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We have proposed an efficient algorithm to calculate physical quantities in the translational invariant three-
dimensional tensor networks, which is particularly relevant to the study of the three-dimensional classical
statistical models and the (2 + 1)-dimensional quantum lattice models. In the context of a classical model, we
determine the partition function by solving the dominant eigenvalue problem of the transfer matrix, whose left
and right dominant eigenvectors are represented by two projected entangled simplex states. These two projected
entangled simplex states are not Hermitian conjugate to each other but are appropriately arranged so that their
inner product can be computed much more efficiently than in the usual prescription. For the three-dimensional
Ising model, the calculated internal energy and spontaneous magnetization agree with the published results in
the literature. The possible improvement and extension to other models are also discussed.
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I. INTRODUCTION

The many-body problem is one of the central problems
in physics, and developing accurate and efficient numer-
ical methods that can effectively handle the exponential
growth of the corresponding Hilbert space has always been
a great challenge, especially for quantum systems. Based on
the idea of renormalization group and the tensor-network
representation of partition functions and wave functions,
tensor-network methods have evolved progressively to be
an important member of many-body computational methods
in recent years [1–3]. In fact, due to the absence of sign
problem and the ability to deal with two-dimensional sys-
tems, tensor networks are drawing increasing attention, and
have been applied successfully to strongly-correlated elec-
tron systems [4,5], frustrated spin systems [6–10], statistical
models [11–13], topological order [14–17], quantum field the-
ory [18–20], machine learning [21,22], and quantum circuit
simulation [23], etc. Among the various tensor-network meth-
ods, imaginary time evolution is a highly efficient method
to determine the ground state of low-dimensional quantum
systems [3,24,25].

A central task in the application of tensor network states
to 2 + 1 dimensional quantum lattice models is to contract
a two-dimensional tensor network, which has a double-layer
structure and bond dimension D2, with D the maximal vir-
tual bond dimension of the tensor network representation
of a quantum state [3]. This is extremely costly, and thus
although D is expected to be larger to produce a more accu-
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rate result, it is limited to about 13 in practical calculations
[9,17,26]. There have been some efforts in recent years to
solve this problem, such as employing symmetries [27,28],
combining Monte Carlo sampling [29], and the nested tensor
network method [30]. However, apparently the problem is
not completely solved, and developing efficient algorithms to
resolve this issue is still an important topic for tensor-network
communities.

Meanwhile, it is known that, in the formalism of path
integral, the equilibrium quantum many-body problem in d
dimensions is similar to the classical many-body problem in
d + 1 dimensions [11,31–35]. Thus inspired by the suc-
cess in one- and two-dimensional quantum systems, there
are also some efforts to apply tensor-network methods
to three-dimensional (3D) classical models. Actually, both
the coarse-graining tensor renormalization group algorithms
[11,36–38] and the transfer-matrix-based tensor-network state
methods [39–45] have been applied to these models or related
previously. Although the transfer-matrix-based methods can
work excellently in two-dimensional networks, they seem not
so efficient in three dimensions [46]. In the literature, in order
to obtain reliable results, the variational optimization proce-
dure is indispensable, thus due to the high computational cost,
as will be discussed later, the bond dimension of the involved
tensor-network states and the accuracy are rather limited, and
some auxiliary techniques are usually employed further to
analyze the data. Especially, to our best knowledge, in prac-
tice, whether a simple yet efficient algorithm analogous to
the simple-update algorithm [47] in two-dimensional quantum
lattice models can be developed for 3D classical models is
unclear up to now.

In this paper, we are trying to address the above is-
sues. To be specific, following the usual prescription of the
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transfer-matrix-based methods, first we express the partition
function of a 3D classical model in terms of some special
two-dimensional transfer matrices, and reduce the problem
to the dominant eigenvalue problem of the matrices. Then
we solve the dominant eigenvalue problem by representing
the dominant eigenvector as a special tensor-network state,
namely the projected entangled simplex state (PESS) [26],
which is efficiently determined through a power iteration
procedure analogous to imaginary time evolution, as done
for two-dimensional classical models similarly [48]. Further-
more, a simple nesting technique is proposed in which the
PESS representations of the left and right dominant eigen-
vectors are designed appropriately so that their inner product
can be expressed as a tensor network with bond dimension
D instead of D2, and thus the contraction can be carried out
much more efficiently. Combining this nesting technique with
the corner transfer matrix renormalization group (CTMRG)
algorithm [4,49,50], we are able to push the bond dimension
D to 20 in this paper. For the 3D Ising model, it shows that
even if the tensor network state is renormalized by the so-
called simple update technique [25,26,47] after each evolution
step, the obtained local quantities, such as energy density and
spontaneous magnetization, are in good consistent with the
previous studies, and the estimated critical temperature Tc is
about 4.50984(2), which has only a relative deviation of about
10−4 from the best Monte Carlo estimations.

