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The quantum kinetic framework provides a versatile method for investigating the dynamical optical and
transport currents of crystalline solids. In this paper, starting from the density-matrix equations of motion, we
present a general theoretical path to obtain the nonlinear optical response in an elegant and transparent manner.
We devise an extensive kinetic theory that can be applied to materials with arbitrary band structures and captures
intraband and interband coherence effects, finite Fermi surfaces, and disorder effects. We present a classification
of the nonlinear optical currents arising from the interference of the interband and intraband components of the
density matrix with distinct symmetry and quantum geometrical origin for each contribution. In this context, we
report the following four primary findings: (i) The Fermi golden rule approach is insufficient to derive the correct
expression for the injection current, a shortcoming that we remedy in our theory while associating the injection
current with the intraband-interband contribution to the second-order density matrix. (ii) The interband-intraband
contribution yields a resonant current that survives irrespective of any symmetry constraint in addition to the
well-known anomalous nonlinear current (nonresonant), which requires time-reversal symmetry. (iii) Quite
generally, the nonlinear current is significantly enhanced by contributions arising from the finite Fermi surface.
(iv) The finite Fermi surface and Fermi sea additionally lead to sizable novel nonlinear effects via contributions
we term double resonant and higher-order pole. We investigate such effects in sum frequency and difference
frequency generation. As an illustration, we compute the nonlinear response of the topological antiferromagnet
CuMnAs and thin film tilted Weyl semimetals as model systems dominated by interband coherence contributions.
We find that the nonlinear response of CuMnAs is responsive to the direction of the finite magnetization field
and the response of Weyl semimetal to the tilt. In addition, the choice of the polarization angle of the beam is
crucial to have a nonlinear current in CuMnAs, while it is not the case for Weyl semimetals.
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I. INTRODUCTION

Probing novel nonlinear optical effects due to the light-
matter interaction has recently become a subject of great
interest due to the cutting-edge advancement in fields such as
ultrafast phenomenon and optoelectronics [1–4]. In particular,
nonlinear optical responses are essential to understanding the
symmetry and geometry of the electron wave function. Non-
linear phenomena attracting recent interest include second
and third harmonic generation, rectification, and photocur-
rents, all of which are intimately tied to the nature of the
Bloch wave functions [5–22]. Specifically, these effects are
mainly determined by the momentum-space quantum geomet-
ric quantities such as Berry curvature, quantum metric, and
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metric connection, which tend to be large in systems hav-
ing broken inversion symmetry, time-reversal symmetry, or
both [23–26].

One famous example that has been studied for decades
is the anomalous Hall effect due to the finite Berry cur-
vature in time-reversal symmetry broken systems [27–29].
Such responses are robust in gapped systems, which reflect
the topology of the system [30–32]. In addition to these,
recently, the local quantum geometrical quantity—the Berry
curvature—has been shown to be a key driver of second-order
responses such as the linear photo-currents, quantized circular
photocurrents, injection currents, and the nonlinear Hall effect
[16,18,26,33–61]. An example of a linear photo-current is the
shift current, which reflects the shift in the position of
the electron wave packet upon excitation from the valence
to the conduction band, and is observed in bismuth telluride,
where it is related to Fermi surface anisotropy induced by
warping effects [62]. In contrast, in centrosymmetric systems,
the shift current is contributed by photon drag processes
arising from nonvertical transitions [63]. Second harmonic
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generation (SHG) is another example of a second-order
response with a geometrical origin: Experimentally it has
been observed in inversion symmetry breaking TaAs Weyl
semimetals, whose Weyl nodes are monopoles of the Berry
curvature [64–66]. All these second-order photocurrents and
SHG phenomena come under the roof of most general
second-order frequency conversion phenomena such as sum
frequency generation (SFG), and difference frequency genera-
tion (DFG) [67–69]. Conventionally, these processes arise due
to the interference of two incoming beams having frequencies
ωi and ω j , which generate one outcoming radiation with net
frequency ωδ = ωi ± ω j . The signal associated with the SFG
is governed by third rank tensor σabc(ωδ; ω j, ωl ), and the DFG
by σabc(ωδ; ω j,−ωl ). We explore both of these in the present
study.

Remarkably, most studies have been concerned with non-
linear processes specific to particular materials and in a
narrow region of applicability—overwhelmingly focusing on
clean, undoped materials [15,16,70]. Nevertheless, in doped
systems, the limit 1/τ → 0, with τ the relaxation time scale,
is unrealistic. Although nonlinear currents stemming from the
Fermi sea, such as shift, and injection, give finite results,
recently explored nonlinear currents induced by finite Fermi
surface contributions, such as Drude, resonant photogalvanic,
and double resonant currents diverge [71,72]. Thus to un-
derstand the overall behavior of quantum geometry-driven
currents in a consistent manner, it is important to develop a
formalism that comprehensively accounts for nonlinear opti-
cal currents with distinct physical origins within both clean
and dirty limits, which in our opinion, is lacking in the
literature.

In this paper, we systematically elaborate the dynamics of
the nonlinear optical current in response to the light-matter
interaction in length gauge within the density matrix for-
malism while accounting for the disorder and Fermi surface
and sea effects in doped systems. We provide the gen-
eral framework of the quantum kinetic theory for distinct
second-order optical processes in response to the exter-
nal electric or laser fields. We focus on the second-order
currents arising from the mutual interference of the intra-
band and interband effects. This allows us to classify the
nonlinear current, according to its origins, into four types,
namely intraband-intraband, intraband-interband, interband-
intraband, and interband-interband, as shown schematically in
the tree map of currents in Fig. 1. The Drude current or the
intraband-intraband current is generated due to the momen-
tum derivative of the nonequilibrium distribution function and
shows a divergence in the clean limit. The intraband-interband
arises through the velocity difference between the distinct
bands and is known as the injection current. The contribution
of the intraband response to the interband part of the density
matrix leads to the nonlinear anomalous current proportional
to the Berry curvature, which survives only for a time-reversal
symmetric system and shows a nonresonant structure. How-
ever, the resonant counterpart is proportional to the quantum
metric and contributes to PT symmetric systems, which will
constitute an essential segment of this paper. The complete
interband coherence effect yields the shift current due to the
shift of the wave packet, double resonant due to the asym-
metric Fermi surface and higher-order pole by the momentum
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FIG. 1. A schematic tree for the generation of different contribu-
tions of the first-order and second-order density matrix ρ that leads to
distinct forms of nonlinear currents. Here the subscripts d and o stand
for the diagonal and off-diagonal parts of the density matrix. In the
double subscripts such as dd , do, od , and oo, the first letter indicates
the diagonal and off-diagonal part of the second-order density matrix
and later letter corresponds to the dependence of the relevant part of
the first-order density matrix on the second order.

displaced joint density of states. In addition, we observe that
the finite Fermi surface generates strong absorption peaks in
the resonant (part of interband-intraband) and double resonant
(part of interband-interband) components, thus enhancing the
total nonlinear current.

