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Higher-order topology in non-Hermitian (NH) systems has recently become one of the most promising and
rapidly developing fields in condensed-matter physics. Many distinct phases that were not present in the Hermi-
tian equivalents are revealed in these systems. In this work, we examine how higher-order Weyl semimetals are
impacted by NH perturbation. We identify a new type of topological semimetal, i.e., non-Hermitian higher-order
Weyl semimetal (NHHOWS) with surface diabolic points. We demonstrate that in such an NHHOWS, new
exceptional points inside the bulk can be created and annihilated, therefore allowing us to manipulate their
number. At the boundary, these exceptional points are connected through unique surface states with diabolic
points and hinge states. For specific system parameters, the surface of NHHOWS behaves as a Dirac phase with
linear dispersion or a Luttinger phase with a quadratic dispersion, thus paving a way for Dirac-Luttinger switch-
ing. Finally, we employ the biorthogonal technique to reinstate the standard bulk-boundary correspondence for
NH systems and compute the topological invariants. The obtained quantized biorthogonal Chern number and
quadruple moment topologically protect the unique surface and hinge states, respectively.

DOI: 10.1103/PhysRevB.107.165120

I. INTRODUCTION

Since the early 2010s, topological phases such as topo-
logical insulators [1–7], topological superconductors [8–17],
and Dirac/Weyl semimetal [18–22] in Hermitian systems
have been attracting substantial attention. Currently, the field
of non-Hermitian (NH) topological systems [23–31] is also
rapidly emerging with a variety of potential applications in
condensed-matter physics. One of the key features of NH
systems is the existence of a unique branch point in the
spectrum, known as an exceptional point (EP), where both
eigenenergies, as well as eigenvectors, coalesce. This is quite
different from a conventional well-known degenerate point in
Hermitian systems, named as diabolic point (DP), at which
only the eigenenergies coalesce. Although DPs have a variety
of characteristics, their physics in non-Hermitian systems is
less explored. It has been observed generally that the DPs are
not stable and split into EPs or evolve into exceptional rings
in the presence of NH terms in the Hamiltonian [32,33].

In this work, we describe a method for generating DPs
on the surface of an NH system while sustaining EPs in the
bulk of the systems. We illustrate that the DPs change their
location on the surface as well as dispersion around them
when the system parameters vary. This allows us to achieve
the Dirac to Luttinger phase switch on the surface. Notably,
DPs emerge precisely at those locations in momenta where the
Dirac nodes are formed in the higher-order Dirac semimetal
(HODS) [26,34,35], thus retaining the memory of HODS
phase. We begin with a Cz

4 symmetric higher-order Weyl
semimetal (HOWS) which is created by breaking the degen-
eracy of each Dirac node in HODS. We unravel the fate of
such a system under NH Weyl perturbation (responsible for
breaking the degeneracy of Dirac points) due to nonrecip-
rocal couplings in the system. The NH perturbation in the
Hamiltonian breaks each Weyl node into two EPs. Starting

from eight we can decrease their number to six, four, two,
and zero by annihilating them or vice versa by tuning the
system parameters. Some of the EPs are connected either by
bulk Fermi arcs (FA) [36] or surface FAs when the system
is finite along one axis. Remarkably, the energy eigenvalues
of the surface FAs, have degenerate DPs and a variety of dis-
persion spectra around them. For certain system parameters,
we can achieve a Dirac phase having an absolute value of
energy ∼|k| as well as a Luttinger phase with k2 dispersion
relations. Since these EPs are connected by surface states so
we identify them as normal-order EPs which are characterized
by quantized open-boundary Chern number. When the system
is finite along two directions, we find that the innermost EPs
closest to the � point in Brillouin zone (BZ) are connected
by hinge states, which are completely flat bands localized
only at the hinges of the system. In recent literature, hinges
are characterized by higher-order topology, and therefore the
corresponding EPs connecting them are of higher order in
nature [37,38]. Among many, one of the interesting feature
of NH systems is the breaking down of bulk-boundary corre-
spondence (BBC). This is due to the fact that these systems
exhibit non-Hermitian skin effect [39–43]. To restore BBC,
generally, two distinctive approaches are used: (i) generalized
Brillouin zone approach [44] and (ii) biorthogonal real-space
approach [45]. Due to the simplicity and convenience, we
use the latter approach to calculate the topological invariants,
namely open-boundary Chern number [45] and quadrupole
moment [46,47], for unraveling the theory of normal as well
as higher-order topological phase of this novel semimetal. Our
theoretical proposal can readily be realized on topolectrical
circuit lattices [48]. Consequently, it may be foundational
for future experiments aimed at a controlled manipulation of
Dirac to Luttinger dispersion.