The rest of the paper is organized as follows. In Sec. II, we
introduce some details of the algorithm employed in this pa-
per, including the nesting technique. The numerical results for
statistical averages, such as energy density E and spontaneous
magnetization M, as well as the convergence analysis, are
presented in Sec. III. In Sec. IV, we summarize our paper, and
discuss the possible improvement and promising extensions
briefly.

II. METHOD

A. Tensor-network representation of the partition function

For concreteness, hereinafter, we will focus on the 3D Ising
model. The partition function can be written as

Z =
∑

{s}

∏

〈i j〉
eβsis j , (1)

where si = ±1 is the spin variable located on the ith lattice
site, β is the inverse temperature, 〈i j〉 means the product is
performed over all the nearest-neighboring bonds, and the
summation is over all the spin configurations.

For later use, we regroup the product in Eq. (1) in
the unit of cubes that are the building block of a cubic
lattice, i.e.,

Z =
∑

{s}

∏

α

T (α), (2)

where T (α) is a rank-8 tensor defined at the αth cube. For ex-
ample, as shown in the right panel of Fig. 1, for a cube where
the spin variables residing on the eight vertices are denoted by
s1 − s8, the local tensor T can be expressed as the following
product of twelve Boltzmann weights corresponding to each
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FIG. 1. Special transfer matrices in the expression of the parti-
tion function of 3D Ising model. (Left) The green and blue cubes
constitute transfer matrices T2 and T1, as expressed in Eqs. (4) and
(5). (Right) The definition of local tensor T located in each colored
cube, as expressed in Eq. (3). As mentioned in the main text, the
vertical direction is referred to as z direction for convenience.

edge of the cube, respectively,

Ts1s2s3s4s5s6s7s8 = exp[β(s1s2 + s2s3 + s3s4 + s4s1 + s5s6

+ s6s7 + s7s8 + s8s5 + s1s5 + s2s6 + s3s7

+ s4s8)]. (3)

Manifestly, to make Eqs. (2) and (3) consistent, T should
be defined only in two kinds of inequivalent cubes, as denoted
as green and blue, respectively, in the left panel of Fig. 1. Thus
the two kinds of cubes form an alternative or staggered struc-
ture in the vertical direction. This is very similar to the case
of the imaginary time evolution in quantum lattice models,
where the Trotter-Suzuki decomposition of the evolution oper-
ator e−τH always leads to an alternative structure in imaginary
time τ direction. In the following, we will use this special
structure extensively. For convenience, the vertical direction
will be referred to as z direction hereinafter.

B. Determination of the tensor-network representation
of the dominant eigenvector

Following the prescription of the transfer-matrix-based
method, one needs to express the partition function in terms of
some transfer matrices. To this end, firstly, we introduce two
tensor-network operators

T1 =
⊗

α∈b

T (α), T2 =
⊗

α∈g

T (α), (4)

where the direct products are performed over T s defined at
blue cubes and green cubes, respectively, as illustrated in
Fig. 1. And then we can identify the following equality:

Z = Tr(T2T1)2n, (5)

where the length in the z direction is denoted as 2n for conve-
nience. It is worth noting that T1 and T2 should be understood
as matrices by grouping indices properly in Eqs. (4) and (5), in
order to make the operations for matrices therein meaningful.

Once Eq. (5) is established, the calculation of partition
function is immediately reduced to the dominant eigenvalue
problem of the transfer matrix T2T1, which can be solved
by the power iteration method. In this paper, we represent
the corresponding dominant eigenvector |�〉 as a PESS form
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FIG. 2. Tensor network representation of the dominant eigenvec-
tor of the transfer matrix T2T1 appeared in Eq. (5), as formulated in
Eq. (6). The black vertical lines denote the physical configurations
{s} appeared in Eq. (6). In the right panel, the indices of the local
tensors are explicitly shown for clarity.

