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In (1+1)-dimensional topological phases, unpaired Majorana zero modes (MZMs) can arise only if the internal
symmetry group Gf of the ground state splits as Gf = Gb × Z f

2 , where Z f
2 is generated by fermion parity (−1)F .

In contrast, (2+1)-dimensional [(2+1)D] topological superconductors (TSC) can host unpaired MZMs at defects
even when Gf is not of the form Gb × Z f

2 . In this paper we study how Gf together with the chiral central
charge c− strongly constrain the existence of unpaired MZMs and the quantum numbers of symmetry defects.
Our results utilize a recent algebraic characterization of (2+1)D invertible fermionic topological states, which
provides a nonperturbative approach based on topological quantum field theory, beyond free fermions. We study
physically relevant groups such as U(1) f

� H, SU(2) f × H, U(2) f
� H , generic Abelian groups, as well as

more general compact Lie groups, antiunitary symmetries, and crystalline symmetries. We present an algebraic
formula for the fermionic crystalline equivalence principle, which gives an equivalence between states with
crystalline and internal symmetries. In light of our theory, we discuss several previously proposed realizations of
unpaired MZMs in TSC materials such as Sr2RuO4, transition metal dichalcogenides, and iron superconductors,
in which crystalline symmetries are often important; in some cases we present additional predictions for the
properties of these models.

DOI: 10.1103/PhysRevB.107.165126

I. INTRODUCTION

The possibility of topological superconductivity in elec-
tronic systems has generated intense interest in condensed
matter physics [1–9]. One major reason for this interest is
the possibility of realizing unpaired localized Majorana zero
modes (MZMs) and their potential applications for topolog-
ical quantum computation.1 In a mean-field treatment, in
which phase fluctuations are ignored, topological supercon-
ductors (TSCs) can be modeled in terms of gapped many-body
states of fermions. As such, they can be analyzed using the-
oretical techniques that have been developed to characterize
and classify gapped topological states of matter in general,
e.g., [10–22].

Most topological superconductors of interest, such as
the spinless p-wave superconductor in (1+1) dimensions
[(1+1)D] or the p + ip superconductor in (2+1) dimensions
[(2+1)D], are often modeled in terms of a free fermion
Bogoliubov–de Gennes (BdG) Hamiltonian. In a many-body
context, these are examples of invertible fermionic topological
states of matter [17,20,22]. Invertible topological states are
defined by the property that they do not host deconfined anyon
excitations and have a unique ground state on any spatial
manifold with a fixed set of boundary conditions.2

1Here “unpaired” refers to having an odd number of MZMs, which
necessarily leads to topological degeneracies.

2The term invertible refers to the fact that the ground state |�〉
possesses an “inverse” state |�−1〉, such that the |�〉 ⊗ |�−1〉 can
be adiabatically connected to a trivial product state.

In some cases topological superconductors host unpaired
localized MZMs at their zero-dimensional defects. These de-
fects may include boundaries of a (1+1)D system, fermion
parity vortices of a (2+1)D system, or various other kinds
of symmetry defects such as half-quantum vortices, lat-
tice disclinations and dislocations, or corners of a system
[23–36]. An important theoretical question is to understand
the fundamental constraints on realizing unpaired localized
MZMs. For example, it is known that superconductivity
is a crucial requirement, which translates into the state-
ment that systems with U(1) charge conservation symmetry
preserved in the ground state are forbidden from hosting un-
paired MZMs. However, the constraints on unpaired MZMs
are in general significantly stronger than simply requiring
superconductivity.

Let G f be the internal (equivalently, onsite) fermionic sym-
metry group of the many-body ground state; here fermionic
refers to the fact that fermion parity (−1)F is included as a
symmetry in G f . Gb = G f /Z

f
2 is then the symmetry group

that acts on bosonic operators and Z f
2 is the group generated

by fermion parity. In (1+1)D, unpaired MZMs can only exist
if G f splits as a direct product: G f = Z f

2 × Gb. This is a
significantly stronger constraint than simply the requirement
of superconductivity in the ground state. The above constraint,
for example, immediately rules out spin-singlet superconduc-
tors, which have SU(2) f internal symmetry.

As we discuss later, one can interpret the case where G f

is not of the form Z f
2 × Gb as the case where the fermion

carries fractional quantum numbers under Gb. Therefore, the
requirement that G f = Z f

2 × Gb amounts to the requirement
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that unpaired MZMs can only exist in (1+1)D if the fermion
does not carry fractional quantum numbers under Gb.

Remarkably, in (2+1)D the constraints are quite different
and far richer. In particular, it is possible that unpaired MZMs
can exist in systems where G f is not of the form Z f

2 × Gb.
That is, unpaired MZMs in (2+1)D invertible topological
phases are compatible with the fermion carrying fractional
quantum numbers under Gb. (2+1)D topological states can
also exhibit a nontrivial chiral central charge c−, correspond-
ing to the possibility of topologically protected chiral edge
states. There is a rich set of constraints, involving c− and
G f , on when (2+1)D topological superconductors can host
unpaired localized MZMs.

In addition to unpaired localized MZMs, symmetry defects
in (2+1)D systems can also carry nontrivial quantum numbers
of the G f symmetry group. These quantum numbers must also
satisfy a rich set of constraints involving c−, G f , and whether
unpaired MZMs exist.

The main purpose of this paper is to study constraints
from symmetry G f and chirality c− on unpaired MZMs and
defect quantum numbers in (2+1)D invertible topological
states. Our results utilize a nonperturbative approach that
relies primarily on the properties of symmetry defects, and
does not use explicit Hamiltonians. As such, this approach
applies to generic interacting many-body systems of fermions,
beyond the free-fermion limit. This approach is based on a re-
cent complete characterization and classification of invertible
fermionic topological phases in (2+1)D using the framework
of G-crossed braided tensor categories and Chern-Simons the-
ory [20] (see also [22]).

Our results emphasize that the possibility of unpaired
MZMs in a TSC is constrained not just by the symmetry G f

but also by the chiral central charge c− of the system, when
G f is unitary. Such constraints are often straightforwardly
encoded in the properties of symmetry defects; however, they
may not always be apparent from a Hamiltonian perspective.
This approach is therefore a useful complementary tool in
fully understanding the physics of TSC systems. Symmetry
groups G f with antiunitary components can often impose con-
straints on when fermion-parity vortices must carry a Kramers
pair of localized MZMs.

We note that Ref. [37] discusses constraints on (2+1)D
invertible fermionic phases using a method similar to ours,
but from the perspective of “enforced symmetry breaking,”
i.e., that if G f and c− are specified, and c− is fixed, invertible
phases can sometimes only be realized by breaking G f down
to a subgroup. However, Ref. [37] does not discuss specific
results on unpaired MZMs in topological superconductors.

Summary of main results

Our main results are summarized in Tables I–III. In
Table I we consider various physically relevant unitary inter-
nal symmetry groups G f , and list (i) the values of c− that
permit an invertible phase, and (ii) the values of c− that ad-
ditionally permit unpaired MZMs at symmetry defects. Note
that c− can only be an integer or a half-integer for invertible
fermionic phases. In Table II we present results for antiu-
nitary internal symmetries. Here c− must be zero. Results
for crystalline symmetries are given in Table III. We briefly

summarize these results below, emphasizing that they hold
even in the presence of strong interactions. Applications to
models of TSCs in the prior literature (mostly involving crys-
talline symmetries) are discussed in Sec. V. Note we always
consider (2+1)D systems, unless otherwise specified.

Notational remarks. Below we often refer to the groups
O(n) f , SU(n) f , Sp(n) f , H f , etc. The superscript refers to
the fact that a Z2 subgroup of the center of these groups is
identified with fermion parity Z f

2 . We use the notation kZ for
the subgroup of the rational numbers whose elements are kn
where n is an integer and k is a rational number, and Z + k for
the set with elements n + k, where n is an integer. In particular
when k = 1

2 we write 1
2Z and Z + 1

2 , respectively.3 The sym-
bols ZT

2n,Z
R
2n,Z

RT
2n denote that the group Z2n is generated by

a time reversal T, a spatial reflection R, or by the combination
RT, respectively. Similarly, HT means that some element in
H is identified with T (as will be specified on a case-by-case
basis).

1. Internal unitary symmetries

We show that charge-conserving systems with G f =
U(1) f × H (where H is arbitrary) must have integer c−, but
cannot host unpaired MZMs at symmetry defects (Sec. IV B).
Thus, for example, Chern insulators cannot host unpaired
MZMs at symmetry defects. The only way for a charge-
conserving system to have unpaired MZMs is if H has
charge-conjugating elements, so that the symmetry group
instead becomes U(1) f

� H , where � denotes the charge-
conjugation action. Here unpaired MZMs can exist, but only
when c− is odd; moreover, in this case all defects associated to
charge-conjugating elements must host unpaired MZMs. If c−
is even, topological insulators with the symmetry U(1) f × H
or U(1) f

� H do exist, but do not host unpaired MZMs.
A simple example of such a charge-conjugating symmetry

is G f = O(2) f = U(1) f
� Z2, where H = Z2. In a system

of two identical layers of a spinless p + ip superconductor,
G f is the symmetry which permutes the fermions in the two
layers while keeping the superconducting pairing term invari-
ant. In this case, a defect of the O(2) f reflections can host
an unpaired MZM when c− is odd. Such defects correspond
to “half-quantum vortices” in a spinful p + ip TSC, which
has previously been proposed as a mean-field model for the
material Sr2RuO4.4

Interestingly, the example with U(1) f
� H symmetry also

captures the well-known possibility of creating unpaired
MZMs by inducing a superconducting gap at an interface
between two Chern insulators with equal and odd Chern num-
bers. Each end point of the superconducting interface can
be viewed as a charge-conjugating symmetry defect if the
system has a particle-hole symmetry in addition to U(1) f (see
Sec. IV B and Fig. 2 therein for more details). The end point is
a defect because, upon encircling it, a particle must cross the
interface and hence transform into a hole.

3This is different from the symbol Z/2, which is sometimes used
for the group Z2

∼= Z/2Z.
4The nature of the order parameter in Sr2RuO4 is, however, still not

understood in light of recent experiments [38–40].
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TABLE I. Summary of mathematical results for internal unitary symmetry groups Gf . Gb = Gf /Z
f
2 is the symmetry acting on bosonic

operators and H is an arbitrary group. The chiral central charge c− is in general either a half-integer or an integer. These results can be applied
to spatial symmetries, if we modify the definition of Gf in accordance with the fermionic crystalline equivalence principle stated in Sec. III.

Results for unitary symmetries

Values of c− Physical model/other
Gf Gb Allowed c− supporting unpaired MZMs comments

Gb × Z f
2 Gb unitary 1

2Z
1
2Z Unpaired MZMs allowed

at integer c− only if Gb

has a Z2n or Z factor
U(1) f × H U(1) × H Z Chern insulator

Z f
4q × H Z2q × H Z Charge 4q superconductor

Z f
4q+2 × H ∼= Z2q+1 × H 1

2Z
1
2Z Charge 4q + 2 superconductor

Z f
2 × Z2q+1 × H

SU(2) f × H SO(3) × H 2Z Spin-singlet superconductor

D f
8n D4n = Z2n � Z2 Z 2Z + 1

Z f
2 × A Abelian A 1

2Z
1
2Z or Z + 1

2
1
2Z if A has a Z2n or Z

factor, and Z + 1
2

otherwise
U (1) f

� H U (1) � H Z 2Z + 1 g symmetry defect has
unpaired MZM iff g
acts as charge conjugation
and c− is odd

Fermion carries fractional GA
b × GB

b 2Z (odd c− only
quantum numbers allowed if Eq. (56)
under both GA

b and GB
b holds)

Unitary compact Lie groups

O(n) f PO(n) gcd(n,16)
2 Z gcd(n, 8)Z+ 2c− identical layers of a

gcd(n,16)
2 spinless p + ip SC have

Gf = O(2c−) f ;
half-quantum vortex in
in any two layers hosts
unpaired MZMs

SU(2n) f SU(2n) f /Z f
2 2gcd(4, n)Z

U(n) f U(n) f /Z f
2 gcd(n, 8)Z n identical layers of Chern

insulator
U(n) f

� Z2 (U(n) f /Z f
2 ) � Z2 gcd(n, 8)Z 2Z + 1 (only for odd n)

Sp(n) f PSp(n) gcd(n, 4)2Z

Next, we consider spin rotation symmetry with G f =
SU(2) f × H , where H is any unitary symmetry (Sec. IV C).
We find that c− must be even, and that unpaired MZMs cannot
exist for any H . This describes the situation in a spin-singlet
superconductor. Thus, unless the spin rotation symmetry is
broken or it interacts nontrivially with elements of H (i.e., not
as a direct product), unpaired MZMs are impossible to realize
in (2+1)D spin-singlet superconductors.

We show that if G f is Abelian, unpaired MZMs can only
exist if G f = Z f

2 × Gb for some Abelian Gb (Sec. IV D).
On the other hand, if G f is Abelian but not isomorphic to
Z f

2 × Gb (for example, Z f
4 ), then the system cannot host

unpaired MZMs, and can exist only at integer values of
c−. This extends previous results in Refs. [18,41]. Two
remarkable applications of this result are to charge-2q super-

conductors and to superconductors with an M-fold rotational
point-group symmetry, as we discuss in subsequent subsec-
tions.

We obtain several results for compact Lie groups. In par-
ticular, we study the orthogonal families [O(n) f ,SO(2n) f ],
unitary families [U(n) f

� Z2,U(n) f ,SU(2n) f ], and symplec-
tic families Sp(n) f .

We find a rich set of constraints for the family of groups
O(n) f (Sec. IV E). We show that in any invertible phase, 2c−
must be a multiple of gcd(n, 16). Moreover, only a certain
subset of these c− values is compatible with unpaired MZMs.
For example, when G f = O(2) f , invertible phases can exist
for any integer c−, but unpaired MZMs can only exist when
c− is odd. When G f = O(4) f , invertible phases can exist
for any even c−, but unpaired MZMs can exist only when
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TABLE II. Constraints when the internal symmetry group Gf contains antiunitary elements. s1 : Gb → Z2 specifies which elements of
Gb are antiunitary. n1 : Gb → Z2 is a homomorphism, further explained in Sec. II B. If g ∈ Gb is a unitary operation, n1(g) = 1(0) indicates
that a g symmetry defect will (will not) host unpaired MZMs (upper section of table). When g is time reversal, n1(g) = 1 instead implies
that a fermion-parity flux carries a degenerate Kramers pair of MZMs (lower section). If Zn is unitary and n is even, w1 is the nontrivial
homomorphism from Zn → Z2. These results can also be applied to crystalline symmetries using the fCEP; there, the interpretation of n1 as
indicating unpaired MZMs/Majorana Kramers pairs may differ.

Results for antiunitary internal symmetries (c− = 0)

Gf Gb Choices of n1 which imply unpaired MZMs Physical model/comments

Zn × ZT
2 × Z f

2 Zn × ZT
2 n1 = w1 (only if 8 divides n) If n = 4, unpaired MZMs are (O4) obstructed

Z f
2n × ZT

2 Zn × ZT
2

A × ZT
2 × Z f

2 A × ZT
2 n1 admits a lift to H1(A,Z8) Class BDI + Abelian symmetries (A)

U(1) f × HT U(1) × HT Generalization of class AIII TI

ZT f
4 � Z2 ZT

2 × Z2 n1 = s1 + w1 Fermions with Z2 eigenvalues +1,−1 form spinless
p + ip and p − ip SC layers, respectively

ZT f
4 � H ZT

2 × H n1 = s1 + ρ ρ(g) ∈ Z2 is defined by gTḡ = T1+2ρ(g)

Fermion-parity flux carries
Gf Gb Majorana Kramers pair Physical model/comments

Zn × ZT f
4 Zn × ZT

2 n1 = s1 Class DIII TSC

ZT f
4n ZT

2n n1 = s1 (only if n is odd) When n is odd ZT f
4n

∼= ZT f
4 × Zn

c− = 2 mod 4. Note that these results also hold in the free-
fermion context, where an O(n) f symmetric phase can be
obtained by stacking n identical layers of a spinless p + ip
SC. Our theory provides further information constraining a
parameter n2 which fixes the quantum numbers carried by the
fermion-parity fluxes (see Sec. IV E); this is not apparent from
free-fermion constructions.

In deriving the above constraints, we calculated the coho-
mology groups H∗(PSO(2n),Z) and H∗(PO(2n),Z ⊕ Zw1 )

(twisted coefficients) in degrees 6 and below (Appendix E 5).
To our knowledge, these results have not appeared before
in the literature. We also note that obtaining the full set of
constraints requires us to calculate the “O4 obstruction” [20]
of the invertible phase. The new technical results are primarily
required for this calculation. Without accounting for the O4

obstruction, the constraints that can be put on c− and on
unpaired MZMs will generally be weaker (see Sec. IV J for
a discussion).

TABLE III. Constraints when the symmetry group Gf is spatial. CM denotes spatial rotations of order M; we use C f
2M when a 2π spatial

rotation equals (−1)F . ZR
2 denotes the order-2 group generated by a unitary reflection symmetry while ZRT

2 denotes the order-2 group generated
by the antiunitary reflection RT. Geff

f is the effective internal symmetry group, determined through the fermionic crystalline equivalence
principle. n1 : Gb → Z2 is discussed in Sec. II B.

Results for crystalline symmetries

c− which allows
Gf Geff

f Allowed c− unpaired MZMs Interpretation

C2k × Z f
2 Z f

4k Z No unpaired MZMs

C2k+1 × Z f
2 Z2k+1 × Z f

2
1
2Z

1
2 + Z Unpaired MZMs only at fermion-parity fluxes (c− ∈ Z + 1

2 )

C f
4k Z2k × Z f

2
1
2Z

1
2Z Unpaired MZMs at disclinations/corners with angle π/k or at

fermion-parity fluxes (e,g., spinless p + ip SC)

Z2 × Z f
2 (translation) Z2 × Z f

2
1
2Z

1
2Z Unpaired MZMs at dislocations with Burgers vector along either x̂ or ŷ

Z2 ×π Z
f
2 Z2 ×π Z

f
2 Z Z Gf has π flux per unit cell; unpaired MZMs allowed at dislocations

with Burgers vector along x̂ or ŷ

ZR
2 × Z f

2 ZT f
4 0 0 Unpaired MZMs; Reflection axis can carry a Kitaev chain

ZR f
4 ZT

2 × Z f
2 0

ZRT
2 × Z f

2 Z2 × Z f
2

1
2Z

1
2Z For any c− unpaired MZMs can be found at end points of the

reflection axis if it carries a generator of class BDI TSCs
ZRT f

4 Z f
4 Z
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We discuss the symmetry group U(n) f , which is the sym-
metry of n identical layers of a Chern insulator (Sec. IV F 2).
We find that even if we allow interactions, c− must be a
multiple of gcd(n, 8), but unpaired MZMs are not allowed
[similar to the case with G f = U(1) f ]. However, if we con-
sider an additional (unitary) charge-conjugation symmetry, so
that G f = U(n) f

� Z2, then unpaired MZMs are allowed only
for odd n.

The same constraints apply upon restriction to the sub-
group SU(2n) f (Sec. IV F 1). In particular, we find that when
G f = SU(8n) f , c− must be a multiple of 8, which recovers
a result argued recently in Ref. [37]. Furthermore, the con-
straints even survive upon restriction to Sp(n) f ⊂ SU(2n) f

(Sec. IV G).
We study various finite subgroups of these compact Lie

groups which illustrate the same phenomena and are par-
ticularly useful to study crystalline phases. For example,
the constraints obtained for G f = SO(2) f ,O(2) f ,Sp(1) f , and
O(4) f also apply to the finite subgroups G f = Z f

4 ,D
f
8 ,Q

f
8 ,

and Q f
8 ×Q f

8
〈(−1,−1)〉 � Z2, respectively. Here D8 and Q8 are the di-

hedral and quaternion groups with eight elements. The Z2 in
the last group acts by permuting the two Q8 and the quotient
identifies the −1 on each of the Q8’s.

In many of the above examples, the constraints can be
anticipated from a free-fermion perspective. We will highlight
those examples that are beyond free-fermion constructions
separately below.

2. Internal antiunitary symmetries

This work also contains several results for antiunitary inter-
nal symmetries, in which case c− must be zero. See Table II
for a summary. Here, there are two physically distinct scenar-
ios. The first is where we have an additional unitary symmetry
whose symmetry defects can host unpaired MZMs. For exam-
ple, we find that when G f = Z f

2 × ZT
2 × Zn, an elementary

Zn defect can only host unpaired MZMs when n is a multiple
of 8 (see Appendix E 10).5 We also study G f = ZT f

4 � Z2,
where the unitary Z2 symmetry anticommutes with time re-
versal on fermions. Here the existence of unpaired MZMs can
be understood through a simple free-fermion construction.

On the other hand, if we consider systems such as the Class
DIII TSC, there is a different situation in which the defining
property of the TSC is not the existence of unpaired MZMs
but instead the fact that fermion-parity flux hosts a degenerate
Kramers pair of MZMs. In Sec. II E we provide a precise
mathematical definition that captures this phenomenon in
terms of the basic data in our theory. The concept of “Ma-
jorana Kramers pair” also generalizes to systems with a ZT f

4
subgroup. However, as we mention in Sec. II E, we do not
have a completely satisfactory interpretation of the phenom-
ena associated to MZMs for general antiunitary symmetries.

5The case with n = 4 was studied previously through cobordism
theory (Theorem 17 in Ref. [42]), and the phase with Gf = Z8 ×
ZT

2 × Z f
2 was briefly mentioned in the conclusion of Ref. [43].

3. Crystalline symmetries

The results in Tables I and II apply to internal symmetries
G f . However, we can use the crystalline equivalence principle
for fermions (fCEP), discussed in Sec. III and Appendix B, to
obtain analogous constraints for crystalline symmetries. The
fCEP allows us to replace the true symmetry group G f with
an effective internal symmetry group Geff

f that is determined
according to certain rules [for example, reflection is mapped
to time reversal, while “spinless” n-fold rotations with Ĉn

n =
1 are mapped to “spinful” rotations with Ĉn

n = (−1)F , and
vice versa]. Upon doing so, our constraints for internal sym-
metries can all be applied to crystalline systems, including
the rich class of higher-order TSCs. We summarize this in
Table III.

The fCEP has been discussed formally in the literature
in [44–46]. In this paper we extend the previous results of
[44–46] by stating the fCEP in a computationally useful form
as an explicit algebraic formula [Eq. (30)], which was not pre-
sented in previous works. Furthermore, our result also applies
to spatial symmetries that have antiunitary elements, which
were not considered in real-space classification approaches
that checked the fCEP in special cases [47–49].

An interesting prediction in Table III concerns systems
with G f = C2k × Z f

2 (in which the rotation operator acts on
fermions as Ĉ2k

2k = 1). This applies, for example, to crystalline
systems with point groups of order 2, 4, and 6. States with
such symmetry do not admit phases with c− = 1/2 mod 1
and therefore do not admit unpaired MZMs at fermion-parity
vortices. They also cannot support unpaired MZMs at
lattice disclinations. However, if G f = C2k+1 × Z f

2 , which
applies to the case of point-group symmetries of odd order,
then phases with c− = 1/2 mod 1 and unpaired MZMs at
fermion-parity vortices are allowed. When G f = C2k+1 × Z f

2 ,
unpaired MZMs cannot exist at disclinations or corners
unless also bound to fermion parity vortices in a system with
c− = 1/2 mod 1.

Note that the familiar spinless p + ip superconductors
in the continuum have an SO(2) f spatial rotational sym-
metry in the ground state, which arises from the order
parameter breaking an underlying SO(2) × U(1) f symme-
try down to SO(2) f . On a lattice, this spatial symmetry
is broken down to some discrete subgroup C f

2M . Indeed,
Table III states that this symmetry does allow c− = 1

2 phases,
such as the spinless p + ip SC at weak pairing. Furthermore,
only when M is even does G f = C f

2M allow unpaired MZMs
at disclinations or corners without fermion-parity vortices.

In Sec. V we relate our formalism to previous proposals for
higher-order TSCs in the literature. In several cases our theory
suggests alternative interpretations of previous results.

In Sec. V C we discuss examples predicting unpaired
MZMs at the corners of a C2 symmetric model (Sec. V C 1),
and Majorana Kramers pairs at the corners of a C4 symmetric
system (Sec. V C 2). We argue that in these models, the above
corner phenomena can also be seen at disclinations of angle π
and π/2, respectively.

In Sec. V D we discuss proposals for unpaired MZMs at the
corners of models with reflection symmetry. In two examples
involving a modified Dirac semimetal (Sec. V D 1) and a p +
id SC (Sec. V D 3) the results do not directly follow from our
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theory because the corners cannot be thought of as defects
of the given symmetries. However, by identifying alternative
reflection symmetries that were not commented upon in the
original models, our theory gives a consistent explanation for
the observed MZMs.

In Sec. V F we discuss a model for unpaired MZMs at
the corners of an iron-based heterostructure [50]. Our con-
siderations suggest that these corner modes do not necessarily
imply a nontrivial bulk invariant unless additional rotational
symmetries are identified. However, the model may still be
nontrivial in the bulk assuming only the stated translation
symmetries, in which case it may have unpaired MZMs at
lattice dislocations.

Furthermore, in Secs. V B and V C, we study examples in
which free-fermion invariants are discussed, and we clarify
their relationship to the corresponding invariants for interact-
ing invertible phases.

We also obtain some results which build on previous work.
We discuss proposals for unpaired MZMs at fermion-parity
fluxes in a superconducting version of the Hofstader model
with magnetic translation symmetry studied in Ref. [51]
(Sec. V E). Here our theory additionally suggests that un-
paired MZMs can be found at lattice dislocations for models
in the same symmetry class. Our theory also rules out unpaired
MZMs at any symmetry defects if we generalize to charge-4q
superconductors with translation symmetry.

4. Intrinsically interacting fermionic phases

Although our results are all nonperturbative, they can in
many cases be anticipated based on free-fermion calculations.
For example, the values of c− which permit unpaired MZMs
in groups such as U(1) f ,SU(2) f , and O(n) f could perhaps
be guessed from the properties of Chern insulators, spin-
singlet superconductors, and layered p-wave superconductors,
respectively, together with knowledge of the c− = 8 invertible
bosonic E8 phase based on (E8)1 Chern-Simons theory. Our
results imply that these expectations are valid in the strongly
interacting regime as well. Similarly, our results about un-
paired MZMs in the tables are consistent with free-fermion
results obtained in several previous classifications (see, e.g.,
[29,31,52]).

On the other hand, when the symmetry does not admit free-
fermion realizations of invertible phases, our theory becomes
especially useful. For example, consider the case where G f is
unitary and Abelian, and does not split as Gb × Z f

2 , for some
Gb. From Table I we see that unpaired MZMs are not allowed
for any c−.

We can apply the aforementioned result to the symme-
try group G f = Z f

4q, which is the symmetry of charge-4q
superconductors. q is an integer. Here the ground state is a
condensate of bound states of 4q fermions; these phases do
not admit any free-fermion description because the Hamil-
tonian necessarily involves interactions among 4q fermions.
The above result then states that such a system cannot have
unpaired MZMs. This is an example of a “negative” result
provided by our theory, which goes beyond free-fermion clas-
sification results.

By combining our interacting classification with known
results on free fermions, it is also possible to identify “intrin-

sically interacting” invertible phases that have no free-fermion
analogs. Thus, our theory also contains “positive” results
which predict new interacting phases. As an illustration, we
study a symmetry group G f with 44 × 2 elements, which is the
central product of four copies of D f

8 , meaning that the order-2
rotations in each D8 are identified with the fermion parity
(see Appendix E 3 a). This group admits an invertible phase
with c− = 4 that cannot be realized through free fermions,
i.e., the phase is intrinsically interacting. It is also intrinsi-
cally fermionic because bosonic invertible phases must have
c− = 0 mod 8.

5. (1+1)D invertible fermionic phases

We briefly discuss (1+1)D systems and show that the
relevant constraints can be reproduced from the (2+1)D equa-
tions (Sec. IV A). The idea is to consider a stack of (1+1)D
chains and apply the constraints for (2+1)D invertible phases
to this stack.

6. Organization of paper

The rest of this paper is organized as follows. In Sec. II
we introduce the basic data and equations describing invert-
ible fermionic phases in (2+1)D and physically interpret the
resulting constraints for internal symmetries. In Sec. III we
state the crystalline equivalence principle in a computationally
useful form, which allows us to apply our theory to crystalline
symmetries. In Sec. IV we work out various nontrivial mathe-
matical consequences of the constraints. In Sec. V we discuss
a number of applications involving TSC materials and models
that have been studied in the literature, with a focus on spatial
symmetries. We then conclude and discuss future directions.

