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We investigate the ground-state phase diagram of a modified spinless Haldane-Hubbard model, with broken
threefold rotational symmetry, employing exact diagonalization calculations. The interplay of asymmetry,
interactions, and topology gives rise to a rich phase diagram. The noninteracting limit of the Hamiltonian
exhibits a higher-order topological insulator characterized by the existence of corner modes, in contrast to
known chiral edge metallic states of the standard Haldane model. Our investigation demonstrates that these
symmetry-protected states are robust to the presence of finite interactions. Furthermore, in certain regimes of
parameters, we show that a topological Mott insulator exists in this model, where a nontrivial topological bulk
coexists with an interaction-driven charge-density wave, whose emergence is characterized by a Z2-symmetry
breaking within the 3d-Ising universality class.
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I. INTRODUCTION

The discovery of topological insulators (TIs) and su-
perconductors have attracted considerable attention, being
extensively investigated in many different systems in recent
years, such as in electronic [1,2] or photonic systems [3].
It has culminated with an overall scheme for classifying
topological quantum matter depending on the symmetries
of the related models [4]. A distinctive feature of TIs
is the bulk-boundary correspondence: A d-dimensional TI
exhibits topologically protected gapless states on its (d − 1)-
dimensional boundaries, mapped by the existence of a finite
topological invariant in the bulk.

Even more recently, it has been noticed that in some
cases, the protected modes are instead restricted to hinges
or corners of the system [5,6]. This gave rise to the con-
cept of higher-order topological insulators (HOTIs), which
exhibit gapped (d − 1)-dimensional boundaries while sup-
porting gapless, topologically protected states on a lower
(d − n)-dimensional boundary for n � 2. HOTIs have been
experimentally observed in materials [7,8] or emulated in
engineered platforms as mechanical or photonic metamateri-
als [9,10], or electric [11–13] and resonator circuits [14–17].
Theoretically, they have been classified in a variety of Hamil-
tonians, including modified versions of celebrated models
such as the Su-Schrieffer-Heeger [18], Aubry-André-Harper
[19], and Haldane models [20].

The latter [21] realizes a quantum anomalous Hall insu-
lator featuring a topologically protected chiral state carrying
a dissipationless current without an external magnetic field
[22,23]. It has been generalized to understand the effects of
interactions [24–31], disorder [32,33], and their combined
interplay [34] in its topological properties. A common theme
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in these results is that, at half-filling, once interactions are
sufficiently large to induce a finite local order parameter, pro-
tection of edge modes is absent, and trivial insulating phases
ensue.

In the context of higher-order topology, decorated tight-
binding models in the honeycomb lattice have been shown
to support protected corner modes [35]. In particular, a gen-
eralization of the Haldane model that breaks its threefold
rotational symmetry C3 leads to a HOTI, provided that inver-
sion symmetry is preserved [20]. Physically, this modification
corresponds to a type of uniaxial strain in the system [36],
whose characterization of first-order topological properties
have been performed earlier [37,38].

The combination of these venues, interactions, and high-
order topology has been much less explored. For example,
recent results in electronic spinful Hamiltonians have demon-
strated the formation of gapless, topologically protected spin
excitations in corners of the lattice, whereas charge excitations
are still gapped [39,40]; formation of gapless corner modes
are also seen in either spin models [41,42] or extensions of
the Bose-Hubbard model [43]. Yet, observation of interacting
fermionic models featuring corner modes related to gapless
charge excitations is currently lacking.

To fill this gap, we investigated a dimerized Haldane-
Hubbard model, whose noninteracting counterpart was in-
troduced in Ref. [20], to understand the robustness of
second-order topological properties upon the inclusion of in-
teractions. While many studies have classified the topological
properties of the Haldane-Hubbard model [24–31], all these
cases are limited to the first-order topology, i.e., to the appear-
ance of protected edge states in certain regimes of parameters.
By using exact diagonalization methods, we uncover the pres-
ence of an interacting HOTI, characterizing the formation of
protected corner modes.