Within the quantum kinetic approach, our study reveals
that the finite Fermi surface contribution is key to the res-
onant nature of nonlinear responses in doped systems. This
originates from distinct quantum geometric quantities. In
CuMnAs, for example, the nonlinear response is sensitive to
the direction of the magnetization field. Likewise, the non-
linear current due to linearly polarized light depends on the
propagation direction of the incident beams. The second-order
current with the magnetization direction along x̂ axis varies as
j (2)
y ∼ cos2 γ and j (2)

x ∼ sin 2γ , where γ is the polarization
angle along x̂ axis. On the other hand, in thin films of tilted
Weyl semimetals, the quantum geometric quantities are insen-
sitive to the tilt, which is the parameter breaking time reversal.
At the same time, the finite tilt makes the response more
pronounced. In addition, the nonlinear current is generated
here, irrespective of the choice of the polarization angles.
Moreover, we discuss in detail how the different nonlinear
response components contribute to optical currents using the
symmetry properties of quantum geometric quantities and
measurement geometry.

The paper is organized as follows. In Sec. II, the general
theoretical kinetic framework to compute the optical currents
is presented. Here, we solve the kinetic equations in momen-
tum space to calculate the components of the density matrix,
both diagonal and off-diagonal, in the band index for the
linear and nonlinear cases. Next, the optical nonlinear currents
are calculated by employing the diagonal and off-diagonal
density matrix solutions. In Sec. III A, the symmetry analysis
of different quantum geometric quantities is given, and the
spatial geometrical analysis for various optical conductivity
tensor components is discussed. Later, the theory is tested for
materials such as topological antiferromagnetic CuMnAs and
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thin film tilted Weyl semimetal in Sec. IV. Finally, in Sec. V,
we conclude with future perspectives.

II. OPTICAL CURRENTS AND QUANTUM
KINETIC APPROACH

In this section, we determine the general form of the
nonlinear currents in response to the optical electric field.
Specifically, we derive the polarization or dipole moment per
unit volume of a system depending on the strength of the
optical field. Phenomenologically, in response to an optical
field, the time-dependent polarization for a lossless medium
can be expressed in the form [1,73]

P̃a(t ) =
∑

b

χabẼb(t ) +
∑

bc

χabcẼb(t )Ẽc(t ) + · · ·, (1)

where χab, and χabc are optical susceptibilities of second-
rank and third-rank respectively and Ẽ(t ) is the optical field.
Further, using the relation between the polarization and the
current j = dP/dt , the optical current is written in the form

j̃(t ) = j̃
(1)

(t ) + j̃
(2)

(t ) + · · · (2)

Here, j̃
(1)

and j̃
(2)

are proportional to the first and second
power of the optical field, respectively. For an optical field
of the form Ẽ(t ) =∑ j Eω j e−iω j t where E−ω j = E∗ω j having
E∗ as the complex conjugate of the field E, the second-order
optical current can be written as

j̃ (2)
a (t ) =

∑
bc

σabcẼb(t )Ẽc(t ), (3)

where σabc denotes the second-order optical conductivity of
the system. Further, depending on the frequency components
of the optical field, the nonlinear optical current is given by

j̃ (2)
a (t ) =

∑
δ

j (2)
a (ωδ )e−iωδt , (4)

where the summation runs over distinct components of the
frequency. The different combinations of frequency com-
ponents lead to various nonlinear phenomena, namely sum
frequency summation (SFG) j (2)

a (ω j + ωl ), second harmonic
generation (SHG) j (2)

a (2ω j ), difference frequency generation
(DFG) j (2)

a (ω j − ωl ), and optical rectification (OR) j (2)
a (0).

We employ the density matrix approach to evaluate the cor-
responding nonlinear response functions, which is discussed
in the following subsection.

A. Density matrix approach

We start from the quantum Liouville equation for the
time-dependent single-particle density matrix ρ(k, t ) in the
momentum space [74],

∂ρ(k, t )

∂t
+ i

h̄
[H(k, t ), ρ(k, t )] = 0. (5)

Here H(k, t ) is the full Hamiltonian of the system, including
the light-matter interaction, and [·, ·] refers to the commutator
bracket. In the length gauge, the perturbed Hamiltonian for
the spatially uniform and time-varying optical field reduces in
the form

H(k, t ) = H0(k) + HE (t ) + U, (6)

where H0(k) is the unperturbed and Bloch Hamiltonian of the
system, HE (t ) = er · E(t ) represents the interaction with the
electric field, “−e” the electronic charge and U the disorder
potential. Considering Eq. (6), the quantum kinetic equa-
tion (5) on averaging over disorder configurations takes the
form

∂ρ(k, t )

∂t
+ i

h̄
[H0, ρ(k, t )] + J (ρ(k, t )) = − i

h̄
[HE , ρ(k, t )].

(7)

Here J (ρ) represents the scattering term that takes into ac-
count the impact of the disorder potential. In the present
framework, we treat the scattering term under the relaxation
time approximation and approximate the term as ρ(k, t )/τ ,
with τ being a parameter specifying the time taken to relax
the system towards the equilibrium state or the relaxation time
scale. For simplicity, we consider the relaxation time scale τ

as a constant parameter across the Fermi surface. Therefore,
the kinetic equation becomes

∂ρ

∂t
+ i

h̄
[H0, ρ] + ρ

τ
= − i

h̄
[HE , ρ]. (8)

We have written ρ(k, t ) as ρ to simplify the notation, while
ρ (0) is the equilibrium density matrix. To find the solu-
tion for the kinetic equation, we expand the density matrix
perturbatively in the powers of the time-dependent and space-
homogeneous optical field,

ρ = ρ (0) + ρ (1) + ρ (2) + · · ·, (9)

where ρ (N ) ∝ E (N ) having the superscript “N” for an order of
the field.

In the band basis representation, the density matrix for the
most simple two-band model can be represented as

ρ =
(

ρmm ρmp

ρpm ρpp

)
, (10)

where m and p refer to band indices. Within this band basis
representation, Eq. (8) for the N th order density matrix can be
written

∂ρ (N )
mp

∂t
+ i

h̄
[H0, ρ

(N )]mp + ρ (N )
mp

τ
= eE(t )

h̄
· [Dkρ

(N−1)]mp.

(11)

The covariant derivative [75] [Dkρ]mp = ∂kρmp − i[Rk, ρ]mp

where Rmp(k) = 〈um
k |i∂kup

k〉 is the momentum space Berry
connection with |um

k 〉 the periodic part of the Bloch wave-
function, and ∂k represents the momentum derivative. This is
obtained by inserting the expression for HE in the commu-
tator [HE , ρ] and using the relation |m, k〉 = e−ik·r|um

k 〉 and
r̂|m, k〉 = i[∂ke−ik·r]|um

k 〉. Further, the corresponding right-
hand side term serves as the driving term that generates a
response in the system. It is also a fully intrinsic term and
is determined by the electronic structure of the system. Note
that the right-hand side of the equation contains the (N − 1)th-
order density matrix due to the presence of the field factor.
It is also evident from this expression that to find the solu-
tion of the density matrix of order N � 1, one requires the
solution for the proceeding order due to (N − 1) order term
in the right-hand side of the Eq. (11). However, for N = 0
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case the right side of Eq. (11) approaches to zero, which
gives ρ (0)

mp = f 0(εm
k )δmp the equilibrium Fermi-Dirac distri-

bution function and is defined as f 0(εm
k ) = [eβ(εm

k −μ) + 1]−1

having β = [kBT ]−1 with kB the Boltzmann constant, T the
electron temperature, μ represents the chemical potential, and
εm

k corresponds to the electron dispersion for mth band. To
study the dynamics of the linear and nonlinear currents, we
calculate the diagonal (m = p) or the intraband and the off-
diagonal (m �= p) or the interband part of the density matrix
correspond to the linear and the quadratic power of the electric
field in the following subsections.

