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Two-stage melting of an intercomponent Potts long-range order in two dimensions
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The interplay of topology and competing interactions can induce enriched phases and phase transitions at finite
temperatures. We consider a weakly coupled two-dimensional hexatic-nematic XY model with a relative Z3 Potts
degrees of freedom, and apply the matrix product state method to solve this model rigorously. Since the partition
function is expressed as a product of two-legged one-dimensional transfer matrix operator, an entanglement
entropy of the eigenstate corresponding to the maximal eigenvalue of this transfer operator can be used as a
stringent criterion to determine various phase transitions precisely. At low temperatures, the intercomponent Z3

Potts long-range order (LRO) exists, indicating that the hexatic and nematic fields are locked together and their
respective vortices exhibit quasi-LRO. In the hexatic regime, below the BKT transition of the hexatic vortices,
the intercomponent Z3 Potts LRO appears, accompanying the binding of nematic vortices. In the nematic regime,
however, the intercomponent Z3 Potts LRO undergoes a two-stage melting process. An intermediate Potts liquid
phase emerges between the Potts ordered and disordered phases, characterized by an algebraic correlation with
formation of charge-neutral pairs of both hexatic and nematic vortices. These two-stage phase transitions are
associated with the proliferation of the domain walls and vortices of the relative Z3 Potts variable, respectively.
Our results thus provide a prototype example of two-stage melting of a two-dimensional LRO driven by multiple
topological defects.
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I. INTRODUCTION

The concept of topological defects has been one of the cor-
nerstones in the study of phase transitions in two-dimensional
(2D) systems. The known example is the Berezinskii-
Kosterlitz-Thouless (BKT) phase transition [1–3], where
unbinding of integer vortices occurs in the absence of spon-
taneous breaking of continuous symmetry. The followed
renormalization group Kosterlitz-Thouless-Halperin-Nelson-
Young theory [4–6] describes a two-stage melting process
of 2D crystals: dissociation of dislocation pairs induces a
BKT-type transition from a crystal phase to a hexatic phase
with a quasi-long-range (quasi-LRO) orientational order and
a further transition results from unbinding of disclinations, as
a dislocation can be represented as a coupled pair of disclina-
tions. Despite four decades of research, it is still challenging
to find a simple microscopic model that exhibits these phe-
nomena theoretically [7,8].

Recently, it became known that the interaction of multi-
ple topological excitations also plays a central role in many
physical systems ranging from superfluids/superconductors
to condensed atom-molecular mixtures [9–16]. Among these
studies, a prototype model is a 2D coupled hexatic-nematic
XY spin model proposed for an unusual melting process
[17,18] and a hidden-order phase transition of isotropic liquid-
crystal thin films [19–21]. As shown in Fig. 1(a), the hexatic
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degrees of freedom describe a sixfold bond-orientational field
represented by � = |�| exp(i6ϑ ), with ϑ as the bond angle
linking the centers of mass of neighboring molecules [4],
while the nematic degrees of freedom arising from the her-
ringbone order in the crystalline phase [17] are described by
� = |�| exp(i2ϕ). Three inequivalent herringbone patterns
are displayed in Fig. 1(b), from which a different herringbone
pattern with the same orientation can be obtained by translat-
ing over a lattice vector. The Hamiltonian is described by a
coupled bilayer system

H = −J2

∑
〈i, j〉

cos(2ϕi − 2ϕ j ) − J6

∑
〈i, j〉

cos(6ϑi − 6ϑ j )

− K
∑

i

cos(6ϑi − 6ϕi ), (1)

where ϕi and ϑi ∈ [0, 2π ] are two U (1) phase fields, J2 and J6

are their respective nearest-neighbor intrafield couplings, and
the intercomponent coupling K denotes the minimal hexatic-
nematic coupling allowed by the relative symmetry [17].

The study of this 2D coupled XY spin model in the con-
text of nematic/hexatic liquid crystalline systems has a very
long history, and is plagued with complexities, confusion, and
unexplained puzzling results, which have been reviewed in
Ref. [21]. In the strongly coupled model, large-scale Monte
Carlo simulations had determined the possible Z3 Potts tran-
sition relative to the BKT transition [19,20]. In the hexatic
regime, the intercomponent Z3 Potts LRO is developed below
the BKT transition of the hexatic vortices, however, in the
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FIG. 1. (a) The bond-orientational angle ϑ joining the centers of
neighboring molecules with respect to a laboratory axis. (b) Three
possible herringbone patterns. (c) The double-layer tensor network
of the partition function and the local tensor. (d) Eigenequation of
the 1D transfer operator.

nematic regime the formation of the Z3 Potts LRO coincides
with the BKT vortex binding transition [19,20]. A recent
numerical work suggests that the Z3 Potts LRO in the nematic
regime may form above the BKT transition [21]. Due to the
lack of sharp thermodynamic signatures associated with the
binding of topological defects, the scenario of a single tran-
sition cannot be fully excluded. The phase structure in the
nematic regime is expected to be revealed only in the weakly
coupled model, which remains largely unexplored because
of the requirements of significantly larger system sizes with
enlarged vortex cores.

To resolve this long-standing issue, we apply a state-of-art
tensor network method [22–24] to surmount those difficulties.
As the partition function of a 2D statistical model can be
represented as a product of two-legged 1D transfer operator
[Fig. 1(c)], its eigenequation [Fig. 1(d)] can be solved by
the algorithm of variational uniform matrix product states
(MPS) in the thermodynamic limit [25–28]. According to
the singularity displayed by the entanglement entropy for
the 1D quantum analog, the various phase transitions in the
global phase diagram can be precisely determined [29,30].
In the hexatic regime, we obtain similar results to the pre-
vious ones [19–21]. To our surprise, in the nematic regime,
we discover that the intercomponent Potts LRO itself un-
dergoes a two-stage melting process. An intermediate Potts
liquid phase emerges simultaneously with the formation of
charge-neutral pairs of hexatic and nematic vortices. Such
two-stage transitions are associated with the separated prolif-
erations of the domain walls and vortices of the Potts variable,
respectively. Furthermore, we show that, when increasing the
hexatic-nematic coupling strength, the two-stage transitions
gradually merge into a single transition, the result for the
strongly coupled model [19,20].

II. TENSOR NETWORK METHOD

We first simplify the model Hamiltonian Eq. (1) by intro-
ducing new variables φ = 2ϕ and θ = 6ϑ ,

H/J = −	
∑
〈i, j〉

cos(φi − φ j ) − (2 − 	)
∑
〈i, j〉

cos(θi − θ j )

− λ
∑

i

cos(θi − 3φi ), (2)

where λ = K/J , J = (J2 + J6)/2, and 	 = J2/J as the rela-
tive interacting strength of the hexatic and nematic fields. In
the absence of the hexatic-nematic coupling, the model has
U (1) × U (1) symmetry and exhibits two independent BKT
phase transitions. For λ �= 0, the model is invariant under
a U (1) × Z3 transformation, φi → φi + α/3 + 2πki/3 and
θi → θi + α, where ki = 0, 1, 2 correspond to a Z3 degrees
of freedom. Specially, a sufficiently large λ tends to lock the
hexatic and nematic fields, θi = 3φi, and the model is reduced
to a generalized XY model [31–34].