II. REVIEW OF CLASSIFICATION OF INVERTIBLE
FERMIONIC PHASES

A. Overview

Let G f be the symmetry group of the invertible fermionic
phase (assumed to be internal in this section). Define Gb =
G f /Z

f
2 where Z f

2 denotes the fermion-parity symmetry. Let
(g, a) denote an element of G f , where g ∈ Gb, a ∈ Z f

2 . Then,
the group law in G f can be written as

(g1, a1)(g2, a2) = [g1g2, a1 + a2 + ω2(g1, g2)], (1)

where ω2 is a 2-cocycle representative of the group
H2(Gb,Z2). The homomorphism s1 : Gb → Z2 specifies if
g ∈ Gb is unitary [s1(g) = 0] or antiunitary [s1(g) = 1].

If the symmetry is of the form G f = Gb × Z f
2 , we can set

ω2 = 0. If [ω2] belongs to a nontrivial class, there is some
combination of operations {gi} ∈ Gb with

∏
i gi = 0, such

that ∏
i

(gi, 0) = (0, 1). (2)

Thus, a sequence of symmetry operations which acts as
the identity on bosonic operators instead acts as (−1)F on
fermionic operators. The symmetry acts through a projective
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representation of Gb (which is still, however, a linear repre-
sentation of G f ). In this situation the fermion is said to have
fractional Gb quantum numbers.

For example, consider a system with Gb = SO(3) in which
a 2π rotation within Gb equals 1 or (−1)F . Such a system
has integer and half-integer spin, respectively. As another
example, consider a system with Gb = ZT

2 time-reversal sym-
metry implemented by T, satisfying T2 = (−1)F ; we can also
express this as ω2(T,T) = 1 mod 2. In this case the relevant
fractional Gb quantum number is the Kramers degeneracy
carried by a fermion.

The main result of Ref. [20] is that each invertible
fermionic phase with symmetry group G f is classified by
the data (c−, n1, n2, ν3), where c− is either an integer or
a half-integer, and n1 : Gb → Z2, n2 : Gb × Gb → Z2, ν3 :
Gb × Gb × Gb → U(1) are functions (“cochains”) in 1, 2, and
3 variables, respectively. They satisfy the following consis-
tency conditions:

dn1 = 0, (3)

dn2 = O3[c−, n1], (4)

dν3 = O4[c−, n1, n2]. (5)

The operator d is a derivative defined on cochains (see
Appendix A). The quantities O3,O4 have complicated expres-
sions and will be discussed further below [see Eqs. (13) and
(15), respectively]. Different sets of data (c−, n1, n2, ν3) can
describe the same physical system, and are thus equivalent.
The classification of invertible phases for a given G f is ob-
tained by finding all possible solutions to the above equations,
and then modding out by such equivalences.

The purpose of this paper is to solve and physically inter-
pret these equations for several interesting choices of G f . In
the rest of this section, we will explain the general meaning
of the above data and equations. While the mathematical
content in this section is the same as in Ref. [20], we include
several examples and additional physical arguments to aid
readers who are new to the formalism. We refer the reader to
[19,20,53] for background on the general formalism that we
use here.

B. Definition of (c−, n1, n2, ν3)

1. c−

Let us fix G f (and hence ω2). The quantity c− denotes
the chiral central charge of the invertible fermionic phase. It
can be measured from the thermal Hall conductance κxy at a
temperature T through the relation

κxy = c−
π2k2

B

3h
T . (6)

c− is an integer or a half-integer; in a topological supercon-
ductor, 2c− is the spectral Chern number of the associated
BdG Hamiltonian.

The basic data fully specify the quantized topological prop-
erties of symmetry defects in the system, such as their fusion
rules, their quantum numbers under G f , and so on. Symmetry
defects are objects labeled by a group element in G f . In a
Hamiltonian picture, a g defect is a static modification of the
Hamiltonian along some spatial cut, so that a particle which
crosses the cut gets acted upon by g. Topologically distinct
defects corresponding to the same group element are denoted
ag, bg, and so on.

c− determines the nature of the fermion parity (0, 1)
fluxes in the system. These are also sometimes referred to as
“fermion-parity defects” or “fermion-parity vortices.” If c− is
a half-integer, there is a single fermion-parity flux, denoted
σ(0,1), which is non-Abelian and hosts an unpaired MZM. (A
notational remark: for fermion-parity fluxes, we will usually
drop the subscript and instead just write σ .) It satisfies the
fusion rules σ × ψ = ψ × σ = σ ; σ × σ = 1 + ψ , where ψ
denotes a fermion. This is the situation in the weak-pairing
spinless p + ip superconductor, where c− = 1

2 .
If c− is an integer, there are two fermion-parity fluxes,

which do not carry an unpaired MZM. When c− is even
we denote them by m and e = m × ψ . They satisfy
e × e = m × m = 1. If c− is odd, we instead denote
the fermion-parity fluxes as v, v̄ = v × ψ . In this case,
v × v = v̄ × v̄ = ψ . When c− is an unspecified integer, by
convention we will use e,m.

Note that if we gauge the fermion-parity symmetry of
an invertible fermion phase, the fermion-parity fluxes are
promoted to anyons with the same fusion rules as given above.
The topological twist θ of these anyons satisfies θ = ei2π c−

8

and thus encodes c− mod 8.

2. n1 and MZMs

Next we have a parameter n1 : Gb → Z2. The following
interpretation of n1 is valid for unitary as well as antiunitary
symmetries. Suppose we gauge the fermion parity. Then, if
n1(g) = 1, any fermion-parity flux (say we denote it as m) is
converted to m × ψ when acted upon by g. Thus, the action
of g changes the fermion parity of m. We write this as gm =
m × ψ .

When g is a unitary operation, there is a second equivalent
interpretation which is useful: c− and n1 together completely
specify which symmetry defects carry unpaired MZMs. First,
suppose c− ∈ Z. Now, if n1(g) = 0, then any (g, a) defect in
the invertible fermionic phase is Abelian, i.e., does not carry
an unpaired MZM, while if n1(g) = 1, every (g, a) defect
carries an unpaired MZM.

When c− is a half-integer, we saw that the (0, 1) defect
always hosts an unpaired MZM. If n1(g) = 0, the situation is
the same as when g = 0: the (g, 1) defect hosts an unpaired
MZM while the (g, 0) defect does not. On the other hand,
n1(g) = 1 implies that a (g, 0) defect hosts an unpaired MZM,
but a (g, 1) defect does not.
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When g is the time-reversal operation, a g defect is not in
general a well-defined concept in a Hamiltonian framework.6

However, there is still an interpretation of n1(g) = 1: it means
that a fermion-parity flux carries two degenerate states with
different fermion parities which are related by g. These states
can be identified with m and e = m × ψ . Table II contains
several examples for which n1 = s1, i.e., n1 is nonzero only for
the subgroup generated by time reversal. This latter interpre-
tation applies to all those examples. We provide a much more
detailed interpretation of the equation n1 = s1 in Sec. II E
below.

By considering the fusion of a (g1, a) defect with a (g2, b)
defect into a (g1, a)(g2, b) defect, we can prove that n1 should
be a homomorphism:

n1(g1) + n1(g2) = n1(g1g2) mod 2 ⇒ dn1 = 0 mod 2. (7)

3. ω2 and fractional quantum numbers of ψ

The content of Eq. (1) is summarized by the definition

ηψ (g1, g2) := (−1)ω2(g1,g2 ), (8)

where g1, g2 ∈ Gb. Physically, ηψ (g1, g2) measures the phase
difference between acting on the fermion ψ by g1 and g2

separately as opposed to g1g2. A detailed discussion of
the meaning of the η symbols in general can be found in
Refs. [19–21,53].

The symbols ηψ also determine the fractional Gb quantum
numbers carried by ψ . Given some Gb, the choices of [ω2] are
classified by H2(Gb,Z2) ∼= (Z2)r for some r � 0. Thus, there
are r Z2 invariants which together specify [ω2]. We denote
these as Qi

ψ mod 1, i = 1, 2, . . . , r. Each Qi
ψ ∈ {0, 1/2} mod 1

is a Gb quantum number of ψ , and is defined by some “gauge-
invariant” combination of ηψ symbols. The precise definition
of Qi

ψ is symmetry dependent. Whenever Qi
ψ = 1

2 mod 1 (i.e.,
Qi
ψ is a fractional Gb quantum number), there exists a se-

quence of group operations which act trivially on any bosonic
operator but transform any fermionic operator by a minus
sign.

Example. For example, consider a system with G f =
U(1) f charge conservation symmetry. Here G f and Gb =
U(1) f /Z f

2 are both isomorphic to U(1), but the operator gen-
erating a rotation by θ in Gb only generates a rotation by
θ/2 in G f . Note that two θ = π rotations in Gb together act
trivially on any bosonic operator, but transform a fermionic
operator by a sign. Thus, ω2(π, π ) = 1. We can also define

ηψ (π, π ) = −1 =: e2π iQψ . (9)

This means that ψ has Gb charge Qψ = 1
2 . Since

H2(U(1),Z2) ∼= Z2, we only define one invariant Qψ .

4. n2 and fractional quantum numbers of fermion-parity fluxes

We can similarly define η symbols for the fermion-parity
fluxes, say e and m. ηa(g,h) ∈ U(1) for a = e,m, ψ essen-
tially describes the phase difference between applying g and

6In a Euclidean space-time path integral, one can think of a time-
reversal defect as an orientation-reversing wall in space-time. See,
e.g., [54].

h sequentially as compared to gh (see [19] for a detailed
definition). The η symbols in general encode the fractional
Gb quantum numbers of excitations.

Just as ηψ encodes ω2, ηe and ηm together encode a func-
tion n2 : Gb × Gb → Z2. For example, when c− = 0, we can
define

ηm(g,h) = (−1)n2(g,h),

ηe(g,h) = (−1)(n2+ω2 )(g,h). (10)

The η symbols for general c− in terms of n2 are given in
Ref. [20].

Example. Consider a crystalline topological insulator with
charge conservation and translation symmetries, with c− = 0
and a fermion per unit cell (implying a filling ν = 1). Here
G f = U(1) f × Z2. Note that transporting an e (or m) particle
around a single unit cell results in an overall phase of −1
because the fermion within the unit cell is seen as a π flux
for the e and m particles. Thus, the elementary translations
do not commute on a state with a fermion-parity flux (TxTy =
−TyTx in such a state). This is the “nontrivial Gb quantum
number” encoded by the ηe, ηm symbols. In particular, we can
choose a gauge where ηe(g,h) = ηm(g,h) = (−1)X1(g)X2(h)

where Xi is the projection to the ith component of Z2. Then,
on a state with an e or m particle, we have TxTy(TyTx)−1 =
ηe(Tx,Ty)/ηe(Ty,Tx ) = −1.

Although we will not require them for this paper, we note
for completeness that the theory also contains a set of U
symbols Ug(a, b; a × b) for a, b ∈ {e,m, ψ}, which can all be
set to 1 for unitary symmetries. Through appropriate gauge-
invariant combinations of the η and U symbols, we can define
fractional Gb quantum numbers Q j

e,Q
j
m for the fermion-parity

fluxes, where j = 1, . . . , k is an index and k is the number of
independent fractional quantum numbers. For a discussion of
gauge transformations on the basic data, see Appendix A of
Ref. [20].

5. O3 obstruction to defining n2

By requiring that the symmetry action on the fermions and
the fermion-parity fluxes respect their fusion rules, we can
obtain various relations among the η symbols. For example,
when the symmetry is unitary, we can show that

ηaηb = ηc (11)

whenever c is a fusion product of a and b, and a, b, c cor-
respond to ψ or to a fermion-parity flux. [For antiunitary
symmetries, see Eq. (25).] This places constraints on the
fractional Gb quantum numbers (or, equivalently, on n2). For
example, if G f = U(1) f as above and c− = 0, we can de-
fine e2π iQa := ηa(π, π ) for a = e,m, ψ . Then the relation
e × m = ψ along with Eq. (11) implies that Qe + Qm =
Qψ mod 1.

Another important relation (again written for unitary sym-
metries) takes the form

ηa(g,h)ηa(gh,k) = ηḡa(h,k)ηa(g,hk). (12)

Here ḡa is the result of permuting a by ḡ = g−1. Note that
if n1 �= 0, there is a group element which permutes e and
m. In that case the above condition may introduce further

165126-8



NONPERTURBATIVE CONSTRAINTS FROM SYMMETRY … PHYSICAL REVIEW B 107, 165126 (2023)

constraints on Qe and Qm. These relations serve to constrain
n2 in terms of n1, c− and ω2.

The constraint on n2 is summarized by a cocycle O3 ∈
Z3(Gb,Z2). The general form of O3 is

O3 := n1 ∪ (ω2 + s1 ∪ n1) + c−ω2 ∪1 ω2 mod 2. (13)

For reference, the same equation is written after expanding
the ∪-cup products in Appendix A. O3 is viewed as an ob-
struction because if O3 is in a nontrivial cohomology class of
H3(Gb,Z2), then the equation dn2 = O3 cannot be solved,
as the left-hand side is a 3-coboundary and thus trivial in
H3(Gb,Z2). We will discuss the different terms in Eq. (13)
more fully in Secs. II D and II E. In particular, for a unitary
symmetry, O3 encodes how ω2 and c− fix whether or not
symmetry defects can host unpaired MZMs.

6. O4 obstruction and ν3

Above we discussed constraints at the level of n2. Even
if n2 is well defined, however, the invertible phase may not
be well defined if the data (ω2, c−, n1, n2) have a nontrivial
obstruction (often referred to as ’t Hooft anomaly), given by a
class [O4] ∈ H4(Gb,U (1)). The obstruction is trivial if there
exists some ν3 : C3(Gb,U (1)) such that

dν3 = O4[c−, n1, n2]. (14)

When n1 = 0, the expression for O4 (both unitary and antiu-
nitary symmetries) is

O4 = c−P (ω2)

8
+ 1

2
n2 ∪ (ω2 + n2) mod 1, (15)

where P : H2(Gb,Z2) → H4(Gb,Z4) is the Pontryagin
square which is a cohomology operation that refines the
square, in the sense that 2P (ω2) = 2ω2 ∪ ω2 mod 4 (see Ap-
pendix A). Expressions for O4 when n1 �= 0 can be found in
Ref. [20].

If [O4] vanishes, we can define a consistent set of fusion
and braiding data for all the defects; this requires an additional
parameter ν3(g,h,k), which satisfies Eq. (14). As described
below, ν3 specifies the Gb quantum numbers of Gb symmetry
defects. However, if [O4] is nonvanishing, the system with
data (ω2, c−, n1, n2) can only be defined in conjunction with
another system that cancels the obstruction. For example, such
a system may exist on the boundary of a bosonic SPT in (3+1)
dimensions.

Examples. First consider an integer quantum Hall state
with G f = U(1) f . There are no obstructions, so ν3 can be
defined consistently. In this case Ref. [20] showed that ν3

directly encodes the Hall conductance. Now just as the Hall
conductance measures the U(1) charge bound to magnetic
flux, in general ν3 encodes the Gb quantum numbers associ-
ated to Gb symmetry defects.

An example of a system with nontrivial O4 (and hence
no solution for ν3) is a translationally symmetric system in
(2+1)D with spin 1

2 per unit cell. Here G f = Z2 × SU(2) f

and Gb = Z2 × SO(3). The statement that fermions carry spin
1
2 under SO(3) implies that ω2 is nontrivial, while the state-
ment that there is a fermion in each unit cell implies that n2 is
nontrivial. In this case, the data (ω2, c− = 0, n1 = 0, n2) give
a nontrivial O4. This recovers a version of the well-known

Lieb-Shultz-Mattis theorem, which states that there cannot be
an invertible state in (2+1) dimensions satisfying the above
criteria.

While solving the obstruction equations, it may happen
that certain choices of n2 that satisfy Eq. (13) do not satisfy
Eq. (14). In this sense the O4 obstruction is a more restrictive
constraint on c− and n1, so it is not enough to solve only the
O3 equation and ignore O4. We mention several examples
illustrating this point in Sec. IV J. Note that the results in
Tables I–III have been obtained after solving the equations for
O3 as well as O4.

Remark. In this paper we identify U(1) ∼= R/Z and we will
interchangeably use multiplicative and additive notation for
ν3, which are related as follows:

ν
multiplicative
3 = exp

(
2π iνadditive

3

)
,

where νadditive
3 is to be understood as a real number modulo 1.

C. Equations for c− = 1
2 mod 1

We start with c− = 1
2 , which is mathematically the simplest

case. Here there are two main results: (i) the symmetry must
be unitary; (ii) ω2 = 0. Result (i) is due to the fact that an
antiunitary operation takes c− → −c−. For result (ii), note
that systems with half-integer c− have a fermion-parity flux
σ which can absorb a fermion:

σ × ψ = σ. (16)

We can define the symbols ηψ, ησ as discussed above. From
the fusion rule, we can show that

ηψησ = ηψ×σ = ησ ; (17)

this implies that ηψ = 1. But since we also have ηψ = (−1)ω2

by definition, we conclude that for a system with half-integer
c−,

ω2 = 0 mod 2. (18)

In particular, ψ must carry integer Gb quantum numbers. In
this case the obstruction O3 vanishes; thus the constraint on
n2 is simply dn2 = 0. The constraint on ν3 is given by Eqs. (5)
and (15).

D. Equations for unitary symmetry with integer c−

For unitary symmetries, taking s1 = 0 in Eq. (13) gives

dn2 = n1 ∪ ω2 + c−ω2 ∪1 ω2 mod 2. (19)

In practice, an equation such as (19) is useful because it
converts the complex problem of predicting unpaired MZMs
in strongly interacting invertible phases to a formal mathe-
matical calculation that can be tackled with tools from group
cohomology. However, Eq. (19) also contains some valu-
able physical intuition, which we will now discuss through
examples.

First take c− to be even, so that the second term van-
ishes, and consider the remaining term (n1 ∪ ω2)(g,h,k) =
n1(g)ω2(h,k). It is nonzero only if n1 and ω2 are both
nonzero, i.e., the system carries unpaired MZMs and the
fermion also has fractional Gb quantum numbers.

Example. As a first example, consider Gb = Z2 and G f =
Z f

4 . If g0 is the generator of Gb, then g2
0 = (−1)F . Defining
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ηa(g0, g0) = (−1)Qa , we see that Qψ = 1
2 . The fermion-parity

fluxes e and m satisfy

e × e = m × m = 1, e × m = ψ. (20)

To be consistent with the above fusion rules, the quantum
numbers should satisfy

2Qe = 2Qm = 0 mod 1,

Qe + Qm = Qψ mod 1. (21)

This is the content of Eq. (11). If n1 = 0, these are the only
equations. They can always be solved consistently, and the
choice of Qe,Qm will implicitly fix n2. However, if n1(g0) =
1, there is an additional constraint which can be seen by taking
g = h = k = g0 in Eq. (12):

ηm(g0, g0) = ηg0 m(g0, g0) ⇒ Qe = Qm mod 1. (22)

Taking Qψ = 1
2 , we see from the last two equations that

Qe = ± 1
4 mod 1. But this contradicts the first equation. Thus,

we cannot solve all the equations for η consistently in this
case. This is mathematically expressed by the fact that n1 ∪ ω2

specifies a nontrivial obstruction [O3] ∈ H3(Gb,Z2), and so
Eq. (19) has no solution.

Example. As a second example, consider G f = O(4) f ,
for which Gb = [SO(3)L × SO(3)R] � Z2. Again assume
c− is even. The quantum numbers Qa = (sa,L, sa,R) are
now given by the spin of a = e,m, ψ under SO(3)L and
SO(3)R, respectively. In terms of η symbols, we can define
e2π isa,L(R) := ηa(g, g), where g is a π rotation in SO(3)L(R)

about any axis. From the definition of G f , we have Qψ =
( 1

2 ,
1
2 ), i.e., the fermion carries spin 1

2 under both SO(3)
subgroups.

Now let the group Z2 which interchanges L and R be
generated by h, and assume that n1(h) = 1. Since h permutes
e,m and also interchanges L,R, we must have

se,L = sm,R; se,R = sm,L. (23)

[This can also be derived formally from Eq. (12).] Thus, if
Qe = ( 1

2 , 0), this condition forces Qm = (0, 1
2 ). In contrast to

the previous example, these choices do not conflict with Qψ =
( 1

2 ,
1
2 ). Note that such solutions exist because the term n1 ∪ ω2

is a 3-coboundary. Thus, we can solve Eq. (19) consistently
for some n2, which in turn sets the values of Qe,Qm.

The second term in Eq. (19) can be understood similarly.
For convenience, let us set n1 = 0 so that the first term is
zero. Also let us consider some odd c−. In this case, ψ has
a “square root”: there are fermion-parity fluxes v, v̄ = v × ψ
which satisfy

v2 = v̄2 = ψ. (24)

Thus, v, v̄ must carry representations of G f which square to
the one defined by ω2; in other words, we must have 2Qv =
2Qv̄ = Qψ , for some appropriately defined quantum numbers.
The equation dn2 = c−ω2 ∪1 ω2 can be solved for odd c− if
and only if such representations exist.

Example. To illustrate the point above, consider Gb =
SO(3). Suppose ψ carries spin 1

2 under Gb. If c− is odd, this
would mean that v, v̄ must carry “spin ± 1

4 ” representations,

which do not exist. Hence, we cannot have an invertible phase
with c− odd and with spin- 1

2 fermions.
In the most general case, the right-hand side of Eq. (19)

gives an obstruction whenever the equations for the η symbols
lead to contradictory results for the quantum numbers of the
fermion-parity fluxes. Note that we can have the interesting
situation in which the two terms in Eq. (19) are both non-
trivial but mathematically cancel each other, giving dn2 = 0.
The physical interpretation here is that the odd chiral central
charge and the symmetry together conspire to give a consistent
set of η symbols.

E. Equations for antiunitary symmetries

For antiunitary internal symmetries s1 �= 0 and c− = 0. In
this case, Eq. (11) is modified as follows [20]:

ηe(g,h)ηm(g,h) = ηψ (g,h)(−1)s1(g)n1(h) (25)

with η2
a = 1. Equation (19) correspondingly gets modified

[18,20]:

dn2 = n1 ∪ (ω2 + s1 ∪ n1). (26)

In this section we discuss the meaning of n1(T) = 1, and
the meaning of Eq. (26). We understand the meaning of
n1(T) = 1 whenever G f has a ZT f

4 subgroup. In these cases
it implies that e and m have a “fermionic Kramers degen-
eracy.” Equation (26) simply enforces that these properties,
a ZT f

4 subgroup with nontrivial n1 and a fermionic Kramers
degeneracy, are equivalent.

Example with time reversal alone. Consider a system with
Gb = ZT

2 . If [ω2] = 0, time reversal acts as T2 = 1, ψ does
not carry any Kramers degeneracy, and G f = ZT

2 × Z f
2 . If

[ω2] �= 0, time reversal acts as T2 = (−1)F , ψ carries a
Kramers degeneracy, and G f = ZT f

4 . We will consider both
possibilities together. Note that in the latter case we can write
ω2(g,h) = s1(g)s1(h) := (s1 ∪ s1)(g,h).7

It will be useful to define the following invariants. If T
leaves a ∈ {e,m, ψ} invariant after gauging fermion parity, we
define ηa(T,T) ∈ {1,−1}. This measures the local T2 eigen-
value of a. When T takes a → a × ψ , as when n1(T) = 1 and
a = e,m, the correct invariant turns out to be

ηT
a := ηa(T,T)UT(a, ψ ; a × ψ ). (27)

One can show that ηT
a also corresponds to the local T2 eigen-

value of a = e,m, although the arguments are more involved
[21,55]. Here UT is the U symbol mentioned previously; un-
like for unitary symmetries, it cannot be set to 1 identically.
This invariant was stated previously in Refs. [21,22,56].

Instead of looking at Eq. (26) term by term, we can write
a gauge-invariant equation that summarizes the constraint.
Reference [21] showed that(

ηT
a

)2 = ηψ (T,T) = (−1)ω2(T,T). (28)

Thus, if ψ does not have a Kramers degeneracy, e and m have
T2 eigenvalue ±1. On the other hand, if ψ has a Kramers
degeneracy, e and m must have local T2 eigenvalue ±i. This

7This is because the only nonzero value of ω2 is at g = h = T.
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is referred to as a fermionic Kramers degeneracy (see also
Ref. [55]). This is the content of Eq. (26) when Gb = ZT

2 . Note
that a fermionic Kramers degeneracy requires both n1 and ω2

to be nontrivial: if either n1 = 0 or ω2 = 0, the T2 eigenvalue
of m must be ±1.

1. Interpretation of n1 = s1

There is familiar interpretation of fermionic Kramers de-
generacy in the context of TSCs. Note that the solution with
Gb = ZT

2 and n1 �= 0 describes the nontrivial class DIII TSC.
We know (see, e.g., [57,58]) that in this case, inserting a π
flux induces a Kramers pair of MZMs, corresponding to e and
m. This property is equivalent to having a fermionic Kramers
degeneracy, as was argued in Refs. [21,55].8 We conclude
that in the context of (2+1)D invertible phases, the following
statements are equivalent when G f

∼= ZT f
4 : (i) n1(T) = 1; (ii)

e,m are fermionic Kramers; (iii) a fermion-parity flux hosts a
Kramers pair of MZMs.

Generalization. We can generalize this result as follows.
First consider any internal symmetry group G f that has a ZT f

4
subgroup, and n1, ω2 restrict to s1 and s1 ∪ s1, respectively,
on this subgroup.9 Then, as above, this choice of n1 and ω2

implies that a fermion-parity flux hosts a Majorana Kramers
pair, and also that e,m are fermionic Kramers.

Now suppose Gb has a ZT
2n subgroup instead of just ZT

2 .
When n is odd, we can just write Gb = ZT

2 × Zn, so the
example is already covered. For Gb = ZT

2n with n even, how-
ever, we find that n1 = s1 is possible only if ω2 = 0. Here,
the fermion is non-Kramers, and it is not even clear what
nontrivial phenomenon is encoded by the data n1 = s1.

Thus, when G f does not have a ZT f
4 subgroup, we do not

have a good understanding of how to interpret n1 = s1. We
leave this as a subject for future study.

2. A sufficient condition for a solution: ω2 = s1 ∪ u1

Suppose we are given some ω2 of the form

ω2 = s1 ∪ u1 mod 2, (29)

where u1 ∈ Z1(Gb,Z2) is a 1-cocycle. Now, Eq. (26) can
always be mathematically solved if we take n1 = u1. Indeed,
we can always choose n2 = 0. Then the O4 obstruction also
vanishes, and we can always set ν3 = 1. Thus, we obtain a
useful sufficient condition for a topological phase with n1 �= 0
when G f is antiunitary.

Examples in which n1 = s1 + ρ and ω2 = s2
1 + s1ρ all fall

into this category. Here we assume that ρ is nonzero only
in the unitary subgroup of Gb, and the full symmetry group
can be written as G f = ZT f

4 �ρ H for some unitary H . As

8In particular, if we consider the generator of (1+1)D invertible
phases in class DIII, there is a Kramers pair of MZMs at the ends
of the (1+1)D system. The symmetry acts locally at each end with
eigenvalue ±i under T2 [55]. A dimensional reduction argument
reviewed in Ref. [21] shows that this eigenvalue is indeed equal to
the quantity ηT

m defined for the class DIII TSC.
9For example, we can take Gb = ZT

2 × H , and Gf = ZT f
4 �ρ H

where H is unitary. Here we can set n1 = s1 + ρ, ω2 = s2
1 + s1ρ.

we discussed above, a fermion-parity flux hosts a Majorana
Kramers pair in these examples.

Equation (29) is not a necessary condition, however. A
simple counterexample involves Gb = Z2. Since H3(Z2,Z2)
is trivial, Eq. (26) can be solved for any choice of n1, s1, ω2.
Moreover, since H4(Gb,U (1)) is also trivial, there is no O4

obstruction in this case, and we can obtain a well-defined
invertible phase which does not satisfy ω2 = s1 ∪ u1. Indeed,
the symmetry Gb = Z2 and s1 = x + y corresponds to the
simplest nontrivial magnetic space group and is the symmetry
that describes the square lattice Neel antiferromagnet state.

III. EXTENDING THE CONSTRAINTS TO CRYSTALLINE
SYMMETRIES

The formalism above is strictly valid only when G f is an
internal symmetry. However, with the aid of the fermionic
crystalline equivalence principle (fCEP) [44–46,49], it can
be applied in situations where G f acts on space. This is of
practical value since a large number of material candidates for
TSCs exploit crystalline symmetries in various ways.