1. Linear-order density matrix

To recover the linear response, we set N = 1 and solve the
kinetic equation by splitting the density matrix into diagonal
and off-diagonal components in the band index such as ρ =
ρmmδmp + ρmp. Here the first term is the diagonal or intraband
part of the density matrix owing to the Dirac delta function,
which vanishes for insulators. The second term refers to the
off-diagonal or interband coherence part of the density matrix.

Firstly for the intraband contribution to the density matrix
or m = p case, Eq. (11) reduces to

∂ρ (1)
mm

∂t
+ ρ (1)

mm

τα

= eE(t )

h̄
· ∂ f 0(εm

k )

∂k
, (12)

where τα ≡ τmm is the time scale for the intraband processes.
It is to be noted that the commutator between the Bloch state
Hamiltonian H0 and the zeroth-order density matrix ρ (0) is
zero. On solving the linear-order differential equation by tak-
ing an integrating factor, the intraband time-dependent density
matrix takes the form

ρ (1)
mm = e

h̄

∑
j

∂c f 0
mg

ω j

0;αE
ω j
c e−iω j t . (13)

Here, we define g
ω j

0;α = [1/τα − iω j]−1 and ∂kc ≡ ∂c for
brevity. Similarly, the interband component (m �= p) of the
density matrix comes out to be

∂ρ (1)
mp

∂t
+ iωmpρ

(1)
mp + ρ (1)

mp

τγ

= i
eEc(t )

h̄
Rc

mpFmp. (14)

With h̄ωmp = εm,k − εp,k as the interband transition energy at
momentum k, τγ ≡ τmp as the time scale corresponding to the
interband processes and Fmp = f 0(εm

k ) − f 0(εp
k ) is the differ-

ence in the occupation between two distinct bands. Here we
use the relation Dkρ

(0) = −i[Rk, ρ
(0)] due to vanishing ∂kρ

(0)
mp

as the equilibrium part contains only the diagonal elements in
the band index. The solution of Eq. (14) for the off-diagonal
part of the density matrix gives

ρ (1)
mp = i

e

h̄

∑
j

Rc
mpFmpg

ω j
mp;γ E

ω j
c e−iω j t , (15)

where g
ω j
mp;γ = [1/τγ − i(ω j − ωmp)]−1 relates to the joint

density of states broadened by the interband relaxation time
scale. From this, we find that the linear order ρ (1)

mp depends
on the shift of the Fermi function Fmp and this contribution
survives only for m �= p. In a compact form, the complete

solution of the first-order density matrix can be written as

ρ (1)
mp = e

h̄

∑
j

ρ̃
(1),c
mp; j E

ω j
c e−iω j t , (16)

where

ρ̃
(1),c
mp; j = ρ̃ (1),c

mp (ω j ) = ∂cρ
(0)
mpg

ω j

0;αδmp + iRc
mpFmpg

ω j
mp;γ . (17)

This expression can be further simplified in the low tempera-
ture region by replacing the Fermi distribution function and its
energy derivative with the Heaviside step function (εm

k − μ)
and Dirac delta function −δ(εm

k − μ).

2. Density matrix to second-order in the electric field

Substituting N = 2 in Eq. (11), we get

∂ρ (2)
mp

∂t
+ i

h̄
[H0, ρ

(2)]mp + ρ (2)
mp

τ
= eEb(t )

h̄
[Dbρ

(1)]mp. (18)

Using the solution for the linear-order density matrix Eq. (16),
we obtain

∂ρ (2)
mp

∂t
+ iωmpρ

(2)
mp + ρ (2)

mp

τα

= e2

h̄2

∑
P

∑
j,l

{[
∂bρ̃

(1),c
mp;l −i

∑
n

(
Rb

mnρ̃
(1),c
np;l − ρ̃

(1),c
mn;l R

b
np

)]

× Eωl
b E

ω j
c e−i(ω j+ωl )t

}
. (19)

Here, the sum over P refers to the intrinsic permutation sym-
metry (b, ωl ↔ c, ω j ). For m = p case, ρ (2)

mm can be written
as a sum of two terms, ρ (2)

mm = ρ (2),dd
mm + ρ (2),do

mm where the first
term refers to the intraband-intraband (or diagonal-diagonal)
part and stems from the diagonal component of the first-order
density matrix. The second term corresponds to the intraband-
interband (or diagonal-off diagonal) part by the off-diagonal
component of the first-order density matrix. The first term
ρ (2),dd

mm is defined as

ρ (2),dd
mm = e2

h̄2

∑
P

∑
j,l

ρ̃ (2),dd
mm (ωδ; ω j, ωl )E

ωl
b E

ω j
c e−iωδt ,

having

ρ̃ (2),dd
mm (ωδ; ω j, ωl ) = ∂bρ̃

(1),c
mm;l g

ωδ

0;α. (20)

Here, we define ωδ = ω j + ωl . Similarly, the intraband-
interband part of the density matrix ρ (2),do

mm is given by

ρ̃ (2),do
mm (ωδ; ω j, ωl ) = −i

∑
n

(
Rb

mnρ̃
(1),c
nm;l − ρ̃

(1),c
mn;l R

b
nm

)
gωδ

0;α.

(21)

In the same spirit, the density matrix for m �= p case can
be expressed in the form ρ (2)

mp = ρ (2),od
mp + ρ (2),oo

mp . Firstly, the
interband-intraband part ρ (2),od

mp is defined in the form

ρ̃ (2)od
mp (ωδ; ω j, ωl ) = −iRb

mp

(
ρ̃

(1),c
pp;l − ρ̃

(1),c
mm;l

)
gωδ

mp;γ . (22)
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Secondly, the interband-interband part of the density matrix is
given by

ρ̃ (2),oo
mp (ωδ; ω j, ωl ) = gωδ

mp;γ

[{
∂b − i

(
Rb

mm − Rb
pp

)}
ρ̃

(1),c
mp;l

− i
∑

n �=(m,p)

(
Rb

mnρ̃
(1),c
np;l − ρ̃

(1),c
mn;l R

b
np

)]
.

(23)

Here, the second term in the open brackets contributes to
multiband systems.

B. Nonlinear optical currents

To obtain the expressions for nonlinear (i.e., second-order
in the field) optical currents, we use the general definition of
the current, which is the trace of the velocity operator with
the density matrix. Accordingly, the time-dependent optical
current for d-dimensional momentum space in the band index
basis can be expressed in the form

j(t ) = −e
∑

p

∫
dd k

(2π )d
〈p|v(k)ρ(k, t )|p〉. (24)

Here, vpm(k) the velocity matrix in the band basis in the
Bloch representation is va

pm(k) = h̄−1(δpm∂aε
m
k + iRa

pmh̄ωpm).
The first part refers to the group velocity of Bloch electrons
along the spatial direction a, and the second part corresponds
to the interband velocity component. Using this, the cur-
rent in an arbitrary direction can be expressed as ja(t ) =
−e
∑

m,p

∑
k va

pmρ (2)
mp(t ). Below we make use of the different

interband and intraband components of the density matrix,
such as ρdd , ρdo, ρod , and ρoo to obtain the nonlinear currents
and classified them accordingly.