As a by-product of our analysis, we demonstrate the exis-
tence of a genuine topological Mott insulator (TMI) in this
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FIG. 1. (a) Schematic representation of the lattice clusters used in the ED calculations: 18A, 24A, and 30A. Solid and dashed lines represent
the bonds for different hopping amplitudes between the nearest (black) and next-nearest (blue) neighbor sites. For clarity, the latter is just
depicted for a single site in each cluster. Red solid lines give the cluster boundaries; open and periodic boundary conditions are used in the
calculations. (b) and (c) The phase diagrams obtained for clusters 24A and 30A, respectively. The colors give the value of the (quantized) Chern
number, and the connected markers the location of the CDW transition marked by the fidelity susceptibility χF . Different phases numbered I
to IV, are labeled in the text. In particular, phase IV is the interacting HOTI, adiabatically connected to its V = 0 counterpart [20].

model [44], that is, a regime in the parameters in which
both insulating behavior stemming from increasing interac-
tions and nontrivial topological properties in the ground-state
concomitantly occur. TMIs have a long history of research
with often conflicting results: The existence of interaction-
driven TMIs has been previously argued [45–53], while other
results using unbiased methods [54–58] dispute some of the
claims. An exception is the two-dimensional system featuring
quadratic band crossings and weak interactions [59–65], but
here such characterization is unambiguous. On top of that,
since the onset of the TMI is manifested by the emergence
of charge order, we show that the zero-temperature transition
belongs to the 3d-Ising universality class, owing to the Z2-
symmetry breaking of the corresponding order parameter.

II. MODEL AND QUANTITIES

We consider a modified Haldane-Hubbard model on a hon-
eycomb lattice with the Hamiltonian,

Ĥ = −
∑
〈i, j〉

t i j
1 (ĉ†

i ĉ j + H.c.) −
∑
〈〈i, j〉〉

t i j
2 (eiφi j ĉ†

i ĉ j + H.c.)

+�
∑

i

(−1)in̂i + V
∑
〈i j〉

n̂in̂ j . (1)

Here, ĉ†
i (ĉi ) is the fermion creation (annihilation) operator at

site i, and n̂i = ĉ†
i ĉi is the corresponding number operator. t i j

1

(t i j
2 ) gives the nearest-neighbor (next-nearest-neighbor) hop-

ping amplitude, and � is the staggered potential responsible
for breaking the symmetry between the two sublattices of a
honeycomb lattice. The next-nearest-neighbor hopping term
has a complex phase φi j = +φ(−φ) for counter-clockwise
(clockwise) hoppings and V describes the magnitude of a
repulsive nearest-neighbor interaction.

When t i j
1 = t1, t i j

2 = t2, Ĥ simplifies to the original
homogeneous spinless Haldane-Hubbard model [24,26]. Al-
ternatively, one can introduce a dimerization of both nearest
and next-nearest neighbor hopping amplitudes along one pref-

erential direction, as schematically represented in Fig. 1(a).
These establish two types of bonds for each hopping term,
whose amplitude is given, respectively, by t1s,2s and t1d,2d .

By defining the dimerization strength, η ≡ t1d/t1s ≡
t2d/t2s, Ref. [20] showed that if departing from the homo-
geneous case with η = 1, a gap closes and reopens at η =
±0.5, such that for values 0.5 > η > −0.5 the noninteracting
(V = 0) Hamiltonian characterizes a HOTI, provided inver-
sion symmetry is preserved (i.e., with � = 0). This phase is
described by having an associated zero value of the Chern
number C, while yet harboring corner modes. Such a topo-
logical invariant is computed via the integration of the Berry
curvature [66],

C =
∫

dφxdφy

2π i
(〈∂φx �

∗
0 |∂φy�0〉 − 〈∂φy�

∗
0 |∂φx �0〉), (2)

after introducing twisted boundary conditions {φx, φy} [67]
when obtaining the ground state |�0〉 of Ĥ. In practice, a
sufficiently discretized version of Eq. (2) suffices [68], as has
been shown to converge to a quantized Chern number in the
same model [26,30,34].