We note that the fCEP has only been discussed for com-
pletely general symmetries in [44]; furthermore, [44] used the
more abstract language of vector bundles. Below we present
a concrete formula for the fCEP that is more useful in our
context.

A. Fermionic crystalline equivalence principle

We consider a bosonic symmetry group Gb that may in-
clude spatial symmetries. We assume that the clean 2D system
without any defects is defined on the infinite plane, so that the
spatial elements in Gb are specified by a map ( �R, ρs) : Gb →
R2

� O(2) where R2
� O(2) is the group of continuous trans-

lations, rotations, and reflections in two dimensions. Here
�R : Gb → R2 and ρs : Gb → O(2). When ( �R, ρs) is nontrivial,
we include it as part of the symmetry data of the system.
Note that previous works checking the CEP for bosonic
and fermionic systems [47–49] considered Gb = H × Gspace

where H is internal and Gspace is a point-group or wallpaper
group symmetry. But our result below is expected to hold for
arbitrary Gb.

The fCEP states that the classification of invertible
fermionic topological phases with spatial symmetry G f

defined by the data (Gb, s1, ω2 , ( �R, ρs)) is in one-to-one cor-
respondence with the classification of invertible fermionic
topological phases with an effective internal symmetry Geff

f

that has data (Gb, seff
1 , ω2

eff ) where Gb acts trivially on space.
seff

1 , ω2
eff are completely determined by s1, ω2 , ρs.

We conjecture that the internal symmetry data are given by

seff
1 = s1 + w1,

ωeff
2 = ω2 + w2 + w1(s1 + w1), (30)

where w1 = ρ∗
s w1,r, w2 = ρ∗

s w2 are obtained by pulling
back the Stiefel-Whitney classes w1,r,w2 that generate
H1(O(2),Z2),H2(SO(2),Z2), respectively. If there are no
reflections in G f , w1 = 0; if there are no rotations, w2 = 0. In
Appendix B we explain the notation further, check each term
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in the above formula with examples, and give some heuristic
justification.

Note that this formula treats unitary translations exactly
as if they were internal symmetries: they do not appear in
Eq. (30). The formula can also be straightforwardly general-
ized to d spatial dimensions, as we discuss in Appendix B.

Each term above can be understood as follows. The term
w1 in the equation for seff

1 implies that spatial orientation-
reversing symmetries are mapped to internal antiunitary
symmetries.

The term w2 in the equation for ω2
eff implies that if a

2π spatial rotation acts as the identity in G f , it should act
as (−1)F in Geff

f , and vice versa. The term w2
1 implies that

if two successive reflections in Gb act as the identity in G f ,
they should act as (−1)F in Geff

f , and vice versa. The term
w1s1 implies that if Gb has time-reversal and reflection sym-
metries generated by T,R, respectively, that act on fermions
as RT = TR, the fCEP maps them to a pair of antiunitary
internal symmetries T,R′ that satisfy R′T = (−1)F TR′.

This principle has not been proven in complete generality
for all invertible phases, but its predictions have been tested
in several examples using different techniques. For example,
Ref. [49] provides evidence through a real space construction
that if Gb = H × Gspace with s1 = 0, where H is an internal
symmetry and Gspace is a 2D wallpaper group, then seff

1 and
ωeff

2 should be defined as in Eq. (30).
As a nontrivial check on Eq. (30) when s1 �= 0 and w1 �= 0,

we work out an example with G f = ZRT
2 × ZT f

4 (see Ap-
pendix B). This means R2 = T2 = (−1)F and (RT)2 = +1.
According to an edge argument [59] using this G f gives a
Z8 classification; we confirm that our theory combined with
Eq. (30) gives the same classification.

Our general strategy to study crystalline invertible phases is
thus to identify s1, ω2 , say from the system Hamiltonian, and
then compute seff

1 , ω2
eff. Thereafter we study solutions to the

O3 and O4 obstructions using seff
1 , ω2

eff instead of the original
spatial symmetry data.

B. Meaning of n1 for crystalline symmetries

If g ∈ Gb is a spatial symmetry operation, we have the
following interpretations for n1(g) = 1. When g is a lattice
translation, this means that there is an unpaired MZM at a
dislocation defect with Burgers vector equal to the translation
defined by g. When g is a discrete rotation by the angle 2π/n,
n1(g) = 1 means that a 2π/n disclination defect hosts an
unpaired MZM. It also means that corners of angle 2π/n host
unpaired MZMs; the relationship between disclinations and
corners is illustrated for C4 symmetry in Fig. 1.10

Finally, when g is a (unitary) reflection, we expect that
n1(g) = 1 means that the reflection line invariant under g
hosts a (1+1)D invertible phase with unpaired MZMs at its

10Note that if we consider a different symmetry, e.g., C2, and
construct a disclination of angle π , we might obtain one unpaired
MZM at the disclination and another at the boundary of the system,
but in that case the precise location of the boundary MZM is not fixed
by symmetry alone.

FIG. 1. A π/2 disclination in a square lattice is constructed by
removing a quadrant of angle π/2 (gray region) and reconnecting
the severed edges. If the center of the disclination hosts an unpaired
MZM (red circle), each corner must also carry an unpaired MZM so
that the system on the defect lattice has a well-defined fermion parity.

ends. This expectation is based on results from real-space con-
structions of crystalline topological phases [48,49,60,61].11

For (2+1)D invertible fermionic phases in the presence of a
reflection line, the real-space construction tells us to deposit a
(1+1)D invertible fermionic phase on the reflection axis while
treating the reflection as an onsite symmetry. In particular, if
the symmetry of the (2+1)D system is Z f

2 × ZR
2 , the corre-

sponding generator of (1+1)D invertible phases has unpaired
MZMs at its ends.

For general reflections, one needs to check whether the
chosen (1+1)D decoration becomes trivialized or leads to
spurious gapless degrees of freedom. In our language, the
two latter conditions mean that we need to take additional
equivalences into consideration and make sure that O3 and
O4 are trivial.

C. Remark on terminology

TSCs protected by crystalline symmetries are often called
“higher-order” TSCs, where the order refers to the spatial
dimension to which unpaired MZMs are bound. In our for-
malism, an invariant is higher order if it is trivialized upon
breaking the crystalline symmetries. There is also a notion of
“weak TSCs” in the literature. These are described by data
that become trivial if we break translation symmetries.

IV. EXAMPLES OF NONTRIVIAL CONSTRAINTS

A. Constraints for (1+1)D invertible phases

(1+1)D invertible fermionic phases are not directly cap-
tured by the formalism of Ref. [20]. However, some of the
most attractive proposals for experimentally realizing un-
paired MZMs use (1+1)D physics, therefore, we discuss them
briefly for completeness.

The classification of (1+1)D invertible fermionic phases,
including their complete stacking rules, has been presented
in Refs. [62–64]. Let G f , Gb, and ω2 be defined as usual.

11The assumption here is that the physical predictions of the
real-space constructions hold more generally beyond their idealized
limits.
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Then the classification consists of three parameters n1d
0 ∈

Z2, n1d
1 ∈ H1(Gb,Z2), and ν1d

2 ∈ C2(Gb,U (1)). n1d
0 specifies

the number of unpaired MZMs modulo 2 at each end of a finite
spatial segment. For each g ∈ Gb, n1d

1 (g) = 1 specifies that the
boundaries of the system have a degeneracy, and that the local
g action at the boundary changes the local fermion parity.
ν1d

2 (g,h), along with the other data, specifies the projective
representation of G f at each end of the system.

In this case the basic constraint on MZMs is that n1d
0

must be zero if [ω2] �= 0. This is proven in Ref. [62] using
properties of matrix product states. We can intuitively under-
stand this as follows: when n1d

0 = 1 and [ω2] �= 0, the fermion
carries fractional Gb charge, which can be absorbed by the
unpaired MZM. Therefore, the total Gb charge in the system
would change by a fractional amount in this case, leading to
a contradiction. Interestingly, this argument closely resembles
the one which enforces ω2 = 0 in (2+1)-dimensional invert-
ible phases with half-integer c−.

From this result, we can immediately conclude that sys-
tems with the following symmetries cannot support MZMs
in (1+1) dimensions since they have nontrivial [ω2]: G f =
U(1) f charge conservation, G f = SU(2) f spin rotation sym-
metry with spin- 1

2 fermions; systems in class DIII with G f =
ZT f

4 ; and so on.
The parameters n1d

1 , ν
1d
2 satisfy the equations [18,62]

dn1d
1 = 0, (31)

dν1d
2 = (−1)n1d

1 ∪ω2 . (32)

We can verify these equations using the (2+1)D classifica-
tion, in the following manner. Suppose the (2+1)D symmetry
group is G2d

f = G1d
f × Z, with n1d

0 , n
1d
1 , ν

1d
2 defined using G1d

f .
Let x be the generator of H1(Z,Z2). Then there is a (c− = 0)
(2+1)D invertible phase obtained by stacking G1d

f phases
along the direction generated by Z. Let this phase be described
by the data

n2d
1 = n1d

0 ∪ x, (33)

n2d
2 = n1d

1 ∪ x, (34)

ν2d
3 = ν1d

2 ∪ x. (35)

By applying the conditions on n2d
1 , n

2d
2 , ν

2d
3 written in

Ref. [20], we observe that we can recover the above equa-
tions for (1+1)D phases. The equation for n1d

1 that we obtain
is

dn1d
1 = n1d

0 ∪ ω2, (36)

but in order to solve this the right-hand side must be zero as
a cohomology class. Thus, we must either have n1d

0 = 0 or
[ω2] = 0, as we claimed earlier.

The equation for ν1d
2 is derived as follows. When c− = 0

and [ω2] = 0 or n1 = 0, the O4 obstruction reduces to

[O4] = 1
2 n2(ω2 + n2) (37)

= 1
2 n1d

1 x
(
n1d

1 x + ω2
)
. (38)

Now using [x2] = 0, we can rewrite [O4] = 1
2 n1d

1 ω2 ∪ x.

Note that this is only a useful consistency check, and not a
complete derivation of the (1+1)D equations. Moreover, it is
not a prescription for dimensionally reducing a (2+1)D phase
into a (1+1)D phase. This is an interesting problem that we
hope to study in the future.

B. Gf = U(1) f × H and Gf = U(1) f
� H

Suppose G f has a subgroup U(1) f corresponding to charge
conservation. The notation U(1) f implies that this subgroup
contains the fermion-parity operation as its order-2 element,
so [ω2] �= 0. We define the “bosonic” charge conservation
symmetry as U(1)b := U(1) f /Z f

2 . The charge of the fermion
under U(1)b is Qψ = 1

2 .
First consider the case where Gb = U(1) × H for some

symmetry group H , which may be unitary or antiunitary.
In this case, we prove that n1 = 0, i.e., there cannot be un-
paired MZMs at symmetry defects. Formally, we argue using
Eqs. (19) or (26). Note that U(1) is continuous, so n1 must
vanish within U(1)b. Now, if n1 is nonzero within H , we can
show that O3 is a nontrivial 3-cocycle for each c− ∈ Z, so
there is no solution for n2.

For a more physical derivation, we define

e2π iQa := ηa(π, π ), (39)

where π is the order-2 element in U(1)b. Note that Qψ =
1
2 mod 1. From Eq. (11) we have

2Qe = 2Qm = 0 mod 1,

Qe + Qm = Qψ mod 1. (40)

When n1 �= 0, we can use Eq. (12) to obtain an additional
relation

Qe = Qm. (41)

The derivation is the same as the one given in Appendix C
for Abelian groups U(1) f × H . The last two equations force
Qe = 1

4 , which contradicts the first equation. Thus, if G f =
U(1) f × H , the system cannot support unpaired MZMs at
symmetry defects. The situation may be different if G f does
not split as U(1) f × H . In particular, consider G f = O(2) f ,
for which Gb = O(2) = SO(2) � Z2. Gb has a normal sub-
group SO(2) ∼= U(1)b corresponding to charge conservation;
now there is an additional Z2 subgroup which corresponds
to a unitary particle-hole symmetry. Now even though [ω2]
is nonzero, unpaired MZMs are allowed at defects of the
Z2 particle-hole symmetry, if c− is odd. The mathematical
derivation is given in Appendix D.

Physically, we can see this by considering a free-fermion
system with Chern number 1 and with particle-hole symmetry.
Now we can cut out a line of hopping terms ti jc

†
LicR j + H.c.

from the Hamiltonian (see Fig. 2) and reglue them with super-
conducting pairing terms�cLicR j + H.c. instead. Each end of
the cut corresponds to a Z2 symmetry defect because a particle
that goes around such a defect in the reglued system gets
transformed to a hole, and vice versa. Prior to the regluing,
the Chern number 1 system has a complex fermion mode
propagating along the edge of the cut as shown in Fig. 2.
The superconducting pairing terms serve to gap out this edge,
resulting in unpaired MZMs at each end of the cut. Thus,
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FIG. 2. Construction of a defect of particle-hole symmetry in a
Chern insulator. A line of hopping terms is removed along a cut,
leading to gapless chiral edge states (blue lines). Upon reconnecting
the edges with pairing terms (brown links), the edge states are gapped
out. When c− is odd, an unpaired MZM is trapped at each defect,
marked with a red “X.”

we conclude that the particle-hole symmetry defects host un-
paired MZMs.

It is interesting to note that we would have unpaired MZMs
even in the absence of exact particle-hole symmetry because
the cutting and regluing procedure only depends on having
odd Chern number. If there is no particle-hole symmetry, the
ends of the cut cannot be thought of as symmetry defects;
however, they will still host unpaired MZMs.

C. Gf = SU(2) f × H

Next we consider G f = SU(2) f × H , where SU(2) f cor-
responds to spin conservation. In this case, we have the
following results: (i) c− must be even; (ii) unpaired MZMs are
not allowed at H symmetry defects; (iii) the fermion-parity
fluxes must transform linearly under H . The last result is
beyond Eq. (19); it comes from the O4 obstruction.

We can get the first constraint by restricting to G f =
SU(2) f . In this case, Gb = SO(3) and ω2 = w2 is the second
SW class of the vector irrep of SO(3) (indicating that the
fermion has spin 1

2 ). As ω2 �= 0, we must have c− ∈ Z. Next,
we note that

ω2 ∪1 ω2 = Sq1(w2) = w3

is a mathematical equality.12 Here w3 is the third SW class and
is a generator for H3(SO(3),Z2). H1(SO(3),Z2) is trivial so
n1 must be trivial. Then the O3 obstruction reduces to

dn2 = c−w3 mod 2

but as w3 is a nontrivial class, we need c− = 0 mod 2. In
terms of Gb quantum numbers, the above obstruction can be
understood as follows: if c− were odd, the fermion-parity
fluxes must carry projective representations that square to the
spin- 1

2 representation carried by ψ (but such representations
do not exist). Therefore, c− must be even.

Next, we argue that n1 = 0. n1 must vanish within SO(3)
because it is connected. Moreover, it must vanish within H

12This is true by, for example, a theorem by Wu that can be found
as Theorem 4.5 in Ref. [65].

because O3 = n1 ∪ ω2 is nontrivial whenever n1 is nontrivial
in H .13

The O4 obstruction gives a further constraint that n2 must
be trivial. In particular, the fermion-parity fluxes e,m cannot
carry any fractional H quantum numbers. We prove this using
Eq. (15) in Appendix E.

We can also see that n2 = 0 by arguing that a system with
spin- 1

2 fermions and with some nontrivial n2 ∈ H2(H,Z2) has
the same obstruction as the boundary of a nontrivial (3+1)D
bosonic SPT with symmetry H × SO(3). Such SPTs are clas-
sified by H4(H × SO(3),U (1)). Using the Künneth formula
we see that this has a subgroup H2(H,H2(SO(3),U (1))) ∼=
H2(H,Z2). Phases classified by this subgroup can be con-
structed by decorating a codimension-2 junction of H defects
(which can be formally thought of as a vortex for H) with a
(1+1)D bosonic SPT with SO(3) symmetry. On the boundary
of the (3+1)D phase, this codimension-2 junction appears to
carry spin 1

2 , which is the boundary signature of the SPT.
But in our (2+1)D invertible phase, a nontrivial n2 precisely
implies that a codimension-2 junction of H defects carries a
fermion with spin 1

2 . Therefore, it is to be expected that the
anomaly in the invertible fermion phase is canceled by the
(3+1)D bosonic SPT.

D. Constraints when Gf is Abelian

If G f is a unitary Abelian symmetry group, we obtain
the following general restriction on unpaired MZMs, using
Eq. (19): either n1 = 0 or ω2 = 0. Note that G f must be a
product of factors, each of the form Zn, Z, or U(1). If c− is
a half-integer, we must have ω2 = 0, so the claim is automat-
ically satisfied. Therefore, we focus on integer c−. Here we
will show that if [ω2] �= 0, we must have n1 = 0.

There are two ways in which [ω2] can be nontrivial for
some Abelian G f : either

G f = Z f
2N0

× A, (42)

where A is an Abelian group, and N0 is even; or

G f = U(1) f × A. (43)

In either case we find that n1 must be zero. A corollary of this
result is that systems with nontrivial n1 and [ω2] must have G f

non-Abelian, if it is unitary.
Let us explain how this can be derived in the language of

Gb quantum numbers. First assume c− is even, and denote the
fermion-parity fluxes by e,m. In either of the above cases, the
subgroup with nontrivial [ω2] has an order-2 element h, and
we can define e2π iQa := ηa(h,h) for a = ψ, e,m.14 Note that
Qψ = 1

2 . If n1 = 0, Eq. (11) implies that

2Qe = 2Qm = Qe + Qm − Qψ = 0 mod 1. (44)

13When n1 �= 0 there exists h ∈ H such that n1(h) = 1. Then one
can check that ιX ιZ ιhO3 = 1 mod 2 is a nontrivial invariant for O3.
Here ιg is the slant product defined in Appendix A 2 and X (Z ) is the
π rotation in SO(3) around the X (Z ) axis.

14Note that Qe,Qm are not fully gauge-invariant quantities if
n1(h) = 1. But the consistency relations involving Qe,Qm still hold.
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Now if n1(k) = 1 for any k ∈ Gb, we obtain the additional
constraint

Qe = Qm. (45)

These equations are all derived in Appendix C. They do not
admit any consistent solution; therefore, we must set n1 = 0,
proving our claim for even c−. For odd c−, the fermion-parity
fluxes are denoted as v, v̄ = v × ψ ; in this case we have a
slightly different system of equations (see Appendix C)

2Qv = 2Qv̄ = Qψ mod 1,

Qv = − Qv̄ mod 1 (46)

and if we have n1 �= 0, we obtain another constraint

Qv = Qv̄ (47)

which is again inconsistent with the previous equations when
Qψ = 1

2 . Mathematically, these constraints all originate from
the fact that the term n1 ∪ ω2 in Eq. (19) is a nontrivial 3-
cocycle, and thus cannot be written as dn2 for any choice of
n2. Note that if we had started with ω2 = 0, i.e., with Qψ = 0,
we could have solved the equations for each c−, irrespective of
n1. We conclude that when G f is unitary and [ω2] is nontrivial,
unpaired MZMs can only exist if G f is non-Abelian.

The result is different when G f is antiunitary. When G f =
U(1) f × A, with A antiunitary, we must still have n1 = 0, and
the arguments above still hold. However, if G f = Z f

2N0
× A,

there is a simple counterexample, namely, the class DIII time-
reversal invariant TSC which has G f = ZT f

4 . Here n1, ω2 can
both be nontrivial. However, as we pointed out in Sec. II E,
this system displays Majorana Kramers pairs at fermion-
parity fluxes rather than unpaired MZMs.

E. Orthogonal groups Gf = O(n) f

When G f = O(n) f , we find the following:
(1) 2c− must be a multiple of gcd(n, 16).
(2) When n = 2k is even, there are unpaired MZMs iff

c− = gcd(k, 8) mod (2gcd(k, 8)). In other words, c− is an odd
multiple of the smallest allowed c− for the specific group.

(3) We obtain a description of the quantum numbers of the
fermion-parity vortices (see below for each case).

(4) We find the full classification of invertible fermionic
phases with O(n) f symmetry.

The bosonic symmetry groups are the “projective orthog-
onal groups” PO(n) := O(n)/Z2. We calculated their group
cohomology up to degree 6 in Appendix E 5.15 We sum-
marize the relevant cohomology results and then proceed to
the derivation. Let q : O(n) → PO(n) be the quotient map
and q∗ : H(PO(n),Z2) → H(O(n),Z2) be the pullback via q.
Note that H(O(n),Z2) is a polynomial ring generated by the
first n Stiefel-Whitney classes wi. Here wi has degree i, and
w j is set to 0 whenever j > n (see Theorem 1.2 of Ref. [66]).

First, H1(PO(2n),Z2) ∼= Z2 is generated by a class x1

that satisfies q∗x1 = w1. An explicit formula is x1(g) =

15For this we use a spectral sequence calculation. At some point, we
need to use the existence of the free-fermion root phase (see below)
to determine the value of a differential.

1+(−1)det(g̃)

2 where g̃ is any lift of g ∈ PO(2n) to O(2n). x1(g)
measures whether g acts nontrivially on an odd number of
directions.

Second, H2(PO(2n),Z2) = Z2 × Z2. It is generated by
x2 and x2

1. x2 is defined as the class corresponding to the
extension of PO(2n) by Z2 isomorphic to O(2n). In other
words, for G f = O(2n) f we have Gb = PO(2n) and ω2 = x2.
This means that a π rotation in PO(2n) squares to fermion
parity. x2 ∪1 x2 = Sq1(x2) depends on the parity of n. For n
odd, Sq1(x2) = x1x2. While for n even, Sq1(x2) = x3 �= 0 and
x1x2 = 0.

Finally, H3(PO(4n),U(1)) = Z × Z2 is generated by a
Chern-Simons term for PO(4n) and (−1)w3

1 . For n > 1,
H3(PO(4n + 2),U(1)) = Z × Z2

2 is generated by a Chern-
Simons term (−1)x3

1 and (−1)x3 . Here x3 ∈ H3(PO(4n +
2),Z2) is such that q∗x3 = w3, the third SW class of
O(4n + 2). For PO(2), x3 is trivial because w3 is trivial in
O(2).

We define a root phase for G f = O(2n) f by stacking 2n
identical layers of a spinless p + ip SC. These phases have
n1 = w1 and c− = n.16

1. Gf = O(2) f

Consider G f = O(2) f , for which Gb = O(2) so we will
write wi instead of xi. Here ω2 = w2 is nontrivial; this cor-
responds to the fermion having charge 1

2 with respect to the
SO(2) subgroup of Gb.

If n1 �= 0, we need c− to be odd. The mathematical argu-
ment is as follows. As PO(2) ∼= O(2), we have the relation
w2 ∪1 w2 = Sq1(w2) = w1w2. Then, O3 = (n1 + c−w1)w2,
which is a trivial cocycle iff n1 + c−w1 = 0.

Here is a more physical argument. First, for even c−, we
can define the SO(2) charge of the fermion-parity fluxes as
Qe,Qm. The symmetry defines Qψ = 1

2 . Using the constraints
on the η symbols, we find that

2Qe = 2Qm = 0,

Qe + Qm = 1
2 ,

Qe = Qm. (48)

These equations (all taken modulo 1) are clearly inconsistent.
However, if c− is odd, we find a different set of equations,

2Qv = 2Qv̄ = 1
2 ,

(49)
Qv = −Qv̄,

which does permit a consistent solution where v, v̄ have
charge ± 1

4 .
A simple construction of a system with c− = 1 is that of a

spinful p + ip superconductor defined in terms of two flavors

16Reference [67] argued that for a free-fermion phase in (2+1)D
transforming in a real representation (ρ) of Gf = Z f

2 × Gb, the chiral
central charge is 1

2 the dimension of the representation and n1 is given
by (−1)n1(g) = det(ρ(g)) (n1 = γ in their notation). We can use this
result for Gf = O(n) f by restriction to the Z f

2 × Z2 subgroup where
Z2 is a reflection along a single axis.
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of fermions c1, c2. At weak pairing the superconducting pair-
ing term in such a system is of the form

∑
k�(k)(c1,kc1,−k +

c2,kc2,−k ) + H.c. There is an O(2) f symmetry which trans-
forms c1,k and c2,k into each other for each k, but leaves
the pairing term invariant. The reflection symmetry defect
here corresponds exactly to the “half-quantum vortex” [24]
which is expected to carry a MZM (see Sec. V A for more
discussion). A similar example was analyzed in Ref. [20],
in which the O(2) f symmetry is broken down to a discrete
subgroup D f

8 but the mathematical constraints are equivalent.

2. Gf = O(4) f

For G f = O(4) f , the result is as follows. c− must be an
even integer. If c− = 2 mod 4, n1 must be nontrivial, and
the fermion-parity fluxes must transform projectively un-
der SO(4) f ⊂ O(4) f . If c− = 0 mod 4, n1 must be zero, and
fermion-parity fluxes must transform as a linear representation
of SO(4) f . Regardless of the value of c−, the fermion-parity
fluxes can transform projectively under orientation reversing
elements (“odd reflections”) of O(4) f .

To get some intuition, note that there is a simple construc-
tion of a free-fermion system with c− = 2 which supports
unpaired MZMs. Consider a stack of four identical lay-
ers of a spinless p + ip superconductor at weak pairing;
this has the required internal symmetry O(4) f which per-
mutes the fermions in each layer, but keeps the pairing term∑

k,α �(k)cα,kcα−k + H.c. invariant (1 � α � 4 is the layer
index). An unpaired MZM can be introduced by inserting an
HQV into just two of the layers, ignoring the other two. This
shows that there is a solution with c− = 2 mod 4 and n1 �= 0.

In this case Gb = PO(4) = [SO(3)L × SO(3)R] � Z2

where the reflection acts by permuting the “left” (L)
and “right” (R) SO(3) symmetries. The fermion has spin
(sL,ψ , sR,ψ ) = ( 1

2 ,
1
2 ) under the two SO(3) subgroups. If we

consider some odd c−, the spin of a fermion-parity flux is
constrained by the relations 2sv,L(R) = sψ,L(R) = 1

2 mod 1,
which have no solution [this is similar to the result for a
single SO(3) symmetry]. Therefore, c− must be even.

Equation (26) does not impose any nontrivial constraints
when n1 = 0. Now consider the unique nontrivial choice n1 =
x1, which is nonzero on the Z2 reflection which also inter-
changes L ↔ R. For this n1, there is in fact a solution for n2.
This can be seen by writing the equations constraining the spin
of the fermion-parity fluxes:

2se,L(R) = 2sm,L(R) = 0 mod 1, (50)

se,L(R) + sm,L(R) = 1
2 , (51)

se,L(R) = sm,R(L). (52)

The first two relations arise in order to have compatibility with
the fusion rules. The third is due to the permutation which
simultaneously takes e ↔ m,L ↔ R. The only solutions are
(se,L, se,R) = ( 1

2 , 0) and (sm,L, sm,R) = (0, 1
2 ), or vice versa.

This means that n2 must be nontrivial, and is fixed by the
choice of n1. We can also argue this formally using group
cohomology (see Appendix E 5 b).

At the level of the O3 obstruction we can have n1 nontrivial
for any allowed c−. Nevertheless, O4 imposes the additional

constraint n1 = c−
2 x1. This has the perhaps surprising con-

sequence that when c− = 2 mod 4, there is no solution with
n1 = 0, i.e., the system is forced to have unpaired MZMs. See
Appendix E 5 for the mathematical details, and Appendix F
for related examples generated by so-called “wreath prod-
ucts.”

Note that there is freedom to adding x2
1 to n2 regardless of

the value of c−. We can restrict to Z f
2 × Z2 ⊂ O(4) f where

the first is generated by −1 and the second by the diagonal
matrix with diagonal [−1, 1, 1, 1]. n2 = x2

1 means that Z2 acts
projectively on the fermion-parity flux.

3. Gf = O(2n + 1) f

In this case, PO(2n + 1) = SO(2n + 1) and G f =
SO(2n + 1) × Z f

2 . The extension of Gb by Z f
2 is trivial,

i.e., ω2 = 0. Thus, we can have any c− ∈ 1
2Z and there are

unpaired MZMs at fermion-parity fluxes if and only if 2c− is
an odd integer.

For n = 0, the classification of invertible phases with G f

symmetry is simply 1
2Z. On the other hand, when n > 0, it

is 1
2Z × Z, with the second factor generated by a fermionic

phase with c− = 0, n1 = 0, n2 = w2.