In the tensor network framework, after a duality trans-
formation, the partition function is expressed as a tensor
contraction over all auxiliary links,

Z = tTr
∏

i

On3m3,n4m4
n1m1,n2m2

(i), (3)

where tTr denotes the tensor contraction, which forms a
double-layer tensor network shown in Fig. 1(c). Each local
tensor O is given by

On3m3,n4m4
n1m1,n2m2

=
∑

k

(
4∏

l=1

Inl (β	)Iml (β(2 − 	))

)1/2

× Ik (βλ)δn3+n4+3k
n1+n2

δ
m3+m4
m1+m2+k, (4)

where In(x) is the modified Bessel function of the first kind, n
and m are integers, and β = 1/(kBT ). The global U (1) × Z3

invariance is encoded in the local tensor. In the thermo-
dynamic limit, the partition function is determined by the
dominant eigenvalues of the 1D quantum transfer operator T̂ ,
whose eigenequation [Fig. 1(d)] T̂ |�(A)〉 = �max|�(A)〉 can
be accurately solved by the algorithm of variational uniform
MPS [25–28]. The corresponding 1D quantum Hamiltonian
is Ĥ1D = −(1/β ) ln T̂ , and the leading eigenvector |�(A)〉 is
represented by an MPS whose precision is controlled by the
auxiliary bond dimension D of the local tensors.

From the maximal eigenvalue and its eigenvector of the 1D
quantum transfer operator, various physical quantities can be
estimated accurately [29,30,35,36]. As the phase transitions
are concerned, the quantum entanglement entropy is the most
efficient measure [37,38], which can be directly determined
via the Schmidt decomposition: SE = −∑D

α=1 s2
α ln s2

α with sα

as the singular values from the bipartition of the state |�(A)〉.
Various two-point correlation functions can be evaluated by
the trace of an infinite sequence of channel operators contain-
ing two local impurity tensors, and the detailed formulation
can be found in Appendices A–C.

The superfluid response is described by the spin stiff-
ness as the second derivative of the free energy density f =
−(1/Nβ ) ln Z with respect to a twist v along a reference
direction: ρs = ∂2 f

∂2v
|v=0. The twist needs to be imposed in a

way that respects the joint U (1) invariance of the hexatic and
nematic fields as

(φi, θi ) → (φi + �v · �ri, θi + 3�v · �ri ), (5)

where �ri is the position vector for the lattice site i and �v
is a constant vector to increase the phase difference across
each neighboring hexatic spins three times larger than ne-
matic spins. So, the jump of spin stiffness is altered from the
BKT predictions when the unbinding of the θ and φ vortices

165129-2



TWO-STAGE MELTING OF AN INTERCOMPONENT POTTS … PHYSICAL REVIEW B 107, 165129 (2023)

FIG. 2. The global phase diagram of the weakly coupled hexatic-
nematic XY model with a typical coupling λ = 0.1. (a) Schematic
pictures of different topological excitations. (b) In the Potts liquid
phase, the intercomponent Potts variable has quasi-LRO, the vortex-
antivortex pairs in φ fields are formed, and the dominant topological
defects of the θ fields are composite vortex pairs with charge qθ =
±3. (c) In the fractional vortex paired phase, the θ vortices have
quasi-LRO and the φ vortices are fractionalized as paired vortices
with charge qφ = 1/3. (d) In the Potts ordered phase, vortices in both
types are bound in pairs, accompanying the intercomponent Potts
LRO.

happens separately [39]. The detailed calculations are given
in Appendix D.

The hexatic-nematic XY model has a rich physics, and the
most intriguing results are expected in the weakly coupled
case. For a typical value of λ = 0.1, a global phase diagram is
derived in Fig. 2. All phase boundaries are determined by the
singularity displayed in the entanglement entropy SE for the
1D quantum transfer operator. Since the succession of phases
crucially depends on the intracomponent coupling ratio, our
results are discussed in hexatic 	 < 1 and nematic 	 > 1
regimes, separately.

III. PHASE TRANSITIONS IN THE HEXATIC REGIME

For a typical value 	 = 0.8, our numerical results show
two singular peaks in the entanglement entropy at Tc1 �
0.805J and Tc2 � 1.145J , respectively, as shown in Fig. 3(a).
The peak positions are nearly unchanged with increasing bond
dimensions D = 100, 200, 300, so the transition points are de-
termined with high accuracy. The corresponding specific heat
is shown in Fig. 3(b), exhibiting a sharp divergence at Tc1 and
a small rounded bump around Tc2. The maximum of the hump

FIG. 3. The numerical results for 	 = 0.8 and λ = 0.1. (a) The
entanglement entropy. (b) The specific heat. (c) The magnetization
of the Potts variable. In the inset t is the reduced temperature t =
|Tc1 − T |/Tc1. (d) The superfluid stiffness. (e), (f) At T = 1.0J , the
correlation function Gφ (r) for qφ = 1 vortices decays exponentially,
but the correlation function G3φ (r) for qφ = 1/3 vortices decays in
power law.

is above Tc2, a typical feature of the BKT transition [2,3],
while the low-T singular behavior is fitted by CV ∝ |T − Tc1|α
with α � 1/3. Further evidence is provided by a Z3 order
parameter Mσ = 〈cos(σi )〉 with σi = θi/3 − φi. As shown in
Fig. 3(c), Mσ becomes finite at Tc1, suggesting that a true LRO
is established and the relative phase between the φ and θ fields
is fully locked. The magnetization satisfies the scaling form
Mσ ∝ (Tc1 − T )β with the critical exponent β � 1/9. These
critical exponents are perfectly in agreement with the Z3 Potts
transition [40].

As shown in Fig. 3(d), the spin stiffness starts to dramat-
ically increase from zero at the BKT transition Tc2. When
the temperature further decreases, a small jump appears to
enhance the spin stiffness at the Potts transition Tc1 pre-
cisely. Such a small increase of spin stiffness results from
bindings of integer φ vortices [21,33]. When cooling the
system from the disordered phase, the correlation function
Gθ (r) = 〈cos(θi − θi+r )〉 exhibits a power-law decay at Tc2,
indicating the binding of hexatic vortices. In the intermediate
temperature regime (Tc1 < T < Tc2), we found that Gφ (r) =
〈cos(φi − φi+r )〉 decays exponentially, but G3φ (r) exhibits an
algebraic correlation. In Figs. 3(e) and 3(f), a direct compar-
ison at T = 1.0J suggests that the vortices are fractionalized
into the qφ = 1/3 vortices. As the correlation length ξφ ex-
tracted from Gφ (r) follows an exponentially divergence above
Tc1, we thus conclude that the low-temperature transition is
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FIG. 4. The numerical results for 	 = 1.2 with λ = 0.1. (a) The
entanglement entropy. (b) The specific heat. (c) The Potts magneti-
zation. (d) The superfluid stiffness.

a hybrid BKT and Potts transition. The detailed numerical
results are included in Appendix E.

