
PHYSICAL REVIEW B 107, 165121 (2023)

Two-dimensional coherent spectrum of interacting spinons from matrix product states
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We compute numerically the second- and third-order nonlinear magnetic susceptibilities of an Ising ladder
model in the context of two-dimensional coherent spectroscopy by using the infinite time-evolving block decima-
tion method. The Ising ladder model couples a quantum Ising chain to a bath of polarized spins, thereby effecting
the decay of spinon excitations. We show that its third-order susceptibility contains a robust spinon echo signal in
the weak-coupling regime, which appears in the two-dimensional coherent spectrum as a highly anisotropic peak
on the frequency plane. The spinon echo peak reveals the dynamical properties of the spinons. In particular, the
spectral peak corresponding to the high-energy spinons, which couple to the bath, is suppressed with increasing
coupling, whereas those corresponding to low-energy spinons do not show any significant changes.
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I. INTRODUCTION

The quest for quantum spin liquid, a highly entangled
quantum phase of matter believed to exist in magnets, is a
main endeavor of the modern condensed-matter physics [1–4].
Among its many fascinating traits, the ability of hosting frac-
tional excitations, such as spinons makes the quantum spin
liquid a potential platform for the future quantum informa-
tion technology. These excitations are created by breaking
a magnon in half, and can carry quantum statistics that are
neither boson or fermion.

Despite decades of experimental search, spinons, so far,
remain elusive in two- and three-dimensional systems. A ma-
jor obstacle toward its detection is that they have no sharp
features in conventional spectroscopy. A magnon manifests
itself in neutron or optical spectroscopy as a sharp resonance
peak, whose center position and width are, respectively, tied
to the energy and life time of the magnon. By contrast, the
spinons, being fractional excitations, are always created in
pairs in spectroscopy. As a result, the energy/momentum
transfer from the probe to the sample may be distributed
arbitrarily among the two spinons. Instead of a resonance
peak, this process gives rise to a spectral continuum, which
disguises the intrinsic properties of the spinons, such as their
lifetime.

Therefore, resolving the spectral continuum is an im-
portant first step toward the experimental identification and
characterization of spinons. Recently, it has been suggested
theoretically that two-dimensional coherent spectroscopy may
be used to tackle the problem [5]. The two-dimensional
coherent spectroscopy probes the nonlinear optical suscep-
tibilities of a sample using two-phase coherent and ultrafast
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optical pulses [6–22]. The nonlinear responses are then plot-
ted as a function of two frequency variables, resulting in
a two-dimensional spectrum. Analytical calculations show
that the χ (3) response of the spinons contains an echo sig-
nal [23,24] (dubbed “spinon echo”) [5], which appears in the
two-dimensional spectrum as a highly anisotropic peak. The
width of the peak along the diagonal direction of the two-
dimensional frequency plane matches the energy range of the
spinon pair excitations akin to the continuum. Crucially, the
width of the peak along the antidiagonal is inversely propor-
tional to the coherence time of spinon pairs, thus, exposing the
intrinsic property of the spinons and resolving the continuum.

The analysis of Ref. [5] is carried out on the quantum Ising
chain. In the ferromagnetic phase, this system hosts domain
walls as the elementary excitations, which may be viewed
as the one-dimensional analog of the spinons. Being exactly
solvable, the spinons in this system are noninteracting, and
their various nonlinear responses can be calculated straight-
forwardly. With interactions, the spinon may decay, thereby
acquiring a finite lifetime. Reference [5] captures these effects
phenomenologically by drawing analogy with the two-level
systems and invoking the concept of coherent time (T2 time)
and the population time (T1 time). Although intuitive, this
phenomenological treatment requires assessment from a more
microscopic perspective. In particular, one may ask if the
spinon echo is robust against spinon interactions and to what
extent the phenomenology theory is reliable.

