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Excitonic effects in time-dependent density functional theory from zeros of the density response
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We show that the analytic structure of the dynamical exchange-correlation (xc) kernels of semiconductors
and insulators can be sensed in terms of its poles, which mark physically relevant frequencies of the system
where the counterphase motion of discrete collective excitations occurs: If excited, the collective modes coun-
terbalance each other, making the system exhibit none at all or extremely weak density response. This property
can be employed to construct simple and practically relevant approximations of the dynamical xc kernel for
time-dependent density functional theory (TDDFT). Such kernels have simple analytic structures, are able to
reproduce dominant excitonic features of the absorption spectra of monolayer semiconductors and bulk solids,
and promise high potential for future uses in efficient real-time calculations with TDDFT.

DOI: 10.1103/PhysRevB.107.165118

I. INTRODUCTION

The time-dependent density functional theory (TDDFT),
aiming at extending the density functional theory to the
description of electronic excitations and electron dynamics,
while being, in principle, exact theory, provides a practically
useful alternative to many-body perturbation methods [1].
While the TDDFT owes its popularity in the computational
condensed-matter physics and computational chemistry to the
adiabatic local density approximation (ALDA), the descrip-
tion of excitonic effects has become a serious challenge,
provoking the genuine interest of theorists [2–18]. It has
long been understood [2,3] that accounting for the long-
range Coulomb-like tail [19] of the exchange-correlation (xc)
kernels which is missing in the local xc kernels such as
ALDA and generalized gradient approximation is crucial for
capturing the excitonic effects. Many subsequent works fo-
cused on designing a suitable approximation for xc kernels
with suitable long-range behavior [4–13,15,20]. Nevertheless,
accounting for the long-range tail via a static approxima-
tion [2,6] typically yields a single bound exciton peak while
being unable to even qualitatively describe multiple exci-
tonic features exhibited by 2D materials, such as monolayers
of transition metal dichalcogenides (TMDCs), whose optical
properties are dominated by several well-pronounced bound
and continuum excitons [21–24]. Indeed, it is well recognized
that nonadiabatic xc effects are responsible for a number of
important physical phenomena exhibited by both finite and
extended systems, fostering many attempts to understand the
nature of nonadiabaticity in TDDFT and to construct consis-
tent frequency-dependent approximations [25–41].

The central object of the linear response TDDFT is the
dynamic xc kernel fxc(ω, r, r′), which is responsible for all

interaction effects beyond the random phase approximation
(RPA). The exact xc kernel is formally equal to the differ-
ence between inverses of the KS density response function
χs(ω,r, r′) and the exact irreducible density response func-
tion [42] χ̃ (ω,r, r′), that is, fxc(ω, r, r′) = χ−1

s (ω, r, r′) −
χ̃−1(ω, r, r′). Remarkably, in the early years of TDDFT, the
very existence of the xc kernel for frequencies above the
absorption threshold was put in doubt. In 1987, Mearns and
Kohn (MK) demonstrated [43] that for finite noninteracting
systems the density response function at some special fre-
quencies may have zero eigenvalues, which indicates that
there exist time-periodic external potentials causing no den-
sity response. Apparently, this implies the noninvertibility of
χs and, therefore, nonexistence of fxc [44]. Later, it was rec-
ognized that the MK zeros do not cause problems for TDDFT.
As these zeros are located strictly at the real axis, the response
function is always invertible for physical causal dynamics
driven by potentials switched on at some initial time [45].
Despite the absence of conceptual difficulties, the existence of
MK zeros and the corresponding singularities of fxc are con-
sidered as disturbing features of the formalism [1,38,45,46],
while their practical importance has remained almost unstud-
ied till now [41].

It is usually assumed that zeros of the density response can
appear in some exotic situations and only in the case of finite
systems, while they are generically absent in extended sys-
tems in the thermodynamic limit (see, e.g., the corresponding
discussion in Ref. [1]). In this paper, we show that the MK
zeros are in fact very common in the long wavelength density
response of solids as they are responsible for nonadiabatic ex-
citonic effects in the optical absorption of semiconductors and
insulators. Zeroes of the interacting response function always
appear at isolated frequencies between energies of optically

2469-9950/2023/107(16)/165118(9) 165118-1 ©2023 American Physical Society

https://orcid.org/0000-0003-0805-8437
https://orcid.org/0000-0002-2541-1100
https://orcid.org/0000-0003-0280-9551
https://orcid.org/0000-0001-6288-0689
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.165118&domain=pdf&date_stamp=2023-04-10
https://doi.org/10.1103/PhysRevB.107.165118