IV. PHASE TRANSITIONS IN THE NEMATIC REGIME

For a typical value 	 = 1.2, our numerical calculations
show two peaks in the entanglement entropy at Tc1 � 0.915J
and Tc2 � 1.15J , respectively, as seen in Fig. 4(a). Unlike the
strongly coupled model [21], the specific heat CV exhibits a
pronounced peak at Tc1 and a bump at Tc2, as displayed in
Fig. 4(b). The bump appears slightly above Tc2 as the usual
BKT transition, but the peak locates below Tc1. Surprisingly,
the magnetization of the relative Potts variable displays a
two-step feature below Tc2, as shown in Fig. 4(c). The ar-
tificial finite Potts magnetization in the intermediate phase
is due to the finite-bond dimension effect, which should de-
crease slowly to zero with increasing bond dimensions in MPS
approximations for U (1) phases [28,29]. To figure out the
transition at Tc1, we calculate the superfluid stiffness, which
also has a two-step jump, as displayed in Fig. 4(d). In contrast
to the hexatic regime, the stiffness drops more dramatically at
Tc1 than at Tc2. Since the phase twist �v applied to the hexatic
θ field is three times larger than that of the nematic φ field,
the first drop of the stiffness is nearly six times larger than the
second drop.

The abrupt drop of spin stiffness at Tc1 is rather rare,
and the binding of charge-neutral vortex pairs of θ field can
be ruled out from the correlation function Gθ (r) = 〈cos(θi −
θi+r )〉. On two sides of Tc1, the Gθ (r) correlations have the
power-law behavior as shown in Figs. 5(a) and 5(c), indi-
cating that the quasi-LRO persists through the transition. As
displayed in Fig. 5(e), a direct comparison between the ampli-
tudes of Gθ (r) ∼ r−ηθ at r = 100 indicates that the correlation
above Tc1 is greatly suppressed by three orders of magni-
tude, and the exponent ηθ varies with temperature depicted
in the inset. The extremely weak correlation above Tc1 may
account for the dramatic jump in total stiffness at Tc1. Below
Tc2, the onset of algebraic correlations of the φ vortices also

FIG. 5. (a), (c) The correlation functions Gθ (r) in both the Potts
ordered phase (T = 0.8J) and the Potts liquid phase (T = 1.0J ).
(e) The correlation Gθ (r) at r = 100 and the exponents in the inset.
(b), (d), (f) The correlation functions Gσ (r) in the Potts ordered, Potts
liquid, and disordered phases.

induces the quasi-LRO of the θ vortices. So, the dominant
topological excitations between Tc1 and Tc2 are composite
vortex pairs of qθ = 3 with an internal structure of three bound
vortices.

By calculating the correlations of the relative Z3 Potts
variable, we find that the inter-component Potts order-disorder
phase transition splits into two different transitions separated
by an intermediate liquid phase with quasi-LRO correlation.
As shown in Figs. 5(b), 5(d), and 5(f), the correlation func-
tion Gσ (r) exhibits a LRO in the Potts ordered phase, an
algebraic decay in the intermediate phase, and an exponential
decay in the Potts disordered phase, respectively. Actually
the Potts quasi-LRO occurs simultaneously with the forma-
tion of charge-neutral pairs of hexatic and nematic vortices.
Moreover, the correlation length for Potts variables displays a
similar structure as the p-state clock model with p > 4, and
the detailed discussions are given in Appendix F.

Unlike the 2D Ising model, the excitations in the Z3 Potts
model include both the looplike domain walls and vortices,
and the usual Potts transition results from a coupled prolifer-
ation of two topological defects [41]. However, a quasi-LRO
phase appears in a generalized Z3 Potts model by artificially
raising the vortex core energy [42]. We notice that the effec-
tive core energy of Z3 vortices in the coupled hexatic-nematic
model is related to the hexatic-nematic coupling. A larger
λ makes the excitations of free vortices in the θ field more
costly, and the domain-wall energy increases dramatically to
forbid the pre-excitations of domain walls. However, a small λ

is required to achieve a relatively high ratio of the core energy
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FIG. 6. The entanglement entropy for different λ in the hexatic
regime (a) 	 = 0.8 and the nematic regime (b) 	 = 1.2. For a
good comparison, each curve is relatively shifted by 	SE = 0.2.
The displayed results are obtained under MPS bond dimension
D = 100.

of the Z3 vortices. To illustrate this physics, we calculated
the entanglement entropy as a function of temperature for
different values of λ. As shown in Fig. 6, in the hexatic regime
(	 = 0.8), the entanglement entropy results indicate that the
model always has two phase transitions similar to those of
the strongly coupled model, while in the nematic regime
(	 = 1.2), two-stage phase transitions are allowed only for
a small λ value. As λ increases, the intermediate Potts liquid
phase obscures because the lower transition gets vague and
two transitions are merged together.

V. CONCLUSION AND OUTLOOK

We have studied a weakly coupled hexatic-nematic XY
model by using the tensor-network method. It is found that
the hexatic regime shares a similar phase structure to that of
the strongly coupled model [19–21]. In the nematic regime,
however, an intercomponent Z3 Potts liquid phase emerges as
the intermediate phase of the two-stage melting of the Potts
LRO. Actually, this emergent Potts liquid phase opens up
a promising route towards better understanding the hidden
structure of the phase transitions driven by different topolog-
ical defects. Such an intriguing splitting of phase transitions
should exist in other systems with multiple topological exci-
tations, such as multistage melting process of 2D liquid crystal
films [43–45]. Above the melting of positional order, the
orientational order itself possesses a further structure. Future
study can be extended to the coupled U (1) × Zn systems with
larger n where a richer phase diagram is expected [46]. More-
over, in various XY systems like condensed atom-molecular
mixtures and multicomponent superfluids/superconductors
[47–50], such unconventional phenomena should also
be realizable.
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APPENDIX A: TENSOR NETWORK
REPRESENTATION OF OUR MODEL

A good wealth of fascinating physics have been found in
many-body systems but the numerical treatment still remains
challenging due to the nature of strong correlations. Tensor
networks (TNs) have proven to be a very efficient tool to
overcome these challenges based on the variational ansatz
wave functions. Due to the unique advantages of faithfully
capturing the entanglement structure of many-body states,
they are increasingly becoming a standard tool for not only
strongly correlated quantum systems but also many-body clas-
sical problems.