4. Gf = O(4n + 2) f

For Gb = PO(4n + 2) and n > 0, there is no longer a
simple expression for Gb as for n = 0. Nevertheless, we
can gain a lot of information by restricting to the diagonal
O(2) subgroup. Let r : PO(2) ↪→ PO(4n + 2) be the diagonal
inclusion map17 and let r∗ : H(PO(2),Z2) → H(PO(4n +
2),Z2) be the pullback via r. We find that c− ∈ Z and n1 =
c−x1.

Suppose we have a G f = O(4n + 2) f phase with n1 = kx1,
where (k ∈ {0, 1}) and c− ∈ Z. We have r∗x1 = w1 mod 2.
Thus, r∗n1 = kr∗w1 = kw1 while c− does not change. From
the constraints on O(2) f , we must have k = c− mod 2, and c−
is forced to be an integer.

The root phase has an odd chiral central charge c∗
− = 2n +

1. As gcd(c∗
−, 8) = 1, we can always find integers m, l such

c∗
−m + 8l = 1. Then if we stack m copies of the root phase

with l copies of the E8 state [68] we obtain a phase with c− =
1. In this way, we can construct phases with any c− ∈ Z.

The classification of invertible phases with symmetry
G f = O(2) f is Z × Z × Z2 where the factors correspond to
c−, σH −c−

8 and a bosonic SPT with ν3 = (−1)x3
1 , respectively.

For G f = O(4n + 2) f and (n > 0), the classification is Z ×
Z × Z2 × Z2 where the extra Z2 corresponds to a bosonic
SPT with ν3 = (−1)x3 where q∗x3 = w3.

5. Gf = O(4n) f

Depending on the divisibility of n by powers of 2 we
obtain different constraints, which are summarized in Table I.

17r is defined by first taking the diagonal inclusion of O(2) ⊂
O(4n + 2) [take an O(2) matrix and send it to the direct sum of
2n + 1 copies of the matrix] and then taking the quotient by −1.
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If n is odd, we consider the diagonal O(4) f subgroup18 to
show that c− is even and n1 = (c−/2)w1. This is the strongest
possible constraint because the root phase has c∗

− = 2n and
n1 = nw1 mod 2. Furthermore, as gcd(2n, 8) = 2, by stacking
the appropriate number of root phases and E8 states we can
get any c− ∈ 2Z.

When n is even, restricting to the diagonal O(4) f subgroup
takes w1 to zero, so we get no constraint for n1. To make
progress, we need to consider the larger subgroups O(8) f and
O(16) f . In Appendix E 5 c, we argue that for O(8) f we must
have c− = 0 mod 4 and n1 = (c−/4)w1; and for O(16) f we
must have c− = 0 mod 8, with no constraint on n1.

We can repeat the arguments used for O(4n + 2) f and
O(8n + 4) f to show the following. For O(16n + 8) f , we must
have c− ∈ 4Z and n1 = (c−/4)w1 and these constraints are
saturated by a suitable stack of the root phase and E8 states.
For O(16n), we must have c− ∈ 8Z and n1 can be nontrivial
for any c−. The constraints are sharp again.

The classification of invertible phases with symmetry
G f = O(4n) f is Z × Z × Z4 corresponding to (up to nor-
malization) c−, σH −c−

8 , and a third factor generated by a
(fermionic) phase with c− = 0, n1 = 0, n2 = w2

1.

F. Unitary groups

1. Gf = SU(2n) f

We now consider special unitary groups. As these groups
are simply connected, n1 must be trivial. We can derive
constraints on c− by considering appropriate subgroups. We
define the root phase for this symmetry to be a stack of
2n layers of a Chern insulator [although these have a larger
symmetry U(2n) f , they also belong to the classification for
SU(2n) f ]. These states have c− = 2n. We consider the fol-
lowing cases19:

(a) n is odd. We consider the diagonal SU(2) f subgroup to
show that c− = 0 mod 2.20

(b) n/2 is odd. We consider the diagonal SU(4) f subgroup
to show that c− = 0 mod 4.

(c) n/2 is even. We consider the diagonal SU(8) f subgroup
to show that c− = 0 mod 8.

In all cases, some combination of the root phase and
E8 have the minimal allowed c−. These constraints depend
on computing O4 and cannot be inferred just from O3; see
Sec. IV J for more examples of this type.

2. Gf = U(n) f and U(n) f
� Z2

Next we discuss the family of unitary groups U(n) f . This
is the symmetry of n identical layers of a Chern insulator. All

18By diagonal subgroup of O(4) we mean the image of O(4) under
the map that sends R ∈ O(4) to the direct sum of n copies of R.

19The constraint for Gf = SU(2) f can be found in Sec. IV C. The
constraint for Gf = SU(4) f ∼= Spin(6) f can be defined by looking
at the Spin(5) f subgroup and use the results of Sec. IV J. Finally,
the constraint for SU(8) f is derived in Appendix E 6 using a spectral
sequence calculation.

20In SU(nm), we define the diagonal SU(n) subgroup to be the
image of the map that sends g ∈ SU(n) to the direct sum of m copies
of g.

the results in this case can be obtained by restricting to the
(diagonal) U(1) f and SU(n) f subgroups of U(n) f .

In particular, from the diagonal U(1) f subgroup we see
that c− must be an integer, and that there can be no unpaired
MZMs since in that case there would be an obstruction due
to the n1 ∪ ω2 term in Eq. (19). By restricting to SU(n) f , we
use the results of the previous section to see that c− must be a
multiple of gcd(n, 8).

One situation where the system can have unpaired MZMs
in the presence of U(n) f symmetry is if there is an additional
charge conjugation symmetry. Suppose the full symmetry is
U(n) f

� Z2, where � denotes charge conjugation.21 By re-
stricting to the diagonal U(1) f

� Z2 subgroup, we see that
unpaired MZMs can exist at Z2 defects when c− is odd [see
the discussion of G f = O(2) f in Sec. IV E 1]. By restricting to
SU(n) f , we see that n must be odd (otherwise c− would have
to be even, leading to a contradiction).

We can also understand this based on our discussion of
O(2) f symmetry defects in Sec. IV B. There we discussed
a procedure to create an unpaired MZM in a c− = 1 system
with U(1) f

� Z2 symmetry by introducing suitable SC pair-
ing terms. A similar procedure allows us to create n MZMs in
an n-layer system with U(n) f symmetry. But in order to have
a residual unpaired MZM, n must be odd.

G. Symplectic groups Gf = Sp(n) f

We consider the groups G f = Sp(n) f . The group coho-
mology of Gb = PSp(n) = Sp(n)/Z2 is calculated in Ap-
pendix E 7. As Gb is connected, we must have n1 = 0. So we
only look for constraints on c−. We first find the constraint
c− = 0 mod 2 by restriction to the diagonal Sp(1) f ∼= SU(2) f

subgroup.22 There are only two (equivalent) choices for n2:
n2 = 0,w2. The O4 obstruction is

O4 = c−
2

P (w2)

4
mod 1 (53)

which is nontrivial only when c− = 0 mod 2gcd(n, 4). The
full classification is Z2 and is generated by c−

2gcd(4,n) and a
generalization of the spin Hall conductivity.

H. Constraints when Gb is a direct product

In this section we prove two results. First, if the symmetry
group is of the form Gb = GA

b × GB
b and ω2 = ω2

A + ω2
B with

both ω2
A, ω2

B nontrivial, there can be no unpaired MZMs.
Physically, this means that if the fermion carries fractional
quantum numbers under both GA

b ,G
B
b , then there cannot be

unpaired MZMs at any symmetry defects because either the
GA

b or GB
b quantum numbers at these defects will not be con-

sistently defined. Furthermore, in this case c− can be odd only
if Sq1(ω2

i ) = 0 for i = A,B.
Consider some n1 ∈ H1(Gb,Z2). This has the form n1 =

nA
1 + nB

1 , where ni
1 ∈ H1(Gi

b,Z2) for i = A,B. For this n1,

21Z2 acts as the unique nontrivial outer automorphism of U(n).
22The diagonal subgroup is the image of the map that sends R ∈

Sp(1) to the direct sum of n copies of R.
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Eq. (19) reads as

dn2 = nA
1ω

A
2 + nB

1ω
B
2 + nB

1ω
A
2 + nA

1ω
B
2

+ c−
[
ωA

2 ∪1 ω
A
2 + ωB

2 ∪1 ω
B
2 + d

(
ωA

2 ∪1 ω
B
2

)]
. (54)

The possible obstructions in H3(Gb,Z2) can be classified by
the Künneth formula (see, e.g., [69]):

H3(Gb,Z2)

= H3
(
GA

b ,Z2
) × H3

(
GB

b ,Z2
)
H1

(
GA

b ,H2
(
GB

b ,Z2
))

× H1(GB
b ,H2(GA

b ,Z2
))
. (55)

Suppose nA
1 �= 0. Now since [ωB

2 ] is nontrivial, nA
1ω

B
2 is also

nontrivial as a 3-cocycle, and is classified by the third factor
in Eq. (55) above. None of the other terms can cancel this ob-
struction since they all belong to other factors in the Künneth
decomposition. Therefore, we cannot solve for n2 unless we
set nA

1 = 0. Similarly we argue that nB
1 = 0, and hence n1 = 0.

We conclude that for this choice of symmetry group, unpaired
MZMs are not possible.

Setting n1 = 0, the equation for n2 reduces to

dn2 = c−
(
ωA

2 ∪1 ω
A
2 + ωB

2 ∪1 ω
B
2

)
. (56)

Again using the Künneth decomposition, we can see that an
odd c− is allowed only if both ωA

2 ∪1 ω
A
2 , ω

B
2 ∪1 ω

B
2 are trivial

in H3(Gb,Z2). Actually, this condition can be strengthened by
looking at O4: under the Bockstein map (see Appendix A) β :
H2(Gb,Z2) → H3(Gb,Z), the image of both ωA

2 , ω
B
2 must be

trivial. The argument is given in Appendix E 9.

I. Gf = ZT f
4 � Z2

The usual symmetry which defines the class DIII TSC is
G f = ZT f

4 . Let us add to class DIII a Z2 unitary symmetry,
generated by X, that anticommutes with time reversal on the
fermions, i.e., TX = (−1)F XT and X2 = 1. In this case Gb =
ZT

2 × Z2. Let τ and x be the projections to the ZT
2 and Z2

subgroups of H1(Gb,Z2). Then s1 = τ and ω2 = τ ∪ (τ + x).
Therefore, by the condition stated in Eq. (29) there is a solu-
tion with n1 = τ + x and n2 = 0, ν3 = 1.

Note that under restriction to G′
f = Z f

2 × Z2, n1 restricts
to x, which is a generator of the Z8 classification of invertible
phases with symmetry G′

f . These phases can be constructed
from free fermions by stacking ν layers of a spinless p + ip
SC with fermions carrying X eigenvalue −1 along with their
T partners, which in this case corresponds to p − ip SC layers
with fermions carrying X eigenvalue +1 [70].

J. Additional constraints from O4 obstruction

Although we considered both O3 and O4 in the preced-
ing sections, we emphasize that the O4 obstruction can give
stronger constraints on c−, n1, n2 that cannot be deduced from
O3 alone. In this section we give some examples of this.
The mathematical calculations involving O4 are organized in
Appendix E. Here we will only state the results:

(1) We show in Appendix E 2 that when Gb = SO(N ) and
G f = Spin(N ) (i.e., the nontrivial extension of Gb by Z f

2 ),
and N � 5, the choice c− = 2 mod 4 is not obstructed by O3

but has a nontrivial O4 obstruction. Thus, c− needs to be a
multiple of 4 in order to have a well-defined invertible phase.

(2) An example of a finite group carrying the same ob-
struction as G f = Spin(5) f is G f = D f

8 ◦ Q f
8 which is the

central product of D8 and Q8 and has Gb = Z4
2. The calcu-

lation can be found in Appendix E 8. Note that G f in this
example is isomorphic to the group of order 32 in Table II
of Ref. [37].23

(3) Conversely, when c− = 0 mod 4 and Gb is a unitary
compact Lie group, we show that the data n1 = 0, n2 = 0 are
nonanomalous for very general choices of ω2, as long as a
certain technical condition is satisfied.24 See Appendix E 3 for
details.

In this situation, the only nontrivial data are [ω2]. We can
understand two stacked copies of the nonanomalous phase as
equivalent to a stack of three systems: (i) a trivial fermionic
phase, (ii) the E8 phase, which is a bosonic phase of matter
with c− = 8 that exists for any symmetry group, and (iii)
an additional bSPT with cocycle ν3 satisfying β(ν3) = ω2 ∪
ω2 mod 2. β is a Bockstein map defined in Appendix A.

One application of this result is to the group with Gb =
(Z2 × Z2)L, such that G f is a central product of L copies
of D8 [i.e., the order-2 rotation in each D8 is identified
with (−1)F ]. This symmetry group satisfies the condition
to admit a c− = 4 solution. Interestingly, a free-fermion
construction can only give solutions with c− = 2L−1. Thus,
for L > 3, the c− = 4 solution must correspond to an in-
trinsically interacting phase. See Appendix E 3 a for the
details.

In Ref. [37], it was argued that there cannot exist any
invertible phases with c− = 4 for the group SU(8) f . We have
checked that in this case, the technical condition required to
ensure a c− = 4 solution actually does not hold, and more-
over we explicitly identify [O4] as the order-2 element of
H4(SU(8)/Z2,U(1)) ∼= Z4 (see Appendix E 6 for details).
Therefore, our result agrees with the one obtained in Ref. [37]
through different arguments.

(4) We show that when G f = Zn × ZT
2 × Z f

2 , the con-
straint from O3 only forbids unpaired MZMs when n is even.
On the other hand, the O4 obstruction also forbids unpaired
MZMs when n is a multiple of 4. Thus, if the system is
to have unpaired MZMs, n must be a multiple of 8. See
Appendix E 10.

If we break time-reversal symmetry, we get a phase with
G′

f = Zn × Z f
2 and n1 = w1. This phase generates a Z2

factor in the classification of invertible phases of fermions
with G′

f = Zn × Z f
2 that is known to be generated by free

fermions: see Ref. [71]. Table II in this paper shows that one
of the phases with n1 = w1 is given by a stack of a spinless
p + ip SC of fermions with charge n/2 under Zn, and a
spinless p − ip SC of fermions with charge 0.

23To show this one can use the characterization of extra-special 2-
groups: the extension is characterized in terms of its quadratic form,
in particular the dimension of its cokernel and its Arf invariant.

24The constraint is that TorZ1 [H5(Gb,Z),Z4] is of the form ZL
2 for

some integer L.
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V. APPLICATIONS

We now discuss several examples showing how our theory
relates to different proposals for detecting unpaired MZMs at
symmetry defects. In many of the examples discussed below,
our theory provides additional predictions beyond those dis-
cussed in the preceding literature.

A. Unpaired MZMs at half-quantum vortices
in a spinful p + ip SC

Here we discuss a spinful p + ip superconductor, modeled
as a stack of two identical layers of spinless p + ip supercon-
ductors, corresponding to two flavors of fermions cα,i, with
α = 1, 2 the layer index, and i a position index. This system
has the symmetry G f = O(2) f discussed in Sec. IV B. The
spinful p + ip superconductor has been proposed as a mean-
field model for strontium ruthenate, Sr2RuO4, although this
has been called into question by recent experiments [38–40].

For each i, the global O(2) f symmetry acts on the fermions
c1,i, c2,i through the standard 2 × 2 matrix representation R.
Denote a group element in O(2) f as (θ, r) where θ ∈ [0, 2π )
is a rotation and r ∈ {0, 1} is a reflection. Then, we have

U ((θ, r))
(

c1,i

c2,i

)
U ((θ, r))† = R((θ, r))

(
c1,i

c2,i

)
, (57)

R((θ, r)) =
(

(−1)r cos θ − sin θ
(−1)r sin θ cos θ

)
. (58)

Note that Gb is also isomorphic to the group O(2), but a 2π
rotation in Gb must act on fermions as (−1)F . The symmetry
operators Ub of Gb act as follows:

Ub((θ, r))
(

c1,i

c2,i

)
Ub((θ, r))† = R((θ/2, r))

(
c1,i

c2,i

)
. (59)

A group element g ∈ Gb lifted to G f can thus be written
as g = (θ/2, r), where θ ∈ [0, 2π ). Note that the symmetry
O(2) f is present in any fermionic system with two iden-
tical layers, including any spinful system where the two
spin flavors are decoupled and have identical Hamiltonians.
However, an arbitrary two-layer system may have additional
symmetries.

We now specialize to the case where each layer is a spin-
less p + ip SC at weak pairing, so that the full symmetry is
indeed O(2) f , and c− = 1 for the whole system. We claim
that det R(g) = (−1)n1(g). That is, if g contains a reflection, so
that det R(g) = −1, then a g defect hosts an unpaired MZM.
In particular, consider a defect of the group element h with
R(h) = (0 1

1 0), which interchanges the fermions. An h defect
can be created by deforming the Hamiltonian along a cut such
that an operator c1,i is permuted into c2,i upon crossing the cut,
and vice versa. But, each end point of such a cut is precisely
a half-quantum vortex. As shown, for example, in [23,24], by
making a suitable basis transformation on the fermion flavors,
we can map the above system with the half-quantum vortex
onto a new double-layer system in which the first layer feels
a π flux (which hosts an unpaired MZM) while the second
layer feels zero flux. Any other reflection can be related to h
by a rotation, and the corresponding defect will also host an
unpaired MZM.

This physics can be completely explained by our theory.
When G f = O(2) f , [ω2] is nontrivial, and corresponds to the
fermion having isospin 1

2 under the SO(2) subgroup of Gb.
From Sec. IV B, we see that any invertible phase with G f =
O(2) f and c− = 1 must have n1 �= 0; in particular, n1(g) = 1
whenever g contains a reflection. The same analysis holds if
O(2) f is replaced by its finite subgroup D f

8n, for integer n.

B. Unpaired MZMs at lattice dislocations

In this section we review different proposals to realize
unpaired MZMs at lattice dislocations, which are translation
symmetry defects.

1. Layered p + ip SCs

Reference [25] discussed a method to realize unpaired
MZMs at dislocations in a layered p + ip superconductor. We
reproduce their prediction and then comment on an additional
invariant in our theory.

The Hamiltonian is H = ∑
k�

†
kH (k)�k, where �†

k =
(c†

k, c−k ), and

H (k)

=
(

2tx cos kx + 2ty cos ky − μ dx sin kx − idy sin ky

dx sin kx + idy sin ky μ− 2tx cos kx − 2ty cos ky

)
.

(60)

The full phase diagram as a function of μ, tx, ty is charac-
terized in Ref. [25] by two Z2 invariants νx, νy, and a Z
invariant ν, which describes the Chern number of the above
BdG Hamiltonian. πνx is the Berry phase of the ground-state
wave function between the time-reversal invariant momenta
(π, 0) and (π, π ). νx is defined mod 2 because the Berry phase
is defined mod 2π . νy is the Berry phase of the wave func-
tion between (0, π ) and (π, π ). In particular, νx = 1 when
|tx + μ

2 | < |ty|, and νy = 1 when |ty + μ

2 | < |tx|.
Reference [25] claims that if the only invariant is, say,

νy = 1, the system can be decomposed into a set of weakly
coupled Kitaev chains along x, stacked in the y direction. If
we assume this picture, such a system should also have an
unpaired MZM at dislocations with Burgers vector ŷ. This is
because we essentially terminate one of the Kitaev chains at
the dislocation, meaning that it will host an unpaired MZM.

Indeed, Ref. [25] predicted that a dislocation on a square
lattice with Burgers vector �b hosts an unpaired MZM when

�b · (νxx̂ + νyŷ) = 1 mod 2, (61)

where νx, νy are as defined above. Thus, νxbx + νyby mod 2 is
the parity of MZMs bound to the dislocation. This agrees with
the above argument, where we took νy = by = 1.

Let us now understand these results using our formalism.
Mathematically, the simplest group which contains translation
symmetries is G f = Z f

2 × Z2, which also describes the above
model. Since [ω2] = 0 we can choose c− to be an integer or
a half-integer. Whether a Gb defect can host unpaired MZMs
or not is determined by the parameter n1. The choices of n1

are classified by H1(Z2,Z2) ∼= Z2
2. This tells us that there

are four possible situations in which unpaired MZMs can
be realized at dislocations along the x and/or y directions
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independently. Thus, if we only consider the invariants c−
and n1(r) = νxrx + νyry, we recover the invariants stated in
Ref. [25].

On the other hand, the classification of Ref. [25] ignores
the freedom in choosing [n2] ∈ H2(Z2,Z2) ∼= Z2. In this ex-
ample, states with trivial and nontrivial [n2] class differ by
a fermion per unit cell. In our classification, states with a
fermion per unit cell are topologically nontrivial, as they give
rise to nontrivial Gb quantum numbers for the fermion-parity
fluxes. In particular, translations in the x and y directions
anticommute on the fermion-parity fluxes, although they com-
mute on fermions. Thus, in our theory the final classification
is Z × Z3

2.25

Reference [72] finds the same classification (Z × Z3
2) for

free-fermion BdG Hamiltonians with only translation sym-
metry and argues that the classification is robust against
interactions and disorder. Our result shows that this classifi-
cation is sharp: every invertible fermionic phase protected by
G f = Z2 × Z f

2 has a free-fermion representative.

2. MZMs at dislocations in a model for Sr2RuO4

This example is taken from Refs. [26,73]. Reference [73]
proposed a pairing mechanism for Sr2RuO4 which involves d
orbitals. It argued that this mechanism results in a higher-order
TSC that hosts unpaired MZMs at dislocations, and that this
is possible even for c− = 0.

Reference [26] argued that in a suitable parameter regime,
the band structure of the three-dimensional material Sr2RuO4

breaks up into a quasi-2D band (meaning that the leading
contribution to its dispersion is proprtional to [cos(kx ) +
cos(ky)]) and two quasi-1D bands [i.e., their dispersions have
leading contributions proportional to cos(kx ) and cos(ky), re-
spectively]. The quasi-1D bands are modeled by the “RKK”
Hamiltonian proposed in Ref. [73]:

H (k) =
(
εxz(k) �(k)
�(k) εyz(k)

)
⊗ 1spin (62)

with the pairing terms for the two orbitals given by

� j = id j (k) · �σσ y, j = 1, 2

d1 = ẑ�0 sin(kx ) cos(ky),

d2 = iẑ�0 sin(ky) cos(kx ). (63)

The claim is that the entire model can be expressed as a stack
of decoupled (2+1)D systems along ẑ. The quasi-2D bands
form a topologically nontrivial p + ip superconductor in the
x-y plane. And the pairing for the quasi-1D bands realizes a
system that hosts unpaired MZMs at dislocations in the x̂ and
ŷ directions.

Let us discuss the conclusion of Ref. [26] using our theory.
The full symmetry group of the (3+1)D system is G f = Z3 ×
Z f

2 but we can understand it using purely (2+1)D physics.

25In Ref. [49], a real-space classification theory was used to obtain
the classification of fermion SPT phases with Gf = Z2 × Z f

2 and
c− = 0 to be Z2 × Z4 as opposed to our result Z3

2. The former result
is inconsistent with the stacking rules for invertible phases proposed
in [20].

The system restricted to the x-y plane has the symmetry G f =
Z2 × Z f

2 . The quasi-2D bands give a system with c− = 1
2 ,

while the quasi-1D bands give a system with n1(x) = n1(y) =
1, where x, y are the elementary translations in Z2. Thus, the
nontrivial phase realized by the RKK model corresponds to
the data [c− = 1

2 , n1(x) = n1(y) = 1]. Our theory is consis-
tent with the results of Ref. [26], if there is only translational
symmetry.

C. Unpaired MZMs at lattice disclinations and corners

1. Inversion symmetry and monolayer WTe2

Tungsten ditelluride, WTe2, is a 3D material with non-
symmorphic symmetries corresponding to the space group
Pnm21 (number 31). Monolayer WTe2, on the other hand, can
undergo a lattice distortion into a phase denoted as 1T′, which
has a rectangular lattice with only translation and twofold
rotation symmetries. The presence of spin-orbit coupling im-
plies that SU(2) f spin rotation symmetry is broken. This
phase is known to support quantum spin Hall insulators in the
normal state of WTe2 [27].

Reference [28] proposed that monolayer WTe2 stabilizes a
higher-order TSC phase in which MZMs are found at opposite
corners of the inversion symmetric system (see Refs. [29,30]
for other discussions of this phase, and Ref. [31] for a re-
lated classification of TSCs with unpaired MZMs at lattice
disclinations).

To model this system, we take Gb = Z2 (ignoring the
translation symmetry, which does not contribute anything
nontrivial in this example) and assume that a 2π rotation acts
as (−1)F . This implies that the spatial symmetry is G f = Z f

4 .
The fCEP maps this system onto one with an effective inter-
nal symmetry Geff

f = Z2 × Z f
2 . From Table III, we see that

our theory also has a solution with n1 �= 0, corresponding to
MZMs at Z2 symmetry defects.

Our usual understanding is that an inversion symmetry
defect is a disclination of angle π , constructed using a cut-
and-glue procedure; this was not studied in Ref. [28]. In their
model, the boundary MZMs are localized at a pair of opposite
corners, where the p-wave pairing vanishes. Since we cannot
prove that having an unpaired MZM at a π disclination im-
plies having unpaired MZMs at opposite corners, our theory
cannot directly verify this prediction. We note that the choice
of corners which host unpaired MZMs is fixed by the nodes
of the pairing term; but in a disclination, this detail does not
matter. In the higher-order TSC phase our theory predicts that
there will always be an unpaired MZM at the disclination.

The full classification of invertible phases with G f = Z2 ×
Z f

2 is Z8 × 1
2Z where the second factor is due to c−. Refer-

ence [28] presented a Z4-valued band invariant (“symmetry
indicator”) κ for higher-order TSCs with inversion symmetry
(this invariant is discussed in more detail in Ref. [74]). It is
interesting that κ = 1 corresponds to the spinless p + ip TSC
with MZMs at fermion-parity vortices and where inversion
symmetry does not play any role, while κ = 2 corresponds
to the inversion symmetric higher-order TSC with odd c−,
and with MZMs at corners. Note that if κ is really treated
as a topological invariant, it would not respect stacking: two
identical p + ip states with κ = 1 do not give a state with
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κ = 2 upon stacking. We suggest that κ is really a Z2 × Z2

invariant in disguise. If we define k = 0, 1 when n1 = 0
and n1 �= 0, respectively, then κ = [2c−]2 + 2k mod 4, where
2c− mod 2, k mod 2 are the two Z2 invariants.

2. Example with Gb = C4 × ZT
2

Reference [33] discussed a different proposal for “Majo-
rana corner states” (see also Refs. [34,35]). Reference [33]
argues that a second-order time-reversal invariant TSC can be
realized by proximitizing a C4 symmetric 2D topological insu-
lator (TI) with an s-wave superconductor. It claims that in this
phase, there is a Majorana Kramers pair at each corner. We
verify this and argue that the system appears to be described
by a nontrivial n2.

The superconducting system has a C4 symmetry whose
generator satisfies h4 = (−1)F . There is also a time-reversal
symmetry with T2 = (−1)F and hT = Th. To model this
we consider Gb = Z4 × ZT

2 , and define ω2 = w2 + s2
1 as de-

scribed in the model. By the fCEP, we should consider
an equivalent internal symmetry with ω2

eff = ω2 + w2 = s2
1.

This implies that Geff
f = Z4 × ZT f

4 (we ignore translations
throughout, as they do not affect the discussion). It turns out
that there is a solution with with n1 = 0 and n2 = w1s1, where
w1 ∈ H1(Z4,Z2).

In this example, it is easiest to interpret n2 by looking at
the remaining parameter ν3, which is derived from n2 using
Eq. (5) and determines the Gb quantum numbers of symmetry
defects. In particular, with n2 as above, we obtain a parameter
ν3 whose functional form indicates that a Z4 defect has local
T2 eigenvalue ±i.26

In Sec. II E we noted that T2 = ±i indicates the presence
of a Majorana Kramers pair, or a “fermionic Kramers degen-
eracy.” In that context this degeneracy was associated to a
fermion-parity flux and described by n1 = s1. Here, since we
found above that n2 = w1s1 implies that a Z4 defect carries
a local T2 = ±i eigenvalue, we conclude that in this model
a C4 defect (i.e., a disclination or corner with angle π/2)
carries a Majorana Kramers pair. This precisely reproduces
the conclusion of Ref. [32], and further predicts that a π/2
disclination will also host a Kramers pair of MZMs.

Note that there is also a solution for this symmetry with
n1 = s1, but it does not involve the C4 symmetry, and so does
not describe the above example.