GULEVICH, ZHUMAGULOV, KOZIN, AND TOKATLY PHYSICAL REVIEW B 107, 165118 (2023)

FIG. 1. The real and imaginary parts of the response function
χ (ω) of a mechanical system possessing eigenmodes A, B, and C
illustrated in the plot as independent oscillators. Arrows mark zeros
ω̄n of the response of a collective variable P(t ) which arise as a result
of the compensated out-of-phase motion of the oscillators. The insets
show their relative phases in different dynamical regimes (i)–(iv).

active excitons. The corresponding poles of fxc represent the
key nonadiabatic features required for the TDDFT description
of multiple excitonic peaks in the optical spectra. Here we
illustrate a general relation between the MK zeros, analytic
properties of the xc kernel, and excitonic effects in solids.

The paper is organized as follows. In Sec. II, we demon-
strate appearance of zeros of the density response in a simple
mechanical toy model. In Sec. III, we highlight the important
connection between zeros of the response and the xc kernels
in TDDFT, suggesting a path to constructing efficient and
practically relevant approximations of fxc. In Sec. IV, we
illustrate our approach in practice by applying it to optical
absorption in a 2D Dirac model and constructing fully analytic
fxc capable of recovering the full Rydberg series of excitonic
peaks within the TDDFT. In Secs. V and VI, we demonstrate
the application of our approach to designing minimalistic
frequency-dependent xc kernels sufficient for reproducing
the dominant features of optical spectra of the paradigmatic
monolayer TMDCs and bulk solids. In Sec. VII, we discuss
the possible impact of our paper and its future prospects for
highly efficient real-time calculations using TDDFT.

II. ZEROS OF THE RESPONSE FUNCTION

Let us first illustrate the significance and the formal
origin of zeros in the response function in a simple toy
model. Consider a mechanical system with three nondegen-
erate eigenmodes ωA < ωB < ωC illustrated by independent
mechanical oscillators A, B, and C in Fig. 1 and coupled
to a periodic external field E (t ) = E (ω)e−iωt in and in the
presence of a small damping η � ωn:

ẍn = −ω2
nxn − 2ηẋn + ZnE (t ), n = A, B, and C. (1)

Here, Zn play the role of charges of the oscillators. In an
ideal isolated system, the damping η can be understood as
the adiabatic parameter describing the periodic drive slowly
switched on at t → −∞. Suppose the object of interest is the

collective variable, conjugated to the driving field E (t ):

P(t ) =
∑

n

Znxn(t ). (2)

Thus, the quantity P(t ) yields the net polarization induced
by the external field. For the linear response function χ (ω)
defined by P(ω) = χ (ω)E (ω), we obtain

χ (ω) = −
∑

n

Z2
n

ω2 − ω2
n + 2iωη

. (3)

The singularities of the response function χ (ω) at ωn divide
the positive real axis (similarly, for the negative frequency
axis) into several domains which correspond to qualitatively
different dynamical regimes: (i) ω < ωA: all modes oscillate
in phase with the external drive, (ii) ωA < ω < ωB: mode A
is out of phase, while B and C are in phase with the exter-
nal drive, (iii) ωB < ω < ωC : A and B are out of phase and
C is in phase with the external drive, and (iv) ωC < ω: all
modes are out of phase with the external drive, see Fig. 1.
In the intermediate regimes (ii) and (iii), there are two special
points denoted by ω̄A and ω̄B in Fig. 1 where the contributions
of modes A, B, and C to the response counterbalance each
other—these are zeros of χ (ω) (which coincide with zeros
of the Reχ (ω) in the case of the vanishing imaginary part),
where the net polarization is practically absent. Importantly,
for real frequencies ω and finite η, the response is never
exactly zero while the inverse χ−1(ω) is well-defined every-
where, which is, of course, a manifestation of the general
statement by van Leeuwen [45]. However, by slowing down
the switching process or by waiting sufficiently long after a
sudden switch on, one can make the response at the above two
special frequencies arbitrary weak. These two special points
are the MK zeros for our toy model.