In what follows, we investigate the low-lying spectral
properties of Ĥ by using exact diagonalization (ED) in fi-
nite clusters ranging from Ns = 18 to 30 sites, focusing
the investigation at half-filling, i.e., Ne ≡ ∑

i〈n̂i〉 = Ns/2. A
representation of the clusters used, all featuring the K high-
symmetry point as a valid momentum value, is given in Fig. 1.
Solid and dashed lines describe the different hopping ampli-
tudes. When η < 1, they represent, respectively, the strong
and weak bonds. For clarity, the (blue) solid and dashed lines
denoting dimerized hopping amplitudes between next-nearest
neighbor sites are expressed on a single site for each cluster;
red lines give the cluster boundaries, which are chosen to be
either open or periodic, depending on the quantities one is
interested in.

On top of the topological properties, we characterize the
formation of a charge-density wave (CDW) associated with
a trivial Mott insulating (MI) behavior at sufficiently large
V . For that, we quantify the k = 0 CDW structure factor
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[24,26,30,34,69],

SCDW ≡ 1

N

∑
i, j

C(ri − r j ), (3)

with density correlations,

C(ri − r j ) = 〈(
n̂a

i − n̂b
i

)(
n̂a

j − n̂b
j

)〉
, (4)

where n̂a
i and n̂b

i are the number operators on sublattices a and
b in the ith unit cell, respectively, and N = Ns/2 is the total
number of unit cells. This quantity is extensive in N once a
long-range CDW order sets in, tracking thus the formation of
the corresponding local order parameter.

Lastly, we further quantify the fidelity susceptibility
[70–73],

χF = 2

Ns

1 − |〈�0(V )|�0(V + dV )〉|
dV 2

, (5)

with dV = 10−3 in our calculations, which identifies a con-
tinuous quantum phase transition through the location of an
extensive peak in Ns in the region parameters of interest
[24,74–77]. In the case of first-order topological phase tran-
sitions, as the CI-MI for η = 1, the fidelity susceptibility
exhibits discontinuities so long as the lattice possesses the
corresponding high-symmetry point where the closing of the
excitation gap occurs [24,26,30].

Immediate verification of a first-order phase transition, in-
variably tied to the modification of the topological invariant, is
obtained by the computation of the excitation (or many-body)
gap:

�m = E1(Ns/2) − E0(Ns/2), (6)

which quantifies the energy difference between the two lowest
eigenvalues of Eq. (1) for the studied filling factor Ne = Ns/2.

Other quantities, such as charge compressibilities and
charge gaps, mainly used to identify the protected corner
modes, are defined subsequently in the corresponding sec-
tions. In what follows, we choose t2s/t1s = 0.2, φ = π/2 and
establish t1s = t as the unit of energy. We also focus on the
case that preserves inversion symmetry, i.e., � = 0, since that
is a precondition for the manifestation of a HOTI in this model
[20]. Lastly, we narrow the investigation to the η > 0 regime.

III. RESULTS

A. Phase diagram

We start by describing the ground-state phase diagram of
Eq. (1) in the space of parameters η − V in Figs. 1(b) and
1(c), for the two largest clusters we study, 24A and 30A,
respectively, using PBCs. We note the existence of four dif-
ferent phases based on the analysis of the quantized Chern
number and the peak location of the fidelity susceptibility,
which tracks the onset of CDW order when increasing the
interaction strength:

(I) topological (Chern) insulator (C = 1, no CDW order);
(II) Mott insulator (C = 0, CDW order);
(III) topological Mott insulator (C = 1, CDW order);
(IV) higher-order topological insulator (C = 0, no CDW

order).
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FIG. 2. (a1)–(a3) CDW structure factor (left) and fidelity suscep-
tibility (right) along three cuts of the phase diagram, with η = 0.4; 1
and 1.1. (b1–b3). Corresponding results for the Chern number (left)
and the excitation gap (right). Here we use the 24A cluster with
PBCs.

In the absence of dimerization, η = 1, the transition be-
tween phases I and II describes the known results of the
C3-symmetric Haldane-Hubbard model, namely, that a finite
local order parameter is incompatible with nontrivial topology
at half-filling [24,26]. That is, at a critical V = Vc � 2t , the
Chern insulator (I) gives way to a trivial Mott insulator (II).
We further notice that this phase II defines a lobe that narrows
in its η support when increasing the system size. While it is
unclear whether phase II will be constrained to the V > Vc,
η = 1 line in the thermodynamic limit, this trend makes appar-
ent the robustness of phase III, namely, a nontrivial insulator
(C = 1) that also exhibits CDW order. As far as we know,
this is the first evidence of a topological Mott insulator in the
Haldane-Hubbard model using unbiased methods.

