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Braiding and fusion rules of topological excitations are indispensable topological invariants in topological
quantum computation and topological orders. While excitations in two dimensions (2D) are always particlelike
anyons, those in three dimensions (3D) incorporate not only particles but also loops, spatially nonlocal objects,
making it novel and challenging to study topological invariants in higher dimensions. While 2D fusion rules
have been well understood from bulk Chern-Simons field theory and edge conformal field theory, it is yet to be
thoroughly explored for 3D fusion rules from higher-dimensional bulk topological field theory. Here, we perform
a field-theoretical study on (i) how loops that carry Abelian gauge fluxes fuse and (ii) how loops are shrunk into
particles in the path integral, which generates fusion rules, loop-shrinking rules, and descendent invariants, e.g.,
quantum dimensions. We first assign a gauge-invariant Wilson operator to each excitation and determine the
number of distinct excitations through equivalence classes of Wilson operators. Then, we adiabatically shift two
Wilson operators together to observe how they fuse and are split in the path integral; despite the Abelian nature
of the gauge fluxes carried by loops, their fusions may be of non-Abelian nature. Meanwhile, we adiabatically
deform world sheets of unknotted loops into world lines and examine the shrinking outcomes; we find that the
resulting loop-shrinking rules are algebraically consistent to fusion rules. Interestingly, fusing a pair of loop and
antiloop may generate multiple vacua, but fusing a pair of anyon and antianyon in 2D has one vacuum only.
By establishing a field-theoretical ground for fusion and shrinking in 3D, this work leaves intriguing directions
for future exploration, e.g., symmetry enrichment, quantum gates, and topological order of braided monoidal
2-category of 2-group.
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I. INTRODUCTION

A. Topological order and topological excitations

Topologically ordered phases which are beyond the
paradigm of symmetry-breaking theory have attracted lots of
attentions for years [1–6] from not only condensed matter
physics, but also high-energy physics, quantum information
science, and mathematical physics. Experimentally confirmed
by the fractional quantum Hall effect (FQHE), topological
order cannot be characterized by any local order parameters.
At low energies, topological quantum field theory (TQFT) is
utilized as the effective field theory to describe topologically
ordered phases. In addition, inspired by quantum information
science, topological order of a gapped many-body system is
tightly connected to the pattern of long-range entanglement
[6]. Recently, the algebraic theory for two-dimensional (2D)
topological orders has also been explored deeply, making it in-
triguing to make joint efforts in condensed matter physics and
mathematical category theory (see, e.g., concise introductory
materials in Ref. [7]).

Topological excitations are essential ingredients of topo-
logically ordered phases. In absence of any symmetry-
breaking order parameters, the topological properties, such

*wangqr@mail.tsinghua.edu.cn
†yepeng5@mail.sysu.edu.cn

as fusion and braiding statistics of topological excitations,
constitute the key observables of topological orders and
also important processes in topological quantum computa-
tion (TQC) [8]. Analogous to quasiparticles in solid-state
physics, topological excitations are collective phenomena and
can be created as localized energy lump above the ground
state. In 2D space, topological excitations are pointlike par-
ticle excitations, e.g., the anyon excitations in FQHE. In
three-dimensional (3D) space, topological excitations incor-
porate not only particle excitations, but also loop excitations
that are spatially nonlocal. Moreover, a loop excitation can
also be decorated by a particle excitation, i.e., a particle
excitation is attached to a loop excitation, named decorated
loop (see Fig. 2). For those loop excitations not decorated
by particle excitations, we call them pure loops. For sim-
plicity, we use particle and loop to denote corresponding
topological excitations in the following main text when there
is no ambiguity. If we move forward to four-dimensional
(4D) space, we would find that topological excitations there
include two-dimensional closed-surface-like membrane exci-
tations [9,10].

B. Braiding statistics

Let us first review braiding statistics of topological
excitations. During a braiding process of particles and
loops, an adiabatic quantum phase is accumulated which is
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FIG. 1. Illustration of Borromean rings braiding that is realized
in the topological order described by Eq. (1). In this braiding process,
Borromean rings are formed by the spatial trajectory of the particle
(blue) and two loops (orange and green).

proportional to the linking invariant of the link formed by
world lines of particles and world sheets of loops. For the
braiding processes in 4D space, the emergence of world vol-
umes of membrane excitations generates a large variety of
exotic linking invariants [9]. These adiabatic quantum phases
are called braiding phases, serving as an important data set
to characterize topological order. TQFT, as the low-energy
effective theory of topological order, provides us a quan-
titative approach to braiding phase [11]. For example, the
braiding phases of anyons in 2D space are captured by the
(2 + 1)D Chern-Simons theory [∼tr(A ∧ dA + 2

3 A ∧ A ∧ A)]
[2,11–13]. In 3D space, braiding processes involve particles
and loops. If we consider a discrete gauge group G = ∏

i ZNi ,
all particles and loops can be labeled by periodic gauge
charges and gauge fluxes, respectively. The braiding pro-
cesses can be divided into three classes: particle-loop braiding
[14–19], multiloop braiding [20–38], and particle-loop-loop
braiding [i.e., Borromean rings (BR) braiding] [39]. In each
class, there are different braiding phases depending on differ-
ent assignments of gauge subgroups. The TQFTs describing
these braiding processes are expressed as the combination

FIG. 2. (a) Particle excitation carrying gauge charge in 3D space.
(b) Pure loop excitation carrying gauge flux in 3D space. In this
paper, we only consider loop excitations which are unknotted and
thus can be deformed to S1 smoothly. (c) Decorated loop excitation
carrying gauge flux and charge simultaneously. A decorated loop can
be viewed as a pure loop with a particle attached to it. This particle
(red solid circle) can be located at any position on the loop. (d) The
closed world line of particle denoted by γ . (e) The closed world
sheet of pure loop denoted by σ . (f) The space-time trajectories of
decorated loop. In (3 + 1)D space-time, σ is a torus and γ is a
closed curve that is not self-knotted. For the particle attached to a
loop excitation, its world line γ would be the noncontractible path
on σ circling along the time direction.

of a multicomponent BF term [40–45] with twisted terms.
The BF term in (3 + 1)D is written as B ∧ dA where B and
A are 2- and 1-form U (1) gauge fields, respectively. For
multiloop braiding, the twisted terms AAdA and AAAA (∧ is
omitted) [22] correspond to three- and four-loop braidings,
respectively. For particle-loop-loop braiding (BR braiding, see
Fig. 1), the twisted term is AAB [39]. If we consider a topo-
logically ordered system that supports particle-loop and/or
multiloop braiding, the TQFT is consistent with the Dijkgraaf-
Witten (DW) cohomological classification H4(G, U(1)) for
gauge group G. Nevertheless, once we demand the system
to support BR braiding as well, some multiloop braidings
would be excluded in the sense that no legitimate DW TQFT
describing all these braidings can be constructed. Such in-
compatibility between BR braiding and multiloop braiding
can be traced back to the requirement of gauge invariance
for TQFT [46]. For the purpose of this paper, we denote a
system is equipped with Borromean rings topological order
(BR topological order) if it supports BR braiding.

C. Fusion rules and loop-shrinking rules

Fusion rules of topological excitations form another im-
portant set of topological invariants for 3D topological order.
Pictorially, the fusion of two topological excitations is to
adiabatically bring them together in space and the combined
object behaves like another topological excitation. To be more
precise, each topological excitation ei corresponds to a fusion
space V (Md ; ei ) where Md is the spatial manifold support-
ing all topological excitations [2]. The bases of V (Md ; ei )
are degenerate ground states of H + δHi with Hi nonzero
only near the location of ei. If the dimension of V (Md ; ei )
cannot be altered by any local perturbation near the location
of ei, the type of ei is simple. Otherwise, the type of ei

is composite. The fusion space of a composite topological
excitation can be decomposed as a direct sum of those of
other simple topological excitations. The fusion of two sim-
ple topological excitations, e.g., a and b, corresponds to the
direct product of their fusion space: V (Md ; a) ⊗ V (Md ; b).
The resulting fusion space may correspond to another simple
excitation, e.g., c, and this fusion is called Abelian fusion:
V (Md ; a) ⊗ V (Md ; b) = V (Md ; c). It may also correspond to
a direct sum of fusion spaces of multiple simple excitations,
e.g., V (Md ; a) ⊗ V (Md ; b) = V (Md ; d) ⊕ V (Md ; f), and such
fusion is called non-Abelian fusion. The fusion rules are just
simplified notations for the previous algebraic relations: a ⊗
b = c or a ⊗ b = d ⊕ f. In a more general setting, the fusion
rule of two simple topological excitations can be given by
a ⊗ b = ⊕iNab

ei
ei where Nab

ei
is a non-negative integer and the

type of ei is simple. In this paper, unless otherwise specified,
“excitations” are always of simple type.

In the literature, fusion in 2D topological orders has been
studied extensively from exactly solvable models, field the-
ory, to mathematical foundation. For example, fusion rules of
anyons are encoded in the mathematical concept of unitary
fusion tensor categories [47,48]. On the other hand, just like
the role of loops in exotic braiding statistics reviewed above,
loop excitations that are entirely absent in 2D topological
orders are also expected to contribute nontrivial fusion rules
in 3D topological orders. The nature of nonlocality of loop
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FIG. 3. (a) Fusion of a ZN1 particle and a ZN2 particle. In con-
tinuous field theory, fusion of two particle excitations means that
they moves towards each other until they meet at the same spatial
location. This can be realized by making the world lines of these two
particles identical. The output of this fusion is a (ZN1 ,ZN2 ) particle
which carries one unit of ZN1 and ZN2 gauge charge simultaneously.
The ZN1 and ZN2 gauge charges in the output particle are represented
by a mixed color of orange (ZN1 ) and green (ZN2 ). (b) Fusion of a
ZN1 loop and a ZN3 loop. Similarly, fusion of two loops requires that
they overlap at the same location. For this purpose, one can set their
world sheets identical in field theory. The result of this fusion is a
loop carrying one unit of ZN1 and ZN3 flux, respectively. These two
fluxes are illustrated by two colors (orange and blue) circling along
the loop. Notice that the boundary of two colors does not indicate a
separation of two different fluxes. According to Table II, a (ZN1 ,ZN3 )
loop is equivalent to a ZN1 loop. (c) Fusion of a ZN1 particle and a
ZN2 loop. The outcome is a decorated loop: a ZN2 loop decorated by
a ZN1 particle. In fact, this is the definition of fusion of a particle and
a loop. In continuous field theory, this fusion is realized by making
the world line of particle live on the world sheet of loop.

excitations may significantly complicate but meanwhile sig-
nificantly enrich the analysis of fusion rules (see, e.g., the
cartoons in Figs. 3 and 4). First, combinatorially, we need to
analyze fusions of (i) two particles, (ii) two loops, and (iii)
one particle plus one loop. Second, as loops can be either
pure loops or decorated loops as reviewed above, the resulting
fusion data are expected to be further enriched. Third, one
can also consider self-knotted or mutually linked loops (see,
e.g., Fig. 1 of Ref. [49]) and study their fusion rules. Fourth,
while there have been intensive discussions in realization and

FIG. 4. Illustrations of four fusion processes that are discussed
in Sec. III A and detailed in Appendix C. (a) Fusion: P100 ⊗ P010 =
P110. This is an Abelian fusion: fusing a ZN1 particle and a ZN2 parti-
cle results a (ZN1 ,ZN2 ) particle. (b) Fusion: P100 ⊗ P100 = 1. This is
also an Abelian fusion. This fusion rule indicates that in BR topologi-
cal order with G = (Z2)3 the antiparticle of ZN1 particle is itself. This
make sense since the ZN1 gauge subgroup is a Z2 group. (c) Non-
Abelian fusion: L100 ⊗ L100 = 1 ⊕ P010 ⊕ L001 ⊕ L010

001. Fusion of two
ZN1 loops produces not a determined outcome, but a superposition
of a vacuum 1, a particle P010, a pure loop L001, and a decorated
loop L010

001. (d) Non-Abelian fusion: L100 ⊗ L010 = L110 ⊕ L100
110. The

outcome of fusing a ZN1 loop and a ZN2 loop is a superposition of
a pure loop (L110) and a decorated loop (L100

110). Notice that L110 and
L100

110 are nonequivalent according to Tables II and III.

manipulation of Majorana zero modes (see, e.g., incomplete
reference list: Refs. [50–52]), it will be of great interests to
explore how to implement fusion rules of loop excitations
(“looplike errors and defects” by following nomenclature
in quantum information science) in TQC gates of stabilizer
codes. All in all, fusion rules for loops in 3D topological
orders deserve a thorough study from various aspects.

