is no quantum

phase transition and topological order does not persist at finite / for
any k > 3.

on the square lattice at 7, = 0.25J (to be compared with the
exact result of 0.22J (cf. Ref. [72]), albeit with Landau critical
exponents.

The physics in the arboreal arena is richer. Starting with
extruded trees, we see that boundary conditions of the tree
play a crucial role in determining the phases of the gauge
theory on the arboreal arena. For SC(k)yJSC(2)y,, we find
that in the limit of large M, M,, the state changes smoothly
up on the tuning of i/J (see Fig. 8). On the other hand, for
RC(k)p,OSC(2)y,, the system does encounter a phase tran-
sition (Fig. 9). Quite interestingly, the nature phase transition
found in this variational description depends on the value of
k. For k =3 and k = 4, the transition is first order, while
for k > 5, the transition is continuous. For k = 3, the critical
value h. ~ 0.418625J and for k = 4, h. ~ 0.49295J. For k >
5, the continuous quantum phase transition occurs at h, = J/2
as can be obtained from analytical considerations. The same
results are obtained for fully rough extruded k-Cayley trees
[RC(k)uIRC(2)as, 1.

Considering more general two-dimensional arboreal lat-
tices with ki, k; > 2, we find that both SC(k; )y, ISC(k2)r,
and RC(k; )y, OSC(kz)y, do not undergo a phase transition
with increasing 4, i.e., there is no deconfined phase in these

1.0

0.8 — k=3
— k=4

0.6 — k=5
— k=6

0.4f — k=10
— k=100

0.2f

. . . ‘ C b
0.2 04 06 0.8 10

FIG. 9. Plot of bgs as a function of i/J for a Z, gauge theory
Eq. (9) defined on RC(k)yISC(2)y,—extruded k-Cayley trees with
rough-smooth boundaries (M, M, large). There is a deconfined phase
for h < h. and a confined phase for 4 > h.. The transition is first
order for k = 3 (h, = 0.42J) and k = 4 (h. = 0.49J). For all k > 5,
a continuous transition from the deconfined to the confined phase
occurs at h, = J/2. The same results are obtained for fully rough
trees of the type RC(k)y[IRC(2)yy,.

H N W A~ U1 O N 0 ©

k1

FIG. 10. Critical value k. of & for general finite arboreal lattices
RC(k1)p, RC(k2 )ps, (ki, ko > 2, My, M, large) with rough bound-
aries. There is a deconfined phase for & < h. and a confined phase
for h > h,.

systems. The rough-rough Cayley trees RC(k; )y, ORC(k2) s,
on the other hand, have a first-order transition up on increase
of h. In these systems, there is a deconfined phase for & < h,
and a confined phase for & > h.. The dependence of /. on
k; and k; is plotted in Fig. 10. For k; = ky, h. increases
monotonically and approximately linearly with increasing k;
(h, =~ 0.5k, for large k;). On the other hand, keeping k; fixed,
and increasing k;, h. saturates to a value determined by the
fixed value of k.

F. Dual models

The results discussed above raise a set intriguing questions
pertaining to the crucial role played by the boundary condi-
tions on the phases obtained in the arboreal arena. While this
may not be unexpected considering the fact that the number
of boundary degrees of freedom of the arboreal arena are of
the same order as the number of bulk degrees of freedom,
significant insights are obtained by constructing and studying
dual models.

1. Arboreal Kramers-Wannier duality

Before we discuss models dual to gauge theories defined
in general arboreal arenas, we note that many of the dualities
that we uncover can be elucidated using a basic duality in
a hyper-Bethe lattice which we dub the arboreal Kramers-
Wannier duality. Consider a GQIM defined on a Hilbert space
of qubits placed on the sites of a hypertree HB(k, n) with the
Hamiltonian

H=—JZ ]_[zs —hZXS. (26)

I s/1 s

Here [ labels the links and s the sites, respectively, of
HB(k, n). The first term defines the generalized Ising inter-
action on the hyperlink / that is a product of Z operators on
n sites that belong to hyperlink /. Interestingly, this GQIM
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FIG. 11. The subsystem symmetry operators for the GQIM are :’ A » d S “
given by applying X on the highlighted (red) spins as shown. Note Py 4 B s 4
that the symmetry operators for GQIM on HB(2, 3) and HB(3, 3) 2 N W’ ol 'y
live on B(2) and B(3), respectively. — 0N | N i
has a subsystem symmetry for all n > 2, in that flipping spins o' ¥V V¥V o<tt
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the Hamiltonian H [Eq. (26)] invariant. There are many such vz / y \ \ e
distinct subsets of sites, and these generate all the subsystem ‘s s . 1 ! . << v L 4
symmetries. << [ o o 1 N ¥

To find a dual, we introduce a second set of qubits located

ﬁ..““‘ﬂ

at the centers of the links I, and define operators Z; and X;

that act on them (see Fig. 12). We then make the following

identifications:

X] = l_[Zs,

s/l

l_[Z[ EXS,

1/s

that preserve all the necessary algebraic relations between the

operators X; and ]_[S /1 Z. The dual Hamiltonian is

A= 5 -0 (]2
1

s 1/s

FIG. 12. Illustrating the generalized Kramers-Wannier duality of
generalized quantum Ising models on HB(k, n) and HB(n, k). Color