1. Intraband-intraband current

For the intraband-intraband (dd) contribution of the den-
sity matrix, the current is given by

j̃ (2),dd
a (t ) = −e

∑
m

∑
k

v0a
mmρ (2),dd

mm (t ), (25)

where v0a
mm = h̄−1∂aε

m
k is the diagonal component of the veloc-

ity in the band basis. Using Eq. (20) in the above equation, the
second-order conductivity σdd can be expressed in the form

σ dd
abc(ωδ; ω j, ωl ) = − e3

h̄2

∑
P

∑
m

v0a
mm∂b∂c f (0)

m gωl
0;αgωδ

0;α. (26)

It is clear from the expression that σ dd is the Fermi surface
contribution due to the presence of the momentum deriva-
tive of the Fermi function. In addition, it is entirely the
intraband contribution and stems from the single band only.
Note that this contribution to the current is only finite for
metals and semimetals and can be completely ignored for
insulators.

Moreover, the frequency dependence of this optical current
is captured by the product of two g0 factors having the follow-
ing form:

gωl
0;αgωδ

0;α = 1

1/τα − iωl
× 1

1/τα − iωδ

. (27)

It is helpful to expand the product of g0 factors by partial
separation below as

gωl
0;αgωδ

0;α = τα

i(ωl − ωδ )

(
1 − iωlτα

1 + ω2
l τ

2
α

− 1 − iωδτα

1 + ω2
δ τ

2
α

)
, (28)

where we have considered (ωl − ωδ ) �= 0. In the low fre-
quency limit, quantitatively defined as ωτ � 1, Eq. (27)
reduces as gωl

0;αgωδ

0;α = τ 2
α , which has the Drude nonlinear

current like relaxation time dependence. In the opposite fre-
quency regime ωτ � 1, Eq. (27), the product of g factors
varies with the inverse quadratic dependence of the frequency
like gωl

0;αgωδ

0;α = 1/ωδωl . This generates a similar expression as
quoted in Ref. [39] and is referred to as the nonlinear Drude
term. Note that the nonlinear Drude current does not rely on
band geometric quantities.

2. Intraband-interband current

We consider the contribution of the intraband-interband
(do) part of the density matrix ρ (2),do

mm to the current. Here,
the response arises from the band geometrical quantity and
the change in group velocity of the carrier on transiting from
one band to another band. The resulting nonlinear current is
termed as the injection current. It is given by

j (2),do
a (t ) = −e

∑
m

∑
k

v0a
mmρ (2),do

mm (t ). (29)

Using the nonlinear density matrix calculated in Eq. (21),
we have the following expression for the nonlinear
conductivity:

σ do
abc(ωδ; ωl , ω j ) = e3

h̄2

∑
P

∑
m,p

�a
mpQbc

mpFmpgωl
mp;γ gωδ

0;α. (30)

Here, we have defined �a
mp = (v0a

mm − v0a
pp), the difference be-

tween the group velocities of two bands. We have also defined
the geometrical quantity, the band-resolved quantum geomet-
ric tensor (QGT) [76] as Qbc

mp = Rb
pmRc

mp = (Gbc
mp − i/2�bc

mp).
Here, the quantum metric is Gbc

mp = {Rb
pm,Rc

mp}/2, which is
symmetric under the exchange of spatial and band indices.
On the other hand, the Berry curvature �bc

pm = i[Rb
pm,Rc

mp] is
antisymmetric under the exchange of band and spatial indices.
The optical frequency dependence of this part of conductivity
comes from

gωl
mp;γ gωδ

0;α = 1

1/τγ − i(ωl − ωmp)
× 1

1/τα − iωδ

. (31)

On expanding the product of g factors, one ends up with four
terms having two real and two imaginary terms. Here, the
leading contributing terms to the nonlinear current are

gωl
mp;γ gωδ

0;α ≈ 1/τα

1/τ 2
α + ω2

δ

1/τγ

1/τ 2
γ + (ωl − ωmp)2

+ i
ωδ

1/τ 2
α + ω2

δ

1/τγ

1/τ 2
γ + (ωl − ωmp)2

. (32)

This yields two terms to the interband-intraband conductivity.
However, when we take the limit ωδ → 0 in the above expres-
sion and then consider 1/τγ → 0, the second term vanishes.
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The resulting expression is

σ do
abc(ωδ; ωl , ω j )

= −2πe3

h̄2 τα

∑
b,c

∑
m,p

�a
mpQbc

mpFmpδ(ωmp − ωl ). (33)

Here we use gωl
mp;γ gωδ

0;α = −ταπδ(ωmp − ωl ). This expression
is similar to the expression given by Ahn et al. [26] using
the Fermi golden rule. Notably, the injection conductivity is
linearly proportional to the relaxation time and is finite only
in the dirty limit. In addition, this is the Fermi sea response,
and the corresponding real part of the response is proportional
to the quantum metric. On the other hand, taking limits such as
1/τγ → 0 and then ωδ → 0 the first term of Eq. (32) becomes
zero and the nonlinear conductivity becomes

σ do
abc(ωδ; ωl , ω j )

= −i lim
ωδ→0

2πe3

ωδ h̄2

∑
b,c

∑
m,p

�a
mpQbc

mpFmnδ(ωmp − ωl ). (34)

This expression diverges at ωδ → 0 and is consistent with
the calculation quoted recently using the kinetic approach
[39]. However, such divergence can be avoided by inserting
the relaxation time factor. Further, here the real part of the
response depends on the Berry curvature due to the imaginary
factor in the expression.

Note that Eqs. (33) and (34) are obtained by taking limiting
cases and yield different results for the injection current. One
needs to be cautious before taking the limits as it may lead
to different results. To avoid such confusion, we thoroughly
provide the complete expression [Eq. (36)] of the injection
conductivity without taking any limits, which captures both
the cases shown in the literature [26,39]. Further, we observe
that the resonance features survive only for the doped system,
and the resulting peak is controlled by the relaxation time
scale. This is ultimately a Fermi sea effect determined by the
joint density of states and the band velocity difference.

3. Interband-intraband current

We consider the current due to the off-diagonal contri-
bution of the second-order density matrix depending on the
diagonal part of the first-order density matrix. It reads

j (2),od
a (t ) = −e

∑
m

∑
k

va
pmρ (2),od

mp (t ). (35)

Substituting the expression for the interband-intraband den-
sity matrix component ρ (2),od

mp from Eq. (22), the interband-
intraband nonlinear response becomes

σ od
abc(ωδ; ω j, ωl ) = − e3

h̄2

∑
P

∑
m,p

ωmpQab
mpgωl

0;αgωδ

mp;γ ∂cFmp.