The outline of the paper is as follows. In Sec. II, we discuss
the model under consideration followed by the phase diagram
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FIG. 1. (a) Schematic diagram of unit cell with intercell hopping
as λ, nearest-neighbor intracell hopping as γ and NH next nearest-
neighbor intracell hopping as i(δ ± m). Dashed lines signify the
opposite sign of hopping compared to solid ones. The bulk energy
spectrum of (b) H0(k) with four DPs for γ = −1, m = 0.6/

√
2, and

δ = 0 and (c) for HNHW(k) having eight EPs when δ = m/2 with blue
(red) representing the real (imaginary) part of energy eigenvalues.
The non-Hermitian term, δ, creates new EPs in the system, and
therefore the number of EPs changes as we vary the value of γ and
δ. (d) Plot of the absolute energy as a function of kz with eight EPs
for the same system parameters.

analysis. In Sec. III, we study the surface and hinge states.
Next, we compute the topological invariants in Sec. IV and
different systems which preserve inversion and time-reversal
symmetry have been considered in Secs. IV and V, respec-
tively. We conclude in Sec. V. Technical details are deferred
to four Appendixes.

II. MODEL AND PHASE DIAGRAM

We consider HOWS, constructed by stacking two-
dimensional (2D) quadrupole insulators along the z
axis [26,47]. The Hamiltonian using spinless fermion has
the form HNHW(k) = H0(k) + i δσ0κ1, where H0(k) is the
Hermitian part and is given by

H0(k) =
4∑

j=1

h j� j + mσ0κ2. (1)

Here h1/3 = sin ky/x and h2/4 = (γ + 0.5 cos kz + cos ky/x ).
The intercell hopping is denoted by γ ; the direct product of
Pauli matrices have the form �0 = σ 3κ0, �i = −σ 2κ i, and
�4 = σ 1κ0; and m is intracell coupling with δ added as the
NH contribution to it as shown in Fig. 1(a). In Eq. (1), spinless
time-reversal symmetry T = K, where K is complex conju-
gate, and mirror symmetries (Mx and My) are broken due to
the m term. However, it preserves Cz

4, inversion (P), MxT ,
and MyT . This term splits the Dirac nodes into two Weyl
nodes with opposite monopole charges. It has been shown
in Ref. [26] that at most four Weyl nodes of both first- and
second-order connected via surface and hinge arcs, respec-
tively, can be obtained. Furthermore, with the addition of the

FIG. 2. The phase diagram for the number of EPs in the bulk
with elliptical phase boundaries. From the extreme left (γ = −1) we
start with eight EPs and gradually annihilate them to decrease their
number. One cannot directly reach from eight to zero EPs. There
exist an interesting point in the phase diagram with values γ = −0.5
and δ ∼ 0.4, which we name the triple point of EPs in the bulk.
Infinitesimal change around this point marks a phase transition and
takes us to phases with different number of EPs.

non-Hermitian coupling δ, multiple EPs emerge where both
the real, as well as the complex, part of the energy goes to
zero. The δ term preserves charge conjugation (C) and CP .
However, it breaks symmetries like inversion (P), Cz

4, MxT ,
MyT , chiral, PT [49], anti-PT , and reciprocity R.

The energy spectrum of HNHW(k) is E2
±(k) = a(k) ±

2
√

b(k), where a(k) = ∑4
i=1 h2

i + m2 − δ2 and b(k) = (h2
2 +

h2
4)(m2 − δ2) + 2ih1h2mδ. In Figs. 1(b) [Figs. 1(c) and 1(d)],

we show the spectrum of H0(k) [HNHW(k)] as a function
kz, with a set of parameters, producing four Weyl nodes
(eight EPs). We have confirmed numerically that the EPs
are formed only at kx = 0, and therefore from now on we
work with this parameter with the highest number of EPs
in the bulk. The location of these EPs as the function of
kz is obtained by solving the dispersion relation E (kz ) =
0, where kx and ky are fixed to be at zero. The eight
EPs are located at values ±[π − arccos (2γ + δ + m′ + 2),
arccos(−2γ + δ ± m′ − 2), and arccos(−2γ − δ + m′ − 2)]
with m′ = √

2m2 − δ2. For a fixed value of δ, when γ varies
such that one goes from a phase with eight EPs to six EPS,
two of the kz values where EPs appear become complex (the
argument of the arccos have a value greater than 1). Similar
behavior has been observed whenever we cross the phase
boundaries in Fig. 2. Their number clearly depends on γ and
δ as m is kept constant. At kz = ±π , EPs annihilate each
other to change their number. So we solve the dispersion rela-
tion at kz = ±π to obtain the phase-space trajectory. Solving
the dispersion relation of HNHW(k) at kz = ±π , we get phase
separation trajectory (1 + 2γ ± δ)2 = 2m2 − δ2. We evaluate
the value of δ from the phase-space trajectory as

{
δ → ± 1

2 [2γ ±
√

4m2 − (2γ + 1)2 + 1]
}
. (2)