27 scheme shows the mapping between sites and edges. Dual qubits
(orange dots) are placed at the centers of the links of the top panel
28) as shown in the middle panel. Hyperlinks (light blue triangles) are

defined using the dual qubits to obtain the dual hypertree shown in
the bottom panel.

where [ defines sites and s defines the links of a hyper-
Bethe lattice HB(n, k) (see Fig. 12). This dual model also
has a subsystem symmetry analogous to the original model
provided k > 2. Since the lattice is infinite, we have, from
Eq. (27), that [],.¢ X; = 1, where §’ is the subset of sites

(29)

165136-11



NANDAGOPAL MANOJ AND VIJAY B. SHENOY

PHYSICAL REVIEW B 107, 165136 (2023)

as shown in Fig. 11, and similarly [[,_.¢X; =1 (following
Eq. (28), see Ref. [73]). We thus conclude that the GQIM
defined on HB(k, n) is dual to GQIM defined on HB(n, k),
when restricted to the subsystem symmetry singlet sectors of
both models. This is the statement of the arboreal Kramers-
Wannier duality.

2. Dual of 7., gauge theory

Armed with the arboreal Kramers-Wannier duality, we next
construct a model dual to the Z, gauge theory [Eq. (1)]
defined on B(k)[IB(2), i.e., an infinite extruded tree. Recall
that the Hilbert space of this theory is defined by a set of
qubits (Q) that reside on the links of this extruded tree, and
satisfy the Gauss’s law constraint A; = 1, for all sites s. The
key sets of operators that act on this Hilbert space are B,
plaquette operators where p labels the plaquettes, and X; the
transverse field operators on the links labeled by /. These
operators satisfy the following relations:

[B,, By]1 =0,V plaquettes p, p/,

[X;, Xr] =0,V links/, I,

[Bp, X;] = 0, if link / is not a part of the plaquette p,
{B,, X;} =0, iflink I is part of the plaquette p, (30)

with [, ] and {, } denoting, respectively, the commutator and
anticommutator. Note that there are two types of links, labeled
by I;, which are along the 1-direction, or tree direction, and
by I, which are along the 2-direction, or extrusion direction.
To obtain the dual model, we define a different Hilbert space
made of qubits (Q) placed at the centers of each plaquette
and define operators Z, and X, that act on these new qubits,
which are naturally labeled by the plaquette p. We make the
following dual identifications:

B, = X,.

X11 = 1_[2 ,
p/h

x, =[]2. 31
p/h

where the links /; and I, are, as described above, along the 1
and 2 directions, respectively. Note that the product p/I, runs
over k plaquettes and thus X;, dualizes to a k-qubit general-
ized Ising interaction. Similarly, X;, dualizes to a 2-site Ising
interaction. The resulting dual Hamiltonian is

A=-1YX%-ny [[12| -2 |I]%| ©2
P

I \p/h L \p/h

A study of Fig. 13 reveals that this is a GQIM defined
on a two-dimensional hypertree HB(2, k)LJHB(2, 2). Most
interestingly, this dual model has a subsystem Ising symme-
try, where transformation Uy = HpeW )N(p leaves the system
unchanged. Here, the plaquettes p belong to W, the global
Wilson surface of the Z, gauge theory on the extruded tree
introduced earlier (see Figs. 5 and 13). Every distinct global
Wilson surface W produces a symmetry operation Uy that
acts only on a subset of qubits and in this sense is a subsystem.

FIG. 13. Theory dual to Z, gauge theory defined on B(3)LIB(2)
(extruded tree). Construction of the dual is analogous to Fig. 12. Dual
qubits are placed at the centers of the plaquettes of the top panel and
connected by hyperlinks as shown in the middle panel. The resulting
dual model defined on HB(2, 3)[(JHB(2, 2) is shown in the bottom
panel.
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Of course, viewed from the perspective of the original opera-
tors Uy = HpeW B, which are constrained, i.e., ]_[pEW B,=1
since each qubit in a plaquette is shared by one other plaquette
in W. This forces Uy = 1. Further, the dual identification
also imposes constraints on 't-Hooft operators of the gauge
theory. For example, consider the operator Ur = [[I € TXj,
where I are links in T = {[((g, m,), (0, 0)), ((g, mg), (1, 0)]},
were (g, mg) is a tree coordinate on B(k). By the dual-
ity construction, Ur =[], l_[p/l Z,, =1, i.e.,, we obtain a
"t-Hooft operator constraint Uy = 1. All such independent
constraints have to be satisfied on the gauge theory side of
the duality.

The consideration above allows us to arrive at a remarkable
conclusion: the theory dual to Z, gauge theory H [Eq. (1)]
with Gauss’s law constraint (A; = 1, Vs) and constraints on
the independent ’t-Hooft operators, defined on B(k)LIB(2),
is the GQIM [Eq. (32)] defined on HB(2, k)LJHB(2, 2) in its
singlet sector of its subsystem symmetry. This result also pro-
vides a nice connection to earlier work. Many known fractonic
gauge theories defined on lattices (such as the X-cube model)
are dual to models with subsystem symmetries. Indeed, as we
discussed above, the simple Z, gauge theory [Eq. (1)] de-
fined on B(k)LIB(2) does support fractonic excitations, and its
duality to the GQIMon HB(2, k)[JHB(2, 2) with subsystem
symmetries fits nicely into this picture.