The formal reason for existence of a zero response is that
the number of microscopic degrees of freedom, defining the
number of physical resonances, is larger than the dimension
of space hosting the collective variable—in our toy model
example, 3 and 1, respectively. It is worth noting that a
similar counting argument was used to prove the possibility
of zero eigenvalues for the one-particle Green’s function in
interacting systems [47]. In the specific case of the density
response, one can rephrase this differently: the set of transi-
tion densities is always overcomplete in the functional space
hosting the density variations. Loosely speaking, there are
more excitations (resonances) than eigenfunctions spanning
the space of densities. As a result, several resonances may,
in general, contribute to one eigenvalue, and the out-of-phase
dynamics of densities for different resonances will produce
zero response at isolated frequencies in exactly the same way
as shown in Fig. 1.

It is worth emphasizing that the presence of resonances
in the dynamic response/correlation function does not auto-
matically imply the existence of zero eigenvalues between
resonant frequencies. The simplest examples are the density
response function in a one-particle system (e.g., the hydrogen
atom) and the one-particle Green’s function in noninteracting
many-particle system. In both cases, in spite of the resonant
structure, there are no zero eigenvalues because the dimen-
sion of the excitation’s space that determines the number of
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resonances coincides with the dimension of the Hilbert space
where the correlation function acts as a linear operator. As a
result, there is strictly one resonance per eigenvalue and thus
no zeros. Only by adding more particles in the case of the
density response or switching on the interaction in the case of
the Green’s function can we make the number of excitations
larger than the number of the eigenvalues of the correlation
function, which opens a possibility for the appearance of
zeros. Our toy model is aimed at demonstrating exactly this
point, which is apparently very general for any dynamical
theory of reduced/collective variables, such as TDDFT.

Despite its apparent simplicity, the response of this me-
chanical toy model and the very appearance of this kind of
invisibility point at frequencies where no net response is ob-
served, shed light on the analytic structure of the dynamical
xc kernel which we will discuss in the next section.

III. ANALYTIC STRUCTURE OF THE DYNAMICAL
LONG-RANGE XC KERNEL

Having discussed the origin of zeros in the response in
a simple mechanical model, we now focus our attention on
many-electron systems. Throughout the paper, we will be
using Hartree atomic units (h̄ = m0 = e = 1), unless specified
otherwise, where expressing the frequencies in units of eV is
more natural.

Consider a material with the energy gap, such as semicon-
ductor or insulator. In general, in solids the response function
χG,G′ (ω, q) becomes a matrix in the reciprocal lattice vectors
G. The same is obviously true for the xc kernel. However,
the excitonic absorption is typically dominated by the head of
this matrix (the element with G = G′ = 0). Indeed, the head
of the density response functions of a gapped material at small
momentum q → 0 behaves as ∼q2 [48,49], which implies the
famous 1/q2 singularity in the head of the xc kernel. Thus, by
restricting our attention to the heads of the above matrices,
we can separate the spatial and frequency-dependent parts
by introducing χ (q, ω) = q2β(ω), χs(q, ω) = q2βs(ω), and
fxc(q, ω) = α(ω)/q2 related by

α(ω) = 1

βs(ω)
− 1

β(ω)
. (4)

This allows us to focus our attention on the frequency-
dependent parts exclusively. In the RPA, the response function
has no singularities below the onset of the e-h continuum.
Accounting for the exchange and correlation effects results in
redistribution of the oscillator strengths and appearance of dis-
crete exciton states with energies ωn and oscillator strengths
Xn > 0 inside the fundamental gap �,

β(ω) =
∑

n

Xn

ω2 − ω2
n

+ βreg(ω), (5)

where the first and second contributions arise from the dis-
crete (ωn < �) and continuum spectrum, respectively. We
introduced the subscript reg to highlight that the contin-
uum spectrum contribution βreg(ω) is a regular function
with no singularities inside the fundamental gap. Because
|βreg(ω)| < ∞ for ω < � and the oscillator strengths, being
proportional to the square of the associate transition dipole el-
ements are positive (Xn > 0), the series of singularities {ωn} is

alternating with the series of zeros {ω̄n}, in direct analogy with
the mechanical toy model (cf. Fig. 1).