For phase IV, we note that the noninteracting HOTI with
|η| < 0.5 [20] adiabatically connects to its interacting coun-
terpart. As expected, it exhibits a C = 0 topological invariant,
but past V/t � 1.6 is replaced by another trivial (i.e., C = 0)
phase, which instead displays CDW order. This is again a
manifestation of phase II, a trivial Mott insulator. Still, unlike
in the case of η = 1, since there is no change of the topological
invariant, the transition is second order, with a spontaneous Z2

symmetry breaking.
Having presented the main features of the phase diagram,

we now discuss details of how the different regions were
inferred in the next two subsections.

B. Topological and Mott transitions

A remarkable feature that our phase diagram (Fig. 1) ex-
poses is that the topological phase transition is not necessarily
accompanied by a Mott one. Only in the case of the homo-
geneous (i.e., η = 1) Haldane-Hubbard model does this hold
[24,26]. Finite hopping dimerization breaks such constraint,
and Fig. 2 displays such dissociation. If we define the criti-
cal interaction that triggers a topological (Mott) transition at
a given η as VT (VM), a known first-order phase transition
at VT = VM occurs in the homogeneous case, marked by a
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FIG. 3. Scaling behavior of SCDW according to the scaling ansatz
[Eq. (7)] with 3d-Ising exponents γ = 1.237075 and ν = 0.629971.
(a) η = 0.3, describing the Mott transition within the C = 0 regime;
(b) η = 0.7, Mott transition within the C = 1 phase. The insets show
the corresponding values of the cost function (see text) for the scaling
collapse as a function of V c

M .

simultaneous discontinuity of the structure factor and the fi-
delity susceptibility [Fig. 2(a2)]; this is also accompanied by
a change of the Chern number, expressed by the closing of
the excitation gap [Fig. 2(b2)]. In turn, if η �= 1, VT �= VM in
general. The topological transition is still marked by the loca-
tion where �m = 0 [e.g., see Fig. 2(b3)], which is no longer
related to the point at which χF displays a peak [Fig. 2(a3)].
Finite-size effects are addressed in Appendix, showing that
these results are qualitatively unchanged for other lattice sizes.

Since the Mott transition independently occurs from the
topological character of the ground-state change, it can now
reflect its typical second-order nature. The fidelity suscepti-
bility becomes continuous, as is the CDW structure factor,
where the ensuing charge ordering breaks a Z2 symmetry.
Consequently, this zero-temperature phase transition belongs
to the (2+1)-d Ising universality class and SCDW should obey
the following scaling ansatz:

N−γ /2ν
s SCDW = g

[(
V − V c

M

)
N1/2ν

s

]
. (7)

In such universality class, the exponent ν related to the di-
vergence of the correlation length is ν = 0.629971(4) while
γ , related to the singular behavior of two-point correlation
functions, is γ = 1.237075(10) [78].

Figure 3 shows the scaling analysis using the three cluster
sizes available and values of η = 0.3 and 0.7. We esti-
mate the critical interaction V c

M in the thermodynamic limit
by the minimum value of a cost function that quantifies
the scaling collapse. It is written as C(Vc,ν,γ ) = (

∑
j |y j+1 −

y j |)/(max{y j} − min{y j}) − 1 [79,80], where y j are the val-
ues of N−γ /2ν

s SCDW ordered according to their corresponding
(V − V c

M )N1/2ν
s ’s (see insets in Fig. 3). A relatively good

collapse and agreement with the expected critical exponents
are obtained, despite having a maximal value of the linear
lattice size L = N1/2

s � 5.48. For η = 0.3, the Chern number
is zero across the whole range of interactions investigated (see
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FIG. 4. Many-body gap �m dependence with different dimer-
ization values along several cuts in the phase diagram with fixed
interaction strengths. Here the 24A cluster is used with PBCs. The
dips point to the critical value of η, where a bulk topological transi-
tion occurs.