Finally, we mention the model dual to a Z, gauge the-
ory defined on a general two-dimensional arboreal lattice
B(k;)OB(k,) with an imposed Gauss’s law constraint Ay = 1.
Using the procedure developed above, we see that the dual
theory is the GQIM defined on two-dimensional arboreal
lattice HB(2, k;)LJHB(2, k). This GQIM has a set of sub-
system symmetries constructed using the Wilson surfaces of
the gauge theory, and duality holds in the singlet sector of
all generators of the subsystem symmetries. The duality also
operates in the sectors of the gauge theory where all the
independent "t-Hooft operators are constrained to identity as
discussed above. These results can be generalized to higher
dimensional arboreal lattices.

3. Duals to 7., gauge theory on finite arboreal lattices

We will now explore the dualities in finite arboreal lattices.
First, consider a GQIM defined on a smooth hyper-Cayley tree
SHC(k, n),;. This tree consists of sites s that are bulk sites
and boundary sites (sites of the Mth generation), while all
links 7 are bulk links. The Hamiltonian is the same as Eq. (26)
and this system possesses subsystem symmetries effected by
simultaneous spin flips on the subset of sites S such as shown
in Fig. 11.

On the rough hyper-Cayley tree RHC(k, n)y,, all the sites
s are bulk sites while there are both bulk links and boundary
links (which are the last set of links). The GQIM is defined as

H=-1 Y |\]]z]|-7

Iebulk links \ s/I

x> Zy,—h)y_ X, (33)

Iy eboundary links

Note that this Hamiltonian does not have any global flip sym-
metries and the definition is motivated by the anticipation of a
duality.

We can naturally extend the definition of GQIM to
higher dimensional arboreal lattices with boundaries. Indeed,
a GQIM defined on SHC(ky, ny)y,LISHC (k2, o)y, has a
Hamiltonian

H:—JZ ]_[zs —JZ ]_[zs —ths, (34)

I s/ b s/h s
~—— ~———

njterms npterms

where [, » are hyperlinks along the 1 and 2 directions, respec-
tively. This model, again, has a large number of subsystem
symmetries whenever ki, k, > 2. More general higher di-
mensional lattices with different boundary conditions can
similarly be defined.

‘We now show that GQIM defined on SHC(k, n),, is dual to

a GQIM defined on Iiﬁf(n, k) (see Table I for definitions).
To this end, identify each link I of SHC(k, n),, with a site of

l?ﬁé(n, k)y on which a dual qubit is placed. For each link /7
of SHC(k, n)y,, define

% =[]z (35)
s/l

Further, associate with each bulk site s of SHC(k, n)); a hy-

perlink of I@E(n, k) (this dual hyperlink will touch all the
dual sites that are the hyperlinks SHC(k, n); which touch the
site 5), and define

[[Z =X.. s ebulksitesof SHC(k,n)y.  (36)
1/s

We now see that the boundary sites of SHC (k, n), will be

identified with the dual boundary links of RHC(n, k), such
that

Zis, = Xs,,  Sp € boundary sites of SHC(k, n)y.  (37)
We see the Hamiltonian Eq. (26) defined on SHC(k, n),, du-

alizes to
H=-J) X%-h >
I

sebulk sites

X 1_[21 —h Z

I/s s eboundary sites

ZI/Sav (38)

which is exactly the GQIM defined on ﬁl\{_é(n, k)y with
coupling constants J and & interchanged [see Eq. (33)]. Fi-
nally, consider [ [,_¢ X; which defines a subsystem symmetry
transformation of the GQIM defined on SHC(k, n)); on the
subsystem S, see Fig. 11. This operator, under duality, maps

to
1112 =1 (39)

seS 1

where the right-hand side becomes identity owing to the fact
that every Z operator appears twice in the expression. In other
words, the duality operates in the singlet sector of all the
subsystem symmetries of GQIM defined on SHC(k, n)y,.

165136-13



NANDAGOPAL MANOJ AND VIJAY B. SHENOY

PHYSICAL REVIEW B 107, 165136 (2023)

TABLE II. Summary of dualities. Most of the dualities operate in the singlet sectors of certain operators on either side of the duality.
GQIM: Generalized quantum Ising model [Eq. (26) and Eq. (33)], Z,-GT: Z, gauge theory [Eq. (1) and Eq. (9)], X-cube-GT: X-cube gauge
theory [Eq. (48)]. GFIM: Generalized quantum face Ising model—this is the generalization of GQIM to include only face interactions. The
arenas are as described in Table I. The first three dualities are for infinite arboreal arenas, while the remainder are on finite systems.