It has been shown by one of us in Ref. [20] that the quasi-
particle and excitonic parts of the xc kernel can be treated
separately. Thus, we assume that the scissor correction has
been applied to βs(ω), so βs(ω) and β(ω) have the same
gap energy �, while focusing on the excitonic contribution
only. Because β(ω) enters Eq. (4) as the inverse, there arises
a correspondence of zeros in the response to singularities of
α(ω). Let us separate these from the xc kernel explicitly. For
the imaginary part of α(ω), we have

Im α(ω) = �(ω2 − �2) Im

[
1

βs(ω)
− 1

β(ω)

]

+
∑

n

π

β ′(ω̄n)
[δ(ω − ω̄n) − δ(ω + ω̄n)], (6)

where by ω̄n we label the smallest zero higher than ωn, so
ωn < ω̄n < ωn+1. The full complex function α(ω) is given by
the sum of a regular part which has no singularities inside the
fundamental gap and a number of discrete poles,

α(ω) = αreg(ω) +
∑

n

Fn

ω2 − ω̄2
n

, (7)

with positive oscillator strengths:

Fn = − 2ω̄n

β ′(ω̄n)
> 0. (8)

The real and imaginary parts of αreg(ω) are related by the
Kramers-Kronig transform and are then defined by

Im αreg(ω) = �(ω2 − �2) Im

[
1

βs(ω)
− 1

β(ω)

]
,

Re αreg(ω) = α(∞) + 1

π
P

∫ ∞

−∞

ω′ Im αreg(ω)

ω′2 − ω2
dω′. (9)

As seen from Eqs. (7) and (8), zeros of the response define the
poles of the xc kernel with the strengths given by the slope of
the response function at its zeros.

To summarize, Eqs. (6) and (7) illustrate that the dynamical
part of the xc kernel α(ω) has poles at special frequencies {ω̄n}
where no response to external perturbation is observed, owing
to the counterbalanced contributions of the discrete modes.
Each of these special frequencies is located strictly between
the subsequent pairs of physical excitations. In the following
section, we will demonstrate the dynamical xc kernel and the
associated pole structure given by Eq. (7) in application to the
2D massive Dirac (2DMD) model.

IV. 2D MASSIVE DIRAC MODEL

Capturing the excitonic effects is one of the long-standing
difficulties of TDDFT. While the ALDA fails to reproduce
excitonic peaks at all, the static long-range corrected (LRC)
kernel [2,6,7,9,13,15,19] with the α(ω) approximated by a
constant α(ω) = −αstatic, is only capable of capturing sin-
gle excitonic peak. Although the attempt to go beyond the
static approximation by including a quadratic frequency-
dependence in Ref. [36] demonstrated some improvement
in the numerically calculated dielectric function of semi-
conductors, it is still too simplistic to be applied to 2D

165118-3



GULEVICH, ZHUMAGULOV, KOZIN, AND TOKATLY PHYSICAL REVIEW B 107, 165118 (2023)

semiconductors where excitonic phenomena are dominant
features of the absorption spectrum possessing multiple ex-
citonic peaks. In this section, we employ the 2DMD model
to illustrate a simple approximation to the dynamical xc ker-
nel arising from the representation Eq. (7), which is capable
of capturing not only an isolated exciton peak but the full
Rydberg series of excitonic excitations. We consider spinless
single valley 2DMD model with Hamiltonian

H0 = v(kxσx + kyσy) + �

2
σz, (10)

with interaction between Dirac fermions described by the
Rytova-Keldysh potential [50–52]:

WRK(q) = − 2π

ε q(1 + r0q)
. (11)

Here, ε is the dielectric constant and r0 is the screening
length [53,54]. The single-particle 2DMD Eq. (10) has been
shown to appear as a k.p model in TMDC monolayers as a
result of interplay between the inversion symmetry breaking
and spin-orbit coupling [55]. Taking Coloumb interaction into
consideration results in the appearance of Rytova-Keldysh
potential Eq. (11) arising as a result of 2D screening [50–52].

The analytical expression for βs(ω) follows from the polar-
ization bubble diagram (see, e.g., Ref. [56]):

βs(ω) = v2

8πω

[
�

ω
−

(
1 + �2

ω2

)
arctanh

ω

�

]
. (12)

The absorption spectra for the 2DMD model in the subgap
region are dominated by the s states. Explicit formulas for
exciton binding energies of s states in 2D TMDC monolayers
were given in the literature [57–59]. Employing the effective
mass approximation, we use the following semiempirical for-
mula for s states (Eq. (3) of Ref. [59] upon the replacement of
μ by 5μ/4 [60]):

En = − 5

2μr2
0

⎡
⎣

√
n − 1

2
+

√
2μr0

ε
−

√
n − 1

2

⎤
⎦

4

. (13)