In this paper, we explore the effect of interactions on the
spinon-echo signal in the Ising ladder, a model tailored to
exhibit spinon decay [25]. In this model, the quantum Ising
chain is coupled to another chain of polarized spins. The
latter chain acts as a bath for the former so that high-energy
spinons can dissipate its energy as it propagates. We calcu-
late numerically the two-dimensional coherent spectrum by
using the infinite time-evolving block decimation (iTEBD)
method [26–28]. Our scheme is inspired by the experimental
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FIG. 1. (a) The Ising ladder consists of a quantum Ising chain
(dark blue arrows) and a chain of polarized spins (light blue arrows),
coupled by rung-wise interactions. The former chain is the system,
whereas the latter acts as the bath. The two-dimensional coherent
spectroscopy probes the nonlinear magnetic response of this system
triggered by two successive, linearly polarized magnetic-field pulses.
(b) As a spinon propagates in the quantum Ising chain, it may excite
a magnon in the bath chain and thereby dissipates its energy.

protocol: We trigger the unitary evolution of the system by
perturbing it with spatially uniform magnetic-field pulses, and
then monitor the ensuing magnetic response in real time from
which we extract the second-order and third-order nonlinear
magnetic susceptibilities. This approach is straightforward to
implement numerically exact and versatile. Yet, common to
many numerical methods based on matrix product states, the
accessible simulation time is limited by the growth of the
entanglement entropy. Therefore, it complements nicely with
analytical treatments [21].

Our calculation shows that the two-dimensional spectrum
exhibits robust spinon-echo signal when the spinons are
weakly coupled to the bath. Furthermore, the spinon-echo sig-
nal decreases in magnitude as the pulse delay time increases,
which is a direct manifestation of the decay of the spinons.
We corroborate this interpretation by calculating the spinon
spectral function and comparing it with the two-dimensional
spectrum. Our paper, thus, suggests the utility of the spinon
echo beyond exactly solvable models.

The rest of this paper is organized as follows. We describe
the models and the numerical methods in Sec. II. In Sec. III,
we present the main results. Finally, in Sec. IV, we discuss the
limitations of the method used in this paper and provide an
outlook toward potential improvements and interesting open
questions.

II. MODEL AND METHOD

The Hamiltonian of the Ising ladder model consists of three
pieces [Fig. 1(a)],

H = HS + HB + V, (1a)

HS describes a quantum Ising chain, which is viewed as our
system,

HS = −J
∑

n

σ z
nσ z

n+1 − h
∑

n

σ x
n , (1b)

where n labels the lattice sites. σ
x,y,z
n are the Pauli operators.

J > 0 is the exchange constant. h > 0 is the transverse field.
For simplicity, we rescale the energy such that J + h → 1.
When J > h, the quantum Ising chain is in the ferromagnetic

phase and supports domain walls or spinons as fractional
excitations.

HB describes a chain of independent spins, which acts as a
bath,

HB = −h′ ∑
n

τ z
n , (1c)

where τ
x,y,z
n are Pauli operators as well. h′ > 0 is an external

field that polarizes the spins.
Finally, V couples the bath to the system,

V = −λ
∑

n

σ x
n τ x

n . (1d)

We focus on the perturbative regime λ � 1. In the absence of
coupling, the bath spins are polarized τ z

n = 1. As soon as λ �=
0, a spinon propagates in the system chain may flip the bath
spin and thereby transfers its energy to the bath [Fig. 1(b)].
This mechanism gives rise to the desired spinon decay effect.

In the two-dimensional coherent spectroscopy experiment,
two magnetic-field pulses arrive at the sample, initially in
equilibrium at time 0 and τ to induce magnetic responses,
which are recorded at time t after the arrival of the second
pulse [Fig. 1(a)] [6–10]. In direct analogy of this procedure,
we first put H in its ground-state G, and then apply two
successive Dirac-δ pulses to the system. Here, we set the
pulses polarization to x in order to excite pairs of spinon
excitations. Mathematically, this is the amount to applying a
unitary rotation,

|ψ ′〉 = exp(iθMx )|ψ〉 = exp

(
iθ

∑
n

σ x
n

)
|ψ〉, (2)

where |ψ〉 and |ψ ′〉 are, respectively, the state before and
after the pulse. Here, we have approximated the magnetic-
field pulse B(t ) as a Dirac-δ function, i.e., B(t ) ≈ θδ(t ). θ =∫