For a fixed value of m, δ depends only on γ , and therefore we
obtain two intersecting ellipses in the (γ -δ) plane, see Fig. 2.
Notably, there exists a peculiar point in the parameter space
γ = −0.5 and δ ∼ 0.4 where an infinitesimal change in the
value of δ or γ will take to phases with different number of
EPs therefore we coin it as triple point of EPs.
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FIG. 3. (a) Real part of energy spectrum of HNHW for x surface
(at ky = 0) as a function of kz with same parameters as in Fig. 1. Of
eight EPs four are connected by surface Fermi arcs, thus identifying
them as normal-order EPs. The remaining four are connected through
bulk Fermi arcs. (b) The corresponding imaginary part of the energy
spectrum, forming a ringlike structure connecting EPs. Absolute
energy spectrum for the x surface (c) demonstrating the formation
of DPs at kz = ±π/2 and ky = 0 with linear momenta dependency
and (d) contour plot in (ky-kz ) plane shows the formation of two
Dirac cones around (ky, kz ) = (0,±π/2). The concentric circles are
projections of Dirac cones. (e) Absolute energy eigenspectrum for
γ = −0.5, having a dispersion with quadratic momenta dependency
at BZ boundary. Therefore, behaving like a Luttinger phase on the
surface of NHHOWS. (f) Finally, the real (blue) and imaginary
(red) part of the energy spectrum for hinge states formed when we
have open boundary condition (OBC) along the x and y directions.
It clearly shows that innermost EPs close to kz = 0 are connected
through hinge states and therefore are named higher-order EPs. We
have verified our results for different values of γ as well, see Ap-
pendix D.

III. SURFACE AND HINGE ANALYSIS

Further, we explore surface states by considering a tight-
binding Hamiltonian along the x axis; for more details on
tight-binding Hamiltonians, see Appendix A. In Fig. 3(a), we
label the EPs from the extreme left; the EPs are connected
via bulk FAs from positions 1 to 2, 3 to 4, 5 to 6, and 7
to 8 but from positions 2 to 3 and 6 to 7 via surface FAs.
We call these EPs normal order as they are only connected
through the surface states. Also as shown in Fig. 3(b), the
imaginary part of the spectrum exhibits a ringlike structure
connecting the EPs. Contrary to previous studies of NHWSM,
the absolute value of E reveals that these Fermi arcs are
dispersive in nature, see Figs. 3(c), 3(d) and 3(e). Without
loss of generality, to simplify the analytical calculation, we
consider m = 2 δ throughout the paper. Next we provide an

analytical solution to find the exact momenta values at which
the DPs are formed. In principle, one should work with the
slab Hamiltonian; however, with Hslab the analytical solution
remains infeasible. Therefore, to proceed further, we project
the bulk Hamiltonian along kx = 0 and ky = 0 momenta axes,

H (kz0, γ , δ, m) = (
1
2 cos kz0 + γ + 1

)
(�4 + �2)

+ imσ0κ1 + iδσ0κ2. (3)

To reduce one more variable we take m = 2δ. The character-
istics polynomial of the above projected Hamiltonian is given
by the form,

E4 + A E2 + B = 0, (4)

where E is the energy eigenvalue, A and B have the following
forms:

A = [δ2 − 2γ (γ + 2)] − 8δ2 − cos(kz0)[4γ + cos(kz ) + 4]

− 4, (5)

and

B = − 16γ (γ + 2)δ2 + 4γ (γ + 2)[γ (γ + 2) + 2]

+ 9δ4 − 16δ2 − 4δ2 cos (kz )[4γ + cos (kz ) + 4]

+ 1
4 cos2 (kz )[4γ + cos (kz ) + 4]2

+ 2(γ + 1)2 cos (kz )[4γ + cos (kz ) + 4] + 4. (6)

We solve the characteristics polynomial for low energy, which
is satisfied at B/A = 0. Also after neglecting the second- and
third-order terms in δ, B/A further simplifies into

B/A = −γ (γ + 2) − 1
4 cos (kz )[4γ + cos (kz ) + 4] − 1 = 0,

(7)
which leads us to the following values of kz0:

kz0 = ± cos−1[−2(γ + 1)]. (8)

We note that kz0 is independent of m and δ and explicitly
depends only on γ . Also, the DPs appear exactly at those
locations where the Dirac nodes are formed in the HODS [26]
phase; we also show using Schur’s determinant identity that
the eigenvalues corresponding to DPs are zero, see Ap-
pendix B. From this, one can clearly deduce that DPs retain
the memory of HODS phase. The value of kz matches ex-
actly with the numerically obtained kz0 = ±π/2 (0) for γ =
−1 (−0.5). The distance between the two DPs increases (de-
creases) with the corresponding change in γ . At kz0 = ±π/2,
the functional form of absolute energy for the surface state is
∝ |kz|. Hence the surface of non-Hermitian higher-order Weyl
semimetal (NHHOWS) is in the Dirac phase, hosting two
Dirac cones at kz0 = ±π/2. Interestingly at a particular value
of γ = −0.5 these DPs merge at BZ boundary kz = ±π , hav-
ing absolute energy dispersion as ∝ k2

z ; see Appendix C. This
kind of low energy dispersion along kz resembles a quadratic
Luttinger spectrum at BZ boundary [50–52]. Therefore, by
tuning γ , we switch from Dirac to the Luttinger phase on the
surface of NHHOWS. Further increasing γ above −0.5, the
DPs completely merge, thus gapping out the energy spectrum.
Also, we have analytically as well as numerically obtained
that with the variation of γ , the dispersion is always linear
along ky and becomes nonlinear only along the kz direction.
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The contour plot of surface states in Fig. 3(d) reveals the fact
that surface states are actually a collection of FAs, and as a
result, they form conelike structures in the (ky-kz ) plane.