(36)

The presence of the momentum derivative of the difference in
the band occupation, ∂cFmp dictates that Eq. (36) is a Fermi
surface effect. Although this current is a second-order ef-
fect, it does not simultaneously generate one- and two-photon
absorption processes. Instead, it only gives either absorp-
tion process depending on the incident energy of two optical

beams. Note that on taking the clean limit and keeping only
the Berry curvature contribution, the above expression yields
same expression as quoted in the recent paper [77]. This
further leads to the in-gap conductivity at frequency larger
than the energy gap [78–80]. To separate the resonant and
nonresonant parts of the conductivity, it is helpful to employ
the identity

ωmp

1/τγ − i(ω − ωmp)
= −i

[
1 − 1/τγ − iω

1/τγ − i(ω − ωmp)

]
. (37)

Using the above relation we separate Eq. (36) into two parts as
σ od

abc(ωδ; ω j, ωl ) = σ od,I
abc (ωδ; ω j, ωl ) + σ od,II

abc (ωδ; ω j, ωl ). The
first (nonresonant) part is to be

σ od,I
abc (ωδ; ω j, ωl ) = e3

2h̄2

∑
P

∑
m,p

�ab
mpgωl

0;α∂cFmp. (38)

We emphasize that when writing Eq. (38) we used the fact that
�mp is antisymmetric and Gmp is symmetric in band index.
Such simplification based on symmetry and anti-symmetry
is only possible since there are no resonance factors with
the band index (gmp). This nonresonant part is known as the
anomalous nonlinear response [37]. The other (resonant) part
of the conductivity is given by

σ od,II
abc (ωδ; ω j, ωl ) = −i

e3

h̄2

∑
P

∑
m,p

Qab
mp∂cFmp

gωl
0;αgωδ

mp;γ

gωδ

0;γ

.

(39)

Equation (39) is one of the central results of this paper. This
part of the current will show resonance behavior near the
Fermi energy, which can be inferred from the derivative of
the Fermi function. The optical field-dependent part is

gωl
0;αgωδ

mp;γ

gωδ

0;γ

= 1

1/τα − iωl
× 1/τγ − iωδ

1/τγ − i(ωδ − ωmp)
. (40)

In the clean limit, one obtains

gωl
0;αgωδ

mp;γ = i
1

ωl
× ωδ

ωδ − ωmp
, (41)

and in such a case, this current diverges at the lower energy
scale and approaches zero at higher energy. We emphasize
that it is not right to consider a dc field limit of Eq. (41) after
applying the clean limit. Instead, it is preferable to consider
the dc limit from Eq. (40) and then consider the clean or dirty
limit. Notably, the resonant feature here will be observed at
ωδ = ωmp.

4. Interband-interband current

Finally, the substitution of the interband part of the first-
order density matrix into the interband part of second-order
ρ (2)

mp yields the interband-interband current. It is defined as

j (2),oo
a (t ) = −e

∑
m,p

va
pmρ (2),oo

mp (t ). (42)

We may refer to this current as purely an interband coherence
current as it arises from interband geometric quantities, off-
diagonal components of the velocity, and the joint density of
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states. Now, with [Eq. (23)] for ρ (2),oo
mp and using the defini-

tion Db
mp = ∂b − i(Rb

mm − Rb
pp), the corresponding nonlinear

conductivity part comes out to be

σ oo
abc(ωδ; ω j, ωl )

= − e3

h̄2

∑
P

∑
m,p

Ra
pmωmpgωδ

mp;γ

[
Db

mpRc
mpFmpgωl

mp;γ

− i
∑

n �=(m,p)

(
Rb

mnRc
npFnpgωl

np;γ − Rc
mnRb

npFmngωl
mn;γ

)]
.

(43)

Further with the help of Eq. (37) the above mentioned conduc-
tivity can be written as σ oo

abc(ωδ, ω j, ωl ) = σ oo,I
abc (ωδ, ω j, ωl ) +

σ oo,II
abc (ωδ, ω j, ωl ) + σ oo,III

abc (ωδ, ω j, ωl ) by applying the co-
variant derivative separately to distinct factors. The last term
of the above equation [Eq. (49)] contributes only to the multi-
band (more than two bands) systems. Here, the first part is
given by

σ oo,I
abc (ωδ; ω j, ωl )

= − e3

h̄2

∑
P

∑
m,p

Ra
pmωmpgωδ

mp;γ gωl
mp;γ FmpDb

mpRc
mp. (44)

More simplifications are made using the sum rule [81] for the
covariant derivative on the Berry connection. Accordingly,

Db
mpRc

mp =− 1

iωmp

[
vb

mpΔ
c
mp + vc

mpΔ
b
mp

ωmp
− wbc

mp

+
∑

n �=(p,m)

(
vc

mnv
b
np

ωnp
− vb

mnv
c
np

ωmn

)⎤⎦. (45)

Here, we have defined wbc
mp = 〈m|∂b∂cH|p〉. From Eq. (45),

it is straightforward that the last term does not contribute
to the two-band model. More precisely, the corresponding
conductivity for two band model can be written in the form
as

σ oo,I
abc = − e3

h̄2

∑
P
∑

m,p ωmpCabc
mp gωδ

mpgωl
mpFmp, (46)

where Cabc
mp = Ra

pmDb
mpRc

mp = �abc
mp + i�̃abc

mp is the quantum
geometric connection, which is the sum of the quantum
geometric quantities namely metric connection �abc

mp and sym-
plectic connection �̃abc

mp . Originally, the quantum geometric
connection Cabc

mp in the tangent subspace spanned by basis
vectors êb

mn stems from the inner product of the tangent basis
vector êb

mp and the derivative of such vectors ∇bêc
mp. Fur-

ther, �̃abc
mp is directly related to the shift vector. To elaborate,

consider the case of a = c and write Berry connection as
Ra

mp = |Ra
mp|eiφmp with φmp a phase factor. With this, we get

�̃abc
mp = ∣∣Ra

mp

∣∣2∂bφmp − (Rb
mm − Rb

pp

)∣∣Ra
mp

∣∣2. (47)

This expression is consistent with the shift vector definition
[3]. The difference between Berry connections indicates the
difference of shifted Bloch wave functions between conduc-
tion and valence band, and the momentum derivative of the
phase factor ∂bφmp maintains the gauge invariance. Further,

using Eq. (37) and expressing gωl
mp with Sokhotski-Plemelj re-

lation, it is straightforward to express the interband-interband
response in the form of the shift response as shown in the
literature [26,39,62]. The second part of σ oo

abc is

σ oo,II
abc (ωδ; ω j, ωl ) = − e3

h̄2

∑
P

∑
m,p

ωmpgωδ

mpgωl
mpQac

mp∂bFmp.

(48)

This is the Fermi surface effect and arises due to the
asymmetric Fermi surface in the momentum space and the
band geometric quantities. To illustrate more, let us consider
the case of low temperature. In this limit, the momentum
derivative of the Fermi function approaches to −δ(ωm −
μ)∂εm/∂k + δ(ωp − μ)∂εp/∂k having μ the chemical poten-
tial. If we perform the partial separation of gωδ

mpgωl
mp and then

solve the k integral, the response for the case ωm = −ωp

gives two resonant peaks at energy ωδ = 2μ and ωl = 2μ.
Note that the corresponding response persists irrespective
of geometry. Due to this feature, the associated current is
known as the double resonant current. However, in the case
of ωδ → 0 (the optical rectification process), one of the peaks
disappears, and the induced effect is known as the resonant
photovoltaic effect [71]. Here, the integrand becomes pro-
portional to 2τ∂ε/∂kaδ(ωm − εF ) at energy scale ωl = 2μ.
Clearly, the effect originates due to the Fermi surface displace-
ment and is finite for the doped systems.

The third part of the interband-interband response, due to
the momentum derivative of the joint density of states, is

σ oo,III
abc (ωδ; ω j, ωl ) = − e3

h̄2

∑
P

∑
m,p

ωmpQac
pmgωδ

mp;γ

[
∂bgωl

mp;γ

]
Fmp.