D. MZMs in reflection-symmetric systems

1. TSCs with mirror symmetry

This example is taken from Ref. [32] which takes a model
for a Dirac semimetal and gaps out the Dirac nodes along
with a p + ip superconducting pairing term. We show that
although our theory supports their conclusion about unpaired

26Specifically, ν3 = ± 1
4 w1s2

1 mod 1. Moreover, there is a
bosonic SPT with Gb symmetry corresponding to 2ν3. From the
Künneth formula, we can check that this SPT generates the subgroup
H2(ZT

2 ,H1(Z4,U (1))). The interpretation here is that a Z4 defect
has T2 eigenvalue −1. To arrive at the above interpretation for ν3 we
simply take the square root of this eigenvalue.

FIG. 3. Schematic for a TSC with mirror symmetry. The sym-
metries of the model given in Ref. [32] are mirror reflections along
the usual x and y directions. However, we find unpaired MZMs at the
corners of the sample only if we consider a different set of reflections
along the diagonals l1, l2.

MZMs at the corners of a reflection-symmetric system, the
symmetries originally identified in Ref. [32] are not sufficient
to establish this claim. This example also gives us intuition for
the meaning of n1 �= 0 for reflection symmetries.

The system is modeled by four Majorana fermions
γi,r, 1 � i � 4 per site (see Fig. 3), with the Hamiltonian

H = − 2it
∑

r

(γ2,rγ1,r+x̂ + γ4,rγ3,r+x̂

− γ2,rγ4,r+ŷ + γ1,rγ3,r+ŷ) + H.c. (64)

Reference [32] states that Gb is generated by two mirror sym-
metries Mx,My which satisfy

M2
x = M2

y = (MxMy)2 = (−1)F . (65)

Upon adding a p-wave superconducting term, the paper ob-
serves that the system hosts MZMs at its corners.

While Mx,My are indeed symmetries of the model, we
believe that they are not sufficient to explain the presence
of unpaired MZMs at corners. Equation (65) implies that
the spatial symmetry is the quaternion group Q8. Using the
fCEP, the equivalent internal symmetry is Z2 × ZT

2 × Z f
2 , i.e.,

ω2
eff = 0 and s1 �= 0. But in this case there is no solution with

n1 �= 0. Therefore, our theory predicts that if these were the
full symmetries, unpaired MZMs would not be allowed at the
corresponding symmetry defects. Another issue is that in this
example, the corners do not correspond to defects of Mx or
My.

One possible resolution is the following. The system also
has two reflection symmetries M1,M2 about the lines l1, l2
shown in Fig. 3. We find that M1 takes (x, y) → (y, x)
and �γ = (γ1, γ2, γ3, γ4) → �γ ′ = (−γ4,−γ2, γ3,−γ1) (here
we have suppressed the position index). In the Majorana basis,
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an operator satisfying M1 �γ TM†
1 = �γ ′T is

M1 = 1 + γ1γ4√
2

γ3. (66)

From this we see that M2
1 leaves all positions invariant and

also satisfies M2
1 = −γ1γ4 within each site. This implies

that M4
1 = −14×4 acts trivially on the Majorana fermions, as

M4
1γi(M†

1)4 = γi. Thus, M1 generates a orientation revers-
ing Z4 subgroup of G f . Similarly, we can show that

M2 = 1 + γ2γ3√
2

γ1 (67)

generates an orientation reversing Z4 subgroup of G f . The
full symmetry G f includes these reflections and the lattice
translations, as well as an onsite symmetry that permutes
the Majorana fermions. Note that the reflections mentioned
in Ref. [32] can be expressed in terms of M1,M2 and the
internal symmetry operations.

Suppose we consider just the reflection about l1 (or l2).
The spatial symmetry is G f = ZR

4 × Z f
2 . Now we can use

the fCEP. The effective internal symmetry is Geff
f = ZT

4 × Z f
2 .

From Table II, there is a solution with n1 = s1.
Now if n1(g) = 1 where g is originally a reflection, we

expect the system to carry a Kitaev chain along the reflec-
tion axis, with unpaired MZMs at its ends. This would be
a generator of (1+1)D invertible phases with Z4 × Z f

2 on-
site symmetry. In this model, the corners of the system lie
along either l1 or l2, and it is clear that they carry unpaired
MZMs. Therefore, our theory now supports the conclusion of
Ref. [32].

2. MZMs in a mirror-symmetric model for Sr2RuO4

Reference [36] studied a model for Sr2RuO4 with a mir-
ror symmetry M that takes (x, y, z) → (x, y,−z). Let H =∑

k,α �
†
kαH (k)�kα , where �kα = (ckα, c

†
kα )T and α indexes

spin and orbital degrees of freedom. If we fix z = 0 in this
model, M takes c(kx,ky )α → ±c(kx,ky )α where spin-up and -
down fermions have eigenvalues +1,−1 respectively.27 In
particular, M2 acts trivially on fermions. So if we consider
only the reflection symmetry, G f = ZR

2 × Z f
2 .

The paper argues that there is a superconducting phase in
which the system decouples into 2D layers. The z = 0 layer
can be viewed as a stack of a spinless p + ip SC and a spinless
p − ip SC formed by fermions which are even and odd under
M, respectively. We can explain these results by modeling
the mirror symmetry as an internal, unitary Geff

f = Z2 × Z f
2

symmetry acting within the z = 0 layer. Now the TSC state
proposed in Ref. [36] is the same as the generator of invertible
phases with internal symmetry Z2 × Z f

2 , as proposed by Gu

27Reference [36] defines a reflection operator M̃ under which
fermions in the z = 0 layer have eigenvalue ±i, which seems to im-
ply that the symmetry is ZR f

4 . But M̃ takes c → ±ic and c† → ±ic†.
This transformation is not consistent because if c → eiθc, we must
necessarily have c† → e−iθc†. However, by defining M = iM̃, we
do find a valid symmetry operator under which c → ±c.

and Levin [70]. In our theory, this state is given by the data
c− = 0 and n1 �= 0.

Reference [36] did not give a proposal to isolate an un-
paired MZM at a symmetry defect in this model. It may be
possible to implement a reflection symmetry defect in the
(3+1)D system as a cross cap; its action on the z = 0 layer
would then act as an onsite Z2 symmetry defect whose end
points would host unpaired MZMs. Such a defect would not
arise in a real material, although perhaps it could be engi-
neered in a synthetic quantum many-body system.

3. p + id superconductor

This proposal is from Ref. [32]. The system under study is
a spinful p + id superconductor and the symmetry reported is
an antiunitary C4 symmetry that we write as Gb = ZT

4 (in the
paper it is written as C4T ). The fermionic symmetry group
is G f = ZT f

8 . We have s1 �= 0. The model predicts unpaired
MZMs at corners; our theory cannot directly confirm this
from the given symmetry, but it can do so if we consider
an additional reflection symmetry that is also present in the
Hamiltonian that was not commented upon in [32].

The model is of spinful fermions in which the Hamiltonian
has a kinetic term, a standard p-wave pairing term, and an
additional d-wave pairing term:

H (k) =
∫

dk
[

c†
k

(
k2

2m
− μ

)
ck + [

�pcT
k (k · �σ )iσ yc−k

+ i�d cT
k

(
k2

x − k2
y

)
iσ yc−k + H.c.

]]
. (68)

The d-wave pairing term separately breaks rotation and
time-reversal symmetries, but is symmetric under ZT f

8 . In the
absence of this term, the system is a time-reversal invari-
ant TSC in class DIII, with gapless Majorana edge states.
Reference [32] shows that the d-wave pairing term changes
sign under a rotation. It gaps out the boundaries, but in such
a way that the mass terms have opposite signs on adjacent
boundaries that meet at a corner. Since each corner is a node
of the mass term, it must host an unpaired MZM.

Now we describe the same system using our theory. We
ignore the translations as in the previous example. By the
fCEP, we should apply our theory with an effective internal
symmetry under which the fermion has trivial Gb quantum
numbers, i.e., Geff

f = ZT
4 × Z f

2 . For this symmetry, Table II
shows that there is a solution with n1 = s1. But we do not
know how to properly define defects of ZT

4 , and so it is not
clear that n1 = s1 implies unpaired MZMs at the corners.

There is, however, a resolution involving reflection symme-
tries. Note that the transformation R : c(kx,ky ) → iσ xc(kx,−ky )

is a unitary reflection. Combined with the generators of ZT
4 ,

which take c(kx,ky ) → iσ yc(ky,−kx ) (along with a complex con-
jugation operation), we get a pair of antiunitary reflections
R1,R2 that take c(kx,ky ) → ic(±ky,kx ) and leave opposite corners
invariant. In particular, R2

1 = R2
2 = 1.

Now we can consider each reflection separately with
G f = Z

R1(2)

2 × Z f
2 . Using the fCEP, we find that Geff

f = Z2 ×
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Z f
2 , which does admit a solution with nontrivial n1.28 This

solution means that each reflection axis hosts a 1D TSC with
unpaired MZMs at its ends, explaining the observation in
Ref. [32].

The argument is as follows. Since R2
1(2) = 1, if we restrict

to either invariant reflection invariant line, the symmetry acts
as time reversal with T2 = +1. Therefore, the effective 1D
system is in class BDI, for which there is indeed a TSC with
unpaired MZMs at the ends [75]. Applying this argument to
both reflection axes leads to a solution with unpaired MZMs
at each corner of the original model.

E. Magnetic translation symmetry

Reference [51] studies “Hofstadter superconductors,”
which are invertible phases that result from adding p-wave
pairing terms to the Hofstadter model. It studies symmetry
conditions under which a c− = 1

2 state can be realized. We ex-
press their results using our theory, and furthermore study the
possiblility of unpaired MZMs at dislocations in this model.
We then comment on the properties of charge-2Q Hofstadter
SCs for general Q.

In the regular Hofstadter model the symmetry group G f

consists of magnetic translations with flux φ = 2π p
q per unit

cell, with p, q coprime integers. For concreteness, we write
the pure Hofstadter Hamiltonian in Landau gauge as

H0 = −t
∑

r

c†
rcr+x̂ + e−2π i p

q rx c†
rcr+ŷ + H.c. (69)

H0 has a U (1) f symmetry defined by the operators Uθ , θ ∈
[0, 2π ), which satisfy UθcrU

†
θ := eiθcr for each r. The gen-

erators Tx,Ty of the magnetic translations have the following
action on fermionic operators:

TxcrT †
x := e−2π i p

q ry cr+x̂, (70)

TycrT †
y := cr+ŷ. (71)

This results in the following commutation relation on single-
fermionic operators:

TxTy = e2π i p
q TyTx. (72)

Importantly, when q is even, we have the relation

TxT q/2
y = (−1)F T q/2

y Tx. (73)

Thus, the commutator of Tx and T q/2
y acts trivially on bosonic

operators but by a minus sign on fermionic operators. This
relation is not true when q is odd.

Suppose we now add a pairing term of the form

H� := �
∑

r

(crcr+x̂ + crcr+ŷ) + H.c. (74)

Adding the pairing term breaks the U(1) f symmetry down to
Z f

2 fermion parity. The magnetic translation symmetry is also

28Here ω2 = 0 and ω2
eff = w2

1 + w1s1 = 0 where w1 = s1. This
uses the most general formulation of the fCEP with both reflec-
tion and time-reversal symmetries. Therefore, this example can be
thought of as another nontrivial check on the fCEP formula (30).

broken: in the above model, Ty remains a symmetry, while
Tx is broken. Now for odd q, T q

x is the smallest translation
along x̂ that is still a symmetry of the paired Hamiltonian.
Note that T q

x commutes with Ty. The new symmetry group is
G f = Z2 × Z f

2 , and has [ω2] = 0.
However, for even q, the smallest translation along x̂ is

T q/2
x , which anticommutes with Ty. Thus, the new unit cell in

this case encloses π flux rather than zero flux. This symmetry
group has [ω2] �= 0.

From this follows several consequences that were also
derived in Ref. [51], using the representation theory of the
pairing terms in momentum space. Paired states with even q
must have c− ∈ Z in order to support π flux per unit cell,
while states with odd q can have half-integer c−. Thus, the
minimal nonzero value of c− is q/2 mod 1. This implies that
fermion-parity vortices can only host unpaired MZMs if q is
odd.

Using our theory we can additionally discuss the possi-
bility of unpaired MZMs at dislocation defects: this was not
commented upon in Ref. [51]. Let us restrict to the case with
integer c−. For Gb = Z2, all obstructions at the level of n2

or ν3 vanish. Thus, we can choose an arbitrary nonzero n1,
irrespective of the value of q. This means hat unpaired MZMs
can be found at x̂ or ŷ dislocation defects independently,
although the Hamiltonian may need to be modified to realize
these phases.

Another extension of this idea is to consider charge-2Qe
superconductors instead of charge-2e superconductors, for
different even Q. The crucial difference here is that the U(1)
bosonic charge conservation symmetry is broken down to a
discrete ZQ subgroup, corresponding to the fact that Q bosons
can be created or annihilated simultaneously through suitable
interactions. For odd Q, the charge conservation symmetry
acting on the fermions takes the form Z f

2 × ZQ (this is iso-
morphic to Z f

2Q for odd Q). On the other hand, for even Q,

the charge conservation symmetry is of the form Z f
2Q, with

[ω2] �= 0. For even Q, c− is therefore forced to be an integer,
irrespective of any other symmetries (see Table I).

Suppose we additionally consider a magnetic translation
symmetry, and study the properties of dislocation defects in
this case. For even Q, the Z f

2Q charge conservation symmetry
implies that unpaired MZMs cannot exist even at dislocation
defects, if the symmetry does not include charge-conjugating
elements. The arguments are identical to those given in
Sec. IV B: essentially, the fermion has charge 1

2 under the
bosonic ZQ symmetry, but when n1 �= 0 we cannot consis-
tently extend this to define a ZQ charge for the fermion-parity
fluxes.

F. Unpaired MZMs in iron superconductors

In this example we consider a proposal involving a 2D
heterostructure of monolayer FeTe1−xSex (FTS) with mono-
layer FeTe [50]. This work predicts unpaired MZMs at the
corners of the system (to be discussed below). We study the
proposal and argue that the observations do not correspond
to a well-defined 2D bulk invariant in our theory, unless ad-
ditional unidentified symmetries are involved. However, the
symmetries do admit possible bulk invariants that, if nonzero,
would imply unpaired MZMs at dislocations.
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Monolayer FTS is a superconductor with a normal-state
band structure that likely corresponds to a quantum spin
Hall insulator. Monolayer FeTe has ferromagnetic (FM) and
antiferromagnetic (AFM) edges along, say, the ŷ and x̂ di-
rections, respectively. The symmetry generator along x̂ in the
heterostructure is a half unit-cell translation combined with a
time-reversal operation, which generates a group we denote as
ZT. The full spatial symmetry is Z × ZT.

The proposal is that if the FTS layer is made supercon-
ducting, the heterostructure realizes a higher-order TSC phase
with unpaired MZMs at the corners An exchange coupling
with the FM edge in FeTe gaps out the edges of the het-
erostructure that run along ŷ. This edge is argued to be in
the same phase as a 1D spinless p-wave superconductor,
if the FM interaction is sufficiently strong. In the normal
state, there is a gapless state running along each x̂ edge,
which is also gapped by superconductivity. Since the AFM
edge is topologically trivial, [50] argues that each corner lies
at the junction of a spinless 1D p-wave SC and a trivial
phase, and so there should be an unpaired MZM at each
corner.

Importantly, corner MZMs are not necessarily a bulk topo-
logical property unless protected by a rotational symmetry.
This is because we can always add ancilla degrees of freedom
and tune the edge Hamiltonian so as to remove the corner
MZMs.

While our theory does not predict corner MZMs, it has
solutions with n1 �= 0 when Gb = Z × ZT. In particular, if
n1(ŷ) = 1, a dislocation with Burgers vector ŷ will bind an
unpaired MZM; this is a bulk invariant that would be inter-
esting to check in the above model. There are also solutions
with n1(x̂) = 1 and n1(x̂ + ŷ) = 1, but these translations are
antiunitary so we cannot treat dislocations with Burgers vector
x̂ or x̂ + ŷ as symmetry defects in this case; it would be
interesting to understand what observable consequences they
imply.

VI. DISCUSSION

We have shown that the chiral central charge c−, together
with the symmetry of the ground state G f , imposes nonper-
turbative constraints on whether an invertible phase can host
unpaired MZMs or not. There are two obstructions, captured
by the quantities O3 and O4, and the O4 obstruction typically
imposes stronger constraints than O3. We also demonstrated
how to apply our results when there are crystalline symme-
tries, using the fermionic crystalline equivalence principle. We
stated a concrete algebraic formula for the fCEP [Eq. (30)]
that was not presented in previous work, and illustrate various
checks on its correctness in Appendix B.

The richness of these constraints can be illustrated just by
looking at order-2 symmetries. We recall the following results
from Tables I–III. When h generates a unitary internal Gb =
Z2 symmetry, unpaired MZMs are allowed if h2 = 1 and are
forbidden if h2 = (−1)F . The latter condition automatically
means that a charge-4 superconductor cannot have unpaired
MZMs, and must have integer c−. This is a result that cannot
be derived from free-fermion techniques. The analogous state-
ment for a charge 4n SC is also true, if we replace Gb = Z2

by Z2n.

The situation is reversed when h is a unitary C2 rota-
tion: unpaired MZMs are allowed at disclinations or system
boundaries if h2 = (−1)F , while if h2 = 1, we can only have
integer c−, and unpaired MZMs are not allowed. The former
result is the basis for several proposals of inversion-symmetric
higher-order TSCs.

If h is a reflection (unitary or antiunitary), and h2 = 1,
unpaired MZMs can be realized by placing a Kitaev chain
on the reflection axis. This idea has also been utilized in
several higher-order TSC proposals. Unpaired MZMs cannot
be realized if h2 = (−1)F .

Finally, when h = T is an antiunitary internal symmetry,
and T2 = (−1)F , we can have a phase with Majorana Kramers
pairs bound to fermion-parity flux (the class DIII TSC). It
can be mathematically characterized in terms of a local T2

eigenvalue ±i associated to a fermion-parity flux.
Our theory can mathematically describe further variations

on these symmetries, such as antiunitary rotations and reflec-
tions, although the physical interpretation of the data is not
always clear in this case, as we mention below.

If the system has translation symmetry, unpaired MZMs
are allowed either at fermion-parity fluxes (when c− is a
half-integer) or at lattice dislocations (for any value of c−).
This is also true if the system has π flux per unit cell. An
open problem is to extend these results to understand all the
constraints on c− and on unpaired MZMs for systems with
(2+1)D wallpaper group symmetries.

In obtaining constraints on several compact Lie groups,
we derived results about the group cohomology of their Z2

quotient, which includes some mathematical results we have
not found in the prior literature. For general Lie groups we can
derive many of the constraints by considering the right sub-
groups. For example, the constraints for G f = U(n) f can be
easily obtained by studying its U(1) f and SU(n) f subgroups.

The solution for G f = O(n) f is particularly useful because
it can be used to find solutions to O3,O4 for arbitrary groups
G′

f as follows. First, for any group G′
f , we consider real

representations defined by a map ρ : G′
f → O(nρ ) that sat-

isfies ρ((−1)F ) = −1. Next, define a map on the quotient
ρ̃ : G′

f /Z
f
2 → PO(nρ ) by ρ̃(g) = ρ(g̃). Here g̃ is a lift of g to

G′
f .29 We then construct solutions of Eqs. (3) in G′

b = G′
f /Z

f
2

by pullback of the solutions in PO(nρ ) using ρ̃.30

There is an important unanswered question in this work.
Unpaired MZMs at g defects for systems with unitary symme-
tries are described by a parameter n1(g) = 1. For antiunitary
symmetries with T2 = (−1)F , n1(T) = 1 indicates a Majo-
rana Kramers pair bound to a fermion-parity flux. However,
we do not systematically understand the meaning of n1(g) =
1 for general antiunitary symmetries because we do not
have a well-defined construction for antiunitary defects. For

29Note that the map is well defined because the other lift differ by
(−1)F so that the image would be ρ(g̃(−1)F ) = ρ(g̃)ρ((−1)F ) but
ρ((−1)F ) = −1 is equivalent to the identity in PO(nρ ).

30This may be viewed as a free to interacting map, similar to [67],
in the more general case of Gf �= Z f

2 × Gb. Another way to view this
map is as a generalization of the spin cobordism version of the Chern
character defined in Ref. [71].
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example, if G f = ZT
4 × Z f

2 (internal) or G f = CT f
8 (antiu-

nitary π/2 rotation), the theory has a solution with n1 �= 0
for the generator of Gb, but we do not understand what this
means physically. Fully understanding the mathematical data
for antiunitary symmetries is still an open question.

There are also several broader theoretical questions. We
gave an example of an intrinsically interacting fermionic
phase in Sec. IV J. We would like to fully understand the map
between free- and interacting-fermion systems, particularly
in the context of crystalline symmetries, and systematically
identify intrinsically interacting phases. Other open questions
are to develop a full-dimensional reduction procedure to relate
the data between (1+1)D and (2+1)D invertible phases (see
Ref. [76] for a partial answer in the case of “supercohomol-
ogy” fermionic SPT phases), and in the other direction, to
understand the (3+1)D classification using methods similar to
ours. In the latter case the situation is much more complicated.
Finally, it would be interesting to study constraints on c− in
the setting of noninvertible fermionic topological states that
have intrinsic topological order, which are also referred to as
fermionic symmetry-enriched topological (SET) phases, and
for which a theory was recently developed in Refs. [21,22,77].
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APPENDIX A: RESULTS FROM GROUP COHOMOLOGY

1. Cup product definitions used in the main text

Here we state some basic definitions in group cohomology.
A more detailed discussion of the quantities defined here can
be found in Appendix B of Ref. [20]. Let Cn(Gb,M ) be the
set of functions in n variables from Gb to the Abelian group
M. Each element of Cn(Gb,M ) is called an n-cochain. We
commonly take M = Z,Z2,U(1): for example, in defining
n1, n2,O3 we take M = Z2, and in defining ν3,O4 we take
M = U(1).

The differential d takes an element in Cm(Gb,M ) to an
element in Cm+1(Gb,M ), and satisfies d ◦ d = 0. Examples
are shown below.

When M is a ring, there is a binary operation on
cochains called the cup product, denoted ∪ : Cn(Gb,M ) ×
Cm(Gb,M ) → Cn+m(Gb,M ), defined as

( fn ∪ fm)(g1, . . . , gn+m) := fn(g1, . . . , gn) fm(g1, . . . , gm).
(A1)

Similarly we can define cup-i products, denoted ∪i, for i � 0.
These are binary operations ∪i : Cn(Gb,M ) × Cm(Gb,M ) →
Cn+m−i(Gb,M ).

Here we give the expanded form of some of the equa-
tions used regularly in the main text that used cup products
or other cohomology operations. If g,h,k, l ∈ Gb, and fi ∈
Ci(Gb,M ),

df1(g,h) := f1(g) + g f1(h) − f1(gh), (A2)

df2(g,h,k) := −[ f2(g,h) + f2(gh,k)] + [ f2(g,hk) + g f2(h,k)], (A3)

f1 ∪ f2(g,h,k) := f1(g) f2(h,k), (A4)

f2 ∪1 f2(g,h,k) := f2(g,hk) f2(gh,k) + f2(g,hk) f2(h,k) mod 2, (A5)

df3(g,h,k, l) := f3(g,h,k) − f3(gh,k, l) + f3(g,hk, l)

− f3(g,h,kl) + g f3(h,k, l). (A6)

The superscript g fn refers to the action of Gb on M. In Eq. (4), which defines O3, the action is trivial. In Eq. (5), while
defining dν3, we assume that antiunitary operations act on the U(1) coefficients by conjugation. Therefore, gν3(h,k, l) =
[1 − 2s1(g)]ν3(h,k, l). We will interchangeably use multiplicative and additive notation for U(1) by identifying x mod 1 (in
additive notation) with e2π ix (in multiplicative notation).

2. Slant products

In calculations we often use the so-called slant product. Let us start by reviewing the results of Ref. [76]. The set of G
chains of degree d is denoted by Cd (G,Z) and corresponds to the Abelian group generated by elements of the d-fold product
of G (G×d ). We write cm = [g1| . . . |gd ] for the generator corresponding to (g1, . . . , gd ) ∈ G × · · · × G. There is a differential
∂ : Cm(G,M ) → Cm−1(G,M ) defined on the basis elements cm = [g1| . . . , |gm] as

∂cm = [g2| . . . |gm] +
m−1∑
j=1

(−1) j[g1| . . . |g jg j+1| . . . |gm] + (−1)m[g1| . . . |gm−1].

The definition on more general chains follows by Z linearity.
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The slant product

ι : Cn+m(G,M ) × Cm(G,Z) −→ Cn(G,M )

is defined as follows. First, consider a G-cochain ωn+m ∈ Cn+m(G,M ) and an integer G-chain cm = [g1| . . . |gm] ∈ Cm(G,Z).
The slant product between them is defined by the formula

(ιcmωn+m)(a1, . . . , an) : =
∑

I

(−1)σ (I )ωn+m(. . . , ai j− j, g j, ai j− j+1, . . . ),

I = (i1 < · · · < im),

σ (I ) =
m∑

j=1

(n + j + i j ) mod 2, (A7)

where the sum is over all ordered subsets of {1, 2, . . . ,m + n}
with m elements (denoted by I). The Ith summand has a sign
(−1)σ (I ) and a ωm+n(. . . ) part. The argument for the latter is
determined by the following procedure: Fill the jth slot of
ωm+n with g j ( j ∈ {1, 2, . . . ,m}). Then fill the remaining n
slots with a1, a2, . . . , an from left to right. The intuition for
σ (I ) is that it counts how many times we moved the gk’s from
the “reference order”: a1, . . . , an, g1, . . . , gm for which i j =
n + j. The definition of the slant product on general chains is
then defined by Z linearity.

As reviewed in Ref. [76], for G = A Abelian,

d
(
ιcmωn+m

) = ιcm dωn+m + (−1)m+nι∂cmωn+m. (A8)

If we have ∂cm = 0, ιcm maps cocycles and coboundaries
to cocycles and coboundaries in lower degree. This im-
plies that we get a well-defined map in cohomology ιcm :
Hm+n(A,M ) → Hn(A,M ).

The most common case is to take cg
1 := [g] so that ∂cg

1 =
[g] − [g] = 0. Another useful example is when there is a
subgroup Zm ⊂ A that is generated by g. Then we can define
the quantity cg

3:

cg
3 : =

m−1∑
j=0

[g|g j |g] ⇒ ∂cg
3

=
m−1∑
j=0

([g j |g] − [gg j |g] + [g|g jg] − [g|g j]) = 0, (A9)

where we shifted the summation j → j + 1 on the terms with
minus signs and used that gm = g0. This generalizes to

cg
2n+1 =

m−1∑
j1,..., jn=0

[g|g j1 |g|g j2 |g| . . . |g jn−1 |g|g jn |g]

�⇒ ∂cg
2n+1 = 0. (A10)

The notation for the summand means that the odd slots are g,
while slot 2l is g jl .

Note that the same procedure almost works for the follow-
ing chains:

cg
2n =

m−1∑
j1,..., jn=0

[g j1 |g| . . . |g|g jn |g] �⇒ ∂cg
2n = mcg

2n−1.

(A11)

If we consider M = Zl and m = 0 mod l , we can use cg
2n to

calculate invariants because ∂cg
2n is zero modulo l . We denote

∇g
j = ιcg

j
. (A12)

3. Pontryagin square

The Pontryagin square is a cohomology operation that re-
fines the square coming from the cup product. In particular,
consider ω ∈ H2d (G,Z2L ), then P (ω) ∈ H4d (G,Z4L ) such
that 2P (ω) = 2ω ∪ ωmod 4L in H4d (G,Z4L ). An explicit ex-
pression for this operation is as follows. Take W an integral lift
of ω, i.e., W ∈ C2d (G,Z) such that W = ω mod 2L. Then

P (ω) = W ∪ W − W ∪1 dW mod 4L

is independent of the lift W as a cohomology class in
H4d (G,Z4L ).

4. Spectral sequences

In this Appendix we discuss the Lyndon-Hochschild-Serre
spectral sequence (LHSS) that we use for some calculations
in the Appendixes. An introduction to the LHS which is ori-
ented towards physicists is given in Appendix K of Ref. [78],
whose notation we also adopt here. This Appendix assumes
that background, and discusses how to use the graded ring
structure of H(G,M ) to simplify the calculation, when M
is a ring. For a more complete mathematical discussion see
Refs. [79,80] and the references therein.