Next, we explore the hinges of the system by applying
OBC along the x and y directions [see Appendix D].
We observe that two innermost EPs closest to kz = 0 are
connected by hinge states, see Fig. 3(f). Therefore, we
identify them as higher-order EPs. This phase is characterized
by a topological invariant named the quadruple moment
qxy [46], which we will discuss in the next section. The
absolute energy band diagram for hinge states confirms that,
unlike surface FAs, these are perfectly flat bands connecting
innermost EPs. The degeneracy of hinge states is four and in
the Hermitian counterpart, each one of the states is localized
at all of the corners of the (x-y) plane. However, for our NH
system, these are localized in either two lower or two upper
corners depending on whether we plot left |ψL〉 or right |ψR〉
wave functions; see Appendix D. We identify this fascinating
effect as higher-order non-Hermitian skin effect (HONHSE).
Moreover, we have explored models with different symmetry
classes and discovered that the peculiar surface feature and
the hinge state behavior remain unchanged. This illustrates
the stability of the NHHOWS with surface DPs; for more
information, see Appendix C.

IV. TOPOLOGICAL INVARIANTS

A. One-dimensional winding number

The Hamiltonian HNHW(k) is not off-block diagonal for
the chosen basis. So, in order to unravel the hidden sublattice
symmetry of the model and make it an off-block diagonal, we
change the basis by rotating the Pauli matrix (σ i

s and κ i
s) about

the y axis. The transformations are as follows: σ x → κyσ x,
σ y → σ y, σ z → κyσ z for σ i

s and κx → σ yκx, κy → κy, κz →
σ yκz for κ i

s. After successfully applying these transformations
to the Hamiltonian and projecting it along the x axis, the bulk
Hamiltonian takes the form,

HNHW(k) =
(

0 Q1

Q2 0

)
, (9)

where the upper block is

Q1 = (−im − sin ky)I2 + i

(
γ + δ + cos ky + cos kz

2

)
σy

− i

(
γ + 1 + cos kz

2

)
σx, (10)

and the lower block is

Q2 = (im − sin ky)I2 − i

(
γ − δ + cos ky + cos kz

2

)
σy

× i

(
γ + 1 + cos kz

2

)
σx, (11)

with the property Q2 �= Q†
1 for NH systems. The 1D wind-

ing number as a function of kz is given by

W kx=0
(1,2) (kz ) =

∫ π

−π

1

2π i
∂ky log(det[Q1,2(ky, kz )])dky. (12)

FIG. 4. Plot of one-dimensional winding number, W = W1 + W2,
as a function of kz with kx = 0. It flips signs when it passes through
EPs, highlighting their topological nature.

We notice that W = W1 + W2 flip sign after hitting any of
the EPs and jumps from 0 to ±1, see Fig. 4. Therefore, we
conclude that these bulk EPs are topological in nature.

B. Real-space open-boundary Chern number

In Hermitian systems, the appearance of robust topologi-
cally protected edge modes can be directly predicted only by
looking at the bulk. These edge modes appear whenever there
is a quantization of the Chern number or any of the topological
indices in the bulk. So if one knows about the bulk, then the
boundary can be predicted and vice versa; this well-known
phenomenon is called BBC. This is a remarkable connection
in Hermitian systems where the topological phase transition
is marked by band touchings. On the contrary, NH systems
do not follow the traditional BBC [41,44]. In such a scenario,
it is quite difficult to reestablish a simplified correspondence
between the bulk or boundary as in the case of Hermitian
systems. Therefore, we calculate the topological invariant in
real space with open boundaries as opposed to calculating
them in momentum space. To begin with, we use the eigen-
states of the Hamiltonian with OBC along two axes. For NH
systems, one has right and left eigenstates satisfying the eigen-
value equation as H |nR〉 = En |nR〉 and H† |nL〉 = E∗

n |nL〉,
respectively. The left and right eigenstates are chosen in such a
way that the biorthonormality is maintained, 〈mL|nR〉 = δmn,
〈mL|n′R〉 = 〈m′L|nR〉 = 0. The primed states are the chiral
partners of right (left) with negative eigenenergy −En (−E∗

n ).
Furthermore, we compute the bulk band projection operator,
P̂α = ∑

n∈α |nR〉 〈nL|. The sum is over all the unoccupied
bands (labeled as α), i.e., below the Fermi level. Using P̂α ,
the open-boundary Chern number is calculated as [45]

Cα = 2πι

L′
xL′

y

Tr′(P̂α[[X̂ , P̂α], [Ŷ , P̂α]]), (13)

where X̂ and Ŷ are coordinate operators along the x and
y axes for a 2D slice corresponding to each value of kz,
defined as X̂mm′ = xδmm′ and similarly for Ŷnn′ = yδnn′ with
1 � x � lx (1 � y � ly) where lx(ly) is the size of the system
along x(y) with unit lattice spacing. Also l ′

x/y is defined as
l ′
x/y = lx/y − 2l0, where l0 is a boundary layer that is being

removed from lx/y. After excluding the boundary layer only
bulk information is captured by Tr′ which is taken over the
middle region. The open-boundary Chern number for each 2D
kz slice takes a quantized value, C = −1, exactly in the region
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FIG. 5. The open-boundary Chern number has been plotted as a
function of kz, it takes an integer value of −1 only in the region where
EPs are connected through surface states.

where surface states connecting the EPs appear; otherwise, its
value is zero (see Fig. 5), thus reflecting the topological
character of the collection of surface FAs. Therefore,
this approach gives us a powerful tool for computing the
Chern number in real space and successfully capturing the
topological nature of the surface states.