(49)

The associated current is known as the higher-order pole
current. This is finite only for the finite scattering time and
vanishes at 1/τ → 0. To elaborate on the point, we consider
the imaginary part of gωδ

mp;γ [∂bgωl
mp;γ ], which gives

Im
[
gωδ

mp;γ ∂bgω
mp;γ

]
= (∂bωmp)1/τγ

1/τ 2
γ + (ωδ − ωmp)2

[
2(ωl − ωmp)(ωδ − ωmp)[

1/τ 2
γ + (ωl − ωmp)2

]2
+
⎛
⎝ 2(ωl − ωmp)2[

1/τ 2
γ + (ωl−ωmp)2

]2 − 1

1/τ 2
γ + (ωl − ωmp)2

⎞
⎠].
(50)

Clearly, the nonzero imaginary part of the resonance factor
arises only through the incorporation of a finite scattering
timescale due to disorder.

C. Scattering time scale

Here we discuss the difference between the present and
earlier treatment of the scattering time in the response. In ear-
lier works, 1/τ was typically added as an infinitesimally small
imaginary part in the frequency ω → ω + iη having η = 1/τ

to achieve convergence in the low-frequency response [82].
Here, η originates from causality via the slow switching of
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the perturbation and is generally set to zero to obtain re-
sults in the clean limit. However, this approach cannot be
applied to systems where the interference of intraband and
interband transitions play a pivotal role in generating the dif-
ferent components of the nonlinear response. In addition, the
subtle difference between the two approaches becomes more
important while going beyond the linear response regime to
calculate the nonlinear response.

In the approach of the addition of a small imaginary term,
the resonance factor becomes

1

ωl + ω j − ε
→ 1

ωl + ω j − ε + iη
. (51)

Nevertheless, one must be cautious while calculating the
response where the scattering term contributes twice. The
qualitative aspects can be captured correctly without taking
the factor of 2 in front of η arising via the addition of an imagi-
nary factor to two frequencies. Still, it may significantly affect
the shape of resonances and yield different results around the
resonances with two approaches. In addition, this factor also
play a significant role in the dc limit [83]. Such subtle issues
can be avoided by considering the finite scattering term in the
equation of motion as incorporated in the present study.

III. SYMMETRY AND GEOMETRICAL ANALYSIS

A. Symmetry analysis

In this section, we perform the symmetry analysis of the
nonlinear optical currents induced by the optical field. We
describe how the properties of the nonlinear currents are re-
stricted by various symmetries such as the parity (or space
inversion) (P), time reversal (T ), inversion-time reversal
(PT ) symmetries. We begin by recalling basic symmetry ar-
guments. Firstly under P unitary transformation, the position
vector r changes sign to −r; thus, momentum changes sign.
In this case, the Bloch Hamiltonian follows the eigenvalue
equation as

PH(k)
∣∣um

k

〉 = H(−k)P
∣∣um

k

〉
, (52)

which gives the energy eigenvalues of the Bloch Hamiltonian
that remain invariant on changing k to −k,

εm(k) = εm(−k). (53)

However, this symmetry is only preserved if the dispersion
is an even function of the momentum. Further, the Bloch
eigenfunction follows the relation

P|um,k〉 = ∣∣um
−k

〉
. (54)

The Berry connection R(k), for two band system, which con-
tains the momentum derivative of the eigenfunction satisfies
the following relation under parity inversion:

Rb
pm(k) = −〈up

−k

∣∣i∇∣∣um
−k

〉 = −Rb
pm(−k). (55)

However, the Berry curvature and the geometric tensor having
the product of two Berry connection factors remain invariant
under P symmetry,

�bc
pm(k) = �bc

pm(−k), Gbc
pm(k) = Gbc

pm(−k). (56)

Secondly, the time-reversal symmetry (T ) is an anti-
unitary transformation in which complex number changes to

its conjugate. Here the momentum k ≡ i∂r changes −k due to
the sign flip of i. Under T symmetry, the energy eigenvalues
remain invariant. However, the Bloch function follows∣∣un

−k

〉∗ = eiφ(k)
∣∣un

k

〉
. (57)

Interestingly, the Berry connection, in addition to the sign
change, also reverses the band index order as dictated below:

Rb
pm(k) = −Rb

mp(−k). (58)

However, the band index criteria emerge only for multiband
systems. Further, due to the complex conjugate condition
under time-reversal transformation, the geometric quantities
satisfy

�bc
pm(k) = −�bc

pm(−k), Gbc
pm(k) = Gbc

pm(−k). (59)

It is to be noted that the Berry curvature, which is equal to
i[Rb

mp,Rc
mp]/2 reverses sign and the quantum metric does not.

Thirdly, the combination of the parity and time-reversal
symmetry (PT ) properties yield

Rb
pm(k) = −Rb

mp(k) �bc
pm(k) = 0, Gbc

pm(k) = Gbc
pm(k).

(60)

Using these symmetries, we can understand the different
contributions of the current qualitatively. Under P symmetry,
the electric field reverses the sign as E → −E , and the current
also changes sign j → − j. In the nonlinear currents, the prod-
uct of two electric fields preserves the sign, which ensures that
the only component of the conductivity tensor should be zero,
which changes the sign to fulfill the condition for current.

First, the σ dd
abc contribution under P symmetry depends on

the following quantities:

v0a
mm = −v0a

mm; ∂b∂c f (0)
m = ∂b∂c f (0)

m ; gωl
0;α = gωl

0;α, (61)

which flips the sign of the intraband-intraband response as
σ dd

abc = −σ dd
abc. The other components of the response follow

as

σ do
abc = −σ do

abc; σ od
abc = −σ od

abc; σ oo
abc = −σ oo

abc, (62)

due to the sign reversal of the velocity change �a
mn, shift of

the Fermi function in the momentum space ∂cFmp, and Berry
connection respectively.

Second, under time-reversal T symmetry, the electric field
does not change sign, but the current follows j(= dP/dt ) →
− j. Thus, the conductivity tensor must be an odd function
under time-reversal symmetry. Here,

Qmp = Q∗
mp; gωl

0;αgωδ

mp;α = [gωl
0;αgωδ

mp;α

]∗
(63)

However, only contribution stemming from the Berry curva-
ture (odd in nature) in σod , σdo, and σoo will be nonzero.

Third, under PT symmetry, we have

Qmp = Qmp; gωl
0;αgωδ

mp;α = [gωl
0;αgωδ

mp;α

]∗
. (64)

Here, the Berry curvature vanishes, and the quantum metric
remains nonzero. Thus, the only contribution from the quan-
tum metric Gmp generates a finite nonlinear current.
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FIG. 2. Schematic of the experimental setup for the measurement
of the nonlinear current.

B. Spatial geometrical analysis

We analyze the different components of the conductivity
tensor due to the application of the optical field in distinct
directions. The schematic picture is shown in Fig. 2.

Scheme - I. When the optical field is applied in the x̂ di-
rection such as E(t ) =∑ j E

ω j
x e−iω j t , the longitudinal current

j (2)
x for the time-reversal symmetric system vanishes due to

the vanishing Berry curvature �bc = �xx. However, it remains
finite for the parity-time reversal symmetric system due to
nonzero quantum metric Gxx. Conversely, the Berry curvature
contributes to the transverse current j (2)

y due to the nonzero
response components σod and σoo. Note that the injection
current due to � here is zero.