Model Dual model
Hamiltonian Arena Hamiltonian Arena
GQIM HB(%, n) GQIM HB(n, k)
Z,-GT B(k))OB (k) GQIM HB(2, k)OHB(2, k»)
X-cube-GT B(k;)OB(k2)OIB(k3) GFIM HB(2, k)THB(2, k,)JHB(2, k3)
GQIM SHC(k, n)y GQIM RHC(n, k)y
GQIM RHC(k, n)y GQIM SHC(n, k)1
Z,-GT SHC(ky, 1 )y, OSHC (k. 12 )1, GQIM RHC (1, ky )y, ORHC (12, k2 )y,
7,-GT RHC(ky, 1)y, IRHC (k. 1), GQIM SHC (1. k1 )ty +1OSHC (2. ko gy 41
Z,-GT SHC(ky, 1y ), ORHC (ks 12 )1, GQIM RHC (., ky )y, OSHC (12, ka sy 1

The discussion above provides a platform for us to
discuss the theory dual to Z, gauge theory defined on
SC(k1)p, ISC(k2)p,- By placing dual qubits on the faces of
the plaquettes of the arboreal lattice, and performing iden-
tifications similar to Eq. (31), we see that dual theory is a

GQIM defined on RHC(2, k1)y, ORHC(2, k»)ys,. The rough
boundaries arise from the identification of X operators at the
boundary qubits of SC(/q W, DSC(kz)M2 with the Z opera-

tors on the sites of RHC(2 ki)wm, DRHC(2 ky)m, that host
its boundary links. The Gauss’s law constraint of the gauge
theory is identically satisfied in its dual description. Impor-
tantly, the duality imposes a constraint on the some operators
of the gauge theory. Indeed, a class of ’t-Hooft operators
[lier Xi = Tlier {1, Z;) = 1. Thus, all such ’t-Hooft oper-
ators are constrained to be identity on the gauge theory side of
the duality, a condition analogous to that discussed in the case
without boundaries.

Turning now to the Z, gauge theory defined on
RC(k1)m,URC(k2)p,, we see immediately that theory is
dual to GQIM defined on SHC(2 kl)M,HDSHC(Z ko )my+1
with the dual qubits, placed again on the faces of the
plaquettes of RC(k;)y,ORC(k2)p,, and the dualization ef-
fected via Eq. (31). Now, there are restrictions on the
subsystem symmetries of the dual GQIM defined on
SHC(2, ki)m,+1USHC(2, k2 )pr,+1 arising from the constraints
imposed by ‘surfaces’ such as the Wilson surfaces discussed
above for [],ey X, = [1,ew Bp = 1. Thus the duality oper-
ates in the singlet sector of the subsystem symmetries of the
dual GQIM defined on SHC(2, ki), +1SHC(2, k2, +1-

Finally, we note that the Z, gauge theory defined
on SC(ky )y, ORC(ky)p, is dual to GQIM defined on
1{136(2, ki)m, DSHCQ, k2)m,+1 using the procedure outlined
above. The duality operates in the singlet sector ’t-Hooft op-
erators along the 1-direction. The dualities discussed here are
summarized in Table II. The table also contains dualities of
fractonic models which will be discussed in the next section.

4. Insights from dualties

The dualities developed above allow us to obtain further
insights into the phases of the gauge theory discussed earlier

using the variational approach. We exploit the duality between
Z, gauge theory defined on B(k;)[IB(ky) and GQIM defined
on HB(2, k;)JHB(2, k,) by redefining the coupling constants
of the Z, gauge theory Eq. (1) via J — J/A and h — AJ,
where J (on the right-hand side) is an energy scale. The dual
GQIM on HB(2, k;)[DJHB(2, k,) is obtained as

A= ——ZX =Y | T1zom

I p/h
———
k, Z operators

=2 ]2 |- (40)

b p/h
—————
ki Z operators

where p are plaquettes and I;, are the links in the 1,2-
directions of B(k;)[OB(ky); ps labels the sites, and I, I, label
the hyperlinks of HB(2, k; )LTHB(2, k). The Trotterized finite
temperature partition function of this model is

A=Ky ([12zm |-k |T1%m

I p/l I p/h
-k (12 |- (41)
b p/h

where p, I, I, I, are the sites and hyperlinks of the a three-
dimensional arboreal arena HB(2, k) JHB(2, k,)LTHB(2, 2).
Here K, = —%ln(tanh(ArJ/)»)) and K = AtAJ. Taking
K; = K, we see that Eq. (41) is a generalized classical Ising
model defined on HB(2, k;)OHB(2, k, )[LTHB(2, 2). The key
point here is that any thermal phase transition at finite K of
this model describes the quantum phase transition of the Z,
gauge theory defined on B(k;)[IB(k,).

We now study the phases of the theory Eq. (41) using the
Bragg-Williams mean-field ansatz. Defining m = (Z,) (where
(a) stands for the thermal average of the quantity a), we get
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the self-consistency relation,

D
m = tanh <1< Z 2mk°‘_l> , (42)

a=1

where D =3, « = 1,2,3 and 3 is the t direction [74]. An
analysis of Eq. (42) reveals that whenever ki, k, > 2, we
obtain a first-order transition, i.e., there is a K. at which a finite
m nontrivial solution appears. On the other hand, if k; = 2, we
obtain a first-order transition for k, = 3, 4, while fork, > 5 a
continuous transition is obtained where a nonzero solution of
m begins to appear for K > K, with the solution vanishing
at K = K. It is reassuring that the results obtained from this
dual picture qualitatively match the results obtained using the
variational approach apropos the nature of the transition from
the confined to the deconfined phase.

Finally, the duality analysis also offers insight into why
the Z, gauge theory defined on arboreal lattices with smooth
boundaries do not have a phase transition (see Fig. 8). As
discussed, the dual to this theory is a GQIM defined on
an arboreal lattice with rough boundaries. This entails extra
boundary terms [see Eq. (33)] which act like a boundary
magnetic field along the z direction on the boundary spins
(dual qubits). It is natural that no phase transition occurs in the
system due to large number boundary spins which experience
this field.