Consider a group G that is the extension of some group Q
by some other group N , i.e., there is a short exact sequence

1 → N
ι−→ G

π−→ Q → 1. (A13)

When N is an Abelian group, the extension is specified by
two objects. ρ : Q → Aut(N ) specifies how Q acts on N , and
a 2-cocycle μ2 ∈ Z2

ρ (Q,N ) specifies G. The notation means
we consider cochains with coefficients in N that are closed
under the twisted differential specified by ρ. When N is a
non-Abelian group, there is a similar, but more complicated,
characterization of the extensions. The simplest case of the
latter is when the group G is a semidirect product. In this case,
the extension is simply specified by ρ : Q → Out(N ).

The LHSS is a tool to calculate H(G,M ) with M any G
module (the differential can be twisted) assuming that the
group cohomologies of Q and N are known. Furthermore,
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when M has a ring structure it also gives the graded-ring
structure of H(G,M ).

In the calculations below, we take M = Zn,Z,R = Z2. Zn

and Z are rings with the obvious multiplication and trivial
G action. We can give Z2 a ring structure by identifying it
with Z[ε]/(ε2 − 1), the polynomial ring in one variable ε
modulo the relation ε2 = 1. We can let G act on R by send-
ing a + bε → a + b(−1)ρ(g)ε. This allows us to calculate the
cohomology with Z coefficients for trivial and twisted action
at the same time, as well as uncover extra structure, using
methods from Ref. [81].

The setup of the LHSS is the following. Imagine we have
a notebook with enumerated pages. Starting on page 2 (E2)
we define a two-dimensional lattice with nontrivial entries
in the first quadrant, where the (p, q) element is E p,q

2 :=
Hp(Q,Hq(N,M )) for p, q � 0 and E p,q

2 = 0 otherwise. Here
Q acts on the coefficients in two ways: it acts on Hq(N,M )
via a map induced by ρ, and also acts directly on M.

Then the basic result is that the LHSS converges to the
desired cohomology H(G,M ), as expressed by

E p,q
2 = Hp(Q,Hq(N,M )) ⇒ Hp+q(G,M ). (A14)

This means that, starting from the E2 page, we can take suc-
cessive differentials (as defined in Appendix K of Ref. [78])
to obtain higher pages En, n > 2. The LHSS stabilizes at a
page denoted E∞ (pronounced “E infinity”), in which all dif-
ferentials vanish. The group cohomology H(G,M ) can then
be obtained by carrying out a sequence of group extensions
involving groups on the E∞ page.

Now if M is a ring, i.e., it has a multiplication operation
compatible with addition, and if the action of any group K on
M is compatible with this multiplication, we can define a cup
product in the group cohomology with M coefficients:

∪ : Hn(K,M ) × Hm(K,M ) → Hn+m(K,M ). (A15)

In this case there is also extra structure to the LHSS. Consider
the rth row of the E2 page, E∗,r

2 . The elements of E∗,r
2 can

be obtained as cup products of elements in E∗,0
2 and a set

of generators in E∗,r
2 . Additionally, E0,∗

2
∼= H∗(Q,M ) has a

ring structure that imposes relations between the generators of
different rows E∗,r

2 . This is useful because in the examples we
consider, the whole E2 page is specified by a small number
of generators. This statement also applies to higher pages,
including E∞.

The cup product structure is also useful in determining
differentials. For example, the differential d2 is given by a map
d p,q

2 : E p,q
2 → E p+2,q−1

2 for each p, q > 0 [78]. A useful fact
is that this differential satisfies a Leibniz rule of the form

d2(x ∪ y) = (d2x) ∪ y + (−1)|x|x ∪ (d2y), (A16)

where x and y are cohomology classes and |x| is the degree of
x. Thus, knowing how d2 acts on the generators in the E2 page
allows us to fully determine d2. A similar statement applies to
the higher differentials di, i > 2.

Suppose we have determined all differentials and obtained
the E∞ page of the LHSS. A further application of the above
structure is to solve the extension problem which is necessary
to obtain H(G,M ) from the E∞ page. To determine Hn(G,M )
we have to solve (n − 1) group extensions. However, the

fact that the correct solution to the extension problem must
be consistent with the ring structure of H∗(G,M ) imposes
several constraints that simplify the calculations.

We will also make use of what are called “edge mor-
phisms.” These are two maps

ι∗◦ :Hq(G,M ) ↪→ E0,q
∞ , (A17)

π∗
◦ :E p,0

∞ ↪→ Hp(G,M ). (A18)

Suppose the group extension is split, i.e., there is a group
homomorphism σ : Q → G such that πσ ∼= Id . Then σ ∗π∗
must be an isomorphism. Thus, π∗ is injective and σ ∗ is
surjective. From this it can be shown [79] that π∗

◦ is also
injective, i.e., that there is a copy of H(Q,M ) inside H(G,M ).
What is more, E∗,0

2 = E∗,0
∞ , so no nontrivial differential hits

the q = 0 row.

5. Bockstein homomorphisms

The previous section was about how we can the cohomol-
ogy of a group that lies in an SES, if the SES contains other
groups whose cohomology is known. In this section we will
fix the group G but get further information about its group
cohomology by connecting different coefficients.

Consider a short exact sequence of G modules

M1
ι1−→ M2

ι2−→ M3. (A19)

This induces a long exact sequence (LES) in group
cohomology

· · · → Hp(G,M1)
ι∗1−→ Hp(G,M2)

ι∗2−→ Hp(G,M3)
b(p)−→ Hp+1(G,M1) → · · · , (A20)

where b(p) : Hp(G,M3) → Hp+1(G,M1) is a collection of
maps that increases the degree by one and measures the ob-
struction to lifting classes in Hp(G,M3) to Hp(G,M2). We
abuse notation and package each b(p) into a single object
b : H(G,M3) → H(G,M1). This map is called the Bock-
stein homomorphism or the Bockstein map. There are explicit
formulas for the Bockstein obtained by taking lifts, differenti-
ating and then using ιi to map the obtained class to the correct
coefficients.

In particular, consider the SES of trivial G modules

1 → Z → R → U(1) → 1. (A21)

We denote the Bockstein map for this SES by β. At the
cochain level, β corresponds to taking an R lift of a repre-
sentative of ζ ∈ H(G,U(1)) and applying d .

More generally, let σ ∈ H1(G,Z2) specify the sign-
changing action of G on Z or U(1) coefficients. Then in
Table IV we summarize the Bocksteins we use in this work.
When σ is trivial, we omit it from the notation. In the notation
of the table, δσ ≡ βσ2 (in writing βσ2 , the subscript refers to the
group Z2 on the right of the SES which defines βσ2 , and the
superscript to the action of G on coefficients).

There are many relations between the different Bocksteins.
These can be obtained from a commutative diagram that
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TABLE IV. Commonly used short exact sequences and the nota-
tion for their Bockstein homomorphisms.

SES Bockstein

1 → Zσ → Rσ → U(1)σ → 1 βσ

1 → Zσ → Zσ → Zσn → 1 βσn
1 → Zσm → Zσmn → Zσn → 1 βσm,n
1 → Zσ → Zσ → Z2 → 1 δσ

involves two SESs of coefficients. For example, the diagram

(A22)

implies the commutativity of

(A23)
which implies

bN ◦ f ∗
3 = f ∗

1 ◦ bM . (A24)

In particular, consider the following maps: the inclusion
jn : Zn ↪→ U(1) that sends jn(k) = k/n, ρn : Z → Zn that
sends ρn(k) = k mod n, and θn(μn) which are multiplication
by n(1/n). Again we denote the action of G on each coefficient
module by the superscript σ . These maps fit in the commuta-
tive diagrams

, (A25)

, (A26)

They imply

βσ ◦ j∗n = βσn ,
βσm,n = ρ∗

m ◦ βσn
⇒ βσm,n = ρ∗

m ◦ βσ ◦ j∗n . (A27)

Finally, it is also known that (see, e.g., Theorem 2.3 of
Ref. [82])

ρ∗
2 ◦ δσ (ω) = Sq1(ω) + σ ∪ ω (A28)

where ω ∈ H(G,Z2).

6. Comment about continuous groups

When G is not a discrete group, H∗(G,M ) is taken to
mean group cohomology with measurable cochains. (M is an
arbitrary G module.) On the other hand, a useful cohomology

related to a group G is the singular cohomology of its clas-
sifying space (BG) denoted by H∗(BG,M ). There are several
results about these cohomology groups and they come with a
geometrical intuition that is sometimes useful.

As reviewed in Theorem J.1 of Ref. [78], if G is finite
dimensional, locally compact, σ -compact group and M is
discrete, there is an isomorphism

Hn(G,M ) ∼= Hn(BG,M ). (A29)

The above assumptions are in particular true for finite-
dimensional compact Lie groups and finite groups.

We use the isomorphism in Eq. (A29) to identify Hn(G,M )
and Hn(BG,M ) in the remaining Appendixes. In later Ap-
pendixes, the spectral sequence calculations involving Lie
groups are done using the singular cohomology of the clas-
sifying space Hn(BG,M ).

APPENDIX B: ALGEBRAIC FORMULA FOR THE FCEP

1. Notation

First we discuss the notation used for Eq. (30) in detail.
Consider the group

GE = [Rd
� O(d )] × ZT

2 ,

where d = D − 1 is the space dimension, which is the group
of translations, rotations, reflections, and time reversal. The
symmetry of the TQFT describing topological phases of mat-
ter contains GE as a subgroup. A symmetry which acts on both
space and time is implemented via the map

ρ̄ : Gb → GE .

We can write ρ̄ = ( �R, ρs, ρt ) where the three terms project to
Rd ,O(d ),ZT

2 , respectively. Note that the restriction ( �R, ρs) of
ρ̄ fully specifies the action of Gb on space.

We first define the following classes, which generate their
respective groups:

[w1,r] ∈ H1(O(d ),Z2),

[w1,t ] ∈ H1(ZT
2 ,Z2),

[w2] ∈ H2(SO(d ),Z2). (B1)

Correspondingly, we can define

[w1] = [ρ∗
s w1,r] ∈ H1(Gb,Z2),

[s1] = [ρ∗
t w1,t ] ∈ H1(Gb,Z2),

[w2] = [ρ∗
s w2] ∈ H2(Gb,Z2). (B2)

Here the pullback ρ∗ is defined so that ρ∗ f (g1, . . . , gi ) =
f (ρ(g1), . . . , ρ(gi )) where g1, . . . gi ∈ Gb. Note that s1 has
the same information as ρt but differs in that it takes an
antiunitary element in Gb to the number 1 ∈ Z2 while ρt

takes an antiunitary element to T ∈ ZT
2 . This is only a formal

distinction but will be useful in the next section.
The data for the spatial symmetry are thus given by

(Gb, s1, ω2, ( �R, ρs)). Note that the data for the effective in-
ternal symmetry are fully specified by (Gb, seff

1 , ω
eff
2 ) because

( �R, ρs) are both trivial and can be dropped. The two sets of
data are related by the fCEP formula (30).
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2. Checks

Below we give examples showing why each term in the
above formula should be present.

a. w2

To see why the term w2 = ρ∗
s w2 should be present, note

that a single layer of a spinless p + ip SC with c− = 1
2 has

a unitary C2 rotational symmetry that acts as Ĉ2
2 = (−1)F on

fermions. Conversely, a single layer of a spinless p + ip SC
with c− = 1

2 can only have a Z2 internal unitary symmetry if
the generator h satisfies h2 = +1. For these two states to be
related by the fCEP, ωeff

2 and ω2 should differ by a nontrivial
2-cocycle in H2(Gb,Z2). This nontrivial cocycle can be con-
structed using ρs as ρ∗

s w2 = w2 because w2 is the cocycle that
corresponds to lifting 2π rotations to (−1)F . Therefore

ωeff
2 = ω2 + w2. (B3)

Note that in this example, s1 = 0,w1 = 0, so the above result
is consistent with the general formula.

b. w2
1

Next, note that we can only have a nontrivial TSC with ZR
2

reflection symmetry if it acts as R2 = +1 on fermions. In this
case, we can place a 1D Kitaev chain on the reflection axis.
We cannot do so if R2 = (−1)F , for in that case the onsite
symmetry on the reflection axis would be Z f

4 , and there are no
1D invertible phases with unpaired MZMs in this case.

On the other hand, consider the equivalent internal sym-
metry, and assume that reflections map to time reversal. Here
we know that the only nontrivial TSC has T2 = (−1)F . This
means that in this example, ω2 and ωeff

2 should differ by a
nontrivial 2-cocycle in H2(Gb,Z2). This nontrivial cocycle
can be constructed using ρs as ρ∗

s w2
1,r = w2

1 because w2
1,r is

the cocycle that corresponds to lifting R2 to (−1)F . Thus, we
should have

ωeff
2 = ω2 + w2

1 . (B4)

Moreover, note that in this example w2 = 0 and s1 = 0, so the
above is consistent with the general formula.

c. s1w1

In the previous literature, the formula in Eq. (30) has ap-
peared in the case where there are no antiunitary symmetries.
We now argue for the new term s1 ∪ w1 as follows.

Consider a fermionic system in (2+1)D with a reflection R
and time-reversal symmetry T such that

T2 = R2 = (−1)F ; (RT)2 = 1. (B5)

This can be written as G f = ZRT
2 × ZT f

4 . This corresponds
to Gb = ZRT

2 × ZT
2 . Let τ, σ ∈ H1(Gb,Z2) be defined as

follows. If an element in Gb is written as [a, b] with a ∈
ZRT

2 , b ∈ ZT
2 , then τ ([a, b]) = a + b and σ ([a, b]) = a. The

symmetry data are s1 = τ , ω2 = τ 2 + σ 2, and ρs([a, b]) =
diag((−1)a, 1).

Note that w1 = σ and w2 = 0. Applying the fCEP using
Eq. (30) gives seff

1 = τ + σ and ωeff
2 = σ (σ + τ ). This corre-

sponds to Geff
f = ZR′ f

4 � ZR′T
2 - R′ is an anti-unitary internal

symmetry that squares to (−1)F and anticommutes with the

unitary Z2 symmetry R′T. This is the symmetry of the ex-
ample in Sec. IV I which has a Z8 classification and it is
generated by free fermions. This is consistent with the result
found in Ref. [59].

If we did not include the term s1 ∪ w1 in Eq. (30), we
would find that ωeff

2 = σ 2 and Geff
f = ZR′ f

4 × ZR′T
2 . Which is

equivalent to G f = ZT f
4 × Z2 so thatω2 = s2

1. Let x be projec-
tion to the second factor. We find that n1 ∈ {0, s1} and n2 = 0.
There is only one nontrivial solution with n1 = n2 = 0 for ν3

and it is equal to 1
2 x3. Note that even if we do not fully apply

the stacking rules, these results would imply a classification
of Z2 × Z2 or Z4, which cannot be equal to the Z8 proposed
in Ref. [59].

3. Heuristic argument

Here we assume the abstract statement of the fCEP
without further justification, i.e. that the classification of
fermionic topological phases with the spatial symmetry data
(Gb, s1, ω2 , ( �R, ρs)) is isomorphic to that of fermionic topo-
logical phases with some internal symmetry given by the data
(Gb, seff

1 , ω
eff
2 ). We now discuss some heuristic arguments to

connect this abstract statement to the concrete formula in
Eq. (30). We note that the abstract statement of the fCEP
is argued for in Refs. [44–46]. One can directly derive the
formula, with several assumptions, by using the mathematical
statements given in these references, but we will not present
this here.

A result that we use below is that Hi(GE ,Z2) can be
identified with Hi(O(d ) × ZT

2 ,Z2), i.e., the Rd translations
do not contribute to the cohomology (see, e.g., Theorem J7 of
Ref. [78]).

Now if we believe that the fCEP exists, then for fermionic
phases it must relate the data s1, ω2 , ρ̄ to seff

1 , ω
eff
2 . Clearly it

should take the form

seff
1 = s1 + f1,

(B6)
ωeff

2 = ω2 + f2,

where fi ∈ Hi(Gb,Z2). To include ρ̄ in the above formula, it
is natural to construct fi by considering cohomology classes
κi ∈ Hi(GE ,Z2) and then setting fi = ρ̄∗κi, i.e., fi(g) =
κi(ρ̄(g)) for g ∈ Gb; the pullback ρ̄∗ was defined previously.

Now H1(GE ,Z2) ∼= H1(O(d ) × ZT
2 ,Z2) is generated by

the cocycles w1,r,w1,t . Thus, f1 must be a linear combination
of ρ∗

s w1,r = w1 and ρ∗
t w1,t = s1. We note that the space-time

orientation-reversing elements are specified by s1 + w1 for the
spatial symmetry, and by seff

1 for the internal symmetry. Since
both the spatial symmetry and its effective internal symmetry
should have the same orientation-reversing action on space-
time, we should set

seff
1 = s1 + w1. (B7)

Next, we discuss f2. Note that H2(GE ,Z2) ∼= H2(O(d ) ×
ZT

2 ,Z2) is generated by the cocycles w2
1,t ,w1,t w1,r,w2

1,r,w2.
Thus, f2 should be some linear combination of ρ∗

t w2
1,t =

(s1)2, ρ∗
t w1,tρ

∗
s w1,r = s1w1, ρ

∗
s w2

1,r = w2
1, ρ

∗
s w2 = w2. The

previously discussed examples show that the last three terms
should indeed appear in f2.
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If we also included the remaining term in f2, we would
have ωeff

2 = ω2 + (s1)2 + w1s1 + w2
1 + w2. But when ρs is

trivial (i.e., Gb acts trivially on space), this would give us
ωeff

2 = ω2 + (s1)2, which would give an equivalence between
any system that has T2 = +1 with a system that has T2 =
(−1)F . This is a contradiction. Therefore, we take f2 =
w1s1 + w2

1 + w2. This implies Eq. (30).
This heuristic argument also indicates why unitary trans-

lations do not appear in the formula. This is because the
cohomology of Rd vanishes, so [αi] ∈ Hi(Rd ,Z2) is always
trivial and therefore so is [ �R∗αi].

APPENDIX C: CALCULATIONS WHEN Gf IS ABELIAN

Here we will use the notation set up in Sec. IV D. We as-
sume G f = Z f

2N0
× A where N0 is even, or G f = U(1) f × A.

In both cases A is Abelian. h is defined as the order-2 element
of Z f

2N0
or U(1) f . We have e2π iQa := ηa(h,h) for a = e,m, ψ .

First we derive the equations for even c−. We use Eq. (11)
along with the fusion rules for even c−,

e2 = m2 = 1; e × m = ψ. (C1)

These equations directly imply that 2Qe = 2Qm = 0 mod 1
and Qe + Qm = Qψ mod 1. The main computation is now to
prove that if there exists some k ∈ Gb with n1(k) = 1, then
we also have

Qe = Qm mod 1. (C2)

Equivalently, ηe(h,h) = ηm(h,h).
Assuming that such a k exists, we can use Eq. (12) with

different permutations of the group elements h,h,k to obtain
the following set of equations:

ηe(k,h)ηe(kh,h) = ηm(h,h), (C3)

ηe(h,k)ηe(kh,h) = ηe(h,kh)ηe(k,h), (C4)

ηe(h,h) = ηe(h,kh)ηe(h,k). (C5)

We used the facts that hk = kh (since Gb is Abelian) and that
ke = m. Eliminating ηe(kh,h), ηe(h,kh) from this system of
equations gives

ηm(h,h) = ηe(h,h)

(
ηe(k,h)

ηe(h,k)

)2

. (C6)

The square term is trivial because we must have η2
e = 1 from

Eq. (11). Now substituting the remaining η symbols with the
definition of Qe,Qm, we obtain the claimed result.

For odd c−, the fusion rules are

v2 = v̄2 = ψ ; v × v̄ = 1. (C7)

These equations imply that 2Qv = 2Qv̄ = Qψ mod 1 and
Qv + Qv̄ = 0 mod 1. Now we show that we should also have
Qv = Qv̄ . Arguing exactly as in the even c− case, we obtain
three equations for η and eliminate two terms to obtain the
following:

ηv̄ (h,h) = ηv (h,h)

(
ηv (k,h)

ηv (h,k)

)2

. (C8)

Now using Eq. (11), the square term becomes ηψ (k,h)
ηψ (h,k) =

(−1)ω2(k,h)−ω2(h,k). If this equals −1, that would imply that
h,k anticommute on fermions, even though they commute
on bosons. But if this were the case, G f would have to be
non-Abelian. By assumption, therefore, this square term must
equal 1, so we recover the claimed result for odd c− as well.

APPENDIX D: CALCULATIONS FOR CHARGE
CONSERVATION SYMMETRY

In Sec. IV B we showed that if G f = U(1) f × H , the
system cannot have unpaired MZMs; we also argued that
if G f = O(2) f , the system can have unpaired MZMs when
c− is odd. Here we prove the second statement for a more
general symmetry group in which there are group elements
which act by charge conjugation. The idea is to identify the
relevant properties of the group O(2) ∼= U(1) � Z2, which is
the simplest group with charge conjugation, and embed them
in a more general group through the mathematical operation
of pullbacks.

Consider G f = U(1) f
� H where the symbol � cor-

responds to (unitary) charge conjugation. The charge-
conjugating elements are specified by a homomorphism � :
H → Z2. Let us assume that the elements that act trivially
form a subgroup H0 �= H . Note that there is a map φ : U(1) �

H → U(1) � Z2
∼= O(2) given by φ(z, g) = (z, �(g)). It is

straightforward to check that

Gb = U(1) � H,

ω2 = φ∗w2, and φ∗w1 = �, where wi are the ith SW
classes of O(2). Using the last relation, we obtain a
chain of equalities Sq1(ω2) = Sq1(φ∗w2) = φ∗(Sq1(w2)) :=
φ∗(w1w2) = � ∪ ω2. The result Sq1(w2) = w1w2 can be
found in Theorem 1.2 of Ref. [66]. Thus, for Gb as above,
we always have

� ∪ ω2 = ω2 ∪1 ω2. (D1)

This means that there is a solution to Eq. (19) whenever n1 =
c−� for c− ∈ Z. In particular, systems with odd c− can have
MZMs at defects of charge-conjugating group elements, while
systems with even c− do not.

Next we show that the above are the only possible solu-
tions. The idea is to find the most general expression for n1

and check the corresponding obstruction using Eq. (19). By
looking at the spectral sequence for the short exact sequence

1 → U(1) → Gb → H → 1

with coefficients in Z2, we find that

H1(Gb,Z2) ∼= H1(H,Z2)

because H1(U(1),Z2) = 0 and there cannot be a no-trivial
differential hitting or going out of E1,0

2 .
The cocycles in H1(H,Z2) correspond to one-dimensional

representations. The isomorphism is given by ρ = (−1)ν

where ρ is the irrep and ν ∈ H1(H,Z2). If H1(H,Z2) =
ZM+1

2 then we have M + 1 different root representations
that generate all of them by tensor product. Denote them
by ρ0, ρ1, . . . , ρM and set ρ0(g) = (−1)�(g). As these
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irreps form a basis for H1(G,Z2), there must be elements
{h0,h1, . . . ,hM} such that ρI (hJ ) = (−1)δIJ .31

Next, we can write the most general n1 as

n1 =
M∑

i=0

μiν(i),

where ρi = (−1)ν(i) . The O3 obstruction reads as

O3 = n1 ∪ ω2 + c−Sq1(ω2) = n1 ∪ ω2 + c−� ∪ ω2.

In order to show that only n1 = c−� is a solution, we calculate
the following invariant (using normalized cochains):

∇π2 ∇hi
1 O3 = (ιhiO3)(π, π ) = μi + c−δi,0 mod 2,

where π is the order-2 element of U(1) which commutes with
each hi. For the right-hand side to be trivial mod 2, it is clear
that we must have μi = c−δi,0, implying that n1 = c−�.

APPENDIX E: O4 OBSTRUCTION CALCULATIONS

This Appendix aims to explain the calculations involving
the O4 obstruction. We start with some general considera-
tions and then proceed to the examples. In this Appendix we
restrict to the groups Gb such that the Bockstein map β :
Hd (Gb,Z) → Hd+1(Gb,U(1)) is an isomorphism for d =
3, 4. This is true when Gb is a compact Lie group or a wallpa-
per group.

1. Comments about the O4 obstruction

(a) Order of the obstruction. From the explicit formula for
O4 in terms of c−, n1, n2, ω2,

O4 = 1
8W4 mod 1

for some W4 ∈ C4(Gb,Z). As O4 is a cocycle (dO4 = 0),
we must have dW4 = 0 mod 8. This allows us to define ω4 ∈
H4(Gb,Z8) with ω4 = W4 mod 8 and write O4 = j∗8ω4 with
jn : Zn → U(1) the inclusion map j(m) = m

n . In some cases,
ω4 is divisible by 2 or 4. For instance, when c− is an even
integer, ω4 is always even so we can write O4 = j∗4 (ω4

2 ).
Furthermore, when n1 = 0 and 4|c−, ω4 is divisible by 4, so
O4 = j∗2 (ω4/4).

When O4 = j∗nλ4, we must have nO4 = 0. Furthermore, if
β is the Bockstein map associated to

to the above sequence, then βO4 ∈ H5(Gb,Z). As β is a
group homomorphism we have nβO4 = β(nO4) = 0.

Write H5(Gb,Z) = Zn5 ⊕ ⊕
p∈P Tp where we decompose

H5(Gb,Z) into its free part (Zn5 ) and split the torsion sub-
group into contributions from prime powers. Here Tp :=⊕Mp

m=1(Zpm )lm where p is a prime number. Because nβO4 = 0,

31One can prove this by contradiction. If there is no such set, then
at least one of the irreps could be expressed as a linear combina-
tion of the others, thus violating the assumption of them generating
H1(H,Z2).

βO4 can only have image in the torsion parts that satisfy
p|n. We see this as follows. First, it cannot have image in
the free part (Zn5 ) because βO4 is torsion. Second, if p � | n,
multiplication by n does not kill any nonzero element in Tp.32

Thus, we focus on T2 because we always have n = 2, 4, or 8.
In what follows we we denote by e the smallest integer such
that 2e kills every element in T2.

(b) A detecting map. Let ρ2e : Z → Z2e denote reduction
modulo 2e. Then ρ∗

2e restricted to T2 is injective. To see this,
look at the LES induced from

where θn denotes multiplication by n:

Note that in degree 5, img[θ∗
2e ] ∼= (2eZ)n5 ⊕ ⊕

p∈Podd
Tp

∼=
ker(ρ∗

2e ) so T2 is not in the kernel of ρ∗
2e . This proves the claim.

As β is an isomorphism and ρ2e is injective, ρ∗
2e ◦ β is

also injective. Therefore, to check if O4 is trivial or not it
is enough to evaluate ρ∗

2eβO4 = ρ∗
2eβ j∗2k (ω4/23−k ). Thus, we

need to study β2e,2k := (ρ∗
2e ◦ β ◦ j∗2k ) more carefully.

From Appendix A, β2e,2k is the Bockstein map for the SES

1 → Z2e
θ2e−→ Z2e+k

ρ2k−→ Z2k → 1,

that in the special case of k = e = 1 it is known to reduce to
Sq1 = β2,2. β2e,2k is a detecting map for the obstruction when-
ever β : H4(Gb,U(1)) → H5(Gb,Z) is an isomorphism, as
we assume throughout. Note that it is common to find the
combination β2,2 ◦ Sq2 = Sq3, which automatically vanishes
on elements of Hd (Gb,Z2) for d < 3 for dimensional reasons.

(c) Finding solutions for ν3 when O4 is trivial. Using
the Universal Coefficient Theorem, we obtain the following
decomposition:

H4(Gb,Z8) = (
H4(Gb,Z) ⊗ Z8

) ⊕ TorZ1 (H5(Gb,Z),Z8).

Elements of the first factor can be written as the mod 8 reduc-
tion of an integer cochain. The second factor corresponds to
elements that are not of this form.

Given Z ∈ H4(Gb,Z), let z ∈ H3(Gb,U(1)) be defined by
βz = Z . Let ζ be an R lift of some representative of z. A
representative of Z is dζ because of the explicit description
of β. Any other representative has the form dζ + dB with B a
integer 3-cochain.

Then if O4 = j∗8 Z , we have

O4 = dζ

8
= d

(
ζ

8

)
mod 1.