B(t )dt is the total area of the pulse. Note we assume only the
system spin (σ spins) couple to the pulse. The magnetization
is, thus, given by

mx(t, τ, θa, θb) = 〈ψ |σ x
n |ψ〉, (3)

where

|ψ〉 = e−itH eiθbMx
e−iτH eiθaMx |G〉. (4)

Here, θa,b are, respectively, the strength of the first and second
pulses. The magnetization is independent of the site n we
choose to measure thanks to the translation invariance.

mx(t, τ, θa, θb) is composed of contributions from both lin-
ear and various order nonlinear susceptibilities. To extract the
nonlinear susceptibilities, which are our focus here, we take
its derivative with respect to θa,b,

χ (2)
xxx(t, t + τ ) = ∂2mx(t, τ, θa, θb)

∂θa∂θb

∣∣∣∣
θa,b=0

, (5a)

χ (3)
xxxx(t, t, t + τ ) = ∂3mx(t, τ, θa, θb)

∂θa∂θ2
b

∣∣∣∣
θa,b=0

, (5b)

χ (3)
xxxx(t, t + τ, t + τ ) = ∂3mx(t, τ, θa, θb)

∂θ2
a ∂θb

∣∣∣∣
θa,b=0

. (5c)
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FIG. 2. (a) The nonlinear susceptibilities χ (3)
xxxx (t, t, t + τ ) of the

quantum Ising chain as a function of t and τ . J = 0.7 and h = 0.3.
(b) iTEBD and the exact result for χ (3)

xxxx (t, t, t + τ ) as a function of
t at fixed τ = 10 [marked by the arrow in (a)]. The inset shows the
error of the iTEBD result.

In particular, χ (3)
xxxx(t, t, t + τ ) corresponds to the third-order

process where the first pulse couples linearly to the sys-
tem, whereas the second pulse couples quadratically. For
χ (3)

xxxx(t, t + τ, t + τ ), the role of the first and second pulses
are switched. We note second- and third-order derivatives with
respect to θa (θb) correspond to the nonlinear responses due to
the pulse A (B) alone. As we are interested in the cross effects
due to both A and B, such objects are not considered here.
Performing a Fourier transform over the time variables t and
τ yields the two-dimensional coherent spectrum from each of
these nonlinear susceptibilities.

In practice, we approximate the derivative by a finite dif-
ference. We find the central difference schemes, which are
symmetric with respect to θa and θb to be optimal. The differ-
ence scheme for χ (2)

xxx is given by

χ (2)
xxx = 1

4θ2
[mx(θ, θ ) − mx(θ,−θ )

− mx(−θ, θ ) + mx(−θ,−θ )], (6)

where we have suppressed the time variables for brevity.
Therefore, we need to calculate mx at four different pulse
strengths. We find choosing θ = 0.01 is sufficient accurate for
our purpose. The difference schemes for the other susceptibil-
ities may be obtained in the same vein.

The remaining task is, thus, to find the ground-state |G〉
and evolve it in real time. To this end, we use the imaginary
time iTEBD algorithm [26–28] to find the ground state and
then the real-time version to carry out the time evolution. The
maximal bound dimension is D = 1200, resulting in a typical
truncation error on the order of 10−5–10−8 upon terminating
the simulation. For both procedures, we use the second-order
Trotter-Suzuki decomposition. We find a moderate Trot-
ter time 
t = 0.25 is sufficiently accurate for our purpose
and, meanwhile, significantly reducing the computational
time.

We benchmark our method with the quantum Ising chain
(λ = 0), whose nonlinear responses can be found analytically.
Figure 2(a) shows the third-order nonlinear magnetic suscep-
tibility χ (3)

xxxx(t, t, t + τ ) as a function of t and τ for the model
parameters J = 0.7 and h = 0.3. The data are scaled such
that the maximum value is 1. Our result agrees well with the
exact result where we perform the Trotterized time evolution

FIG. 3. (a) The nonlinear susceptibilities χ (3)
xxxx (t, t, t + τ ) as a

function of t and τ , obtained with the bond dimension D = 1200
and the Trotter time 
t = 0.25. The model parameters J = 0.65,
h = 0.35, h′ = 0.4, and λ = 0.1. (b) The same as (a) but with the
bond dimension D = 800 and the Trotter time 
t = 0.05. Note both
data are scaled by the same factor. (c) The difference between the
data is shown in (a) and (b). (d) Comparison of the data in (a) and
(b) as a function of t and fixed τ = 5 [marked by the arrow in (a)].
The inset shows the difference.