The central but often nontrivial task in condensed matter
physics is to evaluate the partition function of a system. To
implement the TN method in the coupled hexatic-nematic XY
model, the first step is to convert the classical lattice model
with nearest-neighbor local interactions into a TN representa-
tion. The coupled hexatic-nematic XY model on a 2D square
lattice is defined by the Hamiltonian

H = −J2

∑
〈i, j〉

cos(2ϕi − 2ϕ j ) − J6

∑
〈i, j〉

cos(6ϑi − 6ϑ j )

− K
∑

i

cos(6ϑi − 6ϕi ), (A1)

where 〈i, j〉 refers to nearest neighbors, ϕi and ϑi ∈ [0, 2π ]
are phase angles associated to the lattice site i, J2 and J6

are their respective intracomponent coupling strengths, and
K denotes the intercomponent coupling. To lowest order in
ϕ and ϑ by introducing φ = 2ϕ and θ = 6ϑ , the simplified
Hamiltonian in the same universality class can be written as

H/J = −
∑
〈i, j〉

	 cos(φi − φ j ) − (2 − 	)
∑
〈i, j〉

cos(θi − θ j )

− λ
∑

i

cos(θi − 3φi ), (A2)

where J = 1
2 (J2 + J6), λ = K/J and 	 = J2/J ∈ [0, 2] tuning

the relative strength of hexatic and nematic interactions.
To derive the TN representation, we express the partition

function on its original lattice and the Boltzmann weights are
represented as a tensor product of local bonds as shown in
Fig. 7(a),

Z =
∫∫

dφidθi

(2π )2

∏
〈i, j〉

WU (φi, φ j )WI (φi, θi )WL(θi, θ j ), (A3)

where

WU (φi, φ j ) = eβ	 cos(φi−φ j ), (A4)

WI (φi, θi ) = eβλ cos(θi−3φi ), (A5)

WL(θi, θ j ) = eβ(2−	) cos(θi−θ j ) (A6)

can be viewed as infinite matrices whose indices are the con-
tinuous φ and θ variables. The partition function is now cast
into a double-layer TN representation, where the integrations
of

∫
dφ/2π and

∫
dθi/2π are denoted as blue and green dots

and the matrix indices take the same values at the joint points.
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FIG. 7. (a) Tensor network representation of the partition function with Boltzmann weights represented as a tensor product of local bonds.
(b) The double-layer TN derived in the main text. (c) The 2D uniform tensor network representation of the partition function. (d) The eigenvalue
decompositions of the symmetric matrix W and the transformation to discrete degrees of freedom.

The duality transformation changes the local tensors from
continuous U (1) variables onto a discrete basis for further
numerical analysis. As shown in Fig. 7(d), we perform the
character expansion for the symmetric matrix W ,

WU (φi, φ j ) =
∑

n

Uφi,n In(β	)U ∗
φ j ,n, (A7)

WI (φi, θi ) =
∑

k

Uφi,−3k Ik (βλ)V ∗
θi,k, (A8)

WL(θi, θ j ) =
∑

m

Vθi,m Im(β(2 − 	))V ∗
θ j ,m, (A9)

where Uφi,n = einφi , Vθi,m = eimθi , and the diagonal
In(x), Im(x), Ik (x) are the modified Bessel functions of
the first kind.

Then, as displayed in Fig. 7(d), we can simply integrate out
the U (1) phase variables at each site by a Fourier transforma-
tion∫

dφi

2π
Uφi,n1Uφi,n2U

∗
φi,n3

U ∗
φi,n4

Uφi,−3k = δ
n3+n4+3k
n1+n2

≡ δU ,

(A10)∫
dθi

2π
Vθi,m1Vθi,m2V

∗
θi,m3

V ∗
θi,m4

Vθi,k = δ
m3+m4
m1+m2+k ≡ δL. (A11)

In this way, the continuous variables φ and θ are now trans-
formed into the discrete bond indices n, m, and k. Moreover,
we evenly divide the diagonal I tensors and take a contraction
of the

√
I tensors connecting to the respective δ tensors. As

a result, the double-layer TN representation of the partition
function in the main text is obtained as shown in Fig. 7(b).
The local tensor O can then be obtained by grouping the
corresponding tensor indices in the upper and lower layers and
summing out the interlayer k indices:

On3m3,n4m4
n1m1,n2m2

=
∑

k

(
4∏

l=1

Inl (β	)Iml (β(2 − 	))

)1/2

× Ik (βλ) δ
n3+n4+3k
n1+n2

δ
m3+m4
m1+m2+k . (A12)

And, finally, the partition function is now successfully con-
verted into a uniform TN on the 2D square lattice as displayed

in Fig. 7(c),

Z = tTr
∏

i

On3m3,n4m4
n1m1,n2m2

(i), (A13)

where tTr denotes the sum over all auxiliary bond indices.
The symmetries of the original model are well preserved in
the TN representation. It is evident that the global U (1) × Z3

invariance of the bilayer model is encoded in each local
tensor since On3m3,n4m4

n1m1,n2m2
�= 0 only if n1 + 3m1 + n2 + 3m2 =

n3 + 3m3 + n4 + 3m4.
As a matter of fact, the equivalence of the Hamiltonian

Eqs. (A1) and (A2) can be easily verified from the perspective
of local tensors. The duality transformation can be performed
on ϕ and ϑ in the same way for Hamiltonian Eq. (A1), and the
integration will generate the same local tensor as∫

dϕi

2π
ei2n1ϕi ei2n2ϕi e−i2n3ϕi e−i2n4ϕi e−i6kϕi

= δ
2n3+2n4+6k
2n1+2n2

= δ
n3+n4+3k
n1+n2

≡ δU , (A14)∫
dϑi

2π
ei6m1ϑi ei6m2ϑi e−i6m3ϑi e−i6m4ϑi e−i6kϑi

= δ
6m3+6m4
6m1+6m2+6k = δ

m3+m4
m1+m2+k ≡ δL. (A15)

Therefore, all the physical quantities deducted from the parti-
tion function should be the same for both Eqs. (A1) and (A2).

APPENDIX B: ALGORITHM OF UNIFORM MATRIX
PRODUCT STATES

Although it is often straightforward to write the TN rep-
resentation for the many-body problem, the real challenge
for numerical simulations comes from the contraction of the
whole tensor network which is proved to be NP hard when the
network is complicated. Fortunately, a lot of algorithms have
been proposed to contract an infinite translation-invariant TN.
One of the best practices to address the challenge is the algo-
rithm of uniform matrix product states [25–27], which greatly
speeds up the process of finding the leading eigenvector of the
transfer matrix based on a variational ansatz.