Besides, the presence of loops provides us with another
indispensable topological invariants: loop-shrinking rules. A
loop excitation, if it is unknotted, can be smoothly shrink to
a point (see Fig. 5). Notice that this process is apparently
meaningless for particle excitations that are already pointlike,
so the exploration of such topological invariants should be at
least starting from 3D topological orders. Interestingly, such
a shrinking process can be alternatively understood as the
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FIG. 5. Illustration of the loop-shrinking operation. When a loop
is shrunk to a particle, its world sheet is shrunk to a line which
turns out to be the world line of the particle. In this situation, the
integral of 2-form gauge field in Wilson operator for loop excitation
naturally vanishes [see Eq. (52) and the main text]. (a) The outcome
of loop-shrinking operation can be a single particle. As shown in
Table VI, shrinking an Abelian loop always results in one particle
excitation. (b) The outcome of loop-shrinking operation can also
be a superposition of multiple simple particles, e.g., the example of
Eq. (53) discussed in the main text.

consequence of observing a loop when an observer stands
far away from the loop such that the loop “looks like” a
point. It is curious to ask what is the consequence of such a
loop-shrinking operation? How can we analytically describe
this process, e.g., by means of field theory? Can we obtain
another set of meaningful topological invariants from such
an operation? To answer questions of such kinds, it is highly
worthwhile to conduct an in-depth study into the outcomes
of such a loop-shrinking operation, which are encoded in the
loop-shrinking rules that are lacking in 2D topological orders.
All in all, we expect that the presence of nonlocal loops in
3D topological orders will lead to not only nontrivial braiding
statistics as studied before, but also fruitful quantum phenom-
ena encoded in fusion rules and loop-shrinking rules. This line
of efforts will be of great help for deeply understanding topo-
logical orders of all dimensions, theoretically developing TQC
for all dimensions, and proposing experimental manipulation
of braiding, fusion, and shrinking of nonlocal topological
excitations in the future.

From the tradition of condensed matter physics and also by
following the spirit of renormalization group and universality,
it is always vital to explore the long-distance low-energy ef-
fective field theory of underlying phases of matter, and further

ask how to systematically define and compute observables
from such effective field theories. It has been known that
Ginzburg-Landau perturbative field theories are used to de-
scribe symmetry-breaking phases, but for topological orders,
topological field theories are the correct field-theoretical lan-
guage. While it has been well established that the topological
invariants (e.g., fusion rules and braiding) of 2D topological
orders can be systematically extracted from (2 + 1)D bulk
Chern-Simons field theory as well as edge CFT (conformal
field theory), it is still yet to be thoroughly explored for fusion
rules and loop-shrinking rules of 3D topological orders from
(3 + 1)D field theories that are generally TQFT of certain
types. Thus, it is important to perform such a topological-
field-theoretical study.

Motivated by, but not limited to, above discussions, in this
paper, we aim to perform a topological-field-theoretical study
on fusion rules and loop-shrinking rules of 3D topological
orders when all loops carry Abelian gauge fluxes. Especially,
we start with the BR topological order with Abelian gauge
group G = (ZN )3. In details, we first construct and classify
topologically distinct Wilson operators for all types of parti-
cles and loops by means of path-integral quantization. Then,
the number of topological excitations is just the number of
Wilson operators, collected in Tables I, II, and III. Next, we
study fusion rules in terms of path integral. In practice, we
spatially fuse two Wilson operators together, which leads to
nontrivial splitting in the path-integral formalism. We collect
all fusion coefficients in Table IV, where there exist non-
Abelian fusion processes despite the Abelian nature of the
gauge fluxes carried by loops. From the fusion coefficients,
we can also extract quantum dimensions for all excitations, as
collected in Table V. Then, we compute shrinking rules for
loop excitations (see Table VI), i.e., the process of shrinking
an unknotted loop excitation into particles, which are found
to be algebraically consistent with the fusion rules, and are
critical in establishing an anomaly-free topological order. We
also find an interesting phenomenon that fusing a loop and
antiloop may generate more than one vacuum, which is differ-
ent from 2D topological orders where fusing a pair of particle
and antiparticle has one vacuum only. At last, we generalize
the above analysis to topological orders with gauge group
G = ∏n

i ZNi (n = 1, 2, 3) where various interesting braiding
statistics can be realized. This work establishes a continuum
field-theoretical ground for fusion, shrinking, and quantum
dimensions in 3D TO, and also future explorations.

D. Outline

This paper is organized as follows. In Sec. II, we review the
TQFT action of BR topological order and construct Wilson
operators for topological excitations. The number of topo-
logical excitations is consistent with that computed from a
lattice cocycle model. In Sec. III, fusion rules of excitations
are derived via Wilson operators and path integral. Besides,
the shrinking rules for loops are also studied, which shows
consistency with the fusion data. In Sec. IV, the relation be-
tween fusion rules and combinations of compatible braiding
processes is studied, which generalizes the above analysis
to topological orders with gauge group G = ∏n

i ZNi (i =
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TABLE I. Operators for nonequivalent particle excitations in BR topological order with G = (Z2)3. The ZNi gauge charges are repre-
sentations of elements in ZNi gauge subgroup. The subscript in Pc1c2c3 indicates that the particle carries ci units of ZNi gauge charges where
i = 1, 2, 3. In the first row, the particle excitation carrying vanishing gauge charge (trivial particle) is the vacuum, denoted as 1. The trivial
particle is the same topological excitation as the trivial pure loop (see Table II and the main text). There are in total five nonequivalent operators,
corresponding to five nonequivalent particle excitations. If one replaces an operator in path integral by its equivalent operator, the result would
not be changed as explained in Sec. II B.

Charges Operators for particle excitations Equivalent operators

0 P000 = 1 = exp(i0) = 1 −
ZN1 P100 = exp(i

∫
γ

A1) −
ZN2 P010 = exp(i

∫
γ

A2) −
ZN3 P001 = 2 exp[i

∫
γ

A3 + 1
2

2πq
N3

(d−1A1A2 − d−1A2A1)]δ(
∫

γ
A1)δ(

∫
γ

A2) P001 = P101 = P011 = P111

ZN1 ,ZN2 P110 = exp(i
∫

γ
A1 + i

∫
γ

A2) −

1, 2, 3). Discussion and outlook are given in Sec. V. Technical
details are collected in the Appendixes.

II. WILSON OPERATORS FOR TOPOLOGICAL
EXCITATIONS

In order to study fusion rules in TQFT, we first need to
express topological excitations in the field-theoretical for-
malism. For each topological excitation carrying a specific
amount of gauge charges and gauge fluxes, it is uniquely
represented by a Wilson operator that is invariant under gauge
transformations. In this section, we begin with reviewing the
TQFT action for BR topological order with gauge group G =∏3

i=1 ZNi . Then, by considering N1 = N2 = N3 = 2 as a typ-
ical example, we construct Wilson operators for topological
excitations, i.e., particles, pure loops, and decorated loops.
In this case, there are 23 × 23 = 64 different combinations
of gauge charges and gauge fluxes, which seems to indicate
that there are 64 different topological excitations, i.e., Wilson
operators. Nevertheless, we find that some Wilson operators
have the same correlation function with an arbitrary operator.
In this sense, such Wilson operators belong to the same equiv-

alence class. Finally, among 64 possible Wilson operators
we find only 19 nonequivalent ones, i.e., 19 essentially dif-
ferent topological excitations, for BR topological order with
G = (Z2)3. These 19 nonequivalent Wilson operators corre-
sponding to 19 topological excitations are listed in Table I
(particles), Table II (pure loops), and Table III (decorated
loops) which are the cornerstone of fusion rules in Sec. III.

A. TQFT action for BR topological order

BR topological order [39] is featured with a special braid-
ing process of one particle and two loops which carry gauge
charge or fluxes from three different gauge subgroups. In this
braiding process, the spatial trajectory of particle and two
loops form Borromean rings (or general Brunnian link) in
3D space, as shown in Fig. 1. The braiding phase of this
process is proportional to the Milnor’s triple linking number
[39,53,54]. This Borromean rings braiding cannot be classi-
fied by cohomology group H4(G, U(1)) for gauge group G.
The latter is applicable only for particle-loop braidings and
multiloop braidings. In addition, a Borromean rings braiding
is compatible with specific multiloop braidings only for a
given gauge group G. In other words, a legitimate DW TQFT

TABLE II. Operators for nonequivalent pure loop excitations in BR topological order with G = (Z2)3. The ZNi gauge fluxes correspond to
conjugacy classes of ZNi gauge subgroup. The subscript in Ln1n2n3 indicates that the pure loop carries ni units of ZNi fluxes where i = 1, 2, 3.
In the first row, the pure loop carrying vanishing gauge flux is actually the vacuum, denoted as 1. Trivial pure loop and trivial particle are in
fact the same and represented by the vacuum operator 1 (see Table I and the main text). The number of nonequivalent operators for pure loops
is 5, corresponding to 5 different pure loop excitations. In path integral, a pure loop may be replaced by a decorated loop without changing the
result, which indicates equivalence between operators, as shown in Sec. II B. The superscript in Lc1c2c3

n1n2n3
denotes the charge decoration: ci means

ci units of ZNi gauge charge; while the subscript n1n2n3 indicates the fluxes carried by the loop. Aside from pure loops and their equivalent
decorated loops, there are other nonequivalent decorated loops, as shown in Table III.

Fluxes Charge decoration Operators for pure loop excitations Equivalent operators

0 0 L000 = 1 = exp(i0) = 1 –

ZN1 0
L100 = 2 exp[i

∫
σ

B1 + 1
2

2πq
N1

(d−1A2B3 + d−1B3A2)]
×δ(

∫
γ

A2)δ(
∫

σ
B3)

L100 = L0c20
10n3

; c2, n3 = 0, 1

ZN2 0
L010 = 2 exp[i

∫
σ

B2 − 1
2

2πq
N2

(d−1B3A1 + d−1A1B3)]
×δ(

∫
σ

B3)δ(
∫

γ
A1)

L010 = Lc100
01n3

; c1, n3 = 0, 1

ZN3 0 L001 = exp(i
∫

σ
B3) –

ZN1 ,ZN2 0

L110 = 2 exp[i
∫

σ
B1 + 1

2
2πq
N1

(d−1A2B3 + d−1B3A2)
+i

∫
σ

B2 − 1
2

2πq
N2

(d−1B3A1 + d−1A1B3)]
×δ(

∫
γ

A2 − A1)δ(
∫

σ
B3)

L110 = L110
110 = L111 = L110

111
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TABLE III. Operators for nonequivalent decorated loop excitations in BR topological order with G = (Z2)3. The ZNi gauge charges and
fluxes correspond to group representations and conjugacy classes of ZNi gauge subgroup, respectively. The superscript in Lc1c2c3

n1n2n3
denotes the

charge decoration: ci counts units of ZNi gauge charge, while the subscript n1n2n3 indicates the gauge fluxes carried by the loop. There are in
total 10 nonequivalent decorated loops. Some decorated loops are in fact equivalent to specific pure loops, as explained in Sec. II B.