analytically. To facilitate a quantitative comparison, we plot in
Fig. 2(b) the data along a t scan [marked as a black arrow in
panel (a)] as well as the analytical result. Note the data from
iTEBD and from the analytical solution are scaled by the same
factor. We find the error is on the order of 10−5. This excellent
agreement demonstrates the reliability of our method.

As the Ising ladder model is no longer solvable when
λ �= 0, we test the convergence of the iTEBD algorithm by
varying the bond dimension D and the Trotter time 
t .
Figure 3 compares the nonlinear susceptibility χ (3)

xxxx(t, t, t +
τ ) for a representative set of model parameters, obtained with
D = 1200 and 
t = 0.25 (a) and D = 800, 
t = 0.05 (b).
Note the data in these two plots are scaled by the same factor.
We find the error grows as t or τ increases [Fig. 3(c)], re-
flecting the growth of the entanglement entropy. Nevertheless,
the data clearly have converged for t, τ up to ten at bond
dimension D = 800. Indeed, the error along the cut marked
as the black arrow is on the order of 10−3 [Fig. 3(d)].

Finally, we characterize the spinon dynamics directly by
using the spinon spectral function. To this end, we define an
operator,

d†
k ≡ 1√

L

L∑
n=1

e−ik(n−1)(cn + c†
n )

= 1√
L

L∑
n=1

e−ik(n−1)
n−1∏
m=1

( − σ x
m

)
σ z

n . (7)
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Here, cn and c†
n are Jordan-Wigner fermion operators. In the

second line, we have inserted their explicit expression in terms
of Pauli operators. L is the length of the chain. It is straight-
forward to verify that, in the thermodynamic limit, applying
this operator to the ground state of the quantum Ising chain
(λ = 0) yields a spinon excitation with momentum k up to a
phase,

d†
k |G〉 = |k〉(λ = 0). (8)

This observation motivates us to define the Green’s function
as follows:

iG(k, t ) = θ (t )〈G|[dk (t ), d†
k (0)]+|G〉, (9)

where [·, ·]+ represents the anticommutator. The spinon spec-
tral function is then obtained by its Fourier transform,

A(k, ω) = − 1

π
Im G(k, ω). (10)

We compute G(k, t ) by using the TEBD algorithm [26,27]
on a finite-size chain with open boundary conditions. This is
because the Jordan-Wigner transform is most conveniently ex-
pressed with open boundary condition. Specifically, we recast
d†

k as a D = 2 matrix-product operator (MPO) [29],

(11a)

where

M =
[
I 0
σ z −e−ikσx

]
, νL = [0 I], νR =

[
I
0

]
.

(11b)

Here, νR and νL provide the boundary conditions for this
MPO. This MPO representation fits nicely with the TEBD
algorithm. For the real-time evolution, we use the maximal
bound dimension D = 100 and Trotter time 
t = 0.02.

As the spinon spectral function is calculated for a finite-
size chain, we use the numerical link-cluster expansion [30]
to reduce the finite-size effect. We find that using two chains
with size L = 60 and L = 62 are sufficient. For the Fourier
transform, we extrapolate the time-domain data G(k, t ) to
larger t by using the linear prediction technique [31,32], which
yields better frequency resolution for the spectral function.

III. RESULTS

In this section, we present the results on the two-
dimensional coherent spectrum of the Ising ladder. We first
demonstrate that the spinon does decay by analyzing its
spinon spectral function. We then proceed to present the non-
linear magnetic responses in both the time and the frequency
domains, and relate their features to the dynamical properties
of spinons.