IV. FRACTONIC MODELS ON ARBOREAL ARENAS
A. X-cube model

In this section, we explore fracton models defined on the
arboreal arenas. We will focus particularly on the X-cube
model [27] defined on a three-dimensional arboreal arena.
Consider a three-dimensional arboreal lattice B3 (ky, kz, k3) =
B(k)IB(ky)[IB(k3), where ki, k, k3 > 2 with sites denoted
by s and links denoted by /. The links of this arboreal lattice
can be naturally classified as 1-links, 2-links, and 3-links,
indicating their direction (or the parent tree to which they
belong). To aid the discussion, we introduce an index « which
can take values 1,2,3. Further, ¢’ =2,3,1 and «” =3, 1, 2,
respectively, foro = 1, 2, 3.

A set of links of this arboreal arena can act as the bounding
links of cubes with 12 edges. For example, using the coordi-
nate system defined on B(k;), B(ky), B(k3) (see Sec. II), the
following 12 links (sy, $2), (52, $3), (83, S4), (84, 51), (S5, S6),
(86, 87), (87,58), (s8,585), (51,585), (52,56), (53,57), (54,58)
make up a cube. Here the sites s; are, for example,

s1 = ((g1, m1), (82, m2), (83, m3)),

52 = ((g1 + 1, m)), (g2, m2), (g3, m3)),

s3 = ((g1 + 1,m)), (g2 + 1, m)), (g3, m3)),

sa = ((g1,m1), (g2 + 1, m}), (g3, m3)),

ss = ((g1,m1), (82, m2), (g3 + 1, m})),

se = ((g1 + 1, my), (g2, m2), (g3 + 1, m})),

s7=((g1 + 1,m)), (g2 + 1, m)), (g3 + 1, m3)),

s = ((g1,m1), (g2 + 1,mjy), (g3 + 1, m})), (43)

with m], are suitably chosen coordinates such that
((8a» mgy), (8o + 1,m,)) is a link in B(ky). With these
definitions, an «-link participates in k. k,» cubes. Similarly,
a cube face with a normal in the « direction (this face has
four links that define it, two in the o’ direction and two in the
«” direction) is shared by k, cubes. Finally, every site of the
arena participates in kjkyk3 distinct cubes.

To define the X-cube model on B3(k1, k>, k3), we introduce
a qubit on every link of this three-dimensional arboreal arena.
For every cube c, the magnetic term B, is introduced as

B. =[]y (44)

1/c

where I /c are 12 links that make up the cube c. Next, for each
direction o, we can define the star operator defined at every
site,

Aw=[]%: 45)

1/s

where [ /s are (ko + ko) links that touch the site s in orthog-
onal directions to «. The X-cube model is defined as

Hyee =—J Y Be—K Y A, (46)

where J, K > 0 are the energy scales.

It is easily verified that the operators B, in Eq. (44) and A,
in Eq. (45) commute with each other. A ground state of the
model, which has B, = 1 and A; = 1 for all ¢ and s, is

GSx.cube) = [ [(1 + Bl =), (47)

c

where | =) = H,(M).

While the ground state of the X-cube model defined on
the arboreal arena has very similar features as the X-cube
model defined on the cubic lattice, the nature of excitations
are different and interesting. Consider first the electric charge
excitation at a site where two of the A operators have a value
of —1. Such excitations can be created from the ground state
by the application of the Z; operator on a link /. If / is a 1-link,
this will result in dipoles of Ay, = —1 and Az = —1 electric
charge excitations (each of which cost an energy of 2 K) where
s = 51, 5o are the two sites that define the chosen 1-link /.
Pick another (any one of k; — 1 possibilities) 1-link I’ ema-
nating from the site s, and apply the operator Z; to the state
obtained after the application of Z;. We see that the charges
Ay, 2,3y = —1 are transported to a new site s3 as A,,2,3) = —1,
where s3 is the other site of I’, without any additional energy
cost. More generally, for any given «, a charges A,y = —1 and
Ager = —1located at s = ((g7, m9), (g5, m3), (g%, m3)) can be
transported to any point on the tree B(k,). For example, if
« = 1, then the charges can be transported to any other point
s' = ((g1,m1), (83, m3), (g5, m3)), where (g1, my ) is any other
point on the tree B(k;). We thus see that linenonic electric
charges of the X-cube model defined on a cubic lattice, gener-
alize to treeonic charges—charges with mobility restrictions
constrained to a tree!

Consider now the monopole excitations where some cubes
obtain B, = —1. Such excitations are produced by application
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of the X; operator on the ground state at link /. When this link
I is in the o direction, this process produces an excited state
that is a bound state of k, k,» monopoles each with B, = —1.
For the X-cube model defined on a cubic lattice, this process
will produce a bound state of four monopoles. However, in
the cubic lattice, the quadrupole of monopoles can be split
into two dipoles, and these dipoles can move freely in a
plane. The situation is quite different in the arboreal arena.
Consider @ = 1, i.e., link 7 is a 1-link. Application of X; on
the ground state will produce k,k; monopoles. Now consider
the application of a second X operator on a 1-link /” connected
to a 2-link 7, which, in turn, is connected to the original 1-link
1. This whole process will produce a total of 2(k, — 1)k3
monopoles. In other words, the application of the second spin
flip operator (in an attempt to move a subset of monopoles)
will result in the creation of (k, — 2)ks additional monopoles.
We thus see that in an arboreal three-dimensional lattice
(ky > 2), there are no multipoles of B, excitations that are
mobile.