[26,51], which can be written as

|�〉 =
∑

{s}
Tr(...A(α)

aαbαcαdα
B(β )

aβ bβ cβdβ
P(i)

aibi
[si]...)|...si...〉, (6)

as illustrated in Fig. 2. Here α and β denote the coordinates
of two inequivalent squares, at the center of which a rank-4
simplex tensor A or B is introduced to characterize the four-
spin entanglement in that square. i denotes the coordinates
of lattice sites, where a rank-3 projection tensor P is defined
with two virtual indices labeled as a, b... and a single physical
index labeled as s. Every two virtual indices associated with
the same bond take the same values. Tr is over all the repeated
virtual indices and

∑
is over all the spin configurations {s}. In

this paper, we employed the C4 rotational symmetry of A and
B that corresponds to the symmetry of local tensor T defined
in Eq. (3), and the translational symmetry of the 3D lattice,
thus there are only one independent P, A, and B present in
Eq. (6). More background about the PESS wave function can
be found in the Appendix.

As done in time evolution in quantum lattice systems, using
the alternative structure of T1 and T2, we can take a similar
simple update strategy [25,26,47] to determine the variational
parameters A, B, and P in |�〉. To be specific, starting from
a random state |�0〉, which has the same structure as |�〉,
we apply T1 and T2 alternatively to |�0〉 and update the pa-
rameters accordingly by local decompositions of the related
clusters after each projection. This procedure is applied re-
peatedly until the convergence is reached, and the obtained
tensor network state provides an approximate representation
of |�〉 [48]. Taking A as an example, Fig. 3 illustrates how
a single projection step is performed. For more details, we
suggest referring to Ref. [26].

C. Inner product between the left and right dominant
eigenvectors, and its nesting structure

Having described how to obtain the dominant eigenvec-
tors, in this subsection, firstly, we briefly describe how the
statistical averages are obtained in the traditional reduced
tensor network method (RTN) [3,30]. As long as the dominant

FIG. 3. A single projection step of T on the PESS ansatz (take
the update of simplex tensor A for example), as described in the main
text. To illustrate the operation, the indices of the local tensor T are
labeled explicitly. (a) The indices {sis jsksl} in T and A are summed
over. A cluster tensor S̄ is obtained by further absorbing four mean-
field entanglements, i.e., the positive definite vector λB obtained from
the higher-order singular value decomposition (HOSVD) of the B
tensor. (b) The HOSVD of S̄ is performed to obtain four unitary
matrices U s and the core tensor Ā. (c) Truncate Ā to keep bond
dimension D, recover the original mean-field entanglement structure,
and obtain the updated local tensors A and P. For more details, one
can refer to the elaboration in Ref. [26].

eigenvector |�〉 is obtained, we can use the fundamental
formula to calculate the statistical averages of local physical
quantities. For example, the average magnetization located at
the ith site can be determined by

Mi =
∑

{s} si
∏

α T (α)

∑
{s}

∏
α T (α)

= Tr(T2T1)nsi(T2T1)n

Tr(T2T1)n(T2T1)n
, (7)

where we have used the transfer-matrix expression of Z and
assumed that si sits in the middle in the z direction. In the
thermodynamic limit, n → ∞, we reach

Mi = 〈� ′|si|�〉
〈� ′|�〉 , M =

∑
i∈α Mi

8
, (8)

where 〈� ′| is the left dominant eigenvector of T2T1 and can
be derived easily due to the symmetry between T1 and T2.
The spontaneous magnetization M is obtained eventually as
above by averaging over the eight spins in the same cube due
to the translational invariance of the tensor networks. Internal
energy E of the bonds can be obtained similarly. To evaluate
the ratios like Eq. (8), we can follow the widely-used impurity
method as discussed in Refs. [27,47,52], and some details can
be found in the Appendix.

As indicated explicitly in Eq. (8), the statistical average of
a local physical quantity needs to contract a two-dimensional
tensor network, which is identical to the expectation value
calculation for quantum lattice models in essence. Suppose
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FIG. 4. Sketch of 〈� ′|�〉 appeared in Eq. (8). Here 〈� ′| is the
left dominant eigenvector of T2T1. The relevance to |�〉, and thus the
structure of the local tensors T a and T b, come from the symmetry
between T1 and T2, i.e., they are transformed to each other by a finite
translation in the diagonal direction.

both |�〉 and 〈� ′| have bond dimension D, then the generated
two-dimensional tensor network has dimension D2, as shown
in Fig. 4. When D is small, this tensor network can be con-
tracted by the CTMRG algorithm [4,49,50] effectively. More
introduction of the CTMRG algorithm used in this paper is
provided in the Appendix.