C. Biorthogonal higher-order topological invariant: qxy

It is well known that the appearance of hinge states is
a clear signature of the higher-order topological phase of
3D systems [26,34]. Hinge gapless modes appear where the
one-axis OBC spectrum (that is, the surface) is gapped. We
notice that the innermost EPs closest to the � point in BZ
are connected by fourfold degenerate hinge states. Thus, we
conclude that the innermost EPs are higher order [37,38].
For Hermitian systems as well as their NH generalizations,
higher-order topology can be characterized by the presence
of a quadruple moment, qxy. This kind of analysis is well
explored in the existing literature [46,47] and is given by

Qcorner − pedge
x − pedge

y = −qxy, (14)

where pedge
x (pedge

y ) is surface polarization along the x(y) axis.
The charge Qcorner is localized at the corners of each 2D kz

slice of the material. As mentioned in the previous section due
to the presence of the NH skin effect and breaking down of
BBC, it is challenging to use this formula [53] as the explicit
calculations of pedge

x and pedge
y and corner charge(Qcorner) are

complicated. In order to avoid all these complications and be
motivated by the previous success of biorthogonal approach,
we use a real-space operator-based formalism to calculate the
quadruple moment qxy. From a previous study [54], using the
same line of thought qxy is defined as

qxy =
[

Im(ln [det Q̂] )

2π
−

∑
i X̂iŶi

2lxly

]
mod 1, (15)

where Q̂ is a matrix whose elements are given by Q̂mn =
〈mL|e 2π iX̂Ŷ

lx ly |nR〉 and X̂ and Ŷ are the same coordinate operators
used to calculate Chern number in the previous section as
well. For each 2D kz slice from [−π, π ], we observe that
qxy takes quantized value of half where hinge states ap-
pear (connecting the innermost higher-order EPs); see Fig. 6.

FIG. 6. Higher-order topological invariant quadruple moment qxy

is quantized to a value of half where hinge state connects the in-
nermost EPs. The system parameters are the same as those used
in Figs. 2(a)–2(d) and 2(f) for the Dirac phase. However, we have
verified that all three invariants work perfectly for the Luttinger phase
as well.

Therefore, again we are able to successfully characterize the
higher-order topology of the hinge states.

V. MODEL PRESERVING INVERSION SYMMETRY

Here we present a model with explicit momentum de-
pendence in the NH perturbation. As a result, it breaks the
time-reversal symmetry (T ) but preserves inversion symmetry
(P) [55],

HI
NHW(k) = H0(k) + i δσ0κ1 sin kz, (16)

where H0(k) is the Hermitian part given as

H0(k) =
4∑

j=1

h j� j + mσ0κ2. (17)

Similarly to the previous model, here also we can control the
number of EPs in the bulk. The EPs are either connected by
first-order surface or higher-order hinge states, depending on
the topological phase of the material. All the band diagrams
corresponding to the bulk, surface, and hinges are plotted in
Fig. 7. On increasing the value of γ , from −1.3 to −0.7,
we are able to generate higher-order EPs in the bulk, which
are connected by hinge states. Thus, one can traverse from a
normal to a higher-order phase by tuning system parameters.

VI. MODEL PRESERVING TIME-REVERSAL SYMMETRY

Unlike the inversion symmetric model written in Eq. (16),
here we introduce momentum dependence to the Weyl pertur-
bation along with NH perturbation. Due to this change, the
model breaks inversion symmetry (P) but in turn preserves
time-reversal symmetry (T ) with complex conjugate (K) be-
ing the time-reversal operator,

HT
NHW(k) = H ′

0(k) + i δσ0κ1 sin kz, (18)

where H ′
0(k) is the Hermitian part with momentum-dependent

Weyl perturbation,

H ′
0(k) =

4∑
j=1

h j� j + mσ0κ2 sin kz. (19)
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FIG. 7. [(a)–(c)] Bulk energy spectrum for inversion symmetric Hamiltonian written in Eq. (16), for γ (−1.3, −1.0, −0.7) from left to the
right column in all the rows. We consider m and δ to have the same values throughout. Corresponding real, imaginary, and absolute parts of
eigenvalues for the x surface, have been shown in (d)–(f), (g)–(i), and (j)–(l), respectively. The absolute energy consists of DPs with modulating
dispersion with the variation in γ . In (m)–(o), the real (blue) and imaginary (red) part of hinge spectrum with two-axes OBC for inversion
symmetric model have been plotted. [(p)–(r)] Corresponding absolute energy spectrum for hinge states. Notably, the spectrum is linear close
to DPs at γ = −1.
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FIG. 8. [(a)–(c)] Bulk spectrum for the time-reversal symmetric model written in Eq. (18) for γ = (−1.3, −1.0, −0.7). [(d)–(f)] Corre-
sponding real eigenspectrum of x surface (ky = 0) along kz, showing surface FAs. [(g)–(i)] Imaginary eigenspectrum along kz. [(j)–(l)] Same x
surface but with absolute energy depicting DPs with modulating dispersion with change in γ . [(m)–(o)] Hinge spectrum with two-axis OBC
for inversion symmetric model. [(p)–(r)] Corresponding hinge absolute energy spectrum. Other parameters are the same as used in Fig. 7.