Scheme - II. For the optical field as the superposition of the
beams in x̂ and ŷ directions, E(t ) = E

ω j
x e−iω j t + Eωl

y e−iωl t , the
current along x̂ direction is mainly contributed by the two ten-
sor components σxxy and σxyx. In the spatial geometry xxy, the
resonant part of the interband-intraband conductivity or the
anomalous conductivity vanishes, and the nonresonant part
gives a finite value via the finite quantum metric. In addition,
the other parts also contribute to the current through G. For
xyx geometry, the double resonant part σ oo,II

xyx and the higher-
order pole part σ oo,III

xyx are zero for the time reversal symmetric
system due to vanishing antisymmetric Berry curvature �xx.
Similarly for the nonlinear current j (2)

y , we have σyxy and σyyx

components.

IV. APPLICATIONS

In this section, we discuss the application of the general
kinetic approach for the optical currents developed in the
present study to known models. Our focus in this section is
to establish the connection of the geometric quantities with
the nonlinear response components using a few examples.
However, the framework is formulated in this paper in a more
general way that is appropriate for all systems.

A. Topological antiferromagnetic CuMnAs

Here we consider the case of Dirac semimetal, which has
attracted attention as a host of massless Dirac quasiparti-
cles with two doubly degenerate bands in the momentum
space [84–86]. These doubly degenerate bands having band
crossing between them generate fourfold degenerate Dirac
points. However, such Dirac points are unstable and require
symmetry protection [86]. Specifically, upon breaking ei-
ther symmetry, such as time-reversal and parity, the double
degeneracy of the bands is lifted, and the massless Dirac
quasiparticles break down. This raises a natural question about

the existence of such fermions in the absence of individual
symmetry and in the presence of the combination of both
the time-reversal and parity symmetry. Such a question has
been addressed by considering the example of a 2D material,
CuMnY where Y is As or P, having the spin-orbit coupling
that protects the band crossings in the Dirac semimetal [87].
In the paramagnetic phase, this material preserves the time-
reversal and parity symmetries. This results in the formation
of Kramers pairs by each band. On the other hand, in the
antiferromagnetic phase material breaks both T and P sym-
metry. However, it preserves the degeneracy due to the PT
symmetry, which relates to the spin degrees of freedom. This
exciting feature makes the antiferromagnetic phase of the
CnMnAs an excellent choice to study transport effects such
as the spin-orbit torque, spin Hall effect, and anomalous Hall
effect [88–93].

The PT symmetric topological antiferromagnetic CuM-
nAs material is described by the low energy quasi 2D model
Hamiltonian in the momentum space as [89]

H(k) =
(

ε0(k) + hA(k) · σ VAB(k)

VAB(k) ε0(k) + hB(k) · σ

)
, (65)

where VAB(k) = −2t̃ cos(kx/2) cos(ky/2) is the inter-
sublattice hopping term having t̃ the first-nearest-neighbor
hopping parameter, ε0(k) = −t[cos(kx ) + cos(ky)] is the
intra-sublattice hopping term with parameter t as the
second-nearest neighbor and σi represent the Pauli matrices
for spin. Further, the quantity hA(k) for the sublattice A that
includes the antiferromagnetic (AF) magnetization field and
the spin-orbit coupling (SOC) term hA(k) = hAF + hSOC(k)
is defined like

hA(k) =

⎛
⎜⎝

hx
AF − αR sin(ky) + αD sin(ky)

hy
AF + αR sin(kx ) + αD sin(kx )

hz
AF

⎞
⎟⎠, (66)

having αR and αD as the spin-orbit coupling coefficients and
for sublattice B, hB(k) = −hA(k). The energy eigenvalues
corresponding to the Hamiltonian Eq. (65) are

ε(k) = ε0 ±
√

V 2
AB + h2

Ax + h2
Ay + h2

Az. (67)

Here, (+) sign is for the conduction band and (–) for the
valence band. Further, the dispersion ε(k) �= ε(−k) due to the
broken particle-hole symmetry by ε0. The schematic picture
of the dispersion is shown in Fig. 3(a), and the corresponding
geometric quantities are shown in Figs. 4(a)–4(c). Here, the
band crossing at the Dirac points is protected due to the
glide planer symmetry [89]. Further, the quantum geometric
quantities Berry curvature and symplectic connection are zero
in this system due to symmetry arguments. However, the other
quantities quantum metric Gab and metric connection �abc are
nonzero where (a, b, c) ∈ (x, y). To demonstrate the nature of
these quantities, we have shown a few components in the top
panel of Fig. 4 where we have considered the antiferromag-
netic magnetization field along x̂ direction and zero in other
directions.

In the parity time-reversal symmetric CuMnAs system,
eight components of the nonlinear conductivities contribute
to the second-order current, in general. However, with the
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FIG. 3. Schematic picture of the energy dispersion in the two-
dimensional momentum plane for (a) topological antiferromagnet
CuMnAs and (b) gapped tilted Weyl semimetal. Here, the momen-
tum coordinates are labeled as kx and ky, and the third dimension
corresponds to the energy. We consider the parameter values in the
units of eV as t̃ = 1.0, t = 0.08, αR = 0.8, αD = 0.0, hAFx = 0.85,
hAFy = 0, hAFz = 0 for CuMnAs system. For tilted Weyl semimetal,
tx = 0.5 eV Å−1, � = 0.05 eV, and v = 1.0 eV Å−1.

finite magnetization field along x̂ direction, the components
with odd number of spatial x indices such as σxxx, σxyy, σyyx,
and σyxy vanish. Thus, we left with σyxx, σxxy = σxyx and σyyy.
The behavior of these components with the incident beam
frequency at the low temperature is shown in Figs. 5(a) and
5(b). Here we fix the frequency of one incident beam ω2

and tune the frequency of another beam ω1, while the chem-
ical potential is kept at μ = 0.2 eV and the scattering time
scale τ = 1 ps. We observe that the total response, a sum of
different components such as dd , do, od , and oo is mainly
contributed by the geometric quantities Gab and �abc. In CuM-
nAs, we find the following features: (i) The absorption peaks
are generated at energies around μ and 2μ. The observed be-
havior represents interference between the Fermi surface (i.e.,
the momentum derivative of the Fermi distribution function)
and the Fermi sea effects. Note that the deviation in peaks is
due to the absence of particle-hole symmetry in the considered
system. (ii) The nonlinear conductivity σxxy is opposite in sign
to the other components. This arises due to the opposite sign
of the σ do, σ od , and σ oo,I stemming from the nature of the
factors Gbcva, Gabvc, and Cabc respectively. Note that on taking
both frequencies equal, our results for CuMnAs system show
same behavior as discussed in the recent article for the second
harmonic generation [72].

B. Thin film tilted Weyl semimetal

Secondly, we consider the tilted Weyl semimetal, which is
a three-dimensional topological semimetal in general [94,95].
Here the conduction and valence bands touch each other at
the Weyl nodes having opposite chirality. Further, this mate-
rial shows the phase transition from topological to trivial by
tuning the gap controlled by an out-of-plane component of
the momentum [49]. In the case of an ultrathin film of the
Weyl semimetal, the out-of-plane component of the momen-
tum is quantized, then the system becomes a two-dimensional
fermion system [96,97]. Further, this quantized component
results in the mass or the gap between the bands, leading to
intriguing quantum transport effects such as weak localization
and antilocalization effects [49].