To set the stage, we analyze the dynamics of a single spinon
in the Ising ladder. In this model, a spinon with momentum
k may decay into a state with lower energy at momentum q
and an additional magnon with momentum k − q in the bath
[Fig. 1(b)]. The conservation of energy requires that

εk = εq + ωk−q = εq + 2h′, (12)

FIG. 4. (a) Spinon spectral function of the Ising ladder. The
model parameters J = 0.65, h = 0.35, h′ = 0.4, and λ = 0.05. The
right half of the panel shows the spectrum A(k, ω) as a function of
spinon momentum k and the spinon energy ω. Only the ω > 0 part
is shown. The white dashed line marks the dispersion relation of the
free spinon. The hatched area demarcates the region where the spinon
decay is kinematically allowed. The left half of the panel shows the
line shape of the spectral function at four representative momen-
tum points k/π = −0.2, −0.4, −0.6, and −0.8. Note A(k, ω) is
an even function of k. (b) The same as (a) but with h′ = 0.2 and
λ = 0.05. (c) h′ = 0.4 and λ = 0.1. (d) h′ = 0.2 and λ = 0.1.

where εk and ωk−q are, respectively, the dispersion relation
of the spinon and magnon. In the second equality, we have
used the fact that the magnon in the bath has a constant
energy 2hb, independent of the momentum. The above relation
immediately implies the following kinematic constraint on the
spinon decay:

εk > 
 + 2h′ ≡ εth, (13)

where we have defined the decay threshold energy εth. 
 =
2|J − h| is the energy gap for the spinon excitation. In the en-
suing discussion, we set J = 0.65 and h = 0.35, which yields

 = 0.6. Spinons with energy above the threshold may decay
and, as a result, have finite lifetimes, whereas those below the
threshold remain essentially free particles.

Figure 4(a) presents the spinon spectral function for
h′ = 0.4, and λ = 0.05. With such a choice of parameters,
the decay threshold εth = 1.4. As the momentum k goes
through the Brillouin zone, the position of the center of the
spectral peak essentially follows the dispersion relation of
the free spinon. However, the spectral peak broadens once it
is above the decay threshold εth. Specifically, the line width
of the peak is resolution limited below εth, and finite above
it. These results are in excellent agreement with the preceding
analysis.

We further explore the physics of spinon decay by varying
the parameters h′ and λ. On one hand, decreasing h′ from
0.4 to 0.2 reduces the threshold, and, accordingly, we find
the spinons a larger portion of the Brillouin zone can decay
[Fig. 4(b)]. On the other hand, increasing the value of λ does
not reduce the decay threshold but enhances the decay rate.
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As a result, dialing up λ from 0.05 to 0.1, we find the decay
threshold is identical, but the linewidth is now significantly
larger above the threshold [Fig. 4(c)]. Finally, simultaneously
reducing h′ and increasing λ lowers the decay threshold and
increases the decay rate [Fig. 4(d)].

Having demonstrated spinon decay, we now investigate
its signature in the two-dimensional coherent spectrum. In
the phenomenological theory, the spinon pairs excited by
the magnetic field pulses are mapped to two-level systems.
The pairs with different momenta ±k are treated as dy-
namically decoupled. Moreover, the interaction effects are
subsumed in the phenomenological phase coherent time (T2

time) and the population time (T1 time) of the two-level
systems. The calculation then shows that the nonlinear mag-
netic susceptibility χ (3)

xxxx(t, t, t + τ ) can be used to probe the
phase coherence time (the T2 time) of the spinon excitations.
Specifically [5],

χ (3)
xxxx(t, t, t + τ ) = −32

π

∫ π

0
dk sin4 θk sin[2εk (t − τ )]

×e−(t+τ )/T2,k + · · · . (14)

Here, the integration is over contributions from all spinon
pairs with momenta ±k. 2εk is their energy, whereas T2,k

is the phenomenological phase coherence time. sin θk is an
optical matrix element defined implicitly through tan θk =
J sin k/(J cos k + h). We have dropped the terms that
quickly decay in late time. Setting t − τ = δ, which is a
constant, we obtain

χ (3)
xxxx

t−τ=δ∼
∫ π

0
dk sin4 θk sin(2εkδ)e−2t/T2,k . (15)

In other words, χ (3)
xxxx(t, t, t + τ ) would persist along the line

t − τ = δ, which is the spinon-echo signal. The slow decay of
the spinon-echo signal as a function of t is a direct manifesta-
tion of the phase coherence time of the spinon pairs (T2,k).