B. The gauge theory

We here study the X-cube gauge theory defined on a three-
dimensional arboreal arena. We will consider an arena with
boundaries focusing, among the variety of possibilities, on
RC (k1 )y, ORC (k2 )pr, IRC(k3)py, With all rough boundaries,
and SC(k )y, LIRC (k2 )pr, LIRC(k3)ps, With one smooth bound-
ary. The Hamiltonian we consider is

Hxor=—JY B.—hY X +H, (48)
c 1

where J and & are energy scales, B, is the cube term [see
Eq. (44)] defined on all allowed cubes, and X; is the opera-
tor that acts of the qubit placed at link /. The Hamiltonian
is invariant under local transformations generated by all the
allowed operators Ay, defined at each site s [see Eq. (45)].
As in the case of the Z,-gauge theory, additional boundary
terms arise, as these are invariant under the action of the
local transformations generated by Ay, (see Supplemental
Material [71]). The theory is studied in the gauge-invariant
sector of the Hilbert space which satisfies the generalized
Gauss’s law:

Ap = 1. 49)

When h <« J, the theory Eq. (48) reduces to the X-cube
model Eq. (46) in an infinite three-dimensional arboreal lat-
tice. The ground state, in this regime, is in the deconfined
phase of the theory. For large A, the ground state is the state
| =) defined near Eq. (47), and is in the confined phase of
the theory. In a three-dimensional cubic lattice, it is known
that, upon increase of 4 from h < J to h > J, a transition
from the deconfined to confined phase occurs at a critical
value of & via a first-order transition [70]. The natural ques-
tion to address is the nature of the transition on the arboreal
arena, and Eq. (48) is introduced on a finite system to aid
this analysis.

Before we discuss the phase transition anticipated above,
we will briefly describe the ground state degeneracy Dg of
the system in the limit # < J. An explicit calculation shows

bas
1.0
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06 “.3)
(5,3)
0.4} — 89
— (84)
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FIG. 14. Dependence of bgs on i/J for the X-cube gauge theory
defined on SC(k; )y, ORC(k; )y, IRC(2)yy, for various (ky, k) indi-
cated in the legend. For large M,, M, M5, the transition from the
confined to deconfined phase is first order.

that

Iny Dg = (ki ((ky — 1M =6 — 1))

—_ 1M, _
X Z<1+kl/((kyky_1)2 1) -1

y=2,3

(50)

for the case of X-cube gauge theory (with h < J,
which is effectively the X-cube-model) defined on
RC(k1)p, OSC(kp )a, LISC(k3)pr,, taking into account the
boundary operators allowed. Such a large degeneracy arises
owing to the large number of Wilson line operators that
become possible in the three-dimensional arboreal arena in a
fashion similar to that illustrated in Fig. 5 for the Z, gauge
theory.

To study the evolution of the ground state as a function of
h/J, we use the (unnormalized) variational ansatz similar to
Eq. (25) as

IGS(B) = [(1 +bB)| =), D

where ¢ also runs over all boundary terms in addition to the
usual cube terms. The variational ground state is obtained for
that value of b called bgs at which the energy is minimized.
The calculations are detailed in Supplemental Material S2
[71].

We first consider X-cube gauge theory defined on
SC(k1 ), LIRC (k2 )pr, LIRC(2)ps, where smooth boundaries are
combined with rough boundaries. In these finite arboreal lat-
tices, the third direction has k3 = 2, i.e., this as an extruded
three-dimensional arena. The main result, as seen from Fig. 14
is that the transition from the deconfined to confined phase
occurs via a first-order transition for values of ki, k, < 10
(see below). We also note that the transition is first order, in
general, if all the boundaries are rough (results not shown).

Turning now to more general finite three-
dimensional arboreal lattices with a smooth boundary
SC(k1)m, IRC(k2)ar, LIRC(k3)ps,, we find that the transition is
generically first order as illustrated in Fig. 15. Similar results
are shown for rough boundaries in Fig. 16. In fact, for some
values of k, we find, as shown in Supplemental Material
S2 [71], that there are two transitions, the first continuous
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bgs
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FIG. 15. Dependence of bgs on h/J for the X-cube gauge theory
defined on SC(k )y, IRC(ks )a, [ JRC(k3)ps,, for various (ki, ks, k3)
indicated in the legend. For large M, M,, M3, a first-order transition
from the deconfined to confined phase is obtained when the values
of ki, ky, k3 are small (< 10). For larger values of ks, a second-order
transition from the confined to deconfined phase is obtained (see
Supplemental Material S2 [71]).

one going from the deconfined to the confined phase, and a
second first-order transition in the confined phase, indicating
that there are two types of confined phases. Moreover, for
very large values of ks, we find that the first-order transition
between the confined phases is no longer present. The nature
and physical underpinnings of these findings require further
investigation which is a future direction to be pursued.