The simple-update-like algorithm described in Sec. II B
is highly efficient, and the leading computational cost scales
as D5 in our case. Thus PESS eigenvector with large bond
dimensions can be obtained without too much cost. How-
ever, contracting a two-dimensional tensor network with bond
dimension D2, as shown in Fig. 4, has a leading cost D12

empirically, as discussed in Ref. [30], and is extremely costly
when D is large. A possible solution is the nested tensor
network technique, which can reduce the cost to D9 [30].
Nevertheless, in this paper, we did not take this strategy.
Instead, we proposed a much simpler nesting technique by
taking advantage of the special cubic lattice structure. This
nesting technique can reduce the computational cost similarly
as achieved by the nested tensor network method (also scales
as D9), keeps the symmetry of the ground state properly, and
is especially suitable for cubic systems.

To see how it works, we first divide the cubic lattice into
three parts, namely two bulks whose contribution to the full
partition function can be expressed in terms of transfer matri-
ces, and the surface part, which connects the two bulks and
combines as the whole cubic lattice. This means we have
rewritten the partition function in another manner, as illus-
trated in Fig. 5(a),

Z = Tr(T4T3)nYV X (T2T1)n, (9)

where T1 and T2 are the transfer matrices corresponding to the
lower bulk, T3 and T4 correspond to the upper bulk similarly,
and X , Y , V are auxiliary matrices to describe the surface part.
Here we intentionally decompose the lower and upper parts in
different manners, and their relative locations projected in the
xy plane are shown in Fig. 5(b). Mathematically,

X =
∏

〈i j〉t �∈g

eβsis j , Y =
∏

〈i j〉b �∈o

eβsis j , V =
∏

〈i j〉bt

eβsis j , (10)

FIG. 5. Decomposition of the cubic lattice into three parts, as de-
scribed in the nesting technique in Sec. II. (a) The cubes with colors
blue, green, orange, and grey, constitute the transfer matrices T1, T2,
T3, and T4, respectively. The dashed lines with color black, blue, and
red, constitute the transfer matrices X , Y , and V , respectively. The
full partition function can be represented in terms of these transfer
matrices, as expressed in Eq. (9). (b) The spatial distribution of the
cubes in xy plane, for the sixteen cubes shown in (a). (c) Relative
location of X (black dashed lines) to T1 (blue) and T2 (green), and this
explains how the operation X |�〉 is performed. (d) Relative location
of Y (blue dashed lines) to T3 (orange) and T4 (grey), and this explains
how the operation 〈�|Y is performed. (e) Relative location of V
(on-site red dots) to all four T s, and this explains how the operation
〈�̃|V |�̃〉 is performed. Note that (b)–(e) display the projection of
(a) onto the horizontal plane, therefore the simplex tensors appeared
in the PESS ansatz Eq. (6) and updated in Fig. 3, reside exactly in
the center of the colored squares.

which are explicitly shown in Figs. 5(a), and 5(c)–5(e). Here
X and Y can be understood as on-site diagonal matrices,
〈i j〉t �∈ g means the product is over the nearest-spin pairs
between green cubes on the top surface of the lower bulk,
and 〈i j〉b �∈ o means the product is over the nearest-spin pairs
between orange cubes at the bottom surface of the upper
bulk. 〈i j〉bt means V is the product of Boltzmann weights
corresponding to all the bonds connecting the two bulks in
the z direction. In Fig. 5, the dashed bonds corresponding to
X , Y , and V , are denoted as black, blue, and red, respectively.
Note in Eq. (9), the size in the z direction is assumed as 2n + 1
for convenience.

In the thermodynamic limit, the evaluation of Eq. (9) is
again reduced to the dominant eigenvalue problem as be-
fore, and the statistical averages can be determined similarly.
For example, the bond energy in the z direction can be
obtained by

Ep = 〈�|YV ′X |�〉
〈�|YV X |�〉 , V ′ = (−sasbeβsasb )

∏

〈i j〉bt �=p

eβsis j ,

(11)
where 〈�| is the left dominant eigenvector of T4T3, and V ′
differs from V by only a single vertical bond denoted as p
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β
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FIG. 6. Illustration of the nesting structure of 〈�̃|V |�̃〉 appeared
in Eq. (12). The spatial location corresponds to Fig. 5 exactly.
(a) Structure of the ket state |�̃〉, whose virtual bonds are indicated
as solid black lines. (b) Structure of the bra state 〈�̃|, whose virtual
bonds are indicated as dashed green lines. (c) Structure of the inner
product 〈�̃|V |�̃〉, where new rank-4 tensor T p is defined in Eq. (13)
and illustrated in (d). Here we have used the symmetry between
the two wavefunctions, and both definitions of T p hold, although
it is unnecessary for the nesting method. The local tensors are the
parameters in |�̃〉 in this context, not to be confused with parameters
in |�〉 in Fig. 2. Clearly, the bond dimension of the resulting tensor
network is not squared, which is different from the case in Fig. 4.