The band diagrams of the TR symmetric model corresponding
to the bulk, one-axis OBC surface, and two-axis OBC hinges
are plotted in Fig. 8. In contrast to the inversion symmetric

model, this model hosts eight EPs in the bulk for all three
values of γ . We notice that of eight EPs, four are of the normal
order in nature as they are connected by the surface states.
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FIG. 9. Band diagrams for the slab Hamiltonian in Eq. (A1) as a function of kz. (a) The real part of the energy spectrum for γ = −1.3.
(b) Same plot for the parameter γ = −0.7. Both of them host zero-energy surface states. [(c) and (d)] Imaginary energy spectra for (a) and
(b), respectively, both show the formation of concentric rings. [(e) and (f)] Plots of the absolute value of energy for γ = −1.3 and −0.7,
respectively; one can clearly point out the deviation of dispersion around DPs from linear Dirac nature (γ = −1.0). [(g) and (h)] Contour plots
for (e) and (f) respectively, in the (ky-kz) plane. These plots capture the nonlinear nature of the dispersion around the DPs (elliptical contour),
which appear at ky = 0 and kz = cos−1[−2(1 + γ )].

At γ = −1.3, hinge states do not appear, and thus higher-
order EPs are not present. As we vary γ , two EPs closest to
kz = 0 transform into higher order and are connected by four-
fold degenerate hinge states, along with the remaining four
first-order EPs. Figures 7 and 8 highlight the fact that there
is no significant deviation in the outcome from the model dis-
cussed in Sec. II. This implies that these symmetries (I and T )
turn out to be futile for the model. Another interesting point
is that the momenta values of DP and the form of low energy
dispersion around them do not change when we are at Dirac
phase (γ = −1) or in the Luttinger phase (γ = −0.5) even
after invoking the above symmetries. We therefore conclude
that the DPs on the surface do not require these symmetries to
stabilize them.

VII. CONCLUSIONS

In summary, we have examined non-Hermitian HOWS and
shown that the NH term provides us a potent tool to annihilate
or create new EPs in the bulk of a system. Some of the EPs
are connected through surface (hinge) states and are of normal
order (higher order). We identify this new type of topological
semimetal as NHHOWS with surface diabolic points. The
surface of such a semimetal features some exotic phases like
Dirac and Luttinger with linear and quadratic dispersion, re-
spectively. This allows Dirac to Luttinger phase switching on
the surface of NHHOWS as a function of system parameters.
Additionally, we describe the topological properties of the
EPs by first computing a 1D winding number and then imple-
menting the biorthogonal method to obtain the open-boundary
Chern number and qxy. The latter two invariants identify the
system’s topological region, where surface and hinge states
appear. The Chern number has an integer value of −1 and
qxy takes quantized value of half. Moreover, the biorthogonal

technique stands out to be an essential tool in the context of
computing topological invariants and subsequently capturing
normal as well as higher-order topological phases of this sys-
tem in a more versatile manner.
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APPENDIX A: SURFACE STATES ANALYSIS

In this section, we calculate the tight-binding Hamiltonian
of HNHW(k) with one axis OBC while maintaining PBC in the
other two directions. The lattice version of the bulk Hamilto-
nian has the following form:

Hslab = H0

N∑
x=1

c†
xcx +

N−1∑
x=1

(tx c†
xcx+1 + H.c.), (A1)

where H0(kz, ky, γ , δ, m) = (γ + 1
2 cos kz )�4 + (γ + 1

2 cos kz

+ cos ky)�2 + sin ky�1 + mσ0κ2. and tx = 1
2�4 − i�3 and j is

the unit cell index, we remind the readers that each unit cell
has four spinless orbitals. The matrix form or the slab Hamil-
tonian of the above model is expressed in block off-diagonal
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form as

Hslab =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H0 tx 0 . . . 0 0 0

t†
x H0 tx . . . 0 0 0

0 t†
x H0 . . . 0 0 0

...
...

...
. . .

...
...

...

0 0 0 . . . H0 tx 0

0 0 0 . . . t†
x H0 tx

[3pt]0 0 0 . . . 0 t†
x H0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A2)

The diagonal or the onsite part of the slab Hamiltonian is

H0(kz, ky, γ , δ, m)

= sin ky�1 + (
γ + 1

2 cos kz + cos ky
)
�2

+ (
γ + 1

2 cos kz
)
�4 + (mσ0κ2 + iδσ0κ1), (A3)

whereas the off-diagonal part is

tx =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 0
0 0 0 0
0 1 0 0

⎞
⎟⎟⎠ and t†

x =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 1
1 0 0 0
0 0 0 0

⎞
⎟⎟⎠.