Fluxes Charge decoration Operators for decorated loop excitations Equivalent operators

ZN1 ZN1

L100
100 = 2 exp[i

∫
γ

A1 + i
∫

σ
B1 + 1

2
2πq
N1

(d−1A2B3 + d−1B3A2)]
×δ(

∫
γ

A2)δ(
∫

σ
B3)

L100
100 = L1c20

10n3
; c2, n3 = 0, 1

ZN1 ZN2 Equivalent to L100 L100 = L0c20
10n3

; c2, n3 = 0, 1

ZN1 ZN3

L001
100 = 4 exp[i

∫
σ

B1 + 1
2

2πq
N1

(d−1A2B3 + d−1B3A2)
+i

∫
γ

A3 + 1
2

2πq
N3

(d−1A1A2 − d−1A2A1)]
×δ(

∫
γ

A2)δ(
∫

σ
B3)δ(

∫
γ

A1)
L001

100 = Lc1c21
10n3

; c1, c2, n3 = 0, 1

ZN2 ZN1 Equivalent to L010 L010 = Lc100
01n3

; c1, n3 = 0, 1

ZN2 ZN2

L010
010 = 2 exp[i

∫
γ

A2 + i
∫

σ
B2 − 1

2
2πq
N2

(d−1B3A1 + d−1A1B3)]
×δ(

∫
σ

B3)δ(
∫

γ
A1)

L010
010 = Lc110

01n3
; c1, n3 = 0, 1

ZN2 ZN3

L001
010 = 4 exp[i

∫
σ

B2 − 1
2

2πq
N2

(d−1B3A1 + d−1A1B3)
+i

∫
γ

A3 + 1
2

2πq
N3

(d−1A1A2 − d−1A2A1)]
×δ(

∫
σ

B3)δ(
∫

γ
A1)δ(

∫
γ

A2)
L001

010 = Lc1c21
01n3

; c1, c2, n3 = 0, 1

ZN3 ZN1 L100
001 = exp(i

∫
γ

A1 + i
∫

σ
B3) –

ZN3 ZN2 L010
001 = exp(i

∫
γ

A2 + i
∫

σ
B3) –

ZN3 ZN1 ,ZN2 L110
001 = exp(i

∫
γ

A1 + i
∫

γ
A2 + i

∫
σ

B3) –

ZN3 ZN3

L001
001 = 2 exp[i

∫
σ

B3 + i
∫

γ
A3 + 1

2
2πq
N3

(d−1A1A2 − d−1A2A1)]
×δ(

∫
γ

A1)δ(
∫

γ
A2)

L001
001 = Lc1c21

001 ; c1, c2 = 0, 1

ZN1 ,ZN2 ZN1

L100
110 = 2 exp[i

∫
γ

A1 + i
∫

σ
B1 + 1

2
2πq
N1

(d−1A2B3 + d−1B3A2)
+i

∫
σ

B2 − 1
2

2πq
N2

(d−1B3A1 + d−1A1B3)]
×δ(

∫
γ

A2 − A1)δ(
∫

σ
B3)

L100
110 = L010

110 = L100
111 = L010

111

ZN1 ,ZN2 ZN2 Equivalent to L010
110 L100

110 = L010
110 = L100

111 = L010
111

ZN1 ,ZN2 ZN1 ,ZN2 Equivalent to L110 L110 = L110
110 = L111 = L110

111

ZN1 ,ZN2 ZN3

L001
110 = 4 exp[i

∫
σ

B1 + 1
2

2πq
N1

(d−1A2B3 + d−1B3A2)
+i

∫
σ

B2 − 1
2

2πq
N2

(d−1B3A1 + d−1A1B3)
+i

∫
γ

A3 + 1
2

2πq
N3

(d−1A1A2 − d−1A2A1)]
×δ(

∫
γ

A1)δ(
∫

γ
A2)δ(

∫
σ

B3)

L001
110 = Lc1c21

11n3
; c1, c2, n3 = 0, 1

can only describe Borromean rings braiding and some, but not
all, of multiloop braidings simultaneously. By legitimacy we
mean that the DW TQFT is a theory with well-defined gauge
transformations [46].

In the following, we consider gauge group G = ∏3
i=1 ZNi .

The action for BR topological order is

S =
∫ 3∑

i=1

Ni

2π
BidAi + qA1A2B3, (1)

where Ai and Bi are 1- and 2-form U (1) gauge fields, respec-
tively. The coefficient q = pN1N2N3

(2π )2N123
with p ∈ ZN123 , where N123

is the greatest common divisor (GCD) of N1, N2, and N3. The
quantization of q is the result of large gauge invariance. In
action (1), B1, B2, and A3 serve as the Lagrange multipliers
which locally enforce the flat-connection conditions: dA1 =
0, dA2 = 0, and dB3 = 0. The gauge transformations for the
action (1) are given by

A1 →A1 + dχ1, (2)

A2 →A2 + dχ2, (3)

A3 →A3 + dχ3 + X 3, (4)

B1 →B1 + dV 1 + Y 1, (5)

B2 →B2 + dV 2 + Y 2, (6)

B3 →B3 + dV 3, (7)

with nontrivial shifts

X 3 = − 2πq

N3

(
χ1A2 + 1

2
χ1dχ2

)
+ 2πq

N3

(
χ2A1 + 1

2
χ2dχ1

)
, (8)

Y 1 = − 2πq

N1
(χ2B3 − A2V 3 + χ2dV 3), (9)

Y 2 =2πq

N2
(χ1B3 − A1V 3 + χ1dV 3), (10)

where χ i and V i are, respectively, 0-form and 1-form gauge
parameters with

∫
dχ i ∈ 2πZ and

∫
dV i ∈ 2πZ.

165117-6
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b B. G = (Z2 )3: Operators for topological excitations and their
equivalence classes

Since our TQFT action (1) is a gauge theory, it is ex-
pected that the operators for topological excitations are gauge
invariant. Notice that the gauge group is G = ∏3

i=1 ZNi , the
topological excitations include particles carrying ZNi gauge
charges, loops carrying ZNi gauge flux only (pure loop), and
loops simultaneously carrying ZNi gauge flux and ZNj gauge
charge (decorated loops; i and j can be the same or different),
as illustrated in Fig. 2. The ZNi gauge charges and ZNi gauge
fluxes are group representations and conjugacy classes of ZNi

gauge subgroup. Only simple (see Introduction) topological
excitations are considered in this paper. In this section, we
explain how to label topological excitations by Wilson opera-
tors. Furthermore, we show that some topological excitations
are equivalent in the path-integral formalism, which leads to
the notion of equivalence class among Wilson operators.

First, if we consider a particle with one unit of ZN1 gauge
charge (a ZN1 particle), we can use the following operator to
represent it:

P100 = exp

(
i
∫

γ

A1

)
, (11)

where the closed one-dimensional γ can be understood as
the closed world line of particle in (3 + 1)D space-time and
can be deformed to S1 smoothly, as shown in Fig. 2. The
capital letter P stands for particle excitation and the subscript
c1c2c3 of Pc1c2c3 denotes the number of ZN1 , ZN2 , and ZN3

gauge charges, respectively. For instance, the subscript of P100

denotes that this particle excitation carries one unit of ZN1

gauge charge and vanishing ZN2 or ZN3 gauge charge. The
antiparticle of P100 is represented by

P̄100 = P(−1)00 = exp

(
−i

∫
γ

A1

)
. (12)

For simplicity, we let the gauge group to be G = (Z2)3, i.e.,
N1 = N2 = N3 = 2. We consider

〈P(−1)00〉 = 1

Z

∫
D[Ai]D[Bi] exp (iS)

× exp

(
−i

∫
γ

A1

)
, (13)

where Z = ∫
D[Ai]D[Bi] exp(iS) is the partition function. In-

tegrating out B1 leads to the constraint∮
A1 = 2πm1

N1
= 2πm1

2
, m1 ∈ Z. (14)

This constraint implies exp(i2
∫
γ

A1) = 1. With this fact, the
expectation value of P(−1)00 can be written as

〈P(−1)00〉 = 1

Z

∫
D[Ai]D[Bi] exp (iS)

× exp

(
−i

∫
γ

A1

)
× exp

(
i2

∫
γ

A1

)
= 〈P100〉. (15)

In the sense of path integral, we can see that the antiparticle
of P100 is itself when G = (Z2)3. This result is easy to un-
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TABLE V. Quantum dimensions of operators in BR topological order with G = (Z2)3. By definition, quantum dimension is the largest
eigenvalue of the matrix Ni whose elements are given by (Ni )k j = Ni j

k . Topological excitations with quantum dimension larger than 1 are
non-Abelian, as indicated by multichannel fusion rules in Table IV.

Wilson
operators 1 P100 P010 L001 P110 L100

001 L010
001 L110

001 L100 L100
100 L010 L010

010 P001 L001
001 L110 L100

110 L001
100 L001

010 L001
110

Quantum
dimension 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 4 4 4

derstand since the particle carries gauge charge of cyclic Z2

group.
Next, we consider a pure loop carrying one unit of ZN3

flux, denoted as ZN3 loop for simplicity. The corresponding
operator is

L001 = exp

(
i
∫

σ

B3

)
, (16)

where σ is a closed two-dimensional surface as the closed
world sheet of a loop. In details, σ is a 2-torus formed by cir-
cling the loop along the time direction, as shown in Fig. 2. The
letter L stands for loop excitations. For pure loop excitations,
the subscript denotes the gauge fluxes carried by the loop.
Similarly, for a pure loop carrying one (mod 2) unit of Z2

flux, its antiloop is itself, e.g., L̄001 = L00(−1) = exp(i
∫
σ

B3).
Last, we consider a decorated loop [see Fig. 2(c)]. For

instance, a ZN3 loop decorated by a ZN1 particle is represented
by

L100
001 = exp

(
i
∫

σ

B3 + i
∫

γ

A1

)
. (17)

For decorated loop excitations, the superscript (e.g., “100” in
L100

001) denotes the charge decoration, i.e., the gauge charges
carried by the particle attached to the loop. Such decoration of
particle on a loop requires that the particle’s world line γ lies
on the loop’s world sheet σ . This requirement is reasonable:
imagine a loop moving in (3 + 1)D space-time, the decorated
particle also moves together with the loop, thus its world line
becomes a noncontractible path on the world sheet of loop, as
illustrated in Fig. 2(f).

One may notice that in gauge transformations (7), some
gauge fields transform by a shift term, i.e., X 3, Y 1, or Y 2.
These shift terms indicate that the gauge-invariant operators
of these gauge fields need to be treated carefully. For example,
we consider the operator for B1 gauge field which corresponds

to a pure loop carrying ZN1 flux:

L100 = 2 exp

[
i
∫

σ

B1 + 1

2

2πq

N1
(d−1A2B3 + d−1B3A2)

]
× δ

(∫
c

A2

)
δ

(∫
σ

B3

)
(18)

with d−1A2 = ∫
[a,b]∈c A2 and d−1B3 = ∫

A∈σ
B3 where [a, b]

is a segment on a closed curve c and A is an open area on σ .
The normalization factor 2 in the front of L100 is explained in
Appendix A. These two Kronecker delta functions are

δ

(∫
c

A2

)
=

{
1,

∫
c A2 = 0 mod 2π

0, else
(19)

and

δ

(∫
σ

B3

)
=

{
1,

∫
σ

B3 = 0 mod 2π

0, else .
(20)

These constraints ensure that d−1A2 and d−1B3 are well de-
fined: for this purpose, we need

∫
∀ c∈σ

A2 = 0 mod 2π and∫
σ

B3 = 0 mod 2π .1 Since we have γ ∈ σ [see Fig. 2(f)], we
can choose c = γ such that the constraint becomes

∫
γ

A2 = 0
mod 2π and the expression of L100 becomes

L100 = 2 exp

[
i
∫

σ

B1 + 1

2

2πq

N1

(
d−1A2B3 + d−1B3A2

)]
× δ

(∫
γ

A2

)
δ

(∫
σ

B3

)
. (21)

1In order to properly define d−1A2, we required A2 to be exact on σ .
This is equivalent to that the integral of A2 over any one-dimensional
closed submanifold is zero. Therefore,

∫
∀ c∈σ

A2 = 0 mod 2π is im-
posed. For d−1B3, the argument is similar.