Fig. 1), reflecting the aforementioned interacting HOTI to triv-
ial Mott insulating transition. With η = 0.7, however, C = 1
irrespective of the V magnitude studied when entering the
topological Mott insulating phase. This indicates that the 3d-
Ising universality class describes the Mott transition, whether
or not the ground state exhibits a trivial Chern number.

C. Many-body gap, charge gap, and the HOTI

As mentioned above, direct evidence of the topological
transition involving the change of the corresponding topolog-
ical invariant is seen via the closing of the excitation gap.
Figure 4 summarizes the dependence with the dimerization
parameter η with different interaction magnitudes V . The
noninteracting limit is well marked by �PBC

m → 0 at η = 0.5,
describing the HOTI to CI transition introduced in Ref. [20].
Within the interacting regime, various values of V lead to a
gap closing occurring roughly at the same location, while if
the interactions are sufficiently large, a double dip structure
centered around the C3-symmetric Haldane-Hubbard model
(η = 1) marks the trivial Mott insulating lobes described in
the phase diagram (Fig. 1).

Although the excitation gap is sufficient to identify the
regimes where the Chern number changes, it completely
misses the characterization of the higher-order topological
regime. This is evident if spanning the interactions with η <

0.5: C is always zero and �m remains finite across a wide
range of interactions [see, e.g., Fig. 2(b1)]. Quantification of
the HOTI and its corner modes relies thus on other metrics.
In particular, in the context of interacting systems, one can no
longer refer to such modes as gapless excitations in the single-
particle spectrum. Instead, one expects its manifestation via
the existence of gapless charge excitations. The relevant met-
ric is the charge gap defined as

�c = E0(Ns/2 + 1) + E0(Ns/2 − 1) − 2E0(Ns/2), (8)

which computes the difference in chemical potentials of
adding and removing a single particle upon the half-filling
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FIG. 5. Charge gap �c dependence on V [(a) and (b)] and η

[(c) and (d)], contrasting both PBC (left panels) and OBC (right)
in the 24A cluster. While always finite, �OBC

c is the smallest when
V � VM and η � 0.5, a regime where the interacting HOTI phase is
suggested.

Ne = Ns/2 we study. To understand the regimes where the
HOTI occurs, we need thus to contrast the charge gaps on
clusters employing both PBCs and OBCs. Only in the latter
can a possible manifestation of corner modes take place.

Figure 5 characterizes this on the 24A cluster, showing that
(i) for the same parameter’s settings, the OBC charge gaps
are always smaller than its PBC counterpart, despite being
finite due to size effects; (ii) concerning its V dependence,
�OBC

c only steadily increases when V � VM , i.e., when charge
ordering sets in, while at η � 0.5 and V � VM the smallest
gaps are obtained—this is the regime where according to the
phase diagram a HOTI manifests.

Although suggestive, such an analysis is superficial in es-
tablishing the existence of corner modes. Direct evidence can
be put forward by defining the site-resolved compressibility,

Kc(i) = ∂〈n̂i〉
∂μ

≈ 〈n̂i〉Ne+1 − 〈n̂i〉Ne

μ+ − μ−
, (9)

where μ+ = E0(Ne + 1) − E0(Ne) and μ− = E0(Ne) −
E0(Ne − 1) are the chemical potentials of adding and
removing a single charge, respectively. Similar analysis
has been employed in the context of spin-corner modes in
other interacting models exhibiting higher-order topology
[40].

We report in Fig. 6 the lattice profile of compressibilities
Kc(i) in four representative points of the phase diagram for
cluster 30A. While for parameters in phases I, II, and III
|Kc(i)| � 0 across the whole lattice, in phase IV, it is clear that
much higher compressibilities are obtained for selected sites.
This is direct evidence of the interacting HOTI in the modified
Haldane-Hubbard model.

Two points are important to emphasize. While corner
modes are essentially localized, these will always manifest a
profile in real space, which poses challenges to its verification
in small clusters (amenable to ED calculations). Second, a
particularity that appears even in the V = 0 limit of the dimer-
ized Haldane-Hubbard model highlighted in Ref. [20] is that
by studying semi-infinite ribbons, protected in-gap modes for
0 < η < 0.5 are only observed in the case where one employs
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FIG. 6. The absolute value of the site-resolved charge compress-
ibility in different phases, according to the phase diagram, for the
30A cluster. Here mixed (or cylindrical) boundary conditions are
used (see text) and specific details with increasing interactions V and
dimerization η can be seen at Figs. 7 and 8.

an OBC cut across the t1s bonds (or strong bonds for η < 1).
We follow a similar prescription here, defining mixed (or
cylindrical) boundary conditions as schematically represented
in Figs. 7 and 8 with the solid (PBC) and dashed (OBC) lines.