(A4)
The surface plots for the other two parameters, apart from

γ = −1, are shown in Fig. 9.

APPENDIX B: SLAB CALCULATION
FOR DIABOLIC POINTS: AN ANALYTICAL WAY

TO MATCH EIGENVALUES

In this section, we provide an analytical way of calculating
eigenvalues corresponding to DPs and their degeneracy. We

FIG. 10. Two lowest energy eigenvalues as a function of the
number of times Schur’s determinant identity is used. We recursively
use this identity and show that with the increase in the lattice size
these two eigenvalues ultimately converge to zero. This captures the
degeneracy of the DPs as well as the finite-size effect of the system.

FIG. 11. Absolute energy band diagram for the OBC (surface)
Hamiltonian of Sec. II (a) along kz (ky = 0) showing the formation
of two Dirac cones with linear dispersion at low energy. These
are formed exactly at kz = ±π/2. (b) Surface band diagram with
same parameters along ky (kz = ±π/2), depicting a single Dirac
cone at ky = 0. At this particular parameter, that is, γ = −1, low
energy dispersion relations are linear along both the momenta
direction.

begin by using the slab Hamiltonian [56] in Eq. (A1),

Hslab =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H0 tx 0 . . . 0 0 0

t†
x H0 tx . . . 0 0 0

0 t†
x H0 . . . 0 0 0

...
...

...
. . .

...
...

...

0 0 0 . . . H0 tx 0

0 0 0 . . . t†
x H0 tx

0 0 0 . . . 0 t†
x H0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B1)

In the diagonal or onsite part of the above Hamiltonian,
we make the following substitutions: kz = π/2, ky = 0, γ =
−1, and m = 2δ. After substituting and simplifying it looks
like

H0(kz = π/2, ky = 0, γ = −1, δ, m = 2δ)

=

⎛
⎜⎜⎜⎜⎜⎝

0 −iδ −1 0

3iδ 0 0 −1

−1 0 0 −iδ

0 −1 3iδ 0

⎞
⎟⎟⎟⎟⎟⎠. (B2)
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FIG. 12. Surface band diagram similar to Fig. 11 with γ = −1.5.
(a) as a function of kz (ky = 0) depicting a Luttinger quadratic dis-
persion relation. At γ = −0.5 this quadratic dispersion is formed at
kz = ±π/2 as shown in Fig. 2(e). (b) In the band diagram, a single
Dirac cone has been observed as a function of ky. Therefore, along ky

the dispersion is always linear in nature.

To derive the spectrum for these parameters, we analyze
the solution of characteristics polynomial of det[Hslab −
λI4N×4N ] = 0 where square lattice size is 4N × 4N . Even
after these simplifications, the analytical solution remains in-

feasible. Therefore, to tackle this problem, we use Schur’s
determinant identity [57],

det

(
A B

C D

)
= det(D) det(A − BD−1C). (B3)

We apply Schur’s determinant identity in an iterative manner
and obtain a recursion relation that allows us to calculate
all eigenvalues. Final expression has the form det[Hslab −
λI4N×4N ] = ∏N

j=1 det a j where a1 = H0 − λI4X4 and a j =
a1 − txa−1

j−1t†
x for j � 2. Finally, we take

∏N
j=1 det a j = 0

which gives us the eigenspectrum. We notice that there are
two eigenvalues that converge to zero after continuing a series
of iterations. The plot of the lowest energy solution with the
number of times Schur’s identity is being used has been shown
in Fig. 10 with δ = 0.2 in (B2). Ultimately these two values
converge to zero, corresponding to a twofold degeneracy of
DPs. It also captures the finite-size effect, which demands the
lattice to be large enough such that the DPs are exactly at zero
energy.

APPENDIX C: VERIFICATION OF LOW-ENERGY
DISPERSION RELATION NEAR DIABOLIC POINTS

We notice that the DPs are formed on the x surface of
the system. Therefore, we project the bulk Hamiltonian in the
(ky-kz ) plane, assuming kx = 0. In principle, one should work
with the slab Hamiltonian; however, with Hslab the analytical
solution remains infeasible. Therefore, we work only with H0

(the diagonal part which depends on momentas) to extract the
dependency of E on ky and kz. First, we expand the Hamilto-
nian near these momenta values of DPs for small values of ky

which gives e±iky = 1 ± iky. Second, expansion of kz around
±π/2 gives cos(kz ) = cos(kz ± π/2) = ± sin (kz ) = kz. This
step tremendously simplifies the Hamiltonian, and thus the
matrix form of H0 takes the form

H0(kx = 0, kz, ky, γ = −1, δ, m = δ/2) =

⎛
⎜⎜⎜⎜⎝

0 −iδ kz

2 iky + kz

2

3iδ 0 iky − kz

2
kz

2
kz

2 −iky − kz

2 0 −iδ

−iky + kz

2
kz

2 3iδ 0

⎞
⎟⎟⎟⎟⎠. (C1)