TABLE VI. Shrinking rules of topological excitations for BR topological order with G = (Z2)3. The loop excitations are classified as
Abelian and non-Abelian ones, depending on whether they have Abelian or non-Abelian fusion rules with other topological excitations.
All these shrinking rules respect fusion rules, i.e., S(a ⊗ b) = S(a) ⊗ S(b), as explained in Sec. III C. Shrinking an Abelian loop always
results in an Abelian particle. On the other hand, shrinking a non-Abelian loop leads to either a non-Abelian particle or a composite particle
(superposition of multiple simple particles).

Abelian loops L001 L100
001 L010

001 L110
001

S(Abelian loop) 1 P100 P010 P110

Non-Abelian loops L100 L100
100 L010 L010

010 L001
001 L110 L100

110 L001
100 L001

010 L001
110

S(non-Abelian loop) 1 ⊕ P010 P100 ⊕ P110 1 ⊕ P100 P010 ⊕ P110 P001 1 ⊕ P110 P100 ⊕ P010 2 · P001 2 · P001 2 · P001
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In fact, δ(
∫
γ

A2) behaves as a projector in path integral (N2 =
2):

δ

(∫
γ

Ã2

)
=δ

(
2πm2

N2

)
= 1

2

[
1 + exp

(
i2πm2

N2

)]
, (22)

where Ã2 is the configuration of A2 after integrating out
B2 in path integral and satisfies the constraint

∫
γ

Ã2 = 2πm2
N2

with m2 ∈ Z. For δ(
∫
σ

B3), the discussion is similar. In
other words, these two Kronecker delta functions require that
exp(i

∫
γ

Ã2) = 1 and exp(i
∫
σ

B̃3) = 1, otherwise, the operator
L100 is trivial.

These Kronecker delta functions are important when dis-
cussing Wilson operators for topological excitations. They
introduce an equivalence relation between seemingly different
operators. As an example, we consider the ZN1 loop decorated
by a ZN2 particle and write the operator for this decorated loop
excitation:

L010
100 = 2 exp

[
i
∫

γ

A2 + i
∫

σ

B1

+ i
∫

σ

1

2

2πq

N1
(d−1A2B3 + d−1B3A2)

]
× δ

(∫
γ

A2

)
δ

(∫
σ

B3

)
. (23)

The correlation function of L010
100 and an arbitrary operator O is

given by〈
OL010

100

〉 = 1

Z

∫
D[Ai]D[Bi] exp (iS) × O × L010

100

= Õ × 2 exp

[
i
∫

γ

Ã2 + i
∫

σ

B̃1

+i
∫

σ

1

2

2πq

N1

(
d−1Ã2B̃3 + d−1B̃3Ã2

)]
× δ

(∫
γ

Ã2

)
δ

(∫
σ

B̃3

)
= 〈OL100〉, (24)

where Ãi, B̃i, and Õ are obtained by integrating out corre-
sponding Lagrange multipliers. δ(

∫
γ

Ã2) = 1 guarantees that

exp(i
∫
γ

Ã2) = 1. We see that L010
100 and L100 behave as a same

operator in path integral and we regard that they belong to
the same equivalence class. In fact, δ(

∫
γ

A2) enforces the ZN2

particle on loop L100 to behave as a trivial particle. Similarly,
we can prove that this equivalence class also includes the
following two topological excitations: the pure loop carrying
ZN1 and ZN3 fluxes,

L101 =2 exp

[
i
∫

σ

B3 + i
∫

σ

B1

+ i
∫

σ

1

2

2πq

N1

(
d−1A2B3 + d−1B3A2

)]
× δ

(∫
γ

A2

)
δ

(∫
σ

B3

)
(25)

and the (ZN1,ZN3 ) loop decorated by a ZN2 particle,

L010
101 = 2 exp

[
i
∫

γ

A2 + i
∫

σ

B3 + i
∫

σ

B1

+ i
∫

σ

1

2

2πq

N1

(
d−1A2B3 + d−1B3A2)]

× δ

(∫
γ

A2

)
δ

(∫
σ

B3

)
. (26)

In conclusion, we have

L100 = L010
100 = L101 = L010

101. (27)

Let us consider a general topological excitation a. If its op-
erator is equipped with Kronecker delta function, it is free
to attach specific excitations (determined by Kronecker delta
functions) to a without altering the result of correlation func-
tion involving a. Once an excitation is attached to a (this in
fact is a fusion), by definition a becomes another excitation,
say, labeled by b. In this manner, an equivalence relation may
be established between a and b. One should keep in mind
that such equivalence relation is discussed in the sense of
path integral. Respecting the principle of gauge invariance
and treating the Kronecker delta functions carefully, we obtain
19 nonequivalent operators for topological excitations of BR
topological order with G = (Z2)3. These operators are listed
in Table I (particles), Table II (pure loops), and Table III
(decorated loops).

Among these 19 nonequivalent operators (i.e., 19 distinct
topological excitations), there are 4 nontrivial particle exci-
tations, 4 nontrivial pure loop excitations, and 10 nontrivial
decorated loop excitations. By the definition of topological
excitation, the trivial particle and the trivial loop are regarded
the same, i.e., they both correspond to the vacuum denoted by
1. The first row in Table I (trivial particle) and that of Table II
(trivial loop) are both represented by the trivial Wilson opera-
tor exp(i0) = 1. Therefore, the number of particle excitations
(including trivial and nontrivial ones) is 5. So is that of pure
loop excitations.

The total number of excitations obtained from the above
field-theoretical analysis agrees with the lattice cocycle
method [55]. The details can be found in Appendix B and here
we briefly sketch the main idea. After integrating out the La-
grange multipliers in action (1), the remaining gauge fields A1,
A2, and B3 are discretized into ZNi . We are motivated to define
the following lattice model with 1-form and 2-form cocy-
cles on arbitrary (3 + 1)D space-time manifold triangulation
M4: Zk (M4) = ∑

a1,a2,b
exp(i2π k

N

∫
M4

a1a2b) where a1, a2 ∈
Z1(M4,ZN ), b ∈ Z2(M4,ZN ), and we have assumed Ni = N
(i = 1, 2, 3) for simplicity. Z1(M4,ZN ) and Z2(M4,ZN ) are
the sets of 1- and 2-cocycles on M4, respectively. The 1-
cocycles a1 and a2 map each link 〈i j〉 ∈ M4 to ai j ∈ ZN ;
the 2-cocycle b maps each triangle 〈i jk〉 ∈ M4 to bi jk ∈ ZN .
If we choose the space-time manifold to be M4 = S1 × M3

where S1 is the time circle, the topological partition function
Z top

k [M4], obtained by appropriate normalization of Zk[M4],
is a trace of identity operator in the ground-state subspace.
Therefore, it equals to the ground-state degeneracy (GSD)
on the space manifold M3: GSDk (M3) = Z top

k (S1 × M3). Fur-
thermore, the GSD on space manifold M3 = S1 × S2 equals
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to the number of particle excitations, and the number of pure
loop excitations. For the example of N = 2 and k = 1 theory,
we have GSDk (S1 × S2) = Zk (T 2 × S2) = 5. This is exactly
the number of nonequivalent particles and pure loop excita-
tions discussed above and summarized in Table I (particles)
and Table II (pure loops).

III. FUSION RULES AND LOOP-SHRINKING RULES
FROM PATH INTEGRALS

In this section, we are going to calculate the fusion rules of
excitations for BR topological order with G = (Z2)3. These
fusion rules, together with braiding phases, form a more
complete data set to characterize the BR topological order.
Assume the fusion of excitation a and b is

a ⊗ b = ⊕iN
ab
ei

ei, (28)

where Nab
ei

is a nonzero integer called fusion coefficient. Now
we ask the following: How to represent this algebraic fusion
rule using field-theoretical language? If it is considered in a
lattice, the above fusion is that two excitations a and b are very
close to each other such that they behave like the superposition
of other excitations ei. In fact, if we consider the expectation
value, the fusion rule (28) indicates that

〈a ⊗ b〉 = 〈 ⊕i Nab
ei

ei
〉 = ⊕iN

ab
ei

〈ei〉. (29)

If this fusion is considered in the scenario of continuous field
theory, the excitations should be replaced by gauge-invariant
operators Oei . In addition, the correlation length in TQFT is
zero which implies the infinite energy gap between the ground
state and excited states. Any finite distance would be in fact
infinitely larger than the correlation length. Therefore, when
discussing fusion in the framework of TQFT, we must set the
topological excitations in the same spatial position strictly, as
illustrated in Fig. 3. In other words, the world lines and/or
world sheets of two topological excitations in fusion should
be identical. We can conclude that in the fusion in TQFT, i.e.,
in terms of path integral, is given by

〈a ⊗ b〉 = 1

Z

∫
D[Ai]D

[
Bi

]
exp (iS) × (Oa × Ob)

= 1

Z

∫
D[Ai]D[Bi] exp (iS) ×

(∑
i

Nab
ei
Oei

)
= 〈⊕iN

ab
ei

ei
〉

(30)

in which Oa and Ob share the same world line and/or world
sheet. In this way, we can read the fusion rule (28) from

Oa × Ob =
∑

i

Nab
ei
Oei (31)

which is considered in the context of path integral. Below we
first show several examples of computing fusion rules through
path integral. By exhausting all 19 operators for topological
excitations listed in Table I (particles), Table II (pure loops),
and Table III (decorated loops), we can find out all fusion
rules for BR topological order with G = (Z2)3. The complete
fusion rules are shown in Table IV among which some are
non-Abelian. Furthermore, the shrinking rules of loop excita-
tions are studied in Sec. III C and listed in Table VI.

A. Examples of fusion rule calculation

Now we explain how to exploit Eq. (31) to obtain fusion
rules of topological excitations by several examples. These
examples of fusion are illustrated in Fig. 4 in which two are
Abelian fusion and the others are non-Abelian. The techni-
cal details can be found in Appendix C. The notations of
operators (Pn1n2n3 , Ln1n2n3 , and Lc1c2c3

n1n2n3
) are also used to refer

corresponding topological excitations in the context without
causing ambiguity, e.g., P100 not only represents the operator
of ZN1 particle but also denotes the ZN1 -particle excitation
itself. When we mention topological excitations in the fusion
and loop-shrinking operations (discussed in Sec. III C), we use
“⊗” and “⊕” between the notations for direct product and
direct sum of fusion spaces. When Wilson operators in path
integrals are considered, their multiplication and addition are
indicated by “×” and “+.”

1. ZN1 particle and ZN2 particle

The first example is the fusion of a ZN1 particle and a ZN2

particle. Using Eq. (31), we can write

〈P100 ⊗ P010〉

= 1

Z

∫
D[Ai]D[Bi] exp (iS)P100 × P010

= 1

Z

∫
D[Ai]D[Bi] exp (iS) exp

(
i
∫

γ

A1 + A2

)
= 1

Z

∫
D[Ai]D[Bi] exp (iS)P110

= 〈P110〉 (32)

and find that

P100 ⊗ P010 = P110. (33)

This result indicates that by fusing two particles carrying
ZN1 and ZN2 gauge charges, respectively, we obtain a single
particle that carries both ZN1 and ZN2 gauge charges.

2. Two ZN1 particles

The second example is the fusion of two ZN1 particles:

〈P100 ⊗ P100〉 = 1

Z

∫
D[Ai]D[Bi] exp (iS) exp

(
i2

∫
γ

A1

)
.

(34)

Integrating out B1, B2, and A3 and we obtain constraints for
A1, A2, and B3, respectively:∮

A1 = 2πm1

N1
, (35)∮

A2 = 2πm2

N2
, (36)∮

B3 = 2πm3

N3
, (37)

where m1,2,3 ∈ Z. Notice that gauge group is G = ∏3
i=1 ZNi =

(Z2)3, we have

〈P100 ⊗ P100〉 = 1 = 〈1〉, (38)
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i.e.,

P100 ⊗ P100 = 1. (39)

This result tells us that P100 is the antiparticle of itself, which
is reasonable since P100 carries one unit of ZN1 = Z2 gauge
charge.