with sa and sb located at its ends. Finally we have

Ep = 〈�̃|V ′|�̃〉
〈�̃|V |�̃〉 , 〈�̃| ≡ 〈�|Y, |�̃〉 ≡ X |�〉. (12)

The key observation is that 〈�̃| and |�̃〉 have a simi-
lar structure, but the parameters are distributed separately in
space, i.e., their simplex tensors are defined separately in
space at different sets of squares, which can be seen from
Figs. 5(b)–5(d) and Figs. 6(a)–6(c) straightforwardly. And this
leads to a great advantage, i.e., if the wavefunctions 〈�̃| and
|�̃〉 are approximated by PESS with bond dimension D, then
the generated two-dimensional tensor network also has bond
dimension D, instead of D2. To be specific, let us take the
denominator as an example. Exploring the symmetry between
〈�̃| and |�̃〉, the resulting tensor network are composed of
three parameters, i.e., the local tensors in |�̃〉 and |�̃〉, and a
new local tensor T p derived from P therein, i.e.,

T p
i jkl =

∑

sasb

Pl j[sa]Pki[sb]eβsasb, (13)

as illustrated in Figs. 6(c) and 6(d). Therefore, compared with
the reduced method, which generates a tensor network with
a squared bond dimension, this nesting technique can greatly

4.0 4.2 4.4 4.6 4.8 5.0

E

T

Monte Carlo

D = 10

D = 20

4.50 4.52 4.54

FIG. 7. Energy estimation obtained from the simple update and
the nesting method. The Monte Carlo data from Ref. [55] are plotted
as a reference.

reduce the cost and leads to much more efficient contraction,
as achieved in Ref. [30] similarly. Considering the fact that the
environment dimension χ used in the CTMRG iterations has
the order D2 empirically, the nesting technique can reduce the
computational cost from D12 to D9. In this paper, we push D
to 20 with the help of this technique.

III. RESULTS

In this paper, we focus on the 3D Ising model, which is
of long-standing interest in statistical physics and condensed
matter physics. Although there is no analytical solution as
in two-dimensional case, the higher-order tensor renormal-
ization group (HOTRG) [11,53] and Monte Carlo methods
[54–57] have provided very accurate numerical data, which
confirms a second-order finite temperature phase transition.
Therefore, this model provides a suitable touchstone to test
new numerical algorithms in higher dimensions.

In this paper, as described in Sec. II, we use the developed
evolution method combined with the simple update technique
to determine the tensor-network representation of the dom-
inant eigenvectors of the transfer matrices. Furthermore, to
push D to a larger value (up to 20 in this paper), in the
expectation value calculations, we always employ the nesting
technique described in Sec. II C to improve the efficiency
of CTMRG algorithm. Note that when D is small, and the
conventional reduced method can be efficiently performed,
the results obtained by the CTMRG with and without nesting
technique are consistent, as illustrated and discussed in the
Appendix.

The result of internal energy E is shown in Fig. 7. The
reference curve denotes high-precision Monte Carlo data ob-
tained in Ref. [55]. It shows that the proposed method can
give consistent results at the off-critical region, while near the
critical point, enlarging the bond dimension D can produce
more accurate results as expected. The spontaneous magneti-
zation M shows similar behavior, as shown in Fig. 8, where the
reference curve is obtained from Monte Carlo [54]. For both
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FIG. 8. Magnetization estimation obtained from the simple up-
date and the nesting method. The Monte Carlo data from Ref. [54]
are plotted as a reference.

quantities, our result coincides well with previous studies, and
the singular behavior can be seen clearly.

From E and M, and the critical temperatures derived as
shown in Fig. 9, it seems that the proposed method tends to un-
derestimate the critical temperature a little, which is different
from the coarse-graining tensor renormalization group meth-
ods as shown, e.g., in Refs. [11,58]. This is probably related
to the simple update technique used in the evolution process,
since it essentially provides a Bethe lattice approximation
of the dominant eigenvector [59,60] and thus tends to be
disordered at finite temperature, especially at the temperature
close to but lower than critical point where the approxima-
tion cannot give a good estimate of the correlation length.
When D = 20, the estimated critical temperature Tc is about
4.50984(2), which has only about 10−4 relative deviation from

5 10 15 20

4.5080

4.5085

4.5090

4.5095

4.5100

Tc

D

FIG. 9. Critical temperature obtained from the magnetization M,
with respect to the bond dimension D of the tensor network state
representation of the transfer matrices’ dominant eigenvectors. The
critical temperature is estimated as the lowest temperature, which has
almost zero magnetization, as shown in Fig. 8.