Here we provide a brief review of this efficient algo-
rithm based on a set of optimized eigensolvers. In the
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FIG. 8. (a) Eigenequation for the fixed-point uMPS of the transfer operator T . (b) The uniform representation and two equivalent mixed
canonical forms of the fixed-point uMPS. (c) The canonical conditions of the fixed-point local tensors and the isometric gauge transformation
between them. (d) Eigenequations to update the left and right environmental eigenvectors of the channel operators. (e) Eigenequations to
obtain the central tensors based on the new environment. (f) Polar decompositions to get the left and right canonical local tensors from the
central tensors. (g) The reduced density matrix obtained by tracing out the right part of the uMPS. (h) Expectation value of a local observable
by contracting the leading eigenvectors of the channel operators. (i) Two-point correlation function expressed by contracting a sequence of
channel operators.

thermodynamic limit, the partition function is determined by
the dominant eigenvalues of the 1D quantum transfer operator
T̂ , whose eigenequation is shown in Fig. 8(a):

T̂ |�(A)〉 = �max|�(A)〉. (B1)

For a translation-invariant system, the leading eigenvector of
the transfer matrix can be expressed as the uniform matrix
product states (uMPS),

|�(A)〉 =
∑

{(nimi )}
Tr(· · · A(n1m1 )A(n2m2 )A(n3m3 ) · · · ), (B2)

which is constructed by infinitely many repetitions of rank-
3 A(nimi )

αβ with auxiliary bond dimension α, β = 1, 2, . . . , D.
Here, D is the upper bond dimension which controls the ac-
curacy of the approximations. As shown in Fig. 8(b), to fix
the gauge of the uMPS, we should bring the uMPS into the
equivalent mixed canonical forms as

|�〉 =
D∑

α,β=1

Cα,β

∣∣�[−∞,(n j mj )]
α

〉 ⊗ ∣∣�[(n j+1mj+1 ),+∞]
β

〉
(B3)

and

|�〉 =
D∑

α,β=1

(
A

(n j mj )
C

)
α,β

∣∣�[−∞,(n j−1mj−1 )]
α

〉 ⊗ ∣∣�[(n j+1mj+1 ),+∞]
β

〉
,

(B4)
where |�[−∞,(n j mj )]

α 〉 and |�[(n j+1mj+1 ),+∞]
β 〉 are the left and

right orthonormal bases comprised of the left and right canon-
ical local tensors∣∣�[−∞,(n j mj )]

α

〉 =
∑

{(nimi )}
Tr

( · · · A
(n j−1mj−1 )
L A

(n j mj )
L

)
, (B5)

∣∣�[(n j+1mj+1 ),+∞]
β

〉 =
∑

{(nimi )}
Tr

(
A

(n j+1mj+1 )
R A

(n j+2mj+2 )
R · · · ).

(B6)

The left and right orthonormal tensors AL and AR satisfy
the isometric constraints as displayed in Fig. 8(c):∑

(nm)

(
A(nm)

L

)†
A(nm)

L = I, (B7)

∑
(nm)

A(nm)
R

(
A(nm)

R

)† = I. (B8)
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Another fixed point equation is obtained by pulling the central
tensor from right to left:

A(nm)
C = A(nm)

L C = CA(nm)
R . (B9)

The VUMPS algorithm contains three key steps summa-
rized in Figs. 8(d)–8(f) to find the fixed-point tensors AL, AR,
and C of the transfer operator T̂ . These three steps Figs. 8(d)–
8(f) are repeated sequentially until the error is less than a given
convergence threshold.

(1) As shown in Fig. 8(d), we calculate the left and right en-
vironments FL and FR by solving the eigenvalue equation with
the Arnoldi method,

TLFL = λFL, (B10)

TRFR = λFR, (B11)

where TL and TR are the channel operators of AL and AR.
(2) As shown in Fig. 8(e), we calculate the central tensors

AC and C based on the new environment by the Arnoldi
method,

HAC AC = λAC, (B12)

HCC = C, (B13)

where HAC and HC are the effective environment comprised of
the updated FL and FR.

(3) As shown in Fig. 8(f), we use the left and right polar de-
compositions of new AC and C to update AL and AR satisfying
the isometric conditions

AC = U [l]
AC

P[l]
AC

= P[r]
AC

U [r]
AC

, (B14)

C = U [l]
C P[l]

C = P[r]
C U [r]

C , (B15)

where U [l]
AC

, U [r]
AC

, U [l]
C , and U [r]

C are unitary matrices, and the

matrices P[l]
AC

, P[r]
AC

, P[l]
C and P[r]

C are Hermitian and positive.
Finally, we obtain

AL = U [l]
AC

U [l]†
C , (B16)

AR = U [r]†
C U [r]

AC
. (B17)

Actually, the row-to-row transfer matrix should play the
same role as the matrix product operator for the 1D quantum
spin chains whose logarithmic form can be mapped to a 1D
quantum system with complicated interactions. With such a
correspondence, the finite-temperature properties of the 2D
statistical problem are related to a 1D quantum model at
zero temperature and all the low-temperature physics can be
achieved from the fixed-point uMPS.

APPENDIX C: CALCULATIONS
OF PHYSICAL QUANTITIES

Once the fixed-point uMPS is achieved, various physical
quantities can be precisely calculated because the 2D network
can be easily squeezed into a 1D chain of channel operators
based on the fixed uMPS.

By mapping the transfer matrix to a 1D quantum transfer
operator, we bring to it modern concepts of quantum entan-
glement, while also taking advantage of the sharp criterion for

detecting various phase transitions. As shown in Fig. 8(g), we
perform a bipartition on the MPS and trace out the right part
using the right canonical condition. Since the |�[−∞,(n j mj )]〉
also forms a unitary basis, the reduced density matrix ρL of
the left part is expressed as

ρL = TrR|�〉〈�| = |�[−∞,(n j mj )]〉CC†〈�[−∞,(n j mj )]| ∼ CC†.