3. Two ZN1 loops

In the third example, we consider the fusion of two ZN1

loops. We start with

〈L100 ⊗ L100〉 = 1

Z

∫
D[Ai]D[Bi] exp (iS) × L100 × L100.

(40)

Using Table II, we plug in the expression of L100 and obtain
(details are collected in Appendix C)

〈L100 ⊗ L100〉 = 1 + exp

(
i2πm2

2

)
+ exp

(
i2πm3

2

)
+ exp

[
i2π (m2 + m3)

2

]
. (41)

We can immediately find that

〈L100 ⊗ L100〉 = 1

Z

∫
D[Ai]D[Bi] exp (iS)

× (
1 + P010 + L001 + L010

001

)
, (42)

thus, we can conclude with

L100 ⊗ L100 = 1 ⊕ P010 ⊕ L001 ⊕ L010
001. (43)

This is a non-Abelian fusion rule which tells us that if we fuse
two ZN1 loops we would obtain the superposition of a vacuum,
a ZN2 particle, a ZN3 loop, and a ZN3 loop decorated by a ZN2

particle.

4. ZN1 loop and ZN2 loop

In the fourth example, we continue to consider L100 ⊗ L010:

〈L100 ⊗ L010〉 = 1

Z

∫
D[Ai]D[Bi] exp (iS) × L100 × L010.

(44)

For simplicity, we denote L100 × L010 as

L100 × L010 = 4 exp (i f1 + i f2)δ

(∫
γ

A2

)
δ

(∫
σ

B3

)
× δ

(∫
γ

A1

)
δ

(∫
σ

B3

)
, (45)

where f1 = ∫
σ

B1 + 1
2

2πq
N1

(d−1A2B3 + d−1B3A2) and f2 =∫
σ

B2 − 1
2

2πq
N2

(d−1B3A1 + d−1A1B3). For the complete ex-
pression of L100 and L010, one can refer to Table II. Since the
Kronecker delta functions can be rewritten as

δ

(∫
σ

B3

)
δ

(∫
σ

B3

)
=δ

(∫
σ

B3

)
, (46)

δ

(∫
γ

A2

)
δ

(∫
γ

A1

)
=δ

(∫
γ

A2 − A1

)
δ

(∫
γ

A1

)
, (47)

we can write L100 × L010 as

L100 × L010 = 4 exp (i f1 + i f2)δ

(∫
γ

A1

)
× δ

(∫
γ

A2 − A1

)
δ

(∫
σ

B3

)
. (48)

The Kronecker delta function δ(
∫
γ

A1) can be expressed as

δ(
∫
γ

A1) = 1
2 [1 + exp(i

∫
γ

A1)] in path integral. Therefore, in
the sense of expectation value,

L100 × L010 = 2 exp

(
i f1 + i f2 + i

∫
γ

A1

)
× δ

(∫
γ

A2 − A1

)
δ

(∫
σ

B3

)
. (49)

By checking all 19 operators, we find (here L denotes opera-
tors of loops)

〈L100 × L010〉 =〈
L110 + L100

110

〉
(50)

which indicates the following fusion rule of topological exci-
tations (here L denotes loop excitations):

L100 ⊗ L010 = L110 ⊕ L100
110. (51)

This is another non-Abelian fusion rule. The output of fusion
of a ZN1 loop and a ZN2 loop is the superposition of a pure
(ZN1 ,ZN2 ) loop, L110 and a (ZN1 ,ZN2 ) loop decorated by a
ZN1 particle L100

110. One should notice the following equivalence
relation as indicated in Table III: L110 = L110

110 and L100
110 = L010

110.
The above results are obtained through a calculation of path
integral though the formulas are written in a simplified man-
ner. The detailed derivation can be found in Appendix C.

B. Fusion table for BR topological order with G = (Z2 )3

The above examples show how to calculate fusion rules
from path integral. By exhausting all combinations of two
excitations, we obtain the complete fusion rules and quantum
dimension d of excitations for Borromean rings topological
order with G = (Z2)3 as shown in Tables IV and V. The
fusion rules satisfy the properties of commutativity and asso-
ciativity, i.e., a ⊗ b = b ⊗ a and (a ⊗ b) ⊗ c = a ⊗ (b ⊗ c),
which is automatically guaranteed by the path-integral calcu-
lation of Abelian gauge fields.

In the BR topological order with G = (Z2)3, the excita-
tions can be divided as follows: vacuum, 1; 4 nonequivalent
particles, P100, P010, P110, and P001; 4 nonequivalent pure
loops, L001, L100, L010, and L110; 10 nonequivalent loops dec-
orated with particle, L100

001, L010
001, L110

001, L100
100, L010

010, L001
001, L100

110,
L001

100, L001
010, and L001

110. All these excitations, no matter particles
or loops, can be thought as combinations of gauge charges
and gauge fluxes. Since the gauge group is G = (Z2)3, one
may think there are (23)2 = 64 different combinations that
exceed the number of excitations listed in Table IV. In fact,
among all 64 combinations of gauge charges and fluxes, some
of them behave without any difference thus collected to the
same equivalence class, as shown in Sec. II B and Table III.

In the following lines, we make some explanation about the
Table IV of fusion rules. First, there are 8 Abelian excitations
(1, P100, P010, L001, P110, L100

001, L010
001, and L110

001; labeled by
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number 1 to 8 in Table IV) whose fusion rules with any other
excitations are always Abelian, i.e., single fusion channel.
All other excitations are called non-Abelian excitations. This
fusion table is obtained in the case of G = (Z2)3 and we may
expect that the fusion of an excitation and itself would produce
a vacuum due to the Z2 cyclic nature. Nevertheless, for L001

100,
a loop carrying ZN1 flux and decorated by a ZN3 particle, the
fusion of two L001

100 produces two copies of the direct sum of all
8 Abelian excitations that are denoted as Ab (see Table IV).
This means that L001

100 ⊗ L001
100 generates a direct sum of two

vacuums. Meanwhile, L001
010 and L001

110 also have this property.
Field-theoretical calculation for this result can be found in
Appendix C 5. For other excitations, the fusion of its two
copies just produce a single vacuum.

From this fusion table, we can obtain all fusion coeffi-
cients Ni j

k ’s and matrices Ni whose element is (Ni )k j = Ni j
k ,

where i, j, k are integers ranging from 1 to 19 to label the
topological excitations. The largest eigenvalue of Ni is the
quantum dimension of corresponding excitations, as shown
in Table V. We notice that the quantum dimension of topo-
logical excitation is exactly the coefficient in the front of
corresponding gauge-invariant operator. This fact may imply a
connection between the Wilson operator and the fusion space
of a topological excitation. Finally, we note that non-Abelian
fusion rules are also found in (2 + 1)D DW gauge theory
with Abelian gauge group [56,57], where it is found that for
a gauge group G = (Z2)3, the fusion rules for particles can
be captured by the so-called twisted quantum double model
Dω3 (G). Yet, the present situation in (3 + 1)D is different: we

still consider a G = (Z2)3 gauge group as a simple illustra-
tion, the algebra of fusion rules is apparently different from
that of Dω3 (G).

C. Loop-shrinking rules, consistency, and anomaly

Since the loop excitations considered in this paper are not
linked with other loops, they can be shrunk to a point that turns
out to correspond a (or several) particle excitation. This fea-
ture is absent in (2 + 1)D topological orders yet is important
in higher-dimensional cases. The loop-shrinking operation
may be important when we consider the dimension reduction
of topological order. In this section, we show that the loop-
shrinking operation can be represented in the framework of
TQFT. The Wilson operators studied in Sec. II help to provide
a general algorithm to understand shrinking operation of loop
excitations in 3D space. The loop-shrinking rules may also be
an important characterization for 3D topological orders.

Back to our work, how to represent this shrinking operation
in terms of gauge-invariant operators and path integral? Since
the world sheet of a loop would contract to a world line after
the loop-shrinking operation, we conjecture that the shrinking
operation can be represented in the path integral by shrinking
the world sheet to a closed curve that can be viewed as a world
line of particle, as illustrated in Fig. 5. In details, the world
sheet σ is a 2-torus T 2, the shrinking operation is taking the
limit T 2 → S1 where S1 is the noncontractible path circling
along time direction on T 2. Let S be the shrinking operation
for loop excitations. For example, if we consider to shrink a
ZN1 loop L100, we can write [we still consider G = (Z2)3]

〈S (L100)〉 =
〈

lim
σ→S1

L100

〉
= lim

σ→S1

1

Z

∫
D[A1]D[Bi] exp (iS)

× 2 exp

[
i
∫

σ

B1 + 1

2

2πq

N1

(
d−1A2B3 + d−1B3A2

)]
δ

(∫
γ

A2

)
δ

(∫
σ

B3

)
= 1

Z

∫
D[A1]D[Bi] exp (iS) × 2 exp (i0) × δ

(∫
γ

A2

)
δ(0)

= 1

Z

∫
D[A1]D[Bi] exp (iS) × 2 × δ

(∫
γ

A2

)
× 1

= 1

Z

∫
D[A1]D[Bi] exp (iS) ×

[
1 + exp

(
i
∫

γ

A2

)]
= 〈1 ⊕ P010〉. (52)

So we can claim that the ZN1 loop can be shrunk into
the superposition of a trivial particle (vacuum) and a ZN2

particle:

S (L100) = 1 ⊕ P010. (53)

This loop-shrinking rule (53) indicates that one would obtain
a superposition of a trivial particle and a particle carrying one
unit of ZN2 gauge charge after shrinking the loop L100. Simi-
larly, we can obtain shrinking rules for all loop excitations, as
shown in Table VI.

Physically, one may expect that the shrinking operation
should respect the fusion rules

S (a ⊗ b) = S (a) ⊗ S (b), (54)

where a and b are excitations. It is natural to set S (a) = a if
a is a particle excitation. Analogous to fusion rules, we can
write the shrinking rules in the form of

S (a) = ⊕cSa
c · c, (55)
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where the nonzero integer Sa
c behaves as the “shrinking coef-

ficient.” Using this notation, we have

S (a ⊗ b) =S
( ⊕c Nab

c · c
)

=
∑

c

Nab
c · S (c)

=
∑

c

Nab
c · ⊕dSc

d · d

= ⊕d

(∑
c

Nab
c Sc

d

)
· d (56)

and

S (a) ⊗ S (b) = ( ⊕k1 Sa
k1

· k1
) ⊗ ( ⊕k2 Sb

k2
· k2

)
= ⊕k1 Sa

k1
· ⊕k2 Sb

k2
· (k1 ⊗ k2)

=
∑
k1

∑
k2

Sa
k1

Sb
k2

( ⊕d Nk1k2
d · d

)

= ⊕d

⎛⎝∑
k1,k2

Sa
k1

Sb
k2

Nk1k2
d

⎞⎠ · d. (57)

By calculating the Ni j
k and Sa

c data from Tables IV and VI, we
confirm that for arbitrary excitations a and b∑

c

Nab
c Sc

d =
∑
k1,k2

Sa
k1

Sb
k2

Nk1k2
d (58)

is always satisfied, i.e., the shrinking rules respect the fusion
rules as Eq. (54).

Furthermore, by taking a closer look at the loop-shrinking
rules in Table VI, we can conclude the following facts from
our field-theoretical analysis:

(1) The quantum dimensions of topological excitations
are conserved under loop-shrinking operation. This can be
checked by referring to Table V.

(2) An Abelian loop is always shrunk into an Abelian
particle. On the other hand, a non-Abelian loop is shrunk into
either a non-Abelian particle or a composite particle.

(3) The loop-shrinking rules are consistent with fusion
rules, i.e., S (a ⊗ b) = S (a) ⊗ S (b).

All these facts indicate the consistency of fusion rules
and loop-shrinking rules. We believe that this consistency of
fusion rules and loop-shrinking rules plays an important role
in establishing an anomaly-free topological order. A quantum
anomaly may occur if the loop-shrinking rules conflict with
fusion rules, which is an interesting future direction for field-
theory study.