Figure 5(a) presents the nonlinear magnetic susceptibility
χ (3)

xxxx(t, t, t + τ ) as a function of the time variables t and τ for
h = 0.4, and λ = 0.1. The spinon-echo signal appears as the
feature that persists along the diagonal direction of the plot as
predicted by the phenomenological theory. The pronounced
echo signal reveals the highly coherent spinon excitations in
this system.

Figure 5(b) shows the profile of the nonlinear magnetic
susceptibility χ (3)

xxxx(t, t, t + τ ) along the diagonal direction
with increasing λ and fixed h′ = 0.4. For the free Ising chain
(λ = 0), the echo approaches a constant as t increases. Dialing
in the coupling λ leads to the decay of the spinon excitations,
and, as a result, suppresses the echo signal. Meanwhile, reduc-
ing the value of h′ also suppresses the echo signal [Figs. 5(c)
and 5(d), which is naturally understood as the result of the
lower decay threshold εth, and, in turn, more decaying spinon
modes.

Although the magnitude of the echo signal decreases in
time, we stress that it is not expected to disappear completely
as t → ∞ in our model—There remain free spinon modes
below the decay threshold (Fig. 4), which would give rise to
an echo signal that persists in time. We will come back to this
point momentarily.

FIG. 5. (a) Nonlinear magnetic susceptibility χ (3)
xxxx (t, t, t + τ ) of

the Ising ladder as a function of t and τ . The model parameters
J = 0.65, h = 0.35, h′ = 0.4, and λ = 0.1. The data are scaled such
that the maximum value is 1. (b) The profile of the nonlinear sus-
ceptibility along the diagonal direction [shown as the black arrow
in panel (a)] with increasing coupling λ and fixed h′ = 0.4. (c) and
(d) Similar to panel (b) but with decreasing h′ and fixed λ = 0.05
(c) and λ = 0.1 (d).

Fourier transforming the time-domain data in Fig. 5(a)
produces the two-dimensional coherent spectrum, which
contains more information [Fig. 6(a)]. It is convenient to use
the phase untwisting trick, namely, symmetrizing the imagi-
nary part of the Fourier transform with respect to ωτ [7,33].

FIG. 6. (a) Phase-untwisted two-dimensional coherent spectrum
from the nonlinear magnetic response χ (3)

xxxx (t, t, t + τ ). The model
parameters J = 0.65, h = 0.35, h′ = 0.4, and λ = 0.1. (b) The pro-
file of the spectrum along the cut marked as the blue arrow in panel
(a) for increasing λ and fixed h′ = 0.4. (c) The profile of the spectrum
along the cut marked as the orange arrow in panel (a) for increasing
λ and fixed h′ = 0.4. (d) Similar to (c) but for h′ = 0.2.
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The phenomenological theory shows the spectrum is given
by [5]

A2D(ωt , ωτ ) ≡ Im χ (3)
xxxx(ωt , ωτ ) + Im χ (3)

xxxx(ωt ,−ωτ )

= −32π

∫ π

0
dk sin4 θk[ fk (ωτ ) + fk (−ωτ )]

× [ fk (ωt ) − fk (−ωt )] + · · ·, (16)

where fk (ω) is the Lorentzian function,

fk (ω) = 1

π

T2,k

1 + [(ω − 2εk )T2,k]2
. (17)

The spinon-echo peaks, thus, appear as the “streaks” in the
diagonal directions of the frequency plane. The broad width
of the peak along the diagonal direction reflects the energy
range of a pair of spinons with zero total momentum,
i.e., twice of the spinon band width. More importantly, the
linewidth of the spinon-echo peak along the antidiagonal di-
rection is expected to reveal the coherence time of the spinon
pairs—its antidiagonal width measured at frequency ±ωτ =
±ωt = 2εk is proportional to 1/T2,k . In what follows, we ex-
amine the profile of the two-dimensional coherent spectrum
along various antidiagonal cuts.