The effective Hamiltonian for the time-reversal symmetry
broken tilted Weyl semimetal around a Weyl point [50] is

H(k) = vk · σ + t · kσ0 + �σz, (68)

where the first term represents the spin-orbit coupling term
having v as the effective velocity in units of eV m s−1, t is the
tilt vector and � refers to the gap, which distinguish thin film
Weyl semimetal from the topological insulator. The energy
eigenvalues are

ε(k) = txkx + tyky ±
√

v2k2 + �2. (69)

Here, the tilt term breaks the time-reversal and inversion sym-
metry due to the linear momentum factor. Such tilt term does
not affect the eigenvectors, hence the topology of the system.
However, it affects the response of the system. In addition,
the type of Weyl semimetal is defined by |t | < v (Type-I) and
|t | > v (Type-II). The corresponding dispersion for the Type-I
Weyl semimetal is shown in Fig. 3(b), and the geometric
quantities are shown in Figs. 4(d)–4(f). Here, the gap between
conduction and valence band is 2�. Without tilt, the band
dispersion becomes identical to the topological insulator, with
the mass term smaller than the spin-orbit coupling term. In the
opposite case, i.e., at the large mass, it behaves as a massive
fermion system. In addition, all the quantum geometric quan-
tities are nonzero, and a few are shown in Fig. 4. The Berry
curvature is finite only due to the presence of the gap around
the Dirac point and vanishes at � = 0.

As distinct from the antiferromagnetic CuMnAs system, all
eight nonlinear response components contribute to the dynam-
ical current for the thin film tilted Weyl semimetal. However,
these reduce to six due to symmetrical properties for the tensor
components such as σxyx = σxxy, and σyxy = σyyx. These are
mainly dictated by the quantities Gab, �ab, �abc, and �̃abc. The
behavior of the nonlinear response components is shown in
Figs. 5(c) and 5(d). Here, we observe the following features:
(i) The occurrence of the two absorption peaks, one at h̄ω� =
2μ and the other at energy h̄ω� = 2μ ± h̄ω2. Note that the
peak corresponding to the red and green curves is shifted as
it is influenced by the contribution stemming from both finite
Berry curvature and quantum metric. (ii) The generation of
the resonant behavior of the response happens due to the finite
Fermi surface effect. (iii) The σyxy yields a larger magnitude
than other nonlinear tensor components due to the stronger
σ oo,II contribution stemming from the shifted Fermi surface
in the momentum space along x̂ direction because of the tilt tx
and the quantum metric.

Experimentally, the presented results for the SFG and DFG
are significant in terms of measurement geometry and doping.
First, these nonlinear signals can be measured by invoking
the measurement geometry of the nonlinear response in the
distinct direction of the applied field, i.e., along and per-
pendicular to the field. In CuMnAs, one can have nonlinear
current for the particular geometry, i.e., j (2)

y = σyxxE2
0 cos2 γ ,

where γ is a polarization angle made by applied field along
x axis. This results in the maximum current at γ = 0. How-
ever, the current j (2)

x = σxxy/2E2
0 sin 2γ yields more value

at π/4 polarization angle. On the other hand, in thin film
tilted Weyl semimetal, the nonlinear current can be obtained
irrespective of the polarization angle as it contributes to all
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FIG. 4. Distribution of the geometric quantities in the momentum space. Top panel: For Topological antiferromagnetic CuMnAs where
(a) corresponds to the quantum metric, (b) and (c) to metric connection. Bottom panel: For thin film tilted Weyl semimetal where (d) refers to
the Berry curvature, (e) and (f) to the symplectic connection.

response components. Along x̂ direction, the current follows
j (2)
x = [σxxx cos2 γ + σxyy sin2 γ + σxxy sin 2γ ]E2

0 and along
ŷ direction, j (2)

y = [σyyy sin2 γ + σyxx cos2 γ + σyxy sin 2γ ]E2
0 .

Second, the strength of the nonlinear current can be tuned with
the chemical potential or by doping. By taking into account

FIG. 5. Different components of the second-order response due
to the two beams having frequency ω1 and ω2. Column 1: (a) and
(c) depict the sum frequency generation phenomenon, and Column
2: (b) and (d) show the difference in frequency generation effect.
The output is obtained at fixed frequency ω2 = 0.1 eV, and the
chemical potential μ = 0.2 eV, τ = 1 ps and temperature T = 10 K,
but varies ω1. Plots (a) and (b) correspond to the CuMnAs where we
set the hopping t = 0.08 eV and t̃ = 1 eV. The other parameters are
αR = 0.8, αD = 0 and hAF = (0.85, 0, 0) eV. Plots (c) and (d) refer
to the thin film tilted Weyl semimetal where we consider the gap
� = 0.05 eV and the tilt tx = 0.1 eV Å and temperature T = 1 K.

the Fermi level inside the band, the Fermi surface terms such
as the resonant (a subpart of interband-intraband) and dou-
ble resonant (a subpart of interband-interband) strengthen the
peak value of the second-order response, hence the nonlinear
current.

V. SUMMARY

We have systematically developed a general platform for
evaluating the nonlinear response of a crystal to an oscillating
electric field or laser field by taking into account the interband
and intraband counterparts of the density matrix. In the linear
regime, the intraband part of the response is captured by the
band-diagonal component of the density matrix and the inter-
band part by off-diagonal component, which are responsible
for the linear longitudinal conductivity, current-induced spin
polarizations in spin-orbit coupled systems, anomalous Hall,
and spin Hall effects [27,98–100]. However, on going beyond
the linear regime by expanding the density matrix in terms of
the external stimuli, it is not trivial to express the interband
and intraband components directly. These are interconnected
to each other and lead to distinct contributions to the nonlin-
ear currents, such as intraband-intraband, intraband-interband,
interband-intraband, and interband-interband. Further, the
corresponding nonlinear current gives a significant contribu-
tion on account of the finite Fermi surface, which was not
discussed earlier to the best of our knowledge.

We employ our theory to describe the phenomena of sum
frequency and difference frequency summation, which lead
to the second harmonic and rectification effect as a special
case, respectively. Similarly, we identified the fundamental
connection between the geometric quantum quantities and
the nonlinear response. Based on the connection, we showed
how the fundamental symmetries play a significant role in
examining the physical origin of the different components of
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the nonlinear currents. An interesting and important fact is
that the nonlinear optical currents are dominated due to the
interband coherence contribution. We highlight the contribu-
tion of the individual part of the nonlinear optical current that
provides insightful information. First, the intraband-interband
current, known as the injection current, is calculated earlier in
specific regimes of frequency and scattering time scale within
the Fermi golden rule, which lacks the detailed behavior of the
particular current. Here, we calculated the explicit expression
of the injection current without considering assumptions ap-
plicable to all regimes of interest. Second, we naively express
the interband-intraband response in two parts. The nonreso-
nant part corresponds to the well-known anomalous nonlinear
current and is nonzero only if the Berry curvature is finite.
On the other hand, the resonant part yields finite value in
all systems and participates to have an absorption peak in
the nonlinear response. Third, the interband-interband current
leads to the shift, double resonant and higher-order pole sum

frequency, and difference frequency summation nonlinear cur-
rents. We demonstrated the whole analysis for CuMnAs and
thin film Weyl semimetal systems.

Further, our theory considers the transport and optical re-
sponses on an equal footing, reflecting their interplay in the
second-order response. The method developed in this paper
serves as a key tool to examine the intrinsic and extrinsic
contributions of nonlinear currents obtained on general and
fundamental grounds, and yield physical insight into the be-
havior of fermions.
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