IV. FUSION RULES OF TOPOLOGICAL ORDERS WITH
COMPATIBLE BRAIDINGS IN 3D SPACE

Although braiding processes in topological order can be
described by TQFT in a unified framework, not all of them
can be supported in one system without incompatibility [46].
For a given gauge group, different topological order can be

obtained according to different combinations of compatible
braiding processes. In this section we would like to answer
this question: How the fusion rules of topological order differ
depending on the combination of compatible braidings.

In 3D space, nontrivial braiding processes in 3D space
include particle-loop braiding, multiloop braiding, and Bor-
romean rings braiding. Yet not arbitrary combination of these
braiding processes is compatible. For example, when the
gauge group is G = ∏3

i=1 ZNi , the Borromean rings braiding
can be compatible with three-loop braiding, if the loops in
three-loop braiding only carry two kinds of ZNi fluxes. If these
three loops carry three kinds of ZNi fluxes, the three-loop
braiding is not compatible with the Borromean rings braiding.
The origin of this incompatibility is that we cannot construct a
gauge-invariant TQFT action for these two braiding processes
[46].

Below, we study the fusion rules for topological order
with particle-loop braiding only, with particle-loop braiding
and three-loop braiding, and with all three kinds of braiding
processes, respectively. We find that for topological orders
with particle-loop braidings and three-loop braidings only, the
fusion rules are Abelian. However, once we introduce Bor-
romean rings braiding, the fusion rules become non-Abelian.

A. Topological order with particle-loop braiding only:
G = (Z2 )2

The TQFT action for topological order with particle-loop
braiding only is

S = SBF =
∫ 2∑

i=1

Ni

2π
BidAi. (59)

Since G = (Z2)2, N1 = N2 = 2. The gauge transformations
are

Ai → Ai + dχ i,

Bi → Bi + dV i. (60)

Particle excitations are represented by operators

Pi j = exp

(
ii

∫
γ

A1 + i j
∫

γ

A2

)
(61)

with i, j = 0, 1. Loop excitations are represented by

Li j
10 = exp

(
i
∫

σ

B1 + ii
∫

γ

A1 + i j
∫

γ

A2

)
, (62)

Li j
01 = exp

(
i
∫

σ

B2 + ii
∫

γ

A1 + i j
∫

γ

A2

)
, (63)

Li j
11 = exp

(
i
∫

σ

B1 + i
∫

σ

B2 + ii
∫

γ

A1 + i j
∫

γ

A2

)
, (64)

with i, j = 0, 1. As summarized in Table VII, the fusion rules
are all Abelian. All these topological excitations together with
their fusion rules form a (Z2)4 group.
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TABLE VII. Fusion table for S = SBF , S = SBF + SA1A2dA2 , or S = SBF + SA1A2dA2 + SA2A1dA1 with G = Z2 × Z2. For different TQFT
actions (see Secs. IV A, IV B, and IV C), the same notation Pc1c2 or Lc1c2

n1n2
represents the same excitations though the expressions of Wilson

operators differ due to the gauge transformations. For example, L10 denotes the loop carrying ZN1 flux yet its explicit operator expression
varies for different TQFT actions, as shown in Secs. IV A, IV B, and IV C. All fusion rules are Abelian, hence, the quantum dimension of each
excitation is 1. All 16 excitations together with the fusion rules form a (Z2)4 group.

P00 ≡ 1 P10 P01 P11 L10 L01 L11 L10
10 L10

01 L10
11 L01

10 L01
01 L01

11 L11
10 L11

01 L11
11

1 1 P10 P01 P11 L10 L01 L11 L10
10 L10

01 L10
11 L01

10 L01
01 L01

11 L11
10 L11

01 L11
11

P10 P10 1 P11 P01 L10
10 L10

01 L10
11 L10 L01 L11 L11

10 L11
01 L11

11 L01
10 L01

01 L01
11

P01 P01 P11 1 P10 L01
10 L01

01 L01
11 L11

10 L11
01 L11

11 L10 L01 L11 L10
10 L10

01 L10
11

P11 P11 P01 P10 1 L11
10 L11

01 L11
11 L01

10 L01
01 L01

11 L10
10 L10

01 L10
11 L10 L01 L11

L10 L10 L10
10 L01

10 L11
10 1 L11 L01 P10 L10

11 L10
01 P01 L01

11 L01
01 P11 L11

11 L11
01

L01 L01 L10
01 L01

01 L11
01 L11 1 L10 L10

11 P10 L10
10 L01

11 P01 L01
10 L11

11 P11 L11
10

L11 L11 L10
11 L01

11 L11
11 L01 L10 1 L10

01 L10
10 P10 L01

01 L01
10 P01 L11

01 L11
10 P11

L10
10 L10

10 L10 L11
10 L01

10 P10 L10
11 L10

01 1 L11 L01 P11 L11
11 L11

01 P01 L01
11 L01

01

L10
01 L10

01 L01 L11
01 L01

01 L10
11 P10 L10

10 L11 1 L10 L11
11 P11 L11

10 L01
11 P01 L01

10

L10
11 L10

11 L11 L11
11 L01

11 L10
01 L10

10 P10 L01 L10 1 L11
01 L11

10 P11 L01
01 L01

10 P01

L01
10 L01

10 L11
10 L10 L10

10 P01 L01
11 L01

01 P11 L11
11 L11

01 1 L11 L01 P10 L10
11 L10

01

L01
01 L01

01 L11
01 L01 L10

01 L01
11 P01 L01

10 L11
11 P11 L11

10 L11 1 L10 L10
11 P10 L10

10

L01
11 L01

11 L11
11 L11 L10

11 L01
01 L01

10 P01 L11
01 L11

10 P11 L01 L10 1 L10
01 L10

10 P10

L11
10 L11

10 L01
10 L10

10 L10 P11 L11
11 L11

01 P01 L01
11 L01

01 P10 L10
11 L10

01 1 L11 L01

L11
01 L11

01 L01
01 L10

01 L01 L11
11 P11 L11

10 L01
11 P01 L01

10 L10
11 P10 L10

10 L11 1 L10

L11
11 L11

11 L01
11 L10

11 L11 L11
01 L11

10 P11 L01
01 L01

10 P01 L10
01 L10

10 P10 L01 L10 1

B. Topological order with particle-loop braiding and three-loop
braiding: G = (Z2 )2

The TQFT action for topological order with particle-loop
braiding and three-loop braiding is

S = SBF + SA1A2dA2

=
2∑

i=1

Ni

2π
BidAi + pN1N2

(2π )2N12
A1A2dA2 (65)

with N1 = N2 = 2, N12 ≡ gcd(N1, N2) = 2, and p ∈ ZN12 . For
a nontrivial action, we can set p = 1. The gauge transforma-
tions are

Ai →Ai + dχ i, (66)

B1 →B1 + dV 1 + pN2

2πN12
dχ2A2, (67)

B2 →B2 + dV 2 − pN1

2πN12
dχ1A2. (68)

Particle excitations are represented by operators

Pi j = exp

(
ii

∫
γ

A1 + i j
∫

γ

A2

)
(69)

with i, j = 0, 1. Loop excitations are represented by

Li j
10 = exp

[
i

(∫
σ

B1 + pN2

2πN12

∫
�

A2dA2

)
+ ii

∫
γ

A1 + i j
∫

γ

A2

]
, (70)

Li j
01 = exp

[
i

(∫
σ

B2 − pN1

2πN12

∫
�

A1dA2

)
+ ii

∫
γ

A1 + i j
∫

γ

A2

]
, (71)

Li j
11 = exp

[
i

(∫
σ

B1 + pN2

2πN12

∫
�

A2dA2

)
+ i

(∫
σ

B2 − pN1

2πN12

∫
�

A1dA2

)
+ ii

∫
γ

A1 + i j
∫

γ

A2

]
, (72)

with i, j = 0, 1 and ∂� = σ . There are 24 = 16 nonequiva-
lent excitations in total. Using the field-theoretical approach
developed in Sec. III, we find that the fusion rules in this
case are the same as those of S = SBF with G = Z2 × Z2. In
other words, the fusion rules in this case are also shown in
Table VII.

C. Topological order with particle-loop braiding and two
different three-loop braidings: G = (Z2 )2

The TQFT action S = SBF + SA1A2dA2 + SA2A1dA1 describes
the topological order with particle-loop braiding and two dif-
ferent but compatible three-loop braidings:

S =
∫ 2∑

i=1

Ni

2π
BidAi

+ p1N1N2

(2π )2N12
A1A2dA2 + p2N1N2

(2π )2N12
A2A1dA1 (73)

with N1 = N2 = 2, N12 ≡ gcd(N1, N2) = 2, and p1 p2 ∈ ZN12 .
We can view this action as the stacking of S = SBF + SA1A2dA2

and S = SBF + SA2A1dA1 . The gauge transformations are

Ai →Ai + dχ i, (74)

B1 →B1 + dV 1 + p1N2

2πN12
dχ2A2 − p2N2

2πN12
dχ2A1, (75)
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B2 →B2 + dV 2 − p1N1

2πN12
dχ1A2 + p2N1

2πN12
dχ1A1. (76)

The particle and loop (including pure loop and decorated loop)
excitations are represented by the following operators:

Pi j = exp

(
ii

∫
γ

A1 + i j
∫

γ

A2

)
, (77)

Li j
10 = exp

[
i

(∫
σ

B1+ p1N2

2πN12

∫
�

A2dA2− p2N2

2πN12

∫
�

A2dA1

)

+ ii
∫

γ

A1 + i j
∫

γ

A2

]
, (78)

Li j
01 = exp

[
i

(∫
σ

B2− p1N1

2πN12

∫
�

A1dA2+ p2N1

2πN12

∫
�

A1dA1

)
+ ii

∫
γ

A1 + i j
∫

γ

A2

]
, (79)

Li j
11 = exp

[
i

(∫
σ

B1+ pN2

2πN12

∫
�

A2dA2− p2N2

2πN12

∫
�

A2dA1

)
+ i

(∫
σ

B2 − pN1

2πN12

∫
�

A1dA2 + p2N1

2πN12

∫
�

A1dA1

)
+ ii

∫
γ

A1 + i j
∫

γ

A2

]
, (80)

where i, j = 0, 1 and ∂� = σ . The number of all nonequiva-
lent excitations is 16. Again, we find fusion rules in this case
same as those of S = SBF with G = Z2 × Z2, i.e., shown in
Table VII. Combining the discussion in Secs. IV A, IV B, and
IV C, we can conclude that when G = Z2 × Z2 the fusion
rules of excitations are same no matter the TQFT action con-
tains twisted terms or not. In other words, with G = Z2 × Z2,
the fusion rules of different topologically ordered systems
which support different but mutually compatible braidings are
the same.

D. Topological order with particle-loop braiding and three-loop
braiding: G = (Z2 )3

When G = ∏3
i=1 ZNi , the TQFT action for topological or-

der with particle-loop braiding and three-loop braiding can be

S = SBF + SA1A2dA3

=
∫ 3∑

i=1

Ni

2π
BidAi + pN1N2

(2π )2N12
A1A2dA3 (81)

with N1 = N2 = N3 = 2, N12 = 2, and p ∈ ZN12 , i.e., p ∈ Z2.
We set p = 1 so that the action is nontrivial:

S =
∫ 3∑

i=1

Ni

2π
BidAi + 2

(2π )2 A1A2dA3. (82)

The gauge transformations are

Ai →Ai + dχ i, (83)

B1 →B1 + dV 1 + pN2

2πN12
dχ2A3, (84)

B2 →B2 + dV 2 − pN1

2πN12
dχ1A3, (85)

B3 →B3 + dV 3. (86)

In this case, the particle excitations are represented by

Pi jk = exp

(
ii

∫
γ

A1 + i j
∫

γ

A2 + ik
∫

γ

A3

)
(87)

with i, j, k = 0, 1. The loop (pure loop and decorated
loop) excitations are represented by the following Wilson
operators:

Li jk
100 = exp

(
i
∫

σ

B1 + i
pN2

2πN12

∫
�

A2dA3

+ii
∫

γ

A1 + i j
∫

γ

A2 + ik
∫

γ

A3

)
, (88)

Li jk
010 = exp

(
i
∫

σ

B1 + i
pN2

2πN12

∫
�

A2dA3

+ii
∫

γ

A1 + i j
∫

γ

A2 + ik
∫

γ

A3

)
, (89)

Li jk
001 = exp

(
i
∫

σ

B3 + ii
∫

γ

A1 + i j
∫

γ

A2 + ik
∫

γ

A3

)
, (90)

where i, j, k = 0, 1 and ∂� = σ . Similarly, we find that the
fusion rules are all Abelian. All topological excitations to-
gether with their fusion rules form a (Z2)6 group. In addition,
S = SBF + SAAdA with arbitrary AAdA twisted term produces
identical fusion rules as S = SBF when G = (Z2)

3
. This is also

true when G = Z2 × Z2 (see Secs. IV A, IV B, and IV C).
These results lead to the general conclusion: once given the
gauge group G = ∏

i ZNi , for different topologically ordered
systems which support particle-loop braidings and/or three-
loop braidings only, the fusion rules are the same: they are
Abelian and form a (

∏
i ZNi )

2 group.