Figure 6(b) shows the spinon-echo peak along the cut
marked as the blue arrow in Fig. 6(a), which corresponds
to the spinon pair with energy 2εk ≈ 3.4. Recall that the
decay threshold for a single spinon is at εth = 1.4. This pair,
thus, lies above the threshold and are expected to have fi-
nite lifetime. Here, we are unable to resolve the linewidth
of the peak due to limited simulation time. Nevertheless, we
observe that the height of the peak does decrease monotoni-
cally as the coupling to the bath λ increases, suggesting that
the spinon pair at this energy do couple to the bath and, thus,
may decay.

By contrast, the spinon-echo peak cut along the orange
arrow in Fig. 6(c) corresponds to the spinon pair with energy
2εk = 2.1, which lie below the decay threshold. As a result,
the peak does not show significant change as the coupling λ

increases [Fig. 6(c)]. If we set h′ = 0.2 and thereby reduce
the decay threshold to εth = 1, the height of the peak now
decreases with increasing λ [Fig. 6(d)], suggesting that this
pair of spinons now couple to the bath and, therefore, may
decay.

Finally, we discuss the other nonlinear magnetic suscepti-
bilities that can be probed by the two-dimensional coherent
spectroscopy, namely, χ (2)

xxx(t, t + τ ) and χ (3)
xxxx(t, t + τ, t +

τ ). The phenomenological theory suggests that these two non-
linear responses can be used to detect the population time (T1

time) of the spinon pairs. For the second-order susceptibility,
the phenomenological theory predicts that [5]

χ (2)
xxx(t, t + τ ) = 16

π

∫ π

0
dk sin2 θk cos θk cos(2εkτ )e−τ/T2,k

×e−t/T1,k + · · ·, (18)

where T1,k and T2,k are, respectively, the phenomenological
population time and coherence time of the spinon pair with
momenta ±k. sin θk and cos θk are optical matrix elements
defined before. We have omitted the terms that are washed
out by dephasing at late times. Equation (18) shows that χ (2)

xxx

FIG. 7. (a) Nonlinear magnetic susceptibility χ (2)
xxx (t, t + τ ) as a

function of t and τ . The model parameters J = 0.65, h = 0.35, h′ =
0.4, and λ = 0.1. The data are scaled such that the maximum value
is 1. (b) The nonlinear susceptibility as a function of t and constant
τ = 0.75 [black arrow in panel (a)] for various values of λ and fixed
h′ = 0.4. (c) and (d) The same as (a) and (b) but for the nonlinear
magnetic susceptibility χ (3)

xxxx (t, t + τ, t + τ ).

would decrease in magnitude as a function of t and fixed τ ,
which is a manifestation of the population time. Likewise,

χ (3)
xxxx(t, t + τ, t + τ ) = −64

π

∫ π

0
dk sin4 θk sin(2εkt )

×e−t/T2,k e−τ/T1,k + · · ·, (19)

which indicates that this nonlinear signal will decay with τ

with fixed t .
We now compare the numerical results against the phe-

nomenological theory. Figure 7(a) shows χ (2)
xxx(t, t + τ ) as a

function of t and τ . The model parameters h′ = 0.4, and
λ = 0.1. The data decrease in magnitude as a function of t
and constant τ [Fig. 7(b)]. Furthermore, increasing λ leads to
larger suppression at a late time. Figures 7(c) and 7(d) show
χ (3)

xxxx(t, t + τ, t + τ ) as a function of t and τ with the same set
of model parameters. We find its magnitude decreases with τ

while holding t fixed. All of these features are qualitatively
consistent with the phenomenological theory.

IV. DISCUSSION

To summarize, we have calculated numerically the nonlin-
ear magnetic susceptibilities of the Ising ladder model. This
model is tailored to exhibit the decay of spinon excitations
by coupling them to a bath. In the weak-coupling regime,
we find χ (3)

xxxx(t, t, t + τ ) exhibits the spinon-echo signal that
reveals the highly coherent spinon excitations. The magni-
tude of the spinon-echo signal decreases as the pulse delay
time increases, which reflects the decay of the spinon exci-
tations. Furthermore, the two-dimensional coherent spectrum,
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FIG. 8. (a) Nonlinear magnetic susceptibility χ (3)
xxxx (t, t, t + τ ) as

a function of t and τ for a perturbed Ising mode. The model pa-
rameters J = 1, h = 0.4, J2 = −0.48, and λ = 0.2. The data are
scaled such that the maximum value is 1. (b) The phase-untwisted
two-dimensional coherent spectrum. The red circle highlights the
feature arises from the oscillatory signal in the time-domain data.