(C1)
And the entanglement entropy [37] is readily obtained by

SE = −Tr (ρL ln ρL ) = −
D∑

α=1

s2
α ln s2

α, (C2)

where sα are the singular values of the C matrix.
With the fixed-point uMPS, the contraction of an infinite

2D tensor network can be reduced to the trace of an infinite
1D chain of channel operators. The expectation value of of a
single-site observable m(φ j, θ j ),

〈m(φ j, θ j )〉 = 1

Z

∏
i

∫∫
dφidθi

(2π )2

∏
〈i, j〉

eβ	 cos(φi−φ j )

× eβ(2−	) cos(θi−θ j )eβλ cos(θi−3φi )m(φ j, θ j ),
(C3)

can be obtained by the contraction of a reduced network
containing an impurity tensor thanks to the fixed-point envi-
ronment tensors FL and FR as displayed in Fig. 8(h),

〈m〉 = Tr(· · ·TLTLTMTRTR · · · ) = 〈FL|TM |FR〉, (C4)

where TM = tTr(AC ⊗ M ⊗ ĀC ). And the corresponding im-
purity tensor M can be achieved by

Mn3m3,n4m4
n1m1,n2m2

=
∑

k

(
4∏

l=1

Inl (β	)Iml (β(2 − 	))

)1/2

Ik (βλ)

×
∫∫

dφdθ

(2π )2
eiφ(n1+n2−n3−n4−3k)

× eiθ (m1+m2+k−m3−m4 )m(φ, θ ). (C5)

For instance, the corresponding impurity tensors for mφ = eiφ ,
mθ = eiθ , and mσ = ei(θ/3−φ) are

(Mφ )n3m3,n4m4
n1m1,n2m2

=
∑

k

(
4∏

l=1

Inl (β	)Iml (β(2 − 	))

)1/2

× Ik (βλ) δ
n3+n4+3k
n1+n2+1 δ

m3+m4
m1+m2+k, (C6)

(Mθ )n3m3,n4m4
n1m1,n2m2

=
∑

k

(
4∏

l=1

Inl (β	)Iml (β(2 − 	))

)1/2

× Ik (βλ) δ
n3+n4+3k
n1+n2

δ
m3+m4
m1+m2+k+1, (C7)

(Mσ )n3m3,n4m4
n1m1,n2m2

=
∑

k

(
4∏

l=1

Inl (β	)Iml (β(2 − 	))

)1/2

× Ik (βλ) δ
n3+n4+3k+1
n1+n2

√
3

2π

(−1)l

l + 1/3
, (C8)

where l = m1 + m2 + k − m3 − m4.
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Moreover, the two-point correlation function G(r) =
〈mjmj+r〉 between local observables mj (φ j, θ j ) and
mj+r (φ j+r, θ j+r ),

G(r) = 1

Z

∏
i

∫∫
dφidθi

(2π )2

∏
〈i, j〉

eβ	 cos(φi−φ j )eβ(2−	) cos(θi−θ j )

× eβλ cos(θi−3φi )mj (φ j, θ j )mj+r (φ j+r, θ j+r ), (C9)

can be calculated in the same way as a contraction of a 1D
chain with two local impurity tensors Mj and Mj+r as shown
in Fig. 8(i),

G(r) = 〈FL|TMj TR · · ·TR︸ ︷︷ ︸
r−1

TMj+r |FR〉, (C10)

where TMj = tTr(AC ⊗ Mj ⊗ ĀC ) and TMj+r = tTr(AR ⊗
Mj+r ⊗ ĀR).

APPENDIX D: PARTICULAR CALCULATION
OF SPIN STIFFNESS

Although there is no local order parameter due to the
absence of the U (1) symmetry breaking, the onset of the
superfluidity of the hexatic-nematic XY model can be de-
scribed by the spin stiffness ρs [51,52], which characterizes
the change of free energy in response to a small uniform phase
twist v along a reference direction

ρs = ∂2 fv
∂v2

∣∣∣∣
v=0

= − 1

Nβ

[
1

Zv

∂2Zv

∂v2
−

(
1

Zv

∂Zv

∂v

)2
]

v=0

(D1)

where fv = − 1
Nβ

ln Zv is the free energy per site.
Since the two components of φ and θ are coupled together

via a relevant intercomponent term, the contribution of the
total spin stiffness of both fields should be taken into account.
To preserve the U (1) × Z3 invariance of the model, the phase
twist should be applied as

(φi, θi ) → (φi + �v · �ri, θi + 3�v · �ri ), (D2)

where �ri is the position vector for the lattice site i and �v
is a constant vector to increase the phase difference across
each neighboring hexatic spins three times larger than nematic
spins. When a global twist is applied along the y axis, the
phase differences between two nearest-neighbor sites in the
y direction are increased by v for φ field and 3v for θ field,
and the corresponding Hamiltonian is changed as

Hv = −	
∑
〈i, j〉x

cos(φi − φ j ) − (2 − 	)

×
∑
〈i, j〉x

cos(θi − θ j ) − λ
∑

i

cos(θi − 3ϕi )

− 	
∑
〈i, j〉y

cos(φi − φ j + v)

− (2 − 	)
∑
〈i, j〉x

cos(θi − θ j + 3v). (D3)

At the same time, the TN representation of the partition func-
tion is modified as

Zv = tTr
∏

i

(Ov )n3m3,n4m4
n1m1,n2m2

(i), (D4)

where an additional phase factor is appended on the vertical
leg of the local tensor:

(Ov )n3m3,n4m4
n1m1,n2m2

= ei(n1+3m1 )vOn3m3,n4m4
n1m1,n2m2

. (D5)

The precision of the direct second differentiation on the
partition function often suffers from a finite differentiation
step v. Alternatively, the calculations of the spin stiffness can
be improved by directly contracting the TN containing the
differentiated terms independent of v. The first derivative of
the partition function with respect to v introduces an impu-
rity tensor R in the original TN as displayed in Fig. 9(a),
where

Rn3m3,n4m4
n1m1,n2m2

= ∂Ov

∂v

∣∣∣∣
v=0

= i(n1 + 3m1)On3m3,n4m4
n1m1,n2m2

. (D6)

Because the partition function is expressed as a tensor
product of Ov tensors, the second derivative is com-
posed by two parts: two tensors separately differentiated
once and one tensor differentiated twice. The configura-
tions for the second derivative are summed in Fig. 9(b),
where

Sn3m3,n4m4
n1m1,n2m2

= ∂2Ov

∂v2

∣∣∣∣
v=0

= −(n1 + 3m1)2On3m3,n4m4
n1m1,n2m2

. (D7)

In the previous section, we evaluate the expectation value
of two-point observables when two impurity tensors locate
along a horizontal or vertical line using the fixed point MPS.
However, for the spin stiffness, because two R tensors are
located at different rows and columns, we cannot simply con-
tract the whole network by squeezing the 2D TN into a 1D
chain. Fortunately, another contraction strategy [53,54] has
been proposed, which is based on the channel environment
where the linear fixed points can be bent into corner-shaped
transfer matrices as the effective corner environment in ap-
proximation to infinite quarter-planes as depicted in Fig. 9(c).
The fixed-point equation for the top left corner is shown in
Fig. 9(d), where the corner-shaped environment is approxi-
mated by a bent MPS comprised of two half infinite boundary
MPS connected by an corner matrix K . Once the corner-
shaped fixed points in different quarter planes are obtained,
arbitrary two-point expectation values can be calculated by
contracting the network containing Ri and Rj from four cor-
ners. Finally, the network is reduced into the shape of a cross
as shown in Fig. 9(e) with the help of the fixed-point eigen-
vectors FL and FR.