Thus, we find that O4 is a coboundary and we can take
ν3 = ζ

8 . Since ζ mod 1 represents z, a class in H3(Gb,U(1)),
sometimes it is possible to interpret ν3 as a “fraction” of an

32To see this, denote by ep the exponent of Tp, i.e., the smallest
integer such that every element of Tp is sent to the trivial element by
multiplying by pep . If p � | n, then gcd(n, pep ) = 1. This implies that
we can find two integers l,m such that ln + mpep = 1. Then take any
element λ ∈ Tp and write 1 · λ = (ln + mpep )λ = l · (nλ). Thus, if λ
is a nonzero element, nλ must also be nontrivial.
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element of H3(Gb,U(1)). This can be made slightly more
general.33

2. Gf = Spin(N) f

For Gb = SO(N ), there is a well-known relation34

P (w2) = p1 + 2 · (w4) mod 4, (E1)

where p1 ∈ H4(SO(N ),Z) is the first Pontryagin class and
w4 ∈ H4(SO(N ),Z2) is the fourth SW class of the vector
representation. Note that w4 is trivial in H4(SO(N ),Z2) for
N < 4.

For Gb = SO(N ), we have H2(Gb,Z2) = Z2 generated by
the second SW class w2. We can fix n2 = 0 by the equivalence
relation n2 ∼ n2 + ω2. When 2|c− the O4 obstruction reduces
to

dν3 = c−
2

p1 + 2w4

4
mod 1. (E2)

Since p1 is an integer class, it does not contribute to the ob-
struction. Equivalently there is some μ3 ∈ C3(Gb,U(1)) such
that dμ3 = p1

4 mod 1, as we argued in the previous section. We
are left with

d
(
ν3 − c−

2
μ3

)
= c−

2

w4

2
mod 1.

The RHS is nontrivial for N � 5. The easiest way to see this is
by noting that if we restrict to SO(3) × SO(2) ⊂ SO(N ), we
have that w4 → wSO(2)

2 ∪ wSO(3)
2 (see for instance Theorem 1.2

of Ref. [66]). Then we can take g = (π,Rx ), h = (0,Ry) ∈
SO(2) × SO(3) and evaluate the invariant

I[ω4] =
1∏

j=0

1

(ιhω4)(g, gj, g)
(E3)

=
1∏

j=0

ω4(h, g, gj, g)ω4(g, gj, h, g)

ω4(g, h, gj, g)ω4(g, gj, g, h)
. (E4)

Taking ω4 = exp(iπwSO(2)
2 ∪ wSO(3)

2 ) we obtain

I (ω4) = exp
[
iπwSO(2)

2 (π, π )wSO(3)
2 (Ry,Rx )

]
exp

[
iπwSO(2)

2 (π, π )wSO(3)
2 (Rx,Ry)

] (E5)

= exp(iπ1 × 1) = −1. (E6)

This is a nontrivial value, thus ω4 (and hence O4) is a nontriv-
ial element in cohomology.35

33If O4 = j∗k dζ for some ζ ∈ C3(Gb,R) such that ζ mod 1
represents a class z ∈ H3(Gb,U(1)), we can write ν3 = ζ

k + ν0
3

where ν0
3 ∈ Z3(Gb,U(1)). Then k · ν3 = ζ + k · ν0

3 lies in a coho-
mology class in z + k · H3(Gb,U(1)) such that β(kν3) ∈ dζ + k ·
H4(Gb,Z).

34For instance, see Theorem C of Ref. [65] with i = 1 and W1 = 0
because our bundles are orientable.

35A more abstract way to study the RHS is by noting that O4 =
j∗2 w4, so the obstruction is nontrivial if βO4 = δw4 is nontrivial
(recall that δ = β ◦ j∗2 ). Then we invoke Theorem 1.5 of Ref. [66] to
claim that δ(w4) is nonzero in H5(SO(N ),Z) for N � 5 and trivial
for N < 5.

3. Proof that there is a solution with c− = 4 for suitable
choices of Gb

Consider Gb to be a compact unitary Lie group such that

TorZ1 [H5(Gb,Z),Z4] ∼= Zm
2 (E7)

for some integer m. This is equivalent to requiring that the
exponent of T2 is 1, i.e., e = 1.

The O3 equation can be solved by setting 2|c−, n1 = 0 and
n2 = 0. The O4 obstruction reduces to

O4 = c−
4

2P (ω2)

4
mod 1.

We can rewrite the above as O4 = (c−/4) j∗2 (ω2 ∪ ω2) because
P (x) = x ∪ x mod 2. If 8|c−, the obstruction obviously van-
ishes so we restrict to the case c− = 4 mod 8.

From the general discussion in Appendix E 1, the obstruc-
tion is nontrivial if β2e,21 (ω2 ∪ ω2) is nontrivial. From the
condition in Eq. (E7), we see that e = 1 so we need to study
β2,2ω

2
2. Recall that β2,2 = Sq1. So β2,2ω

2
2 = Sq1(ω2)ω2 +

ω2Sq1(ω2) = 2ω2Sq1(ω2) = 0 [the manipulations are done in
H5(Gb,Z2)].

Thus, we have found a sufficient condition [Eq. (E7)] for
the existence of a solution with c− = 4 and n1 = n2 = 0. Now
we discuss how to obtain ν3. In general, we cannot take ν3 =
0 mod 1 because even though ω2

2/2 is trivial in H4(Gb,U(1)),
ω2

2 is not necessarily zero in H4(Gb,Z2). In this situation, ω2
2

must be the mod 2 reduction of some class in H4(Gb,Z), with
cochain W4 = dζ for ζ ∈ C3(Gb,R). Then we can take ν3 =
1
2ζ mod 1.

As the only nontrivial data are c− = 4 + 8n and ν3, stack-
ing two copies of this system amounts to taking ctot

− = 2c− =
8 + 16n and ν tot

3 = 2ν3 = ζ . As dζ = W4, we have β(ν tot
3 ) =

dζ = W4 = ω2
2 mod 2, where β is the Bockstein map. This

corresponds to a bosonic E8 phase (with c− = 8), stacked with
a bosonic SPT (with cocycle ζ ) and a trivial fermionic layer.

Intrinsically interacting example with c− = 4

Consider the group Gb = (Z2 × Z2)×L, with L some pos-
itive integer. We now construct a solution with c− = 4, and
moreover argue that for L > 3 this solution corresponds to an
intrinsically interacting invertible phase that cannot have any
free-fermion realization.

Let ai and bi be the projections onto the first and second Z2

factors, respectively, in the ith Z2 × Z2 subgroup. Consider

ω2 =
L∑

j=1

a j ∪ b j .

It is known that H(Gb,Z) only contains factors of Z2 in pos-
itive degrees (we can use induction and the Künneth formula
for instance). So our criterion in Eq. (E7) is satisfied.

To find ν3, we express ω2
2 as an element of H4(Gb,Z2):

ω2
2 = Sq2(ω2)

=
L∑

j=1

Sq2(a jb j )
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=
L∑

j=1

(a jb j )
2

=
L∑

j=1

a2
j ∪ b2

j . (E8)

Now we note that a2
j = βa j = 1

2 d[a j]2 mod 2; this gives an
integral lift of ω2

2. We can then take

2ν3 =
L∑

j=1

1

4
[a j]2 ∪ d[b j]2 mod 1. (E9)

Next, we study free-fermion invertible phases with the
same symmetry. Note that G f is a central product of L copies
of D8 because the restriction to each Z2 × Z2 factor has ω2 =
a j ∪ b j . We also have |G f | = 22L+1. The one-dimensional
representations of each D8 are representations of G f and
are independent. There are 4L of them but in all of them
Z f

2 acts trivially, hence they cannot describe how fermions
transform under G f . However, there is one last representation,
corresponding to the tensor product of all the 2D irreps of
each D8. It has dimension 2L. Consider the character of this
representation. The only values at which it is nonzero are

χ (e) = 2L and χ (Pf ) = −2L. Thus, 〈χ, χ〉 = χ (e)2+χ2(Pf )
|G f | =

2×22L

22L+1 = 1, meaning that the rep is irreducible. It is also easy
to see that the irrep is real because

∑
g∈G f

χ (g2) = χ (e2) +
χ (P2

f ) = 2χ (e) = 22L+1 = |G f |.
Therefore, G f has a unique fermionic irrep. It has dimen-

sion 2L, so free-fermion phases constructed with this irrep
have chiral central charge equal to some multiple of 2L−1.
Since invertible bosonic phases as well as free-fermion phases
must have 8|c− (when L > 3), the c− = 4 solution given
above describes an intrinsically interacting fermionic phase.

4. Obstruction calculation for Gf = SU(2) f × H

In the main text, we saw that when G f = SU(2) f × H ,
c− must be even, and also n1 = 0, i.e., the system cannot
have unpaired MZMs. We also claimed that the unique choice
of n2 is n2 = 0. To see this, note that H2(SO(3),Z2) = Z2

is generated by w2 and satisfies Sq1(w2) = w3, where w3

is the generator of H3(SO(3),Z2) = Z2. Thus, when Gb =
SO(3) × H , and dn2 = 0, we can always gauge fix n2 to be an
element of H2(H,Z2) by using the equivalence n2 ∼ n2 + ω2.

Then for any c− = 0 mod 2 and n1 = 0, the O4 obstruction
is

O4 = c−
2

P (ω2)

4
+ n2(ω2 + n2)

2
. (E10)

As shown in Appendix E 2, the first term is trivial in
H4(SO(3),U(1)). We focus on the remaining piece that can
be written as j∗2 [n2(ω2 + n2)]. Then consider

ρ∗
2βO4 = (ρ∗

2β j∗2 )[n2(ω2 + n2)]

= Sq1[n2(ω2 + n2)]

= Sq1(n2)ω2 + n2Sq1(ω2)

= Sq1(n2)ω2 + n2w3 mod 2. (E11)

The two terms belong to different factors in the decomposition

H5(Gb,Z2) =
5⊕

j=0

H j (SO(3),Z2) ⊗ H5− j (H,Z2).

In particular, n2 ∪ w3 ∈ H3(SO(3),Z2) ⊗ H2(H,Z2) repre-
sents a nontrivial element as long as n2 is nontrivial [because
w3 is the generator of H3(SO(3),Z2)]. Thus, for O4 to vanish
we must set n2 = 0, as claimed.

5. Orthogonal groups Gf = O(2n) f , SO(2n) f

In this Appendix we discuss in more detail the calculations
for the orthogonal groups. First we establish some notation.
For any of the orthogonal groups, there is a twofold cover and
a quotient group, defined by

(E12)

and

(E13)

We denote by τ the map that forgets about reflections and
sends Eq. (E13) to Eq. (E12).

The Spin(2n) groups have characteristic classes qi, ξ , vi

called the fractional Pontryagin class, the Euler class (of the
spinor irrep), and Spin-SW classes, respectively. For SO(2n)
we have pi, e,wi which are the Pontryagin classes, the Euler
class (of the vector irrep), and SW classes, respectively (see,
e.g., [66]).

For PSO(2n) we define characteristic classes below. We
also discuss similar classes for the orthogonal groups. For
the sake of completeness, we will calculate H(PSO(2n),Z),
H(PO(2n),Z), and H(PO(2n),Zε ) in degrees below 6 by
looking at spectral sequences associated to the fibrations36

where B2A = K(A, 2) is the second Eilenberg-MacLane space
of the Abelian group A. The first diagram comes from the
definition of PSO(2n) and PO(2n) as quotients of the orthog-
onal groups. The other sequences come from noting that the
universal cover of SO(2n) is Spin(2n), so Spin(2n) is also a
universal cover of PSO(2n). There are different groups on the

36These fibrations are discussed, for instance, in the last paragraph
in p. 3 of Ref. [83].
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right-hand side because the center of Spin(2n) depends on the
parity of n.

a. Group cohomology of PSO(4n + 2), PO(4n + 2)

(a) PSO(4n + 2). The main result is contained in
Eqs. (E17) and (E20). Assume n > 0 to avoid the special
case PSO(2) ∼= SO(2). The universal cover of PSO(4n + 2)
is Spin(4n + 2) with a Z4 center. Therefore, we use the
definition PSO(4n + 2) = Spin(4n + 2)/Z4 and consider the
fibration

BSpin(4n + 2) → BPSO(4n + 2) → B2Z4. (E14)

For n > 0, we have (see, for instance, [84,85])

Hd [BSpin(4n + 2)] =
⎧⎨
⎩
Z, d = 0, 4
∗, d = 1, 2, 3, 5
Zθ (n), d = 6

with θ (n) = 0 if n > 2 and θ (n) = 1 if n = 1. The fractional
Pontryagin class q1 is the generator in degree 4.37 For n = 1,
the generator of the d = 6 group is the third Chern class of
SU(4) ∼= Spin(6), which equivalently is the Euler class of the
spinor irrep.

The cohomology of B2Z4 is (See Appendix G)

Hd (B2Z4,Z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Z, d = 0
∗, d = 1, 2, 4
Z4, d = 3
Z8, d = 5
Z2, d = 6.

(E15)

It is generated by U3 = β4u2, U5 = β8P (u2), U 2
3 in degrees

3, 5, and 6, respectively. Here u2 ∈ H2(B2Z4,Z4) ∼= Z4 is a
generator.

We consider the following spectral sequence associated to
the fibration in Eq. (E14):

E p,q
2 = Hp(B2Z4,H

q(BSpin(4n + 2),Z)),

E p,q
2 ⇒ H∗(BPSO(4n + 2),Z). (E16)

As we only care about d < 6, we can look at the spectral
sequence below the line p + q < 7. When n = 1, there can
be a nontrivial d3 : E0,6

3
∼= Z → E3,4

3
∼= Z4. Regardless of its

image, E0,6
4

∼= Z. The only relevant differential on the E4

page is d4 : E0,4
4 = Z → E5,0

4
∼= Z8. This means that d4q1 =

k1βP (u2), where k1 is to be determined. With the above infor-
mation, we know that

Hd (PSO(4n + 2),Z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Z, d = 0, 4
∗, d = 1, 2
Z4, d = 3
Z(8,k1 ), d = 5
Z2 ⊕ Zθ (n), d = 6.

To determine k1 we use previous work. Reference [86]
calculated the group structure of H(BPSO(4n + 2),Z2) and

37The name is so because under pullback by the quotient map ι :
Spin(4n + 2) → SO(4n + 2), we have ι∗ p1 = 2q1 where p1 is the
first Pontryagin class of SO(4n + 2).

partially characterized its ring structure.38 In particular, their
Theorem 4.9 states that (after simplification)

Hd (BPSO(4n + 2),Z2) =

⎧⎪⎪⎨
⎪⎪⎩

Z2, d = 0, 2, 3, 4, 5
∗, d = 1
Z2

2, d = 6

Z1−θ (n)
2 , d = 7.

(E17)

The generators are x2(d = 2), x3 (d = 3), x2
2(d = 4), x5

(d = 5), x3
2, x

2
3 (d = 6), and x7 (d = 7) if n > 1. Note that

x2x2k+1 = 0.39

Using the Universal Coefficient Theorem (see Theorem J.5
of Ref. [78]),

H4(G,Z2) ∼= H4(G,Z) ⊗ Z2 ⊕ Tor[H5(G,Z),Z2], (E18)

with G = PSO(4n + 2), we obtain

Z2
∼= Z2 ⊕ Tor[Z(8,k1 ),Z2]

⇒ Z(8,k1 )
∼= Z1. (E19)

Therefore, k1 must be odd and so d4q1 is a generator of Z8

thus killing E0,5
4 .

Putting everything together,

Hd (PSO(4n + 2),Z) =

⎧⎪⎪⎨
⎪⎪⎩

Z, d = 0, 4
∗, d = 1, 2, 5
Z4, d = 3
Z2 ⊕ Zθ (n), d = 6

(E20)

with generators U3 = β4u2, r1 and U 2
3 in degrees, 3, 4, and 6.

For n = 1, the extra generator in d = 6 is θ .40 We summarize
the generators of Hd [PSO(4n + 2),M] below:

M|d 0 1 2 3 4 5 6
Z 1 U3 r1 θ,U 2

3

Z2 1 x2 x3 x2
2 x5 x3

2, x
2
3

Z4 1 u2 u3 u2
2 u2u3 u3

2, u
2
3

U(1) ∗ 1
4 u2 CS3 − CS5,

1
2 x5 ?

where θ and CS5 are trivial for n > 1.
Finally, we discuss how classes in H(PSO(4n + 2),Z)

map to those in H(SO(4n + 2),Z) and H(Spin(4n + 2),Z).
Suppose Ĝ is a compact, connected, simply connected Lie
group and H is a subgroup of its center, with G = Ĝ/H .
Then, the image of the pullback map Z ∼= H4(BG,Z) →
H4(BĜ,Z) ∼= Z is nCS(Ĝ,H )Z [87,88]. Here, nCS(Ĝ,H ) is
the so-called “Chern-Simons constraint.” In our case, we have
Ĝ = Spin(4n + 2),H = Z4 and nCS(Spin(4n + 2),Z4) = 8.
Now, using that H4(BPSO(4n + 2),Z) is generated by r1

and H4(BSpin(4n + 2),Z) is generated by q1, we must have

38Note that in Ref. [86], the authors use PO(4n + 2) for the group
we call PSO(4n + 2).

39We renamed the classes a2, y1, y2, y3 (from the cited reference) to
x2, x3, x5, x7.

40We use the same symbols u2,U3 because these classes are pull-
backs of the respective classes in B2Z4.
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λ∗r1 = ±8q1. Without loss of generality, we can fix λ∗r1 =
8q1.

The maps induced from those in Eq. (E12) can be written
as

λ∗ : [u2, x3, r1, θ ] → [0, 0, 8q1, l
′l ′′ξ ],

κ∗ : [u2, x3, r1, θ ] → [2w2,w3, 4p1, l
′e], (E21)

where l ′, l ′′ are nonzero integers. This concludes our discus-
sion of PSO(4n + 2).

(b) PO(4n + 2). Next we discuss the cohomology of
PO(4n + 2) over Z and Zε by considering the SES

PSO(4n + 2) → PO(4n + 2) → Z2

with a trivial extension but with Z2 acting on PSO(4n + 2) as
reflection. This induces an action u2 → −u2.

We calculate the regular and the twisted group cohomology
at the same time by considering the ring M = Z[i]/(i2 − 1)
where the reflection acts on i by negation and i2 = 1 (see
Appendix A).

We consider the spectral sequence starting at

E p,q
2 = Hp(Z2,Hq(PSO(4n + 2),M )).

In low degrees, we apply the result from the preceding sec-
tion, which forces several differentials to vanish and solves
extension problems.

Note that E∗,0
2 = Z[x1]/(2x1) where x1 ∈ H1(Z2,Zε ) ∼=

Z2 is the generator. We must have E∗,0
2

∼= E∗,0
∞ because

PO(4n + 2) is a split extension of Z2 by PSO(4n + 2). This
is a general property of split extensions; see around Eq. (A17)
for an argument based on edge morphisms.

For q � 6, we use Tate cohomology (Theorem J.3 of
Ref. [78]) to calculate E∗,q

2 . E∗,q
2 is trivial for q = 1, 2, 5.

For the other values of q, E∗,q
2 is obtained by a cup

product of E∗,0
2 with a set of generators; there are no extra

relations. For q = 3, the generators are W3 ∈ H3(PO(4n +
2),Z), U3 ∈ H3(PO(4n + 2),Zε ). For q = 4, the generators
are r1 ∈ H4(PO(4n + 2),Z). For d = 6, we have two genera-
tors, W6,U6. For n = 1, we also have ϑ ∈ H6(PO(6),Zε ) [ϑ
restricts to θ in PSO(6)]. Thus, in low degrees the E2 page can
be written in terms of x1,U3,W3, r1, ϑ,U5,W5. We will argue
below that the spectral sequence already stabilizes for d � 5.

There is a generator u2 ∈ H2(PO(4n + 2),Zε4) = Z4 × Z2

that restricts to u2 on PSO(4n + 2) and satisfies βε4u2 = U3.41

We can also define x2, x3 ∈ H(PSO(4n + 2),Z2) by x2 =
ρ∗

2u2 and x3 = ρ∗
2U3. Because they are reductions of classes in

H∗(PO(4n + 2),Zε4), we have Sq1(x2) = x1x2 and Sq1(x3) =
x1x3. Note that τ ∗ : [u2,U3] → [u2,U3].

We summarize the generators of Hd (PO(4n + 2),M ) below:

M|d 0 1 2 3 4 5
Z 1 x2

1 W3 r1, x
4
1, x1U3 x2

1W3

Zε x1 U3, x
3
1 x1W3 r1x1, x

5
1, x

2
1U3

Z2 1 x1 x2, x2
1 x3, x3

1, x1x2 x1x3, x4
1, x

2
1x2, x2

2 ?

There is no extension problem in d � 5 for the following reasons. For d � 3, we have explicit descriptions for these classes
in terms of projective representations of PSO(4n + 2). The group generated by r1 cannot be extended because its a free group.
As all multiplicative generators of the slots in the range of interest survive at E∞, there is no extension problem. Above we
calculated the Z2 line by using the Universal Coefficient Theorem (see Theorem J.5 of Ref. [78]). The images of the generators
under κ∗, τ ∗ [the pullback of the maps defined in Eq. (E13)] are

κ∗ : [x1, u2,U3, r1, ϑ] → [w1, 2w2,w3, p1, l
′e],

τ ∗ : [x1, u2,U3, r1, ϑ] → [0, u2,U3, r1, θ ].
(E22)

Above wi ∈ Hi(O(4n + 2),Zε ) are a lift of the SW class wi.
l ′ is a nonzero integer that we could not determine.

b. Group cohomology of PSO(4n), PO(4n)

(a) PSO(4n). The main result is contained in Eqs. (E29)
and (E30). When n = 1, we have PSO(4) = SO(3)L ×
SO(3)R. Then we can use the Künneth theorem to cal-
culate H(PSO(4),Z). There are five generators W3;R,

W3;L,W5, p1;L, p1;R. Here W3;X = β2w2;X (X = L,R), w2;X is
the second SW class of SO(3)X , W5 = β2(wL

2 wR
2 ) and p1;X is

the first Pontryagin class of SO(3)X .
For n > 1, we need to do a spectral sequence calculation

using the fibration

BSpin(4n) → BPSO(4n) → B2Z2
2. (E23)

The relevant cohomology groups are (see Appendix G)

Hd
(
B2

(
Z2

2

)
,Z

) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Z, d = 0
∗, d = 1, 2, 4
Z2

2, d = 3
Z2

4 × Z2, d = 5
Z3

2, d = 6.

(E24)

If we write Z2
2 = ZL

2 × ZR
2 , then the generators are

W3;X = β2w2;X ; W5;X = β4P (w2;X ), W5 = β2(w2;Rw2;L ); and
W 2

3;X ,W3;RW3;L in degree 6.

41This corresponds to the group extension Pin+(4n + 2).
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For n > 1, we have (see for instance [84,85])

Hd (BSpin(4n)) =
{
Z, d = 0, 4
∗, d = 1, 2, 3, 5, 6

We start by looking at the spectral sequence with Z2 and Z co-
efficients. As E∗,q

2 is trivial for 1 � q � 3, Hd (PSO(4n),Z) ∼=
Hd (B2(Z2

2),Z) and Hd (PSO(4n),Z2) ∼= Hd (B2(Z2
2),Z2) for

d = 0, 1, 2, 3. Next, we proceed to determine the first non-
trivial differential (d4) for the spectral sequence with Z
coefficients. We only need d4 : E4,0

4 → E0,5
4 .

From the existence of the free-fermion root state, we
know there is a solution to the equations defining invert-
ible fermionic phases when G f = O(4n) f with c− = 2n and
n1 �= 0. By considering the assignment of quantum numbers
to the fermion-parity fluxes we can show that after restriction
to SO(4n) f , n2 must be nontrivial, i.e., n2 = w2;L + l (w2;L +
w2;R) with l = 0, 1. The argument resembles the one given
for O(4) f in the main text, Sec. IV E 2.42 Using Eq. (15), this
means that the class

�5 = β4[nP (w2;L + w2;R) + 2w2;Lw2;R]

must be trivial because it is equal to the Bockstein of the
obstruction βO4. For this to happen, �5 must be a multiple
of d4q1, where q1 is the fractional Pontryagin class introduced
previously and generates E0,4

4 .
Note that the most general form of d4q1 is

d4q1 = β4[k02w2;Lw2;R + k1P (w2;L ) + k2P (w2;R)]. (E25)

Since �5 is a multiple of d4q1, we can write �5 =
md4q1 for m ∈ Z. Then, looking at the coefficients of
β4P (w2;L ), β4P (w2;R), and β42w2;Lw2;R gives the following
relations:

n = mk1 = mk2 mod 4, (E26)

2(1 + n) = 2mk0 mod 4. (E27)

The analysis now depends on the parity of n.
Let us start with n odd. Here, Eq. (E26) implies that m

and k1 = k2 mod 4 are both odd integers. From Eq. (E27)
we obtain that k0 is even. Therefore, d4q1 = k1β4[P (w2;L ) +
P (w2;R)]. Using P (a + b) = P (a) + 2a ∪ b + P (b), we can
write

d4q1 = k1n�5 = ±�5. (E28)

Here we used that 4�5 = 0 as a cohomology class. As d4q1

is an order-4 element, it will kill a Z4 subgroup of E5,0
4

∼=
H5(B2(Z2

2),Z) ∼= Z2
4 × Z2 so that E5,0

∞ ∼= E5,0
5

∼= Z4 × Z2.

42Projective reps of PSO(4n) are equivalent to linear reps of its uni-
versal cover Spin(4n) which have nontrivial charge under the center
ZL

2 × ZR
2 ⊂ Spin(4n). Since e,m, ψ could in principle all transform

projectively under PSO(4n), we can define Qa as the charge mod 2
of a under ZL

2 × ZR
2 , for a ∈ {e,m, ψ}. From the definition of Gf ,

Qψ = [1, 1]. Now, reflections in PO(4n) exchange the ZL
2 and ZR

2

subgroups, and also exchange e and m, when n1 �= 0. Thus, if Qe =
[x, y], then Qm = [y, x]. Finally, since Qψ = Qe + Qm, we must have
[x, y] = [1, 0] or [0,1]. This corresponds to either n2 = w2;L or w2;R.

This implies that for n = 2n′ + 1 > 1,

Hd (BPSO(8n′ + 4),Z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Z, d = 0, 4
∗, d = 1, 2
Z2

2, d = 3
Z4 × Z2, d = 5
Z3

2, d = 6.

(E29)

The generators of the torsion subgroups are W3;X = β2w2;X ,
W5;L = β4P (w2;L ), W5 = β2(w2;Lw2;R), W 2

3;X , and W3;RW3;L.
They are obtained by pullback from H∗(B2(Z2

2),Z). We de-
note the generator for d = 4 by r1. Furthermore, we have the
following relation β4(Pw2;L ) = −β4(Pw2;R).

Doing a similar manipulation for n even, we find that
d4q1 = ±�5. But �5 = β2[(n/2)(w2;L + w2;R) + w2;Lw2;R]
which is an order two element. Therefore, it will kill a Z2

subgroup of E5,0
4

∼= H5(B2(Z2
2),Z) so that E5,0

∞ ∼= E5,0
5

∼= Z2
4.

This implies that for n = 2n′ > 0,

Hd (BPSO(8n′),Z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Z, d = 0, 4
∗, d = 1, 2
Z2

2, d = 3
Z2

4, d = 5
Z3

2, d = 6.

(E30)

The generators of the torsion subgroups are W3;X = β2w2;X ,
W5;L = β4P (w2;L ), W5;R = β4P (w2;R), and {W 2

3;X ,W3;RW3;L}.
They are obtained by pullback from H∗(B2(Z2

2),Z). We de-
note the generator for d = 4 by r1. Furthermore, we have the
relation β2(w2;Lw2;R) = n′β2(w2

2;L + w2
2;R).

The relation to classes in the cohomology of SO(4n) is
given by

κ∗ : [w2;L,w2;R,W5;X , r1] → [w2,w2, δw4, l p1]

for some integer l . To find l we again use Refs. [87,88] and
find l = nCS(Spin(4n),Z2

2)/2 = 2/(n, 2) by noting that we
need 2|2l and 4|2ln.

(b) PO(4n). Here we follow the steps outlined for Gb =
PO(4n + 2) previously: we determine the group cohomology
by using the above result for PSO(4n) in the SES

PSO(4n) → PO(4n) → Z2.

We will only state the results. First, we consider n = 1. We
find that the generators in low degrees are x1,U3, u3,U5,U5

(all of order two) and r1, e4 (of infinite order) such that x1U3 =
x1U3 = 0.

For n > 1 odd, e4 disappears but two new classes appear.
One is X5 ∈ H5(PO(4n),Zε ) (order 4), that satisfies τ ∗X5 =
β4P (w2;L ). The other one is X5 ∈ H5(PO(4n),Z) of order 2;
it satisfies τ ∗X5 = 2β4P (w2;L ).