Because the location of zeros of χ (ω) is restricted from both
sides by adjacent s excitons, a reasonable estimate for ω̄n is
provided by extending Eq. (13) to fractional arguments and
evaluating it at an intermediate value n + ν between n and
n + 1 with 0 < ν < 1. Thus, we take

ω̄n = � + En+ν (14)

and evaluate it at a central value ν = 0.5 [61]. Our numeri-
cal results suggest that the oscillator strengths Fn follow an
empirical trend

Fn ≈ 8εvω̄n�

(
1 − ω̄n

�

)3/2

, (15)

which is nearly independent of r0. Approximating the regular
part αreg(ω) by a constant

αreg(ω) ≈ α(∞) = const, (16)

and using Eqs. (14)–(16), one obtains the simplest
parametrization of α(ω) for the 2DMD model capable of
capturing the full exciton Rydberg series.

FIG. 2. Imaginary part of the response function β(ω + iη) for
the massive Dirac model obtained using our parametrization of the
dynamical xc kernel (TDDFT, solid line). For comparison, the result
of solution of the Bethe-Salpeter equation in Tamm-Dancoff approxi-
mation is shown (BSE, dashed line). An artificial broadening η/� =
10−4 was used to smear the singularities. Arrows indicate poles of
the xc kernel located at zeros of the response ω̄n in accordance with
Eq. (7). The arrow sizes are scaled with the pole strengths Fn. The
BSE spectrum is unconverged in the vicinity of the gap due to the
finite mesh size and manifests itself as unphysical erratic oscillations
at ω/� � 0.98.

To verify this parametrization, we compare the TDDFT
response function to the response function obtained by solving
the Bethe-Salpeter equation (BSE) [62]. In the calculations,
we employed the Tamm-Dancoff approximation which ne-
glects antiresonant terms of the spectra (see, e.g., similar
studies in Refs. [63,64]). For illustration, we take ε = 1,
� = 2.5 eV, r0 = 35 Å, and μ = 0.20 m0, which, apart from
the spin and valley degrees of freedoms ignored here, are
typical for the TMDC monolayers (see, e.g., the Supplemen-
tal Material of Ref. [59]). The results for Imχ (ω + iη) with
broadening η/� = 10−4 are shown in Fig. 2. The remaining
parameter α(∞) = −9.7 was chosen to match the lowest ex-
citon peak to that of the BSE calculation.

V. 2D MATERIALS

In the case of ab initio calculations of optical properties
of real materials, the high resolution we used to reproduce
the Rydberg series in the previous section is redundant. In
fact, the experimental absorption spectra of 2D monolayers
exhibit few dominant features—A and B exciton peaks related
to the spin-orbit splitting of the Dirac-like dispersion at the K
point of the Brillouin zone and a prominent C peak above the
quasiparticle gap are attributed to excitonic transitions from
multiple points around the � point [22,65]. Accounting for
only these three dominant features returns us to the analogy
with the mechanical model of three oscillators discussed in
Sec. II. In direct analogy with Fig. 1, there arise two zeros of
the response ω̄A and ω̄B which result from the mutual compen-
sation of A, B, and C excitations and which are of practical
importance for reconstructing the xc kernel. Approximating
the regular part by a constant αreg(ω) ≈ α(∞), Eq. (7) reads

α(ω) = α(∞) +
∑

n

Fn

ω2 − ω̄2
n

. (17)
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TABLE I. Parametrization of the dynamical xc kernel for 2D monolayers and bulk materials. Values of α(∞) are given in Hartree atomic
units. For convenience, ω̄n and Fn are expressed in eV and eV2, respectively, to restore the result for α(ω) in atomic units.

Material α(∞) ω̄1 F1 ω̄2 F2 ω̄3 F3 ω̄4 F4 ω̄5 F5

1L WS2 on SiO2 −1.2 2.074 0.125 2.466 0.185
1L MoS2 on SiO2 −0.9 1.876 0.030 2.037 0.060
LiF −7.0 13.6 40.0
Solid Ar −6.7 12.15 1.6 12.70 57.0 13.60 4.0 13.79 2.0 13.94 1.0