E. Topological order with particle-loop braiding, three-loop
braiding, and BR braiding: G = (Z2 )3

The Borromean rings braiding described by SA1A2B3 is com-
patible with the three-loop braiding described by SA1A2dA2 [46].
The TQFT action is given by

S =
∫ 3∑

i=1

Ni

2π
BidAi

+ p1N1N2

(2π )2N12
A1A2dA2 + p2N1N2N3

(2π )2N123
A1A2B3 (91)

with p1 ∈ ZN12 and p2 ∈ ZN123 . We set p1 = p2 = 1. The
gauge transformations are

A1 →A1 + dχ1, (92)

A2 →A2 + dχ2, (93)

A3 →A3 + dχ3 − p2N1N2

2πN123

(
χ1A2 + 1

2
χ1dχ2

)

+ p2N1N2

2πN123

(
χ2A1 + 1

2
χ2dχ1

)
, (94)
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TABLE VIII. Operators for nonequivalent loop excitations in S = SBF + SA1A2dA2 + SA1A2B3 with G = (Z2)3 (see Sec. IV E). Among them,
there are 1 trivial loop, 4 nontrivial pure loops, and 10 decorated loops. The “0 or ZNi ” charge decoration means that the operator of pure loop
(no particle attached to it) is equivalent to that of the loop decorated with a particle carrying ZNi gauge charge. The equivalent operators are
explained in Sec. II B.

Fluxes Charge decoration Operators for loop excitations Equivalent operators

0 0 L000 = 1 = exp(i0) = 1 –

ZN1 0 or ZN2

L100 = 2 exp[i
∫

σ
B1 + 1

2
2πq
N1

(d−1A2B3 + d−1B3A2) + i
∫

�

p1N2
2πN12

A2dA2]
×δ(

∫
γ

A2)δ(
∫

σ
B3)

L100 = L0c20
10n3

; c2, n3 = 0, 1

ZN1 ZN1

L100
100 = 2 exp[i

∫
γ

A1 + i
∫

σ
B1 + 1

2
2πq
N1

(d−1A2B3 + d−1B3A2) + i
∫

�

p1N2
2πN12

A2dA2]
×δ(

∫
γ

A2)δ(
∫

σ
B3)

L100
100 = L1c20

10n3
; c2, n3 = 0, 1

ZN1 ZN3

L001
100 = 4 exp[i

∫
σ

B1 + 1
2

2πq
N1

(d−1A2B3 + d−1B3A2) + i
∫

�

p1N2
2πN12

A2dA2

+i
∫

γ
A3 + 1

2
2πq
N3

(d−1A1A2 − d−1A2A1)]
×δ(

∫
γ

A2)δ(
∫

σ
B3)δ(

∫
γ

A1)
L001

100 = Lc1c21
10n3

; c1, c2, n3 = 0, 1

ZN2 0 or ZN1

L010 = 2 exp[i
∫

σ
B2 − 1

2
2πq
N2

(d−1B3A1 + d−1A1B3) − pN1
2πN12

∫
�

A1dA2]
×δ(

∫
σ

B3)δ(
∫

γ
A1)

L010 = Lc100
01n3

; c1, n3 = 0, 1

ZN2 ZN2

L010
010 = 2 exp[i

∫
γ

A2 + i
∫

σ
B2 − 1

2
2πq
N2

(d−1B3A1 + d−1A1B3) − i
∫

�

pN1
2πN12

A1dA2]
×δ(

∫
σ

B3)δ(
∫

γ
A1)

L010
010 = Lc110

01n3
; c1, n3 = 0, 1

ZN2 ZN3

L001
010 = 4 exp[i

∫
σ

B2 − 1
2

2πq
N2

(d−1B3A1 + d−1A1B3) − i
∫

�

pN1
2πN12

A1dA2

+i
∫

γ
A3 + 1

2
2πq
N3

(d−1A1A2 − d−1A2A1)]
×δ(

∫
σ

B3)δ(
∫

γ
A1)δ(

∫
γ

A2)
L001

010 = Lc1c21
01n3

; c1, c2, n3 = 0, 1

ZN3 0 L001 = exp(i
∫

σ
B3) –

ZN3 ZN1 L100
001 = exp(i

∫
γ

A1 + i
∫

σ
B3) –

ZN3 ZN2 L010
001 = exp(i

∫
γ

A2 + i
∫

σ
B3) –

ZN3 ZN1 ,ZN2 L110
001 = exp(i

∫
γ

A1 + i
∫

γ
A2 + i

∫
σ

B3) –

ZN3 ZN3

L001
001 = 2 exp[i

∫
σ

B3 + i
∫

γ
A3 + 1

2
2πq
N3

(d−1A1A2 − d−1A2A1)]
×δ(

∫
γ

A1)δ(
∫

γ
A2)

L001
001 = Lc1c21

001 ; c1, c2 = 0, 1

ZN1 ,ZN2 0 or (ZN1 ,ZN2 )

L110 = 2 exp[i
∫

σ
B1 + 1

2
2πq
N1

(d−1A2B3 + d−1B3A2) + i
∫

�

p1N2
2πN12

A2dA2

+i
∫

σ
B2 − 1

2
2πq
N2

(d−1B3A1 + d−1A1B3) − i
∫

�

pN1
2πN12

A1dA2]
×δ(

∫
γ

A2 − A1)δ(
∫

σ
B3)

L110 = L110
110 = L111 = L110

111

ZN1 ,ZN2 ZN1 or ZN2

L100
110 = 2 exp[i

∫
γ

A1 + i
∫

σ
B1 + 1

2
2πq
N1

(d−1A2B3 + d−1B3A2) + p1N2
2πN12

∫
�

A2dA2

+i
∫

σ
B2 − 1

2
2πq
N2

(d−1B3A1 + d−1A1B3)]
×δ(

∫
γ

A2 − A1)δ(
∫

σ
B3)

L100
110 = L010

110 = L100
111 = L010

111

ZN1 ,ZN2 ZN3

L001
110 = 4 exp[i

∫
σ

B1 + 1
2

2πq
N1

(d−1A2B3 + d−1B3A2) + i
∫

�

p1N2
2πN12

A2dA2

+i
∫

σ
B2 − 1

2
2πq
N2

(d−1B3A1 + d−1A1B3) − i
∫

�

pN1
2πN12

A1dA2

+i
∫

γ
A3 + 1

2
2πq
N3

(d−1A1A2 − d−1A2A1)]
×δ(

∫
γ

A1)δ(
∫

γ
A2)δ(

∫
σ

B3)

L001
110 = Lc1c21

11n3
; c1, c2, n3 = 0, 1

B1 → B1 + dV 1 + p1N2

2πN12
dχ2A2

− p2N2N3

2πN123
(χ2B3 − A2V 3 + χ2dV 3), (95)

B2 →B2 + dV 2 − p2N1

2πN12
dχ1A2

+ p2N1N3

2πN123
(χ1B3 − A1V 3 + χ1dV 3), (96)

B3 →B3 + dV 3. (97)

The loop and particle excitations are represented by opera-
tors shown in Tables VIII and IX. We find these operators
have a similar expression of those for S = SBF + SA1A2B3 , i.e.,
Eq. (1). In Sec. III we have seen that non-Abelian fusion can
be traced back to the Kronecker delta function in operators.
By performing similar calculation, we find that the operators

listed in Tables IX and VIII obey the same fusion rules of
S = SBF + SA1A2B3 , i.e., those shown in Table IV. This result is
different from those of S = SBF and S = SBF + SAAdA afore-
mentioned. As pointed out in Ref. [46], BR braiding is not
always compatible with multiloop braidings. If a BR braid-
ing is introduced compatibly to a system that only supports
particle-loop braiding and/or multiloop braiding only, the for-
merly Abelian fusion rules would be dramatically changed to
be non-Abelian.

V. DISCUSSION AND OUTLOOK

In this work, we perform field-theoretical analysis on
Wilson operators (i.e., the excitation contents), fusion rules,
and loop-shrinking rules in three-dimensional topological or-
ders. Let us briefly review this paper. First, gauge-invariant
Wilson operators are written for nonequivalent topological
excitations. The number of particle excitations and pure loop
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TABLE IX. Operators for nonequivalent particle excitations in S = SBF + SA1A2dA2 + SA1A2B3 with G = (Z2)3 (see Sec. IV E). The operators
for particle excitations share the same expression as those of S = SBF + SA1A2B3 (listed in Table I). The equivalent operators are explained in
Sec. II B.

Charges Operator for particle excitations Equivalent operators

0 P000 = 1 = exp(i0) = 1 –
ZN1 P100 = exp(i

∫
γ

A1) –
ZN2 P010 = exp(i

∫
γ

A2) –
ZN3 P001 = 2 exp[i

∫
γ

A3 + 1
2

2πq
N3

(d−1A1A2 − d−1A2A1)]δ(
∫

γ
A1)δ(

∫
γ

A2) P001 = P101 = P011 = P111

ZN1 ,ZN2 P110 = exp(i
∫

γ
A1 + i

∫
γ

A2) –

excitations agrees with that calculated from a lattice cocycle
model. Next, fusion rules are represented in terms of path
integral of TQFT and we find out all fusion rules as well
as quantum dimensions. Some of the fusion rules are non-
Abelian though the input gauge group for this topological
order is Abelian. Aside from the fusion rules, we also study
the shrinking rules of loop excitations, which is a very inter-
esting topological property of spatially nonlocal topological
excitations. We propose a field-theoretical framework to per-
form the shrinking operation in terms of operators and path
integral, i.e, shrinking the loop’s world sheet to a world line.
The loop-shrinking rules obtained are consistent with fusion
rules, i.e., they respect fusion rules and conserve the quantum
dimensions through the shrinking process. The consistency
between fusion rules and loop-ins shrinking rules is critical
in establishing an anomaly-free topological order in 3D. Mo-
tivated by this work, we expect to explore the following topics
in the near future.

(i) We expect more field-theoretical calculations may give
a hint on the consistency among braiding data, fusion rules,
and shrinking rules in general 3D topological orders. Once
inconsistency happens, the corresponding topological orders
might be potentially anomalous and only realizable on the
boundary of some 4D topological phases of matter.

(ii) It will be interesting to attempt to understand the al-
gebraic structure behind the fusion rules of Borromean rings
topological order and all topological orders with compati-
ble braidings discussed in this paper. Considering that the
BR topological order is beyond the usual DW gauge theory
[58–62] classification with the same gauge group, it may
be described by the DW theory with a non-Abelian gauge
group or the generalized Drinfel’d center (a braided monoidal
2-category) of a 2-group (a special kind of fusion 2-category).
In addition, our theory finds that fusing a loop and its antiloop
may generate a fusion channel with two vacua. This is very
unusual since in 2D topological orders, fusing a particle and
its antiparticle must only have one vacuum. We conjecture this
phenomenon may be related to the incorporation of “2-group”
structure in our field theory, which is absent in field theory
of 2D topological order. In summary, the goal of this paper
is to construct a field-theoretical study, more precisely, the
path-integral calculation on topological invariants; the corre-
sponding algebraic description is also important, which will
be one of future directions.