TABLE I. Comparison of the critical point Tc for the 3D Ising
model obtained from different tensor-network-state-based methods.
The Monte Carlo and HOTRG results are included as references.
Note that for the methods denoted by (∗), variational calculations
have been employed and the bond dimensions are rather small
(D ∼ 4). Our results are derived from the magnetization data with
D = 20 simple-updated wave function.

Method Tc

Monte Carlo [57] 4.51152326(11)
HOTRG [11,53] 4.51152469(1)
KWA-based TNS∗ [40] 4.5788
Vertex-type TNS∗ [41] 4.5392
TPVA∗ [40,61] 4.5704, 4.554
TNS∗ [41] 4.504
Algebraic variation∗ [42] 4.547
TNS data fitting∗ [44] 4.5118057(41)
TNS data collapse∗ [45] 4.5104, 4.51170
Simple update (this paper) 4.50984(2)

the best estimation Tc ∼ 4.51152 [11,53,57]. The comparison
with other variational calculations is summarized in Table I.
Although obtaining a benchmark result is not our motivation,
it shows that our method performs rather well. Compared
to the most recent PEPS calculations [44,45], though our
result seems slightly less accurate, our method does not need
other auxiliary techniques, such as ignoring the long tails of
magnetization with careful fitting [44], scaling hypothesis and
data collapse [45], bootstrap exponent fixing [45], etc. The
accuracy of the critical temperature and the critical exponent
can be further improved by further refining the simple-updated
wavefunctions through variational calculations and perform-
ing these advanced techniques.

Furthermore, as shown in Fig. 10, the critical exponent
can be obtained by fitting the magnetization data near critical
temperature according to the scaling relation

M ∼ (1 − T/Tc)β. (14)

4.502 4.506 4.510 4.514 4.518

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.001

0.1

0.15

0.2

0.25

0.3

4.5096

4.5050

D = 20

Fitting curve

M

T

M

(Tc-T)/Tc

4.5050

4.5096

FIG. 10. Critical exponent β for the magnetization obtained
from D = 20 simple-updated wave function and χ = 120 nesting
CTMRG method. β is estimated as 0.335(16), and the data obtained
at temperature ranging from 4.5050 to 4.5096 are used for fitting.
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FIG. 11. Convergence analysis about energy and magnetization
for D = 20. Three typical temperatures are chosen, i.e., temperature
in symmetry-breaking phase (4.45), close to critical point (4.508),
and in disordered phase (4.6).

We find that the exponent β = 0.335(16), close to the Monte
Carlo [62] (0.3262), conformal bootstrap [63] (0.326419), and
HOTRG [11] (0.3295) results.

As to the nesting technique proposed in this paper, its
convergence with respect to the bond dimension χ of the
environment tensors used in CTMRG is shown in Fig. 11,
for D = 20. It shows clearly that for all the three typical
temperatures ranging from symmetry-breaking phase to para-
magnetic phase, the convergence is at least equally satisfying,
compared with the nested tensor network method proposed
in Ref. [30]. Particularly, even at the temperature that is very
close to the critical value, the convergence is already very
acceptable when χ = 180 for D = 20, with an error about
10−6 for E and 10−4 for M. This is a very nice feature for
tensor-network methods, especially for large D, as discussed
in Ref. [30] in detail.

IV. SUMMARY

In this paper, we propose an efficient numerical method to
contract the 3D tensor networks with translational invariance.
The result of the contraction is expressed in terms of some
transfer matrices, whose dominant eigenvectors are repre-
sented as the PESS form and determined by power iterations
analogous to the imaginary time evolution algorithm [24,48].
Especially, the PESS representations of the left and right
dominant eigenvectors are designed appropriately so that their
inner product has a nesting structure and can be expressed as
a tensor network with bond dimension D instead of D2, and
thus the contraction can be carried out much more efficiently.
As to the 3D Ising model, it can give very consistent results
for both energy and magnetization with previous studies, even
though only the simple update strategy is employed to update
the tensor network states. The convergency of the nesting
technique is shown to be at least equally good to that of the
nested tensor network method [30]. When D = 20, we obtain
a critical temperature about 4.50984(2), which is very close to
the best-known estimation. As far as we know, this is probably
the successful trial of applying the imaginary-time-evolution-
like method to 3D classical models without variational update

procedure, thus this extends the application scope of tensor
network states. The application to other interesting but unsolv-
able classical models in three dimensions, such as the Potts
model [53], clock model [64], dimer model [44], and lattice
gauge models [19], is straightforward.