For n even, the generators are x1,U3,U3 (order two),
r1 (infinite order), and U5,U5 (order 4). If we let u2 ∈
H2(PO(4n),Z2) be the class corresponding to the exten-
sion to O(4n), we have U3 = β2u2, U3 = βε2 u2. Furthermore,
τ ∗U5 = β4[P (w2;L ) + P (w2;R)] and τ ∗U5 = β4[P (w2;L ) −
P (w2;R)]. There are relations Uix1 = Uix1 = 0.
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We summarize the generators below. For Hd (PO(8n +
4),M ), n > 0,

M|d 0 1 2 3 4 5
Z 1 x2

1 U3 r1, x
4
1 U5,X5

Zε x1 U3, x
3
1 r1x1, x

5
1,U5,X5

Z2 1 x1 x2
1, u2 x3

1, u3 x4
1, u

2
2, u4, x4 ?

and Hd (PO(8n),M ), n > 0,

M|d 0 1 2 3 4 5
Z 1 x2

1 U3 r1, x
4
1 U5

Zε x1 U3, x
3
1 r1x1, x

5
1,U5

Z2 1 x1 x2
1, u2 x3

1, u3 x4
1, u

2
2, u4 ?

All extensions are trivial, for the same reason as in the case
Gb = PSO(4n + 2).

c. Constraints for Gf = O(8n) f

Since the constraints for G f = O(8n + 4) f reduce to those
for O(4) f , as mentioned in the main text, here we only con-
sider G f = O(8n) f . The constraints on c−, n1 depend on the
parity of n, and can be obtained by restriction to the subgroups
O(8m) f with m = 1 or 2.

First, we argue that 4m|c−. For m = 1, consider the
Spin(5) f ⊂ O(8) f subgroup; in this case we already proved
the constraint 4|c− (Appendix E 2). Similarly, for m = 2 we
consider the SU(8) f ⊂ O(16) f subgroup (see Appendix E 6
below) to show that 8|c−.

Next, we constrain n1 in terms of c−. For any G f =
O(4n′) f we find the following constraints:

n1 = k1x1,

n2 = k1w2;L + k2(w2;L + w2;R) + k3w2
1 (E31)

with k1, k2, k3 ∈ Z2. When n′ = 2n, c− constrains k1 as
follows:

n odd, c− = 4 mod 8 ⇒ k1 = 1;

n odd, c− = 0 mod 8 ⇒ k1 = 0;

n even ⇒ c− = 0 mod 8, k1 is arbitrary. (E32)

To see this notice that H2(PO(4n′),Z2) ∼= Z2
2 is generated by

two classes, x2
1 and u2, such that upon restriction to PSO(4n′)

they satisfy τ ∗[x2
1, u2] = [0,w2;L + w2;R].43 Now when k1 =

0, we must have n1 = 0 and n2 must be a cocycle. Thus, n2 =
k2w2 + k3w2

1. On the other hand, when k1 = 1, the reflec-
tion swaps the fermion-parity fluxes, and upon restriction to
G f = SO(4n′) f , n2 = w2;L + k2(w2;L + w2;R) with k2 = 0, 1,
as we argued while discussing H(PSO(4n′),Z). Combining
the two possibilities for k1, τ ∗n2 = k1w2;L + k2(w2;L + w2;R).
Using n2 � n2 + ω2, we can set k2 = 0.

Next we consider a putative state with 2|c− (this constraint
comes from the O3 equation) and take n1, n2 as the previ-
ous paragraph with k2 = 0. We calculate O4 and restrict to

43This is true by using the edge morphisms for the spectral se-
quence with coefficients in Z2. τ : PSO(2n′) ↪→ PO(2n′) is the
inclusion map.

PSO(4n′) so that there is no contribution from k3. We take
n′ = 2n even. Then the obstruction reduces to

τ ∗O4 = c−
2

P (w2;L + w2;R)

4
+ k1w2;L[(k1 + 1)w2;L + w2;R]

2

= c−
2

P (w2;L + w2;R)

4
+ k1w2;Lw2;R

2
,

βτ ∗O4 = c−
2
β4(P (w2;L + w2;R)) + k1β2(w2;Lw2;R)

=
(c−

2
+ nk1

)
β4(P (w2;L + w2;R)). (E33)

We used the relation β2(w2;Lw2;R) = n′β4(P (w2;L + w2;R))
valid for PSO(4n′) derived in the previous section. As we saw
there, β4(P (w2;L + w2;R)) is an order-4 class when n′ = 2n is
even. Then if the obstruction is trivial, we must have

c−
2

+ 2nk1 = 0 mod 4

⇒ c− = 4nk1 mod 8. (E34)

Now by considering the different possible cases, we obtain the
result in Eq. (E32).

6. Group cohomology of SU(n)/Z2

In the main text, we sketched how to obtain constraints on
c− for G f = SU(4n + 2) f , SU(8n + 4) f . In order to obtain
constraints on G f = SU(8n) f , we perform a spectral sequence
calculation below. The main results of this calculation are
contained in Eqs. (E36) and (E37).

Reference [37] gave a physical argument to show that
when G f = SU(8n) f for some natural number n, c− must
be a multiple of 8. This may seem to be in tension with
our result in Appendix E 3 that a wide class of groups G f

can have solutions with 4|c−. However, Eq. (E37) shows that
H5(Gb,Z) = Z4, which is not of the form Zm

2 , and hence does
not satisfy our condition. Furthermore, when c− = 4 we are
able to show that the O4 obstruction is the order-2 element of
H4(Gb,U(1)).

According to Theorem 1.1 of Ref. [83], the cohomol-
ogy H(PSU(N ),Z) ∼= H(BPSU(N ),Z) in degrees lower than
6 for N > 2 is generated by x3 ∈ H2(PSU(N ),Z), ei ∈
H2i(PSU(N ),Z) for i = 2, 3, and x2

3 ∈ H6(PSU(N ),Z).
The generators can be identified as follows. x3 is the

Bockstein map of x2 ∈ H2(PSU(N ),U (1)) that represents
the obstruction to lifting the fundamental irrep of SU(N ) to
a PSU(N ) representation. e2 and e3 can be thought of as
Chern classes. The class x3 satisfies the relations Nx3 = 0 and
gcd(N, 2)x2

3 = 0.
Our strategy is to calculate the group cohomology of the

groups QU(N,M ), which are defined by the SES

1 → ZM → QU(N,M ) → PSU(N ) → 1,

where N = kM with k a positive integer. The extension
is by W3 = kx3. We then use the relation QU(kM,M ) =
SU(kM )/Zk to obtain our final result. We use two spectral
sequence calculations.

First consider

E p,q
2 = Hp(PSU(N ),Hq(ZM,Z)) �⇒ Hp+q(QU(N,M ),Z)
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for values p + q < 7. As H(ZM,Z) is only nontrivial in
even degrees, the first differential is d3 so E3

∼= E3. Below
we show the E3 page of the spectral sequence [we denote
M2 := gcd(M, 2)]. Let c be the generator of H2(ZM,Z).
Then d3c = kx3 because we know that the final group
has a Zk classification of projective reps. For dimensional
reasons, d3y2,2 = 0 where y2,2 is a generator of E2,2

2
∼=

H2(PSU(N ),H2(ZM,Z)) ∼= ZM :

Then we note that for n > 1, the rows E2n,•
2 = E2n,•

3
can be written as pcn + p′y2,2cn−1, where p, p′ are ele-
ments in H(PSU(N ),Z). Since d3 vanishes in elements of
H(PSU(N ),Z), we know the full action of d3. In particular,
d3c2 = 2kcx3 and d3cx3 = kx2

3. Then on the line starting at
E4,0

3 , we get the following chain of maps under d3:

1 → ZM
θ2k−→ ZM

θk−→ Z(N,2) → 1.

Let us assume that N is even and 2|k. Taking the cohomology
of the above gives the following groups in the E4 page:

E0,4
4 = ker[θ2k : ZM → ZM],

E3,4
4 = Z(M,2k),

E6,0
4 = Z2. (E35)

For dimensional reasons, the spectral sequence collapses for
p + q < 6. In degrees 0,1,2,3,5 there is no extension problem:

H0(QU(kM,M ),Z) = Z,

H1(QU(kM,M ),Z) = Z1,

H2(QU(kM,M ),Z) = Z1, (E36)

H3(QU(kM,M ),Z) = Zk,

H5(QU(kM,M ),Z) = Z(M,2k),

while in degree 4 there is an extension problem involving
Z,ZM ,E

0,4
4 .

Regardless, we can use the fact that for k = 2 and M = 4n,
QU(8n, 4n) ∼= SU(8n)/Z2. In this case

H5(SU(8n)/Z2,Z) ∼= Z4.

Indeed, this is not of the form Zm
2 , so the criterion which guar-

antees a c− = 4 solution does not apply when G f = SU(8n) f .
We can solve the extension problem in degree 4 by looking

at the spectral sequence associated to the fibration

BSU(kM ) → BQU(kM,M ) → B2Zk .

Note that H(BSU(N ),Z) is a polynomial ring in the Chern
classes ci i = 2, . . . ,N . ci has degree 2i and H(B2Zk,Z) can
be found in Appendix G. Therefore, the E2 page looks as
below:

We only care about degrees p + q < 6, so the only possi-
ble nontrivial differential is d4 : E0,4

4 → E5,0
4 . d4 corresponds

to multiplication by some integer such that the cokernel is
Z(M,2k) because of our previous calculation. We see that there
is a single Z on the p + q = 4 line, which solves the extension
problem we had before.

Set k = 2 and M = 4n. The result of the cohomology cal-
culation is

H0(SU(8n)/Z2,Z) = Z,

H1(SU(8n)/Z2,Z) = Z1,

H2(SU(8n)/Z2,Z) = Z1,

H3(SU(8n)/Z2,Z) = Z2,

H4(SU(8n)/Z2,Z) = Z,

H5(SU(8n)/Z2,Z) = Z4. (E37)

Now if λ2 ∈ H2(SU(8n)/Z2,Z2) is a generator, then P (λ2)/4
generates H4(SU(8n)/Z2,U(1)) (see Appendix G). Thus,
1
2λ

2
2 = 2P (λ2 )

4 is nontrivial as a class in H4(SU(8)/Z2,U(1)).
From here we can show that the O4 obstruction is nontrivial
for G f = SU(8n) f with c− = 4 mod 8 because in that case
ω2 = λ and O4 = λ2/2.
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7. Symplectic groups Gf = Sp(n) f

We consider the symplectic groups G f = Sp(n) f , with the
normalization Sp(1) = SU(2). We need to calculate the group
cohomology of Gb = PSp(n) = Sp(n)/Z2 using the fibration

BSp(n)
π−→ BSp(n) → B2Z2.

It is known that H(BSp(n),Z) = Z[x1, . . . , xn] with
deg(xi ) = 4i. Then the only additional information we
need is the differential d4 : E0,4

4
∼= Z → E0,5

4
∼= Z4. If

d4 p1 = k1β4P (w2), we find that H4(PSp(n),Z) is generated
by a class r1 that satisfies π∗r1 = k2 p1 and k2k1 = 0 mod 4;
this comes from an edge morphism argument. From Ref. [89],
we find that one needs 4|nk2 or, equivalently, 4/gcd(4, n)|k2.
This then implies that k1 = ±gcd(n, 4) mod 4. We conclude
that

Hd (BPSp(n),Z) =

⎧⎪⎪⎨
⎪⎪⎩
Z, d = 0, 4
∗, d = 1, 2
Z2, d = 3, 6
Z(n,4), d = 5

(E38)

where the generators are r1,W3 = δw2,W 2
3 , β4P (w2) with

(n, 4)β4P (w2) = 0.
As a sanity check, for n = 2 we have Sp(2) = Spin(5)

and PSp(2) = SO(5). This matches our calculations in Ap-
pendix E 2. Also note that Sp(4) f ⊂ SU(8) f ; indeed, from the
above result we see that the H5(PSU(8),Z) ∼= Z4 obstruction
is detected by restriction to PSp(4).

8. Gf = D f
8 ◦ Q f

8 , Gb = Z4
2

In Appendix E 3 we discussed how to define invertible
phases with 4|c− in a large class of symmetry groups G f

where ω2 is nontrivial. Here we discuss a finite group which
admits a solution only when c− = 0 mod 4.

Consider Gb = ∏4
i=1 Z

(i)
2 where each factor is generated by

xi. Let ai ∈ H1(Z(i)
2 ,Z2) be the projection to the ith compo-

nent, i.e., ai(x j ) = δi j . Take

ω2 = (
a2

1 + a1a2 + a2
2

) + a3a4

which is the second SW class of the (orientable) representa-
tion44

ρ = ρ1 ⊕ ρ2, (E39)

ρ1 = (A1000 ⊕ A0100 ⊕ A1100), (E40)

ρ2 = (A0010 ⊕ A0001 ⊕ 3A0011), (E41)

where Aq1...q4 denotes the 1D rep with charge qi under
Z(i)

2 . Now as Sq1(ω2) = a1a2(a1 + a2) + a3a4(a3 + a4) �=

44 wt (ρ1) = wt (A1000)wt (A0100)wt (A1100)

= (1 + a1t )(1 + a2t )[1 + (a1 + a2)t]

= [1 + (a1 + a2)t + a1a2t2][1 + (a1 + a2)t]

= (
1 + 2(a1 + a2)t + [(a1 + a2)2 + a1a2]t2

)
mod t3

n1ω2 for any n1 ∈ H1(G,Z2) we must have c− = 0 mod 2.
Also as Gb = Z4

2 is Abelian, we must have n1 = 0.
Below we show that there is no solution when c− =

2 mod 4. Using again the arguments from Appendix E 2, the
O4 obstruction for c− = 2 mod 4 reduces to checking whether

O4 = 1

2
n1ω2 ± P (ω2)

4
= 1

2
(n2ω2 + w4) mod 1

is trivial in H4(G,U(1)), where w4 is the fourth SW class of
the representation ρ. We can show by brute force expansion
that

w4(ρ) = w2(ρ1)w2(ρ2) + w4(ρ2)

= (
a2

1 + a1a2 + a2
2

)
a3a4

+ a4
3 + a4

4 + a3a4
(
a2

3 + a3a4 + a2
4

)
. (E42)

Then we consider the most general form of n2:

n2 = A + B + C + w2(ρ1), (E43)

with A ∈ H2(Z(1)
2 × Z(2)

2 ,Z2), B ∈ H1(Z(1)
2 × Z(2)

2 ,Z2) ∪
H1(Z(3)

2 × Z(4)
2 ,Z2), C ∈ H2(Z(3)

2 × Z(4)
2 ,Z2). After substi-

tuting, we find that the obstruction is nontrivial if

I = Sq1[(A + B + C)ω2 + w2(ρ1)2 + w4(ρ2)]

is nontrivial in H5(Z4
2,Z2). The term in the middle vanishes,

so next we need to constrain A,B,C.
By restricting to Z(3)

2 × Z(4)
2 we see that we must have

Sq1(Ca3a4) = a3a4(a3 + a4)3

which implies that C = a2
3 + a2

4 + C0a3a4. Next, restricting to
Z(1)

2 × Z(2)
2 gives

Sq1
[
A
(
a2

1 + a1a2 + a2
2

)] = 0

which implies that A = A0(a2
1 + a1a2 + a2

2). But as n2 →
n2 + ω2 does not change the obstruction we can set A0 = 0.
Now we look at the terms with degree 4 in H•(Z(1)

2 × Z(2)
2 )

and degree 1 in H•(Z(3)
2 × Z(4)

2 ). They come from

Sq1
[
B
(
a2

1 + a1a2 + a2
2

)]
.

Writing B = a1b1 + a2b2, with bi ∈ H1(Z(A)
2 × Z(4)

2 ,Z), the
above expands to (we keep only terms of the right degree)(
a2

1b1 + a2
2b2

)(
a2

1 + a1a2 + a2
2

)+(a1b1 + a2b2)a1a2(a1 + a2).

We thus see that b1 = b2 = 0 because they are the coefficients
of a4

1 and a4
2. Thus, we must have B = 0.

Putting this together, we have

I = Sq1(Cω2) + a3a4(a3 + a4)3 (E44)

= Sq1
[
C

(
a2

1 + a1a2 + a2
2

)]
(E45)

= Ca1a2(a1 + a2) + Sq1(C)
(
a2

1 + a1a2 + a2
2

)
(E46)

which is nontrivial in H5(Gb,Z2) because, for example, the
coefficient of a2

3a2
1a2 is nonzero. We conclude that when c− =

2 mod 4, the obstruction is nonvanishing. Thus, c− must be a
multiple of 4.

The G f constructed this way is the central product of Q8

and D8. From this observation, one can see that the only
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fermionic representation has (complex) dimension 4 and is
quaternionic so it has dimension 8 as a real representation.
This gives some insight into why c− must be a multiple of 4.

9. Calculations for Sec. IV H

In Sec. IV H we argued that when Gb = GA
b × GB

b and
ωA

2 , ω
B
2 are nontrivial, the terms ωA

2 ∪1 ω
A
2 and ωB

2 ∪1 ω
B
2

should be trivial in H3(Gb,Z2). We now show that the O4

obstruction gives a stronger constraint βωA
2 = βωB

2 = 0 where
β : H2(Gb,Z2) → H3(Gb,Z), i.e., both ω2

A, ωB
2 must have

integral lifts.
The proof is as follows. Since Sq1ω2

A/B = 0, they
admit lifts to Z4, say uA/B

2 . The obstruction for c− =
1 is O4 = P (uA

2 + uB
2 )/8 = P (uA

2 )/8 + P (uB
2 )/8 + uA

2 uB
2/4.

If β4uA
2 �= 0, then uA

2 uB
2/4 represents an element of

H2(GB,H2(GA,U(1))) that is not trivial because uB
2 is not

trivial. Therefore, β4uA
2 = 0. By repeating the argument with

A and B exchanged, we must also have β4uB
2 = 0. This implies

that βωA
2 = βωB

2 = 0, as claimed.

10. Calculations for Gf = Zn × ZT
2 × Z f

2

For this group, Gb = Zn × ZT
2 . First note that if n1 = s1,

we have dn2 = s3
1, which is obstructed. Thus, a nontrivial n1 is

possible only if it is nonzero on the Zn subgroup. This requires
that n be even.

Let n1 = w1 where w1 generates H1(Zn,Z2). We can solve
the equation dn2 = w1s1w1 only if n is a multiple of 4. In this
case, an explicit expression for n2 is

n2 = w1 ∪ (w1 ∪1 s1) + b1 ∪ s1, (E47)

where b1 satisfies db1 = w1 ∪ w1 mod 2. Let h generate the
Zn subgroup. If hiT j is a general group element of Gb, an
explicit expression for b1 is

b1(hiT j ) = i(i + 1)

2
mod 2. (E48)

Note that b1 cannot be defined in this way when n = 4k + 2
for integer k because then we would have b1(hn) �= b1(h0).

The most general expressions for s1, n1, n2 are thus

s1(hiT j ) = j mod 2, (E49)

n1(hiT j ) = i mod 2, (E50)

n2(hiT j,hkTl ) =
(

ik + i(i + 1)

2

)
l mod 2. (E51)

Finally, we evaluate the obstruction invariants associated to
this choice of n1 and n2, assuming n is a multiple of 4.
A general expression for the obstruction O4 in the case of
antiunitary symmetries is given in Ref. [20]. Specializing to
ω2 = 0, the expression is

O4(g,h,k, l) = 1
2 n2(g,h)[n2(k, l) + s1(k)n1(l)]

+ 1
2 n1(g)n1(h)s1(h)s1(k)n1(k)n1(l)

+ 1
4 n1(g)n1(h)s1(k)n1(l)

+ 1
2 s1(g)n1(h)n2(k, l) mod 1. (E52)

We compute the obstruction invariants45

I (1)
4 := O4(T,T,T,T), (E54)

I (2)
4 := O4(gT, gT, gT, gT), (E55)

I (3)
4 :=O4(gT, gT,T,T) + O4(gT,T,T, gT)

+ O4(T,T, gT, gT) − O4(gT,T, gT,T)

− O4(T, gT,T, gT) + O4(T, gT, gT,T), (E56)

where g is the order-2 element of Zn. Note that n1(T) =
n1(gT) = 0, so only the first term in the obstruction
[Eq. (E52)] can contribute. Next, note that

n2(T,T) = n2(T, gT) = 0;

n2(gT,T) = n2(gT, gT) = n

4
mod 1.

After substituting and simplifying, we find that

I (1) = 0, (E57)

I (2) = 1

2

n2

16
mod 1, (E58)

I (3) = 1

2

n2

16
mod 1. (E59)

Now observe that if n = 8k + 4, I (2) = I (3) = 1
2 , so the above

choice of n2 is obstructed. On the other hand, if n = 8k, all
the invariants are trivial. Therefore, we indeed have a solution
with n1 �= 0 when 8|n.

11. Calculations for Gf = ZT
2n × Z f

2

Here Gb = ZT
2n. Let h be the generator of Gb. We set n1 =

s1, where s1 generates H1(Gb,Z2). Since ω2 = 0, Eq. (25)
gives

dn2 = s3
1 (E60)

and, if n is even, this can be solved by setting n2 = b1s1, where

b1(hk ) = k(k + 1)

2
(E61)

for k ∈ Z2n. For odd n, there is no solution.
Let us compute O4. The required expression is identical to

Eq. (E52). Defining g = hn as the order-2 element of Gb, the
H4(Z2n,U (1)) invariant is

I :=O4(h, g, g, g) + O4(g, g,h, g) − O4(g,h, g, g)

− O4(g, g, g,h) + O4(g, g, g, g). (E62)

45These invariants are complete because H4(Zn × ZT
2 ,U(1)T) =

Z3
2 generated by 1

2 s4
1,

1
2 w2s2

1,
1
2 w2

2 where w2 is the generator of
H2(Zn,Z2):

1
2 s4

1
1
2 w2s2

1
1
2 w2

2

I (1)
4

1
2 0 0

I (2)
4

1
2

1
2

1
2

I (3)
4 0 1

2 0

(E53)
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Note that b1(h) = 1, b1(g) = n
2 and s1(h) = 1, s1(g) = 0.

Thus,
n2(h, g) = n2(g, g) = 0,

n2(h,h) = 1,

n2(g,h) = n

2
.

With this we have, for all even n,

I = 0. (E63)

Thus, there is always an unobstructed state with n1 = s1. Let
us check other values of n2. Suppose we consider n′

2 = n2 +
w2, where w2 generates H2(Z2n,Z2). For this n′

2 we find that
I = 1

2 , implying that this choice of n′
2 is obstructed. If we

first gauge the fermion parity of the invertible phase, and take
n = 2, the above results are consistent with calculations on
SET phases with Gb = ZT

4 performed in Ref. [53].

APPENDIX F: WREATH PRODUCTS

In order to generalize the O(4) f example we consider a
wreath product defined as

H � Z2 = (HL × HR) �π Z2,

where HL
∼= HR are isomorphic groups and the generator C of

Z2 permutes the two subgroups.
Corollary 3.2 of Ref. [90] shows that the Z2 coho-

mology is detected by restriction to HL × HR and H� ×
Z2. Here H� is the diagonal H subgroup. Denote the
map j∗ : H•(H � Z2,Z2) → H•(HL × HR,Z2) × H•(H� ×
Z2,Z2) which sends classes to their respective restrictions.
Then, whenever we have classes such that j∗μ = (μ′, 0) and
j∗ν = (0, ν ′) we must have μν = 0 because the image is zero
in both factors. In particular, whenever j∗ω2 = (wL

2 + wR
2 , 0)

there is a solution for the O3 equation for n1 = c1, where c1 is
the projection to the Z2 factor.

APPENDIX G: COHOMOLOGY OF B2A ∼= K(A, 2)

Here we review some facts about the cohomology of B2A
or, equivalently, the Eilenberg-MacLane space K(A, 2), for A
a finite Abelian group. The singular cohomology is

Hd (K(A, 2),Z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Z, d = 0
∗, d = 1, 2, 4
A, d = 3
�(A), d = 5
�(A), d = 6

(G1)

where �(A) is the universal quadratic group of A and �(A)
is the exterior square of A. If A decomposes into cyclic sub-
groups as A = ⊕M

j=1 Zn j , then

�(A) ∼=
⊕

1�i�M

Z(2,ni )ni ⊕
⊕

1�i< j�M

Z(ni,n j ),

�(A) ∼=
⊕

1�i�M

Z(2,ni ) ⊕
⊕

1�i< j�M

Z(ni,n j ),
(G2)

where (n,m) denotes the greatest common divisor of the two
positive integers n and m.

Given a decomposition A = ⊕M
j=1 Zn j , a basis for the ele-

ments of degree d is

d Basis Range Order
3 W3;i 1 � i � M ni

5 W5;i 1 � i � M (2, ni )ni

W5;i j 1 � i < j � M (ni, n j )
6 W 2

3;i 1 � i � M (2, ni )
W3;iW3; j 1 � i < j � M (ni, n j )

We can write the basis elements in terms of Bockstein maps
of “fundamental classes.” For each j, consider the subgroup of
H2(K(A, 2),Zn j ) ∼= Tor[A,Zn j ] that survives upon restricting
A → Zn j . A fundamental class is a generator of this subgroup;
we denote each one by w2; j . We then have

W3;i = βni [w2;i],

W5;i = β(ni,2)ni [P (w2;i)],

W5;i j = β(ni,n j )[w2;iw2; j]. (G3)

1. Justification

The above results can be extracted from Refs. [83,91,92].
First, Eq. (6.6) of Ref. [91] tells us that

K

⎛
⎝ M⊕

j=1

Zn j , 2

⎞
⎠ ∼= K(Zn1 , 2) × · · · × K(ZnM , 2). (G4)

Then, the calculation of H∗(K(
⊕M

j=1 Zn j , 2),Z) reduces to
the calculation of H∗(K(Zn, 2),Z), and then an application
of the Künneth theorem.

Next, from Secs. 21 and 22 of Ref. [91], we can extract
[Hd (K( , 2),Z) is Hd ( , 2) in their notation]

Hd (K(Zn, 2),Z) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Z, d = 0
∗, d = 1, 3
Zn, d = 2
Z(n,2)n, d = 4
Z(n,2), d = 5
torsion, d = 6

(G5)

for n a positive integer. Z1
∼= ∗ is the trivial group. Then, the

UCT gives

Hd (K(Zn, 2),Z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Z, d = 0
∗, d = 1, 2, 4
Zn, d = 3
Z(n,2)n, d = 5
Z(n,2), d = 6.

(G6)

In order to determine the generators, we can use the
fibration

K(Z, 2) → K(Zn, 2)
χ−→ K(Z, 3) (G7)

and the ring structure of H∗(K(Z, 3),Z). According to Corol-
lary 2.15 of Ref. [83], we have

Hd (K(Z, 3),Z) =
⎧⎨
⎩
Z, d = 0, 3
∗, d = 1, 2, 4, 5
Z2, d = 6

(G8)
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where x1 generates H3(K(Z, 3),Z) ∼= Z and H6(K(Z, 3),
Z) ∼= Z2 is generated by x2

1 = y2;0. As K(Z, 2) ∼= CP∞, its
cohomology is concentrated in even degree and generated by
a class v ∈ H2(K(Z, 2),Z).

The first differential of the above spectral sequence is d3.
Because H2(K(Zn, 2),Z) = ∗ and H3(K(Zn, 2),Z) ∼= Zn,
we must have d3v = nx1. Thus, d3v

2 = 2nx1v and d3vx1 =
nx2

1.
Then, E0,2

3 and E0,4
3 are trivial. Because 2x2

1 = 0, the
kernel of d3 : E3,2

3 → E0,6
3 is 2

(n,2)Z and the image is nZ2.

Then, E0,6
4

∼= Z(2,n) and E2,3
4

∼= Z(n,2)n. As there are no

more possible differentials, the spectral series collapses for
p + q � 6. In particular, the generator of H3(K(Zn, 2),Z)
[H6(K(Zn, 2),Z)] is the pullback χ∗x1 (χ∗x2

1) (here χ is the
map in the fibration). We denoted W3 := χ∗x1 above.

Then the generator of H5(K(Zn, 2),Z) is vx3.
We cannot use the edge morphisms to identify these
classes. Instead, we use the fact that if w2 generates
H2(K(Zn, 2),Zn) ∼= Hom(Zn,Zn) then H4(K(Zn, 2),
Z(n,2)n) ∼= Hom(Z(n,2)n,Z(n,2)n) is generated by P (w2)
(see Ref. [92] for a discussion of this point). Applying the
relevant Bockstein map gives the cited relations.
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