All contributions of different configurations of the R ten-
sors should be taken into consideration, which is achieved by
moving the R tensors independently in horizontal and vertical
directions. The sum of the infinite geometric series of two
observables is a bit more involved. For exponentially decay-
ing observables, long-range observables can be evaluated by
inverting the corresponding channel operator as a sum of
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FIG. 9. (a) The tensor network representation of the first derivative of the partition function. (b) The tensor network representation of the
second derivative of the partition function. (c) The contraction of an infinite tensor network using corner environments from four corners.
(d) The eigenequation of the top left corner-shaped fixed point. (e) The computation of a two-point function expressed by contracting the
channel operators and the corner tensors.

channel operators,

∞∑
n=0

T n
L � [I − (TL − |Fr〉〈FL|)]−1, (D8)

where Fr is the right dominant eigenvector of TL whose dom-
inant eigenvalue is renormalized to 1.

The discontinuous jump of the spin stiffness is a char-
acteristic feature for unbinding of topological defects above
the BKT transition. In the main text, we show the two-step
jump of the superfluid stiffness for both hexatic (	 < 1) and
nematic (	 > 1) regime. In contrast to the case for small 	

where the stiffness develops a cusp point with a small jump
at the lower transition temperature due to the unbinding of
vortices with charge qφ = 1, in the large 	 regime the stiff-
ness drops dramatically at the lower transition temperature
Tc1. The different behavior of the stiffness jump at lower tran-
sition temperatures between small and large 	 cases should
be related to the dissociations of different kinds of vortices in
the φ and θ fields. Since the phase twist v is applied to the
hexatic θ field three times larger than to the nematic φ field,
the ratio of the contribution to the total stiffness is roughly
	 : 9(2 − 	) between φ and θ fields for a weak coupling λ

[21]. That is why the first drop of the stiffness is almost six
times larger than the second drop upon increasing temperature
along 	 = 1.2. Such a great drop is different from the strongly
coupled case with large λ where the topological defects do not
result in a jump of the total stiffness but a gradual decrease at
the lower crossover. Further investigations into the correlation
properties tells us that the extremely weak coherence between
vortices in θ field above Tc1 should account for the dramatic

jump in total stiffness even though the θ field still remains
quasi-LRO.

APPENDIX E: CORRELATION FUNCTIONS
AND THEIR CORRELATION LENGTHS

To reveal the nature of the topological excitations in
different phases, we calculate various two-point correlation
functions and the corresponding correlation lengths. Here, we
present more details for the correlation properties for intra-
and intercomponent observables. Our results are discussed in
the hexatic (	 < 1) and nematic (	 > 1) regimes, separately.

The correlation functions for 	 = 0.8 are summarized in
Fig. 10 and the corresponding correlation lengths are dis-
played in the first column of Fig. 12.

In the T = 0.6J column below Tc1, the intracomponent cor-
relation functions Gφ (r) in Fig. 10(a) and Gθ (r) in Fig. 10(g)
display the algebraic behavior, indicating the bindings of
qφ = 1 and qθ = 1 vortices in the φ and θ fields, respectively.
Moreover, the power-law behavior of Gφθ (r) in Fig. 10(j)
implies that the vortices and antivortices also bind in the in-
terfield. Therefore, a fully phase-coherent state of the coupled
system is established in the low-temperature phase. Besides,
the intercomponent Potts variable develops a true LRO and the
correlation function Gσ (r) in Fig. 10(m) becomes a constant
for large r.

In the T = 1.0J column of the intermediate temperatures,
the most interesting physics happens in the φ field. When
cooling down the system from the high-temperature disor-
dered phase, the buildup of correlations in the θ field first
occurs at Tc2 with an algebraically decaying correlation func-
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FIG. 10. Various two-point correlation functions are calculated under the intracomponent coupling ratio 	 = 0.8 and the intercomponent
coupling λ = 0.1. Different columns denote different values of T = 0.6J , 1.0J , and 1.4J as indicated.

tion Gθ (r) in Fig. 10(h), corresponding to the binding of
hexatic vortices with charge qθ = 1. For the fractional vortex
paired phase between Tc1 and Tc2, the correlation function
Gφ (r) decays exponentially, while the correlation function
G3φ (r) of the fractionalized vortices exhibit an algebraic be-
havior.

As displayed in Figs. 10(b) and 10(e), the direct compar-
ison between difference correlation behaviors demonstrates

that the integer nematic vortices qφ = 1 in the φ field are frac-
tionalized into fractional nematic vortices with qφ = 1/3 due
to the presence of the intercomponent Z3 degrees of freedom.
Since the fractional nematic vortices are pointlike topological
defects around which the phase angles of spins wind by 2π/3,
each fractional nematic vortices should be at the end of a
domain-wall string across which the φ field twists by 2π/3.
The existence of multiple Potts domains destroys the phase
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FIG. 11. Various two-point correlation functions are calculated under the intracomponent coupling ratio 	 = 1.2 and the intercomponent
coupling λ = 0.1. Different columns denote different values of T = 0.6J , 1.0J , and 1.4J as indicated.

coherence in the φ field and leads to disorder in intercompo-
nent σ variables. As we can see, both Gφθ (r) in Fig. 10(k)
and Gσ (r) in Fig. 10(n) display the exponential decay. We
should point out that the correlation length ξφ extracted from
Gφ (r) could be fitted by an exponentially divergent form
ξ (T ) ∝ exp(b/

√
T − TC ) above Tc1 as shown in Fig. 12(a)

with b > 0 as a key feature of the BKT transition, which
implies that the transition at Tc1 is a hybrid BKT and Potts

transition. Furthermore, as shown in Fig. 12(e), the correlation
length ξσ for the intercomponent Potts variable extracted from

e−r/ξσ ∝ 〈cos(σi − σi+r )〉 − 〈cos(σi )〉〈cos(σi+r )〉 (E1)

is well fitted by ξσ ∝ 1/|T − Tc1|5/6 in agreement with 2D
Potts universality class.

In the T = 1.4J column above Tc2, all the correlation
functions decay exponentially and the system is disordered.
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FIG. 12. Different correlation lengths ξφ , ξθ , and ξσ are calculated for nematic φ, hexatic θ , and intracomponent σ under λ = 0.1,
respectively. Different columns denote different values of 	 = 0.8 and 	 = 1.2 as indicated.

When approaching Tc2 from high temperatures, the relevant
correlation length ξθ is extracted and displayed in Fig. 12(c),
which can be well fitted by an exponentially divergent form of
the BKT transition.

It is interesting to see that the correlation functions of Gθ (r)
and G3φ (r) share the same exponents while Gφ (r) and Gσ (r)
share the same exponents. Such behavior can be interpreted
as another proof of the relevance of the intercomponent cou-
plings. Due to the relative locking, the θ and 3φ fields have
the same long-wavelength behavior and the correspondence
qθ = 3qφ between vortex charges is established.