Finally, we note that the dual model (see Table II) to the
X-cube gauge theory can be constructed (we do not elaborate
this here) as generalized quantum face Ising models—face
represents the fact that interaction terms are determined not
by hyperlinks but by higher dimensional object such as faces
and volumes formed by the hyperlinks). Such generalized
quantum face Ising models will posses subdimensional sym-
metries, with the duality operating in the singlet sector of
these symmetries along with the Gauss’s law constraint on the
gauge theory side and the ’t-Hooft operator constraints. These
results are natural generalizations of the dualities presented in
Ref. [27] to arboreal arenas.

V. ARBOREAL TOPOLOGICAL AND FRACTON ORDERS

The results of the previous sections raise many interesting
questions. For example, it is natural to inquire about the rela-

bgs
1.0
0.8 — (3,3,3)
4,3,3
o6l (4.33)
(5,3,3)
0.4F — (6.3.3)
— (6,5,3)
0.2
. L n . =
1 2 3 4 5

FIG. 16. Dependence of bgs on h/J for the X-cube gauge theory
defined on RC(k; )y, JRC(k3 )ps, [IRC(k3 )y, , for various (ki, ks, k3)
indicated in the legend. A first-order transition from the deconfined
to confined case is obtained for large M, M,, M;.
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FIG. 17. Entanglement renormalization procedure demonstrat-
ing that the arboreal topological order on a B(3)[JB(2) arena is
equivalent to the one on B(4)[JB(2). The CNOT operations indicated
have to be performed between all pairs equivalent qubits, a process
that is equivalent to a finite depth quantum circuit. The ground state
of B(3)JB(2) is converted to that B(4)[JB(2) produced with a set of
qubits (not shown) in fixed states.

tionship between the arboreal topological order found in the
Z, gauge theory on B(k)UB(2) for different values of k. For
example, are they different phases? How are they related? A
key idea to be exploited in addressing these questions is that
two systems are considered to be equivalent (same phase) if,
for example, the ground state of one can be transformed to that
of the other by a finite depth unitary quantum circuit [75,76]
and a set of unentangled degrees of freedom. A generalization
of this idea to fracton phases is also available, and will be
discussed below.

To address these questions, consider the toric code Eq. (4)
defined on B(3)0B(2). We use the entanglement renormal-
ization process [75-77] to convert the ground state Eq. (6)
of the toric code on B(3)[IB(2) to that of the toric code on
B(4)JB(2) times a set of unentangled qubits in fixed states.
The procedure, demonstrated in Fig. 17, uses a set of CNOT
gates (for details, see Ref. [75]) to produce a finite depth
quantum circuit that acts on the toric code ground state on
B(3)B(2) to that of B(4)[IB(2) produced with unentangled
qubit states. It is immediately evident that this process con-
verts the toric code ground state on B(k)[IB(2) to that of
B(k + 1)UB(2) whenever k > 2, suggesting that the arboreal
topological order on B(k)B(2) are equivalent for all £ > 2.
Note, however, that this order is distinct from the topological
order on B(2)[JB(2), the square lattice, as there is no finite
depth unitary that will transform the toric code ground state
on B(2)JB(2) to that of B(3)IB(2)!

These observations become more interesting when we note
that the same process can be used to show that the arboreal
topological order encoded in the ground state of the toric code
defined on B(k;)[IB(k,) when ki, k, > 2 can be transformed
to that of B(k; + 1)IB(k;) (times unentangled qubits) or it
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can be transformed to that of B(k;)(OB(k, + 1). This result is
demonstrated as follows. Let 7, = {S,, £,} = B(3) and T, =
{Sy, Ly} = B(3). Consider a toric code model Eq. (4) defined
by placing qubits on the links of 7 = {S, £} = 7.[J7,. The
set of sites can be written as

S={G.j):ieS.je8) (52)

Consider a single site i € S, and an associated link {7, j} € L.
We will describe an entanglement renormalization transfor-
mation that fuses this link in 7 to a single point, therefore
increasing its coordination by one. The entanglement renor-
malization transformation is done in two steps.
(1) For all {7, j'} € L,, apply the following commuting
gates:
(@) CNOT i, i) (... )+
(b) CNOT ;1) (j, jon. 460, 0, )}
(©) CNOTG jy),(j,j) 1),
(2) For all links {i, k} € L, such that k # j, and all sites
i" € Sy, apply CNOT ;.1 (j.in). (0., (k.1
Note that all CNOT gates in steps 1 and 2 commute and
these CNOT gates act between nearby links, so this is a depth-
1 process. CNOT gates act by conjugation as

Zallg — Zalﬂ ZD,Zﬁ <> IaZﬂ

CNOTa 4 - Xy < X Xp  1L,Xg — L,Xp.

(53)
After this transformation, we end up with product state
qubits:

(a) For all i'eS,, the qubit sitting on the link
{(i, 1), (j, )} is in the state | —).

(b) For all {i,j'} € £L,, the qubit sitting on the link
{(@, 1), (i, j")} is in the state | 1).

Treating product states as a free resource, we remove them
and end up with a toric code ground state on a new tree 7/[J7,,
where 7! is a modified B(3) with a single 4-coordinated site
[see Fig. 18(a)].

We repeat this process k — 3 (by now choosing a new
link {i, j} in 7)) times to create toric code ground states
on 7WOT,, where T® is a modified B(3) with a single
k-coordinated site as shown in Fig. 18(b). Next, we repeat
the above process for other sites and associated links in
T® to make all sites k coordinated, leaving us with 7.1l
a translation-invariant B(k). Repeating the same process for
other sites can be done in parallel, i.e., this does not increase
the circuit depth. Therefore, we have demonstrated that the
toric code ground states on B(3)[IB(3) and B(k)IB(3) are
connected by a depth-(k — 3) circuit [see Fig. 18(c)].