It is common to characterize the excitonic contributions to
dielectric function of 2D materials obtained in experiments in
terms of Lorentz and Tauc-Lorentz oscillators [24,66–69]. It is
therefore practically useful to parametrize the α(ω) in terms of
these quantities. Recently [68,69], the Tauc-Lorentz parame-
ters for A, B, and C peaks of MoS2 monolayer were provided.
Assuming the frequencies ωn and oscillator strengths Xn of
A, B, and C peaks are given, we can find the poles and their
strengths of α(ω) directly. Because the C peak dominates over
A and B, the counterbalance points [aka zeros of χ (ω)] occur
right in the vicinity of the A and B resonances. In this case,
zeros can be easily found perturbatively. Denoting by β

reg
n (ω)

the regular part of β(ω) with the contribution of the nth pole
subtracted, the zero ω̄n is defined by

Xn

ω̄2
n − ω2

n

+ βreg
n (ω̄n) = 0. (18)

Taking β
reg
n (ω̄n) ≈ β

reg
n (ωn) as the zeroth order, ω̄n can then be

found iteratively. To find the oscillator strengths, we neglect
the slowly varying regular part β

reg
n (ω) and obtain

Fn = − 2ω̄n

β ′(ω̄n)
≈

(
ω̄2

n − ω2
n

)2

Xn
= Xn

β
reg
n (ω̄n)2

. (19)

We use the experimental data from Ref. [68] for WS2 mono-
layer on SiO2 substrate and [69] for MoS2 monolayer on
SiO2 substrate with perylene-3,4,9,10-tetracarboxylic acid
tetrapotassium salt molecule, parametrized in the form of
Tauc-Lorentz oscillators. From the parameters of oscilla-
tors we extract the positions and oscillator strength of the
Lorentzian exciton peaks and apply Eqs. (18) and (19) to find
the poles and strengths of the dynamical xc kernel summa-
rized in the Table I.

To test the obtained parametrization, we used the ab initio
code exciting [70]. The band structures of the monolayers
were calculated using the LDA functional, accounting for the
spin-orbit coupling. For the linear response calculations, we
applied the scissor correction 0.54 and 0.82 eV for MoS2

and WS2, respectively, to adjust the fundamental band gap to
the experimentally measured values 2.16 eV for MoS2 and
2.38 eV for WS2 monolayers on quartz substrate [71]. As we
are interested in the in-plane component of the response, local
field effects were ignored in this paper due to their minor ef-
fect on the in-plane polarization. The results of our calculation
using TDDFT employing the parametrization from Table I are
shown in Fig. 3. In the RPA calculations, we used artificial
broadening ηRPA = 0.1 eV. In the context of TDDFT, while
ηRPA is responsible for broadening the subgap absorption in
the continuum, the widths of bound excitons can be tuned by

shifting the argument of xc kernel α(ω) → α(ω + iηxc). We
used ηxc = 0.03 for WS2 and ηxc = 0.015 eV for MoS2. Fi-
nally, the value of the only remaining parameter α(∞) weakly
affects positions of exciton peaks and was chosen so to match
the resulting peak strengths to the experimentally observed
values.

FIG. 3. Dielectric function of MoS2 (a) and WS2 (b) monolayers
calculated using the linear-response TDDFT (black solid curve) with
the ab initio exciting code [70] and the parametrization of the
dynamic xc kernel given by the Eq. (17) with parameters specified in
Table I. The dashed blue curve marks the experimental data for MoS2

and WS2 monolayers on SiO2 substrate from Refs. [69] and [68]),
respectively, used to derive the parameters of parametrization. The
dotted curve shows the RPA result. Arrows indicate poles of the xc
kernel located at zeros of the response ω̄n. The arrow sizes are scaled
with the pole strengths Fn.
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FIG. 4. Imaginary part of the dielectric function for LiF (a) and
solid Ar (b). Aritificial homogeneous broadening has been used
ηxc = ηRPA = 0.25 eV [same for α(ω) and RPA] for LiF to match the
broadening in the BSE result [72]. The broadenings for solid Ar are
ηxc = 0.03 eV and ηRPA = 0.25 eV. The experimental data is taken
from Refs. [84,85] for LiF and Ar, respectively. Arrows indicate
locations of the poles of the xc kernel at zeros of the response ω̄n.
The arrow sizes are scaled with the pole strengths Fn.

VI. BULK SOLIDS

Similar to the case of 2D materials discussed above, the
same approach applies to bulk wide-gap semiconductors and
insulators exhibiting bound excitons in the absorption spectra.
Some of the illustrative examples are LiF and solid Ar, which
have received a great deal of attention in a range of theoretical
studies [4,15,72–76].