As mentioned in Sec. III, the simple update strategy em-
ployed in this paper is probably a reason why the obtained
Tc tends to be underestimated. Besides the scaling hypothesis
and data collapse technique [45], this tendency could be eased
in two different manners. One is to resort to the more involved
but more accurate update methods, such as the cluster update
[65] and the full update strategies [66,67], which consider the
renormalization effect of the environment better. The other
possible way is to utilize more sophisticated ansatz and evo-
lution techniques, such as PESS ansatz with stronger simplex
entanglement [26], the recently proposed regularized scheme
of time evolution [68], and the so-called minimal canonical
form of tensor network states [69], all of which are also
expected to produce more accurate representation of the dom-
inant eigenvectors. In both cases, the nesting technique pro-
posed in this paper can still be applied without changing too
much, and the improvement in performance can be expected.

At last, it is worth mentioning that the proposed nesting
technique in this paper can also be extended to the two-
dimensional quantum lattice models. In order to achieve this,
one needs to represent the partition function in a different
manner, e.g., similarly as we have done in Eq. (9), so that
two representations of the ground state with separated distri-
butions in space can be used simultaneously, e.g., as illustrated
in Fig. 5(b) and expressed in Eq. (12). This can be advan-
tageous in the study of models, which have square structure
and separatable block interactions, such as Shastry-Sutherland
model [6,70], checkboard system [71], and so on. Exploring
its potential and limits is an interesting and promising project,
and we would like to leave it as a future pursuit.
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APPENDIX: FURTHER BACKGROUND AND
COMPARISONS

In this Appendix, some further background on the concepts
and techniques involved in this paper, and some relevant com-
parisons are provided.

1. PESS wave function ansatz

The PESS ansatz is particularly important in the nest-
ing technique developed in this paper. It was proposed in
Ref. [26], and can be regarded as a generalization of the
projected entangled pair state (PEPS) ansatz proposed in
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Ref. [1]. It extends pair entanglement well characterized by
PEPS to simplex entanglement that might be more important
in some situations, and has been successfully applied to a
series of frustrated spin systems, such as kagome spin liquid
systems [8,72], chiral spin liquid systems [17,73], quantum
spin-orbital liquid systems [9,74], etc.

As a wavefunction ansatz, the defining feature of a PESS
is the existence of simplex tensors in it, each of which con-
nects more than two physical degrees of freedom and captures
the many-body entanglement among them. For example, in
Eq. (6) and Fig. 2, simplex tensors Aα and Bβ are introduced
to characterize the entanglement among the four spins defined
on the vertices of the αth and βth squares respectively. For
any given base ket |{s}〉, the corresponding coefficient in the
superposition is given by the Tr operation, which means the
contraction of a two-dimensional tensor network and can be
accomplished by, e.g., the CTMRG method. For general dis-
cussions about tensor-network state, Refs. [1–3] are excellent
references covering almost all important topics.

In this paper, the translational symmetry and the C4 rota-
tional symmetry of the simplex tensors are employed, thus we
have only one independent A, B, and P as variational param-
eters that need to be determined by the simple-update-aided
imaginary-time evolution method, as discussed in the main
text and Ref. [26].

2. CTMRG algorithm for arbitrary supercell

The CTMRG is a highly-efficient and extensively-used
algorithm to contract two-dimensional tensor networks, and in
this paper it has been used to calculate the expectation values,
since the numerator and denominator in both Eqs. (8) and
(12), as well as other terms similar to the inner product of two
tensor-network states, can be represented as two-dimensional
tensor networks exactly. In this paper, for a given tensor-
network state with bond dimension D, the difference in the
expectation value calculation between the contraction of a
normal network and a network with nesting structure, lies in
the fact that the normal one has bond dimension D2 while
the nested one has dimension D. Therefore, though both the
two kinds of tensor networks can be contracted by CTMRG
algorithm, the leading cost differs greatly, i.e., D12 for the
normal one and D9 for the nested one (can be reduced to D10

and D8 respectively by some advanced techniques, e.g., partial
SVD.)