We can repeat the same process for 7, using the same
procedure. This leads us to conclude that the toric code ground
state on B(3)UB(3) and B(k,)LIB(k,) are connected by a
depth-(k, + k, — 6) circuit, for all k,, k, > 3. We thus arrive
at a remarkable result that the arboreal topological orders
encoded in the ground state of B(k;)[IB(k,) for all ky, ky > 2
are equivalent!

The above discussion allows us to classify arboreal orders
of the toric code ground states. There are three types. First is
the usual topological order of the toric code defined on the
square lattice. The second is the arboreal topological order on
extruded trees of the kind B(k)[IB(2). The third one is the ar-
boreal topological order on general two-dimensional arboreal
lattices B(k;)UB(k,) with ky, k; > 2. The common aspects of

|

(a)

(b)

|

s 5
s

©

FIG. 18. Demonstrating the entanglement renormalization pro-
cedure that transforms the toric code on B(3)(JB(3) to B(k)[IB(k)
(k = 5 is shown).

these three types of fracton orders may be understood from the
perspective of their excitations. The toric code order realized
in B(2)[JB(2) (which is the the square lattice) has its magnetic
monopole excitations fully mobile, this is the characteristic
of the first type of topological order. On the other hand, the
second type of order realized in B(k)JB(2) for k > 2 has
mobility restrictions on the monopole, which can now move
freely only along the vertical direction as shown in Fig. 4,
i.e., the monopole excitations are lineons. The third kind of
arboreal topological order realized in B(k;){B(k7), k1, ko > 2
has fully immobile monopole excitations.

Moving to the fractonic models, we first observe that ideas
from the notion of foliated fracton phases can be applied to
understand and classify arboreal fracton orders. Using the
notions introduced in Refs. [33,34], two fracton states are
considered to be equivalent (in the same phase) if one can be
transformed to another times unentangled layers of topologi-
cally ordered states and unentangled qubits in fixed states. By
application of a finite depth quantum circuit process similar
to the one shown in Fig. 17 (see Refs. [33,78]), the X-cube
ground state Eq. (47) on B(k)OOB(2)UB(2), k > 2 can be
transformed to that of B(k + 1)[IB(2)[IB(2) times unentan-
gled toric code layers, each of which carries the topological
order of the first kind discussed in the previous paragraph.
This establishes the equivalence of the X-cube fracton order
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on B(k)OB(2)OB(2) for all k > 2. Similar arguments show
that X-cube fracton order on B(k;)[IB(k,)IB(2) for ky, kr >
2 are all equivalent. The key point to note here is that the finite
depth quantum circuit transforms the X-cube ground state on
B(k1)OB(k,)B(2) to that of B(k; + 1)UB(k)IB(2) times
uncoupled layers of topological order of the kind B (k;)TJB(2),
i.e., the arboreal topological order of the second kind dis-
cussed in the paragraph above. Finally, X-cube orders on
B(k))OB(ky)B(k3) with ki, kp, k3 > 2 are all equivalent,
in that the X-cube ground state on B(k;)B(k;)UB(k3) can
be transformed to that of B(k; 4+ 1)IIB(ky)[IB(k3) times
unentangled layers, each of which carries an arboreal topo-
logical order of the third kind (see previous paragraph) on
B(k,)IB(k3). This leads us to the conclusion that there are
four types of X-cube fracton orders. The first one is the usual
X-cube fracton order on a cubic lattice. The second is the
X-cube order on B(k)[IB(2)IB(2) for all £ > 2. The X-cube
order on B(k;)IB(kp)OB(2) for ki, ko > 2 forms the third
class. The fourth and final class is the X-cube fracton order
on B(k;)B(k,)[OB(k3) for all kq, k», k3 > 2. Similar to that
discussed for the arboreal topological order, the different frac-
ton orders are also distinguished by the nature of the mobility
of their excitations.

VI. CONCLUDING REMARKS

We conclude the paper with some remarks. First, we note
that our work points to interesting possibilities that are offered

by going beyond manifold arenas, as exemplified by the prop-
erties of the Z,-gauge theories of the arboreal arenas. Will
such systems offer a fresh direction that enables them to be
utilized gainfully for quantum information processing? Nat-
urally, this entails costs in designing and constructing qubit
connectivities and controls that are admittedly more complex.
There have been encouraging recent advances where degrees
of freedom are connected in unique geometries and topolo-
gies, see, for example, Refs. [79,80], which realize physics in
hyperbolic geometry. These systems have exponential growth
of sites with an increase in system size and require careful
engineering of the components such as resonators that require
a denser packing. Study of arboreal lattices will entail similar
design concepts. The issue to be explored is that if such
constructions provide cost-effective and efficient platforms for
quantum information storage and processing. Further work is
required to address this question. Second, we have explored
only limited types of topological and fracton-ordered phases
in the arboreal arena. It will be an interesting, if obvious,
direction to explore the physics of models [15,81-83] that
produce other types of orders. The physics of finite arboreal
systems (with surfaces) also holds promise; for example, no-
tions of gappability [84], etc. may be explored in this context.
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