The experimental absorption spectrum of LiF exhibits a
pronounced excitonic peak at 12.6 eV followed by an un-
resolved Rydberg series [77] and a featureless quasiparticle
band gap at 14.1–14.2 eV [78], see Fig. 4(a). We therefore
should expect the zero of the response function to appear
between the first exciton and the onset of the Rydberg series
at 13.6 eV. By placing a pole at ω̄1 = 13.6 eV, we obtain
a simple one-pole parametrization of the xc kernel for LiF
presented in Table I. The results obtained using the static [2,6]
and parabolic [36] LRC kernels are also shown in Fig. 4(a) for

comparison [79]. The presence of the pole redistributes the
oscillator strengths toward higher energies, causing a sec-
ondary peak at 14.5 eV, which is present in BSE and
experiments but absent in the static and parabolic LRC ap-
proaches. Moreover, in contrast to the parabolic LRC, our xc
kernel does not suppress the absorption at higher energies, as
seen in Fig. 4(a). For ease of comparison with BSE calcula-
tions, we used the same broadening ηxc = ηRPA = 0.25 eV as
used in Ref. [72].

The absorption spectrum of solid Ar consists of a series
of well-separated exciton peaks [80–82]. In the same fashion,
accounting for the dominant n = 1, 1′, 2, 2′ and 3 excitonic
features, we obtain the parametrization for the xc kernel pre-
sented in Table I. The dielectric function calculated results
using this parametrization are presented in Fig. 4(b). We used
artificial broadenings ηRPA = 0.25 eV and ηxc = 0.03 eV in
RPA and α(ω), respectively. It is interesting to note that the
two lowest exciton states n = 1, 1′ are well separated from the
rest of the spectra. In this case of two isolated excitonic peaks,
the analytic structure of fxc(ω) has a remarkable analogy to
that for double excitations in finite systems, where a pole
in the frequency dependence of the xc kernel is shown to
appear [32,41,83]. In both systems, the pole in fxc(ω) reflects
the presence of two nonorthogonal excitation channels, which
interfere destructively, leading to the suppression of the re-
sponse at some isolated frequency.

VII. DISCUSSION

We demonstrate that zero eigenvalues of the density re-
sponse function, discovered many years ago by MK for model
systems, represent a common feature of the optical absorption
in insulating solids. In fact, they dominate the frequency de-
pendence of the xc kernel of TDDFT, especially when several
excitonic peaks, both bound and continuum, are present in the
absorption spectra. The latter is especially relevant for insulat-
ing materials of reduced dimension, such as TMDC. Shedding
light on the nature of nonadiabatic effects in the TDDFT of
excitonic absorption, which are characterized by the poles of
the dynamical xc kernels, allows us to design simple and prac-
tically efficient approximations of the kernels for the ab initio
description of the collective many-body phenomena within
TDDFT. Our approach, illustrated for TMDC monolayers and
bulk materials, hints at the procedure for obtaining simple and
practical dynamical xc kernels for a variety of semiconducting
and insulating materials directly from experimental absorp-
tion spectra. The algorithm for reconstructing xc kernels can
appear as follows: (i) The experimentally obtained imaginary
part of the macroscopic dielectric function is parametrized
in terms of Lorentz oscillators. (ii) With the peak widths of
the oscillators discarded, the central frequencies and oscillator
strengths are used to find poles and oscillator strengths of the
xc kernel with the help of Eqs. (18) and (19). (iii) The regular
part of the dynamical xc kernel is approximated by a constant
αreg(ω) ≈ α(∞).

Apart from the physical insight, xc kernels in the form
Eq. (17) provide a natural tool for the highly efficient
practical implementation of the real-time TDDFT. Indeed,
while the approach [86] summarizes the scheme for the
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calculation using the static LRC kernel, the pole expansion
used in Eq. (17) enables us to extend this further to deal
with the frequency-dependent kernels with the help of the
highly efficient numerical approach proposed in Ref. [87],
where the performance comparable to that of the standard
time-dependent ALDA has been demonstrated for the case
of the Vignale-Kohn functional [26,28]. Based on this, the
perspectives of the real-time ab initio dynamics with the
help of TDDFT and accounting for excitonic effects thus
emerge at full scale, which in the case of TMDC monolayer
alone is of high practical and fundamental interest. The real-
time calculations with TDDFT with the proper accounting of
excitonic phenomena may shed light on the intriguing nonlin-
ear phenomena [88,89] while paving the way to a practical
impact on semiconducting physics, materials science, and
optoelectronics.
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