In this paper, we used the CTMRG algorithm for arbitrary
supercell that was proposed in Ref. [4]. For the normal net-
work depicted in Fig. 4, the supercell size is 2 × 2 (one can
always absorb the Q tensors into T a and/or T b), while for the
nested network depicted in Fig. 6, the supercell size is 4 × 4.
In the CTMRG algorithm, each independent tensor in the
supercell is associated with four corner tensors and four edge
tensors, which mimic its effective environment and are used to
extract the expectation values. For a supercell with size m × n,
we have stored 4mn corners and 4mn edges in total, which are
initialized as random numbers and are updated iteratively until
convergence is reached. The detailed iterative relations among
these corners and edges are determined according to their rel-
ative spatial locations, and have been given clearly in Ref. [4].
For general discussions about the CTMRG algorithm, Ref. [3]

Q

P

P

=

Q'
P

= σ

(a) (b)

(c)

(d)

P

Q' QQ

FIG. 12. Sketch of the impurity method and the explanation of
Eq. (15). (a) The numerator 〈� ′|si|�〉 represented as a 2D tensor
network. (b) The denominator 〈� ′|�〉 represented as a 2D tensor
network. Note that almost all the tensors in (a) and (b) are the same,
as defined in Fig. 4, and the only difference lies in two tensors defined
on the ith site, i.e., Q′ (impurity tensor, denoted as bright green) as
defined in (c) and Q as defined in (d). In the definition of Q′, the
operator si is included, and here its matrix representation σ z is a
diagonal matrix with nonzero elements ±1.

provide excellent and friendly reviews. For the most recent
development, Refs. [75,76] provide promising trials.

3. Impurity method in tensor-network states

The impurity method is frequently used to calculate the
expectation values without resorting to the derivatives. It has
been successfully applied early in Refs. [47,58], and was elab-
orated later in Refs. [27,52]. In essence, it aims to calculate
the expectation values of some local operators, e.g., the bond

4.0 4.2 4.4 4.6 4.8 5.0

E

T

Monte Carlo

Nesting

RTN

4.50 4.52 4.54

FIG. 13. Comparison between the internal energy E obtained
from the conventional RTN method and the nesting technique, for
D = 10. Note that the PESS wave functions used in these two meth-
ods are the same, and in both methods, the network is contracted by
the CTMRG algorithm.
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FIG. 14. Comparison between the magnetization M obtained
from the conventional RTN method and the nesting technique, for
D = 10. Note that the PESS wave functions used in these two meth-
ods are the same, and in both methods, the network is contracted by
the CTMRG algorithm.

energy or the magnetization, which can be expressed as a ratio
of two quantities represented as tensor networks and differ-
ing from with each other by only very few tensors (dubbed
impurity tensors). For simplicity, let us take the on-site mag-
netization operator Mi as an example, and repeat Eq. (8) in the
following:

Mi = 〈� ′|si|�〉
〈� ′|�〉 (15)

where 〈� ′| and |�〉 are the left and right dominant eigen-
vectors of T2T1 respectively. Suppose the two eigenvectors
have been represented as PESS form, as shown in Fig. 2,
then the numerator and the denominator can be represented as
Figs. 12(a) and 12(b) respectively. It shows that there is only
one special impurity tensor Q′ in Fig. 12(a), which constitutes

the only difference from Fig. 12(b). Thus Q and Q′ share
exactly the same effective environment N (e), and one can eval-
uate the ratio Mi by determining N (e) through well-developed
methods, e.g., the CTMRG method as described above, and
obtain the following simple ratio form of Mi,

Mi = Tr(NeQ′)
Tr(NeQ)

(16)

finally. For other local operators like bond energy, the process
is very similar but involves two impurity tensors. More details
and examples can be found in Ref. [52].

4. The result comparison between the CTMRG with and
without nesting technique

In this paper, the data shown in the figures in the main text
are all obtained by the CTMRG algorithms combined with
the nesting technique. When D is small and the conventional
reduced tensor network method, i.e., RTN, can be efficiently
performed, we can compare the results obtained by the two
methods. The results are shown in Figs. 13 and 14. In both
figures, complete convergence of the CTMRG calculations
concerning the environment dimensions χ has been reached
for both methods. It shows that both the internal energy E
and M are very consistent for the two methods. Even though
it seems that near critical region, the energy result obtained
by the nesting technique is more closer to the Monte Carlo
data, they are essentially the same. Actually the tiny difference
comes not from the two methods themselves [i.e., whether use
Fig. 4 or Fig. 6(c) to represent the overlap of two PESSs, both
of which are exact for two given representations], but from the
fact that the methods employ different decompositions of the
partition function [i.e., Fig. 1 and Eq. (2) in RTN, while Fig. 5
and Eq. (9) in the nesting technique], and that accordingly
the two expectation value calculations involve different tensor
networks. This tiny difference is expected to vanish gradually
as D becomes larger, and should vanish in quantum lattice
models where exact Fig. 5 and Eq. (9) are unnecessary when
employing the nesting technique.
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