obtained by Fourier transforming χ (3)
xxxx(t, t, t + τ ), suggests

that the high-energy spinon pairs can decay, whereas the low-
energy pairs do not. In addition, the susceptibilities χ (2)

xxx(t, t +
τ ) and χ (2)

xxx(t, t + τ, t + τ ) show the signature of spinon de-
cay as well. These results are qualitatively consistent with the
physical picture presented in Ref. [5].

A main advantage of the methodology employed in this pa-
per is its versatility. It can be adapted to other one-dimensional
spin models with little modification. In addition to the Ising
ladder model, we have also calculated the two-dimensional
coherent spectrum of a perturbed Ising chain, which has
been analyzed recently by using the many-body perturbation
theory [21]. Its Hamiltonian is given by H = H0 + V . H0

describes an (extended) quantum Ising chain,

H0 =
∑

n

(−Jσ z
nσ z

n+1 − J2σ
z
nσ x

n+1σ
z
n+2 − hσ x

n

)
, (20a)

where the J2 term introduces a second-neighbor hopping of
the spinons. V introduces interactions between the spinons
and, thus, spoils the integrability,

V = λ
∑

n

(
σ x

n σ x
n+1 + σ y

n σ
y
n+1

)
. (20b)

Owing to the interaction, a spinon can decay into the contin-
uum of three spinons. Figure 8 shows the nonlinear magnetic
susceptibility χ (3)

xxxx(t, t, t + τ ) and the corresponding two-
dimensional coherent spectrum of this model, where we set
J = 1, h = 0.4, J2 = −0.48, and λ = 0.2. From the time-
domain data, we observe a clear spin-echo signal as well as a
persistent oscillation, periodic in both t and τ . We believe this
oscillation arises from a possible antibound state of spinons.
Accordingly, in the two-dimensional spectrum, we see the an

additional feature in proximity to the spinon-echo peak. This
primitive calculation shows that interactions can give rise to
interesting effects beyond the spinon decay, which is worth
further investigation.

Our paper represents a first pass at the numerical simu-
lation of the two-dimensional coherent spectra of interacting
spinons. Based on the iTEBD algorithm, the accessible sim-
ulation is limited by the growth of entanglement entropy at
late time. For the Ising ladder model, using a moderately large
bond dimension D = 1200, the accessible simulation time is
t + τ ≈ 30/(J + h). As a result, we are unable to resolve the
intrinsic linewidth of the spinon-echo peak or to carry out
any quantitative analysis. Therefore, a pressing challenge is
to reach longer simulation times. On this front, we think it is
useful to explore novel matrix-product-based methods, such
as the folding method [34,35] and the density matrix trun-
cation [36] that might circumvent the entanglement entropy
barrier.

In the phenomenological theory, the dynamics of the
spinon pairs is mapped to that of an ensemble of two-
level systems. The theory introduces two phenomenological
timescales, the T1 and T2 times to describe respectively the de-
population and the decoherence of an excited pair of spinons
and shows that these timescales can be read off from the
two-dimensional coherent spectrum. We are yet unable to
extract these timescales due to the limited simulation time.
The recent many-body perturbation theory calculation made a
first step in this direction [21]. We think it would be interesting
to use the numerical results, which are exact in early times, to
benchmark the analytical calculations.

During the preparation of this work, we become aware of
Ref. [22], which reported the numerical calculation of the
second-order magnetic susceptibility of the quantum Ising
chain subject to an longitudinal magnetic field by using
the iTEBD algorithm. In addition to the different focuses,
the methodologies are also different—Ref. [22] calculates the
nonlinear susceptibilities directly using the Kubo formula,
and performs a summation over lattice sites to obtain the
optical nonlinear responses. In this paper, we use the subtrac-
tion method to obtain the optical nonlinear responses, which
avoids the summation. It might be interesting to compare the
performances of these two methods in the future.
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