The transition from an interacting HOTI to the trivial Mott
insulator under the scope of localized modes is shown in
Fig. 7, for a fixed η = 0.4 and increasing interactions. It
becomes apparent that the large compressibility at certain sites
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FIG. 7. The absolute value of the site-resolved charge compress-
ibility with increasing interactions, V/t = 0.4, 1.2, and 2.0, in panels
(a1)–(a3), with fixed η = 0.4. Panels (b1)–(b3) show the same data
but are represented as markers in the 30A cluster whose size is
proportional to the |Kc(i)| value.
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FIG. 8. Similar to Fig. 7, but with fixed interactions V/t = 1 and
various dimerizations η, as marked.

is quickly suppressed once charge ordering, characteristic of
the trivial Mott insulator, appears. Similarly, in Fig. 8, one
can observe the interacting HOTI to CI transition with fixed
interactions V/t = 1 and increasing η.

IV. SUMMARY AND OUTLOOK

Using exact calculations in small clusters, we show that
a variant of the Haldane-Hubbard model displays a rich
phase diagram, including unequivocal evidence of local-
ized modes characteristic of high-order topology and the

manifestation of a topological Mott insulator. The fundamen-
tal ingredient is the C3-symmetry breaking dimerization of the
hoppings, which allows the topological and Mott transitions
to be dissociated in this model. In doing so, the transition
to a charge-ordered phase turns continuous (in opposition to
first order), whose universality class reflects the symmetry
breaking of the CDW state.

This modification in the hoppings in the Haldane model
was originally introduced in Ref. [20] as a way to unveil lo-
calized corner modes characteristic of second-order topology
and is a common way to construct high-order topological in-
sulators [5,6]. We show that the inclusion of interactions leads
to a ground state adiabatically connected to it, generalizing the
HOTI to the many-body realm. While exact calculations allow
sufficient evidence for this characterization, the smallness of
the clusters amenable to calculations and the fact the gapless
charge excitations are not localized on a single site makes
finite-size effects potentially relevant. Studying this model in
a semi-infinite ribbon geometry, which, depending on how
the OBCs are introduced, can harbor in-gap states in the
noninteracting limit, is friendly to other techniques, including
the infinite density matrix renormalization group [81,82]. We
envision the characterization of the HOTI phase, especially
its boundaries to either the CI or the trivial Mott insulator, to
be particularly sharp owing to the mitigated finite-size effects.
We leave such an investigation to future studies. Further char-
acterization similar to the ones we conduct here also can be
put forward in the case of the two-dimensional Su-Schrieffer-
Heeger model, whose dimerization sets a natural condition
for the emergence of higher-order topology [18,83,84]. The
study of its robustness upon including interactions is currently
largely unexplored.
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FIG. 9. (a1)–(c1) CDW structure factor dependence with the interactions V and different η’s (η = 0.4, 1 and 1.1, respectively), contrasting
the different system sizes we employ under PBCs. (a2)–(c2) The same dependence but for fidelity susceptibility χF . Discontinuities in both
quantities are only seen in the homogeneous case η = 1, signaling the Mott transition to be first order.
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Computations were performed on the Tianhe-2JK at the Bei-
jing Computational Science Research Center.

APPENDIX: FINITE-SIZE EFFECTS IN THE MOTT
TRANSITION

The main text shows the fidelity susceptibility and the
charge-density-wave structure factor for cuts in the phase

diagram and a single system size, Ns = 24 (Fig. 2). Fig-
ure 9 generalizes those results for the different system sizes
studied. The general conclusions hold: Discontinuities in
χF and SCDW are obtained in the η = 1 (homogeneous)
case, associated with the simultaneous Mott and topological
transitions, whereas other values of η show behavior typi-
cal of second-order phase transitions for the charge-ordered
transition.
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