However, the correlation functions for 	 = 1.2 are sum-
marized in Fig. 11 and the corresponding correlation lengths
are displayed in the second column of Fig. 12.

In the T = 0.6J column below Tc1, all intracomponent
correlation functions show a power-law behavior and the
correlation function for the intercomponent Potts variable
becomes a constant for long distance as displayed in

Fig. 11(m). In fact, the low-temperature phases in the hexatic
and nematic regime share the same physics.

In the T = 1.0J column of the intermediate temperatures,
the power-law behavior of Gθ (r) in Fig. 11(h) demonstrates
that the quasi-LRO in the θ field survives through the tran-
sition at Tc1. A direct comparison between the amplitude of
Gθ (r) at two sides of Tc1 in the main text shows that the coher-
ence between spins in the θ field is greatly suppressed by three
orders of magnitude across the transition at Tc1. Although the
θ field is still quasi-LRO, the extremely weak coherence above
Tc1 could account for the dramatic jump in total stiffness at
Tc1. The reason for the absence of the unbinding transition in
the θ field is that the onset of algebraic correlations in the
φ field in Fig. 11(b) leads to the quasi-LRO in the θ field
because they are coupled by the relevant intercomponent term
λ cos(θi − 3φi ). Since the vortices with charge qφ = 1 in the
φ field are bound below Tc2, the dominant topological excita-
tions in the θ field between Tc1 and Tc2 should be composite
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FIG. 13. Schematic representations of the topological defects of the Z3 variables in (a) the Potts ordered phase, (b) the Potts liquid phase,
and (c) the Potts disordered phase, respectively. The Potts variables (σi = 0, 1, 2) are defined on the original lattice while domain walls (orange
thick lines), vortices (red dots), and antivortices (blue dots) are defined on the dual lattice.

vortex pairs with qθ = 3. Moreover, the composite qθ = 3
vortices should further fractionalize into three qθ = 1 vortices
bound together as a larger extended vortex core to lower the
gradient energy cost, especially for weakly coupled cases of
smaller λ. In this way, the correlation Gθ (r) should be viewed
as a higher order expansion of the correlation function among
composite vortices, which has the same long-wavelength be-
havior as Gφ (r).

In the T = 1.4J column above Tc2, all the correlation func-
tions decay exponentially and the system is disordered. When
approaching Tc2 from high temperatures, the corresponding
correlation length ξφ for Gφ (r) as well as ξθ for Gθ (r) are
extracted and displayed in Figs. 12(b) and 12(d), respectively.
Both ξφ and ξθ above Tc2 can be well fitted by an exponentially
divergent form of the BKT transition.

The most interesting physics is revealed in further inves-
tigations into the intercomponent Potts variable σi. In the
strongly coupled case of large λ, the LRO of σ is found
to be lost at Tc2 together with the destruction of the quasi-
LRO in both the hexatic and nematic fields through a BKT
transition. However, for the weekly coupled case, the order-
disorder transition in σ variables splits into two transitions
separated by an intermediate phase with Potts quasi-LRO,
which is regarded as the Potts liquid phase. As shown in
Figs. 11(m)–11(o), the correlation function Gσ (r) exhibits a
constant value, an algebraic decay, and an exponential decay
at T = 0.6J , T = 1.0J , and T = 1.4J , respectively. Such un-
conventional two-stage phase transitions should be associated
with the separated proliferations of the Z3 domain walls and Z3

vortices, similar to two continuous phase transitions in the Zp

clock models with p > 4. The correlation length ξσ is also ex-
tracted from e−r/ξσ ∝ 〈cos(σi − σi+r )〉 − 〈cos(σi )〉〈cos(σi+r )〉
as displayed in Fig. 12(f). The similar behavior of the cor-
relation length was also observed in p-state clock models
(p > 4) [29]. For the clock model, the correlation lengths
scale exponentially with T when the quasi-LRO phase is
approached from both the ordered and disordered sides, which
means that both the transitions at lower and higher temper-
atures belong to the BKT class. However, as displayed in
the inset of Fig. 12(f), the correlation length for T > Tc2

(right inset) agrees well with the BKT behavior while for
T < Tc1 (left inset) the correlation length cannot fit well in
the exponential form. Therefore, it is reasonable to infer that

the phase transition at Tc1 slightly deviates from the standard
BKT class.

APPENDIX F: TOPOLOGICAL DEFECTS
IN Z3 VARIABLES

To illustrate the splitting of the order-disorder transition in
the Z3 Potts variables, the corresponding topological defects
are schematic depicted in Fig. 13. Unlike the 2D Ising model
where a phase transition is driven by looplike domain walls,
the Z3 Potts model allows the looplike domain walls as well as
Z3 vortices. The Z3 Potts variables σi = 0, 1, 2 are defined at
each vertex on a square lattice (black lines). The topological
defects, Z3 domain walls and vortices, are defined on the dual
lattice (orange dotted line). Each segment of the domain wall
corresponds to a mismatch in the Potts variables across the
edge. The Z3 vortices are determined by the vorticity around
the vertex of the dual lattice

ωp = 1

3

∑
〈i, j〉∈�p

	i j, (F1)

where 	i j = σi − σ j are wrapped within [−1,+1] surround-
ing the plaquette anticlockwise.

For the conventional Potts model, only a single Potts tran-
sition is observed because the proliferation of two kinds of
topological defects are coupled together. However, we find
that a quasi-LRO intermediate phase can appear in the Z3 Potts
variables due to the separated excitations of different topologi-
cal defects in the weakly coupled model. The low-temperature
transition is driven by the proliferation of domain walls while
the high-temperature transition results from excitations of free
Z3 vortices. The effective core energy of Z3 vortices in the
σ field of the coupled hexatic-nematic model could be in-
creased by a finite inter-component coupling. Actually, a finite
λ makes it more costly for the excitations of free vortices in
the θ field which would proliferate through a BKT transition
at Tc1 if λ = 0. On the other hand, for large λ limit, the
energy of domain walls increases dramatically which forbids
the excitations of domain walls before the proliferation of free
Z3 vortices and only one transition is left. Since the σ variable
is determined by the θ and φ field simultaneously, the relation
between the intercomponent coupling λ and core energy of
Z3 vortices is more complicated. An estimation made from an
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effective long-wavelength model [21] gives that the energies
of domain walls are proportional to

√
λ	 while the core en-

ergies of the vortices in the phase field are proportional to 	.
Therefore, a small λ is required in the coupled hexatic-nematic

model to achieve a relatively high ratio of the core energy of
the Z3 vortices compared to domain walls. An investigation of
the changes of the phase structure on different λ is presented
in the main text.
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