Although this form of Hamiltonian looks simple, the analytical form of the eigenvalues is complicated. In order to reduce the
complicated form of eigenvalues, we take ky = 0 and solve the dispersion relation for kz and vice versa. First taking ky = 0, the
dispersion relation along kz has the form

E4(kz ) = (
k2

z + 2
√

7δkz + 6 δ2
)(

k2
z − 2

√
7δkz + 6 δ2

)
/4 = [(

k2
z + 6 δ2

)2 − 28δ2k2
z

]
/4 (C2)

and, for kz = 0, along ky the dispersion takes the form

E4(ky) = (ky − 3i δ)(ky + i δ)(ky + 3i δ)(ky − i δ) = (
k2

y + 9δ2
)(

k2
y + δ2

)
. (C3)

For small δ, along both axes dispersion of the absolute value of energy ∼|k| is shown in Fig. 11. Therefore, we verify analytically
the linear form of low energy dispersion along ky and kz direction around the DPs at γ = −1. On plotting the surface band
diagrams, we notice that at γ = −1.5 or −0.5, the low energy dispersion around DPs is quadratic in nature along kz and
linear along ky. This kind of quadratic dispersion is seen in Luttinger semimetals [50–52]. To analytically capture the quadratic

dependency, we take kx = 0 and expand close to ky, kz → 0 such that e±iky = 1 ± iky and cos(kz ) = 1 + k2
z

2 after neglecting
higher-order terms. We note that the only difference between γ = −1.5 and −0.5 is the value of kz0. Further, some algebraic
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FIG. 13. The real (blue) and the imaginary (red) part of the energy eigenspectrum for a two-axis OBC Hamiltonian for (a) γ = −1.3 and
(b) γ = −0.7 as a function of kz. In (b) hinge states appear connecting two EPs (higher order) and therefore, for this parameter value, HNHW is
in the higher-order topological phase [(c) and (d)] corresponding to the absolute energy plots for (a) and (b). [(e)–(h)] Plot of the left-handed
wave function |ψL〉 of four fold degenerate hinge states evaluated at kz = 0 and γ = −0.7. Out of four, there are two distinct-looking wave
functions forced to be caged at the lower two corners because of HONHSE. [(i)–(l)] The corresponding right wave function |ψR〉 evaluated in
same region for the same parameter value. Remarkably, these are localized at the upper two corners.

manipulations simplify the Hamiltonian into

H0(kx = 0, ky, kz, γ = −1.5, δ, m = δ/2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 −iδ k2
z

4 iky + k2
z

4

3iδ 0 iky − k2
z

4
k2

z

4

k2
z

4 −iky − k2
z

4 0 −iδ

−iky + k2
z

4
k2

z

4 3iδ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (C4)

It has an exactly similar form to Eq. (C1) where only
kz/2 gets replaced with k2

z /4 and remarkably iky remains the
same. Therefore, using a similar analysis we can account for
quadratic dispersion, with an absolute value of E ∼ k2

z along
one axis and ky along another. This kind of dispersion relation
is captured in Fig. 12.

APPENDIX D: HINGE STATE ANALYSIS

In order to construct the hinges of the bulk system, we ap-
ply OBC along the x and y axes; however, PBC is maintained

along the z direction. The lattice Hamiltonian in two directions
takes the form

Hhinge = H0

Nx,Ny∑
x,y=1,1

c†
x,ycx,y δx,y +

⎛
⎝tx

Nx−1,Ny∑
x,y=1,1

c†
x,ycx+1,y

+ ty

Nx,Ny−1∑
x,y=1,1

c†
x,ycx,y+1 + H.c.

⎞
⎠, (D1)

where Nx = Ny = N is the number of unit cells along the x
and y directions on a square lattice. The form of H0 has the
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following form:

H0(kz, γ , δ, m) =

⎛
⎜⎜⎜⎜⎜⎝

0 iδ − im γ + cos kz

2 γ + cos kz

2

iδ + im 0 −γ − cos kz

2 γ + cos kz

2

γ + cos kz

2 −γ − cos kz

2 0 iδ − im

γ + cos kz

2 γ + cos kz

2 iδ + im 0

⎞
⎟⎟⎟⎟⎟⎠, (D2)

and the hopping matrices are

tx =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 0
0 0 0 0
0 1 0 0

⎞
⎟⎟⎠ and ty =

⎛
⎜⎜⎝

0 0 0 1
0 0 0 0
0 −1 0 0
0 0 0 0

⎞
⎟⎟⎠. (D3)

The band diagram figure for the Hamiltonian Hhinge depicts
that for γ = −1.3, the hinges are fully gapped; however, for
γ = −0.7, hinge states connect the two EPs closest to kz = 0.
This marks the higher-order topological phase of HNHW. We
check that these hinge states are fourfold degenerate with
absolute zero energy eigenvalues. The energy spectrum and

eigenstates are shown in Fig. 13. Notably, the hinge states
occupy only the lower corners. This mismatch is because this
model possesses HONHSE [43], and, as a result, hinges are
caged in the lower corners only. In order to visualize all four
hinge localizations, we plot the left |ψL〉 along with right |ψR〉
wave functions.
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