(iii) It will be important to generalize the classification
of Abelian symmetry fractionalization in Ref. [27] to BR
topological order as well as all other topological orders
with compatible braidings, which leads to a more com-
plete field-theoretical understanding on symmetry-enriched

topological phases in 3D [24,26,27] and thus generalize Ta-
ble I of Ref. [27] to non-Abelian fractionalization.

(iv) Just like the study of non-Abelian anyons in 2D topo-
logical systems, braiding, fusion, and shrinking are topologi-
cal invariants are vital in theory of TQC of higher-dimensional
stabilizer codes. So, we expect that our field-theoretical study
will be helpful along this line of efforts, especially on the roles
of looplike excitations (errors/defects).

(v) It will be important to realize such 3D topological order
from realistic Hamiltonians such as arrays of quantum wires
[63–66].
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APPENDIX A: DERIVATION OF NORMALIZATION
FACTORS OF OPERATORS

The normalization factors of operators are derived by the
following principles. First, if a particle or a pure loop fuses
with its antiparticle/antiloop, there should be a single vacuum
after fusion. Second, the fusion result of excitations should be
positive integral combinations of excitations. For simplicity,
in the following calculation we neglect the notation of expec-
tation value but we should keep in mind that the following
formulas are in fact discussed in the context of path integrals.

For example, consider a particle with ZN1 gauge charge, its
operator is

P100 = N 100
000 exp

(
i
∫

γ

A1

)
(A1)

with N 100
000 the normalization factor to be determined. Since

ZN1 = Z2, it is expected that

P100 ⊗ P100 = 1 ⊕ · · · . (A2)

By comparing the coefficient, we obtain that N 100
000 = 1, i.e.,

P100 = exp

(
i
∫

γ

A1

)
. (A3)
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Next, consider a pure loop with ZN1 flux, the operator is

L100 = N 000
100 exp

[
i
∫

σ

B1 + 1

2

2πq

N1
(d−1A2B3 + d−1B3A2)

]
δ

(∫
γ

A2

)
δ

(∫
σ

B3

)
. (A4)

Similarly, for ZNi = Z2 (i = 1, 2, 3), we expect

L100 ⊗ L100 = 1 ⊕ · · · . (A5)

We calculate this fusion:

L100 × L100 = N 000
100 exp

[
i
∫

σ

B1 + 1

2

2πq

N1
(d−1A2B3 + d−1B3A2)

]
δ

(∫
γ

A2

)
δ

(∫
σ

B3

)
× N 000

100 exp

[
i
∫

σ

B1 + 1

2

2πq

N1
(d−1A2B3 + d−1B3A2)

]
δ

(∫
γ

A2

)
δ

(∫
σ

B3

)

= (
N 000

100

)2 × exp

[
i2

∫
σ

B1 + 1

2

2πq

N1
(d−1A2B3 + d−1B3A2)

][
δ

(∫
γ

A2

)]2[
δ

(∫
σ

B3

)]2

= (
N 000

100

)2 × 1 × δ

(∫
γ

A2

)
δ

(∫
σ

B3

)
= (

N 000
100

)2 × 1

2

[
1 + exp(i

∫
γ

A2)

]
× 1

2

[
1 + exp

(
i
∫

σ

B3

)]
= (

N 000
100

)2 × 1

4

(
1 + P010 + L001 + L010

001

)
, (A6)

where we have used 〈
exp

[
i2

∫
σ

B1 + 1

2

2πq

N1

(
d−1A2B3 + d−1B3A2

)]〉
= (±1)2 = 1. (A7)

The first principle mentioned above requires that (
N 000

100

)2 × 1
4 = 1. (A8)

Therefore, we have

N 000
100 = 2. (A9)

Following similar consideration, we can the fix normalization
factor for operators of all particle and pure loop excitations.
For operators of decorated loops, their factors are obtained
from the fusion of corresponding pure loops and particles.

APPENDIX B: LATTICE COCYCLE MODEL AND
EMERGENT 2-GROUP GAUGE THEORY

In this Appendix, we define lattice cocycle models [55]
to realize the TQFT in Eq. (1). By extracting the topological
part of the partition function that is independent of the system
volume, we can calculate the ground-state degeneracies of
different 3D spatial manifolds. In particular, the number of
nonequivalent pointlike and pure looplike topological excita-
tions can be obtained in this lattice model. All the results agree
with the field-theory analysis in previous sections.

1. Topological partition functions

After integrating out the Lagrange multipliers B1, B2, and
A3 in Eq. (1), the remaining fields A1, A2, and B3 take values in
ZNi . It motivates us to define the following lattice model with
both 1-form and 2-form cocycles on arbitrary 4D space-time

manifold triangulation M4:

Zk (M4) =
∑

a1,a2∈Z1(M4,ZN )
b∈Z2(M4,ZN )

e2π i k
N

∫
M4

a1a2b
. (B1)

For simplicity, we assumed Ni = N (i = 1, 2, 3). We have
two kinds of ZN degrees of freedom defined on links and
triangles of M4. The degrees of freedom a1 and a2 are two
1-cochains of M4, which map each link 〈i j〉 ∈ M4 to ai j ∈
ZN . Moreover, a1 and a2 satisfy the cocycle (flat connec-
tion) condition (da)i jk := a jk − aik + ai j = 0 on each triangle
〈i jk〉 ∈ M4. These cocycles form a subgroup of the cochain
group. Similarly, b is a 2-cochain that maps each triangle
〈i jk〉 ∈ M4 to bi jk ∈ ZN . It is also a 2-cocycle satisfying the
cocycle (flat connection) condition (db)i jkl := b jkl − bikl +
bi jl − bi jk = 0 on each tetrahedron 〈i jkl〉 ∈ M4. The sets of
1- and 2-cochains on M4 are denoted as C1(M4,ZN ) and
C2(M4,ZN ). And the sets of 1- and 2-cocycles on M4 are de-
noted as Z1(M4,ZN ) and Z2(M4,ZN ). The integral

∫
M4

a1a2b
is the analogous notation of discrete summation on triangula-
tion M4:

∫
M4

a1a2b =
∑

〈i jklm〉∈M4

(a1)i j (a2) jkbklm. (B2)
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The summation on the right-hand side is the cup product of
a1, a2, and b, which is the discrete version of wedge product
of differential forms.

The cocycle model Eq. (B1) is a local boson model. Af-
ter appropriate normalization, the topological part of it will
be equivalent to a 2-group gauge theory. To begin with, let
us consider first k = 0. In this case, the action amplitude is
always one, and Eq. (B1) becomes

Z0(M4) = |Z1|2|Z2| = |H1||H2|
|H0| |C0||C1|. (B3)

In the last step we used |Zi| = |Hi||Ci−1|/|Zi−1| to re-
late the order of cocycle group Zi(M4,ZN ), the cochain
group Ci(M4,ZN ), and the cohomology group Hi(M4,ZN ) =
Zi(M4,ZN )/Bi(M4,ZN ), where Bi(M4,ZN ) := {dai−1|a ∈
Ci−1(M4,ZN )}. From the k = 0 partition function, we see that
the terms |C0| and |C1| are the numbers of vertices and links
of the system, which are volume dependent. And the topolog-
ical part of the partition function is simply |H1||H2|/|H0| =
(|H1|2|H2|)/(|H0||H1|). Therefore, we normalize and de-
fine the topological partition function of the cocycle model
Eq. (B1) to be

Z top
k (M4) = 1

|H0||H1|
∑

a1,a2∈H1(M4,ZN )
b∈H2(M4,ZN )

e2π i k
N

∫
M4

a1a2b
, (B4)

where the summation is over cohomology classes
Hi(M4,ZN ), rather than cocycles Zi(M4,ZN ). In this
sense, the topological cocycle model is a 2-group lattice
gauge theory because the gauge-equivalent configurations
(coboundaries) are mod out as nonphysical states. The three
cocycle fields a1, a2, and b correspond to 1-form and 2-form
gauge fields in the continuum.

We believe that the above topological cocycle model is
equivalent to the TQFT defined in Eq. (1) in the continuum
limit. In particular, they should share the same universal
properties such as ground-state degeneracies, number of
nonequivalent excitations, and their fusion rules and braid-
ings, etc.

2. Number of topological excitations

We can extract physical properties of the topological co-
cycle model (B4) by calculating the partition function on
different space-time 4-manifolds. If we choose the 4-manifold
to be M4 = S1 × M3, where S1 is the time circle, the partition
function is a trace of identity operator in the ground-state
subspace. Therefore, it equals to the ground state degeneracy
on the space 3-manifold M3:

GSDk (M3) = Z top
k (S1 × M3). (B5)

The ground-state degeneracy is ultimately related to the topo-
logical excitations in the system, as we can wrap around the
nontrivial cycles of M3 by creation operator of pointlike or
looplike excitations to transform one ground state to another.

In particular, we can choose M3 to be the three-dimensional
sphere S3. Since both the first and second homotopy groups

of S3 are trivial, there is no nontrivial string or membrane
operator wrapping around S3. Therefore, the ground-state de-
generacy should always be one. In fact, one can also show
directly that

GSDk (S3) = Z top
k (S1 × S3) = 1

|H0||H1| |H
1|2|H2|= N2

N2
=1,

(B6)
where we used H0(S1 × S3,ZN ) = H1(S1 × S3,ZN ) = ZN

and H2(S1 × S3,ZN ) = 0.
If the space manifold is M3 = S1 × S2, we can use a string

operator to create a pair of pointlike excitations, transport one
of them around the S1, and finally annihilate them. On the
other hand, we can use a membrane operator to create a pure
looplike excitation, wrap it around the S2, and finally shrink it
to vacuum. The ground states created in the above two proce-
dures are not independent because the pointlike and looplike
excitations have nontrivial mutual statistics. In summary, the
ground-state degeneracy on space manifold M3 = S1 × S2

equals to the number of pointlike excitations, and the number
of pure looplike excitations [55].

Now let us calculate GSDk (S1 × S2) for the topological
cocycle model (B1). The path integral involves the following
cohomology groups of M4 = S1 × M3 = T 2 × S2:

H0(T 2 × S2,ZN ) = ZN , (B7)

H1(T 2 × S2,ZN ) = H1(T 2,ZN ) = H1(S1,ZN )

× H1(S1,ZN ) = ZN × ZN = 〈α1, α2〉,
(B8)

H2(T 2 × S2,ZN ) = H2(T 2,ZN ) × H2(S2,ZN )

= ZN × ZN = 〈α1α2, β〉, (B9)

where α1, α2 ∈ H1(M4,ZN ) = (ZN )2 are two 1-cocycle gen-
erators associated with the temporal S1 and the spatial S1 in
M4. There cup product α1α2 is one of the 2-cocycle generators
for H2(M4,ZN ) = (ZN )2. Another 2-cocycle generator β is
associated with the spatial S2 in M4. The cup product of αi

itself is trivial: (αi )2 = 0 for i = 1, 2. The pairing between the
fundamental class of M4 and the 4-cocycle α1α2β gives us the
integral ∫

M4

α1α2β = 1. (B10)

Using these results, we can decompose the cocycles a1, a2,
and b in terms of the cohomology generators as

a1 = μ11α1 + μ12α2, (B11)

a2 = μ21α1 + μ22α2, (B12)

b = μ31α1α2 + μ32β, (B13)

where μi j ∈ ZN are the coefficients. And the action integral
becomes

∫
M4

a1a1b = (μ11μ22 − μ12μ21)μ32
∫

M4
α1α2β =

(μ11μ22 − μ12μ21)μ32 since (αi)2 = 0. Therefore, the path
integral in the partition function Z top

k (M4) is now a finite
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summation over μi j :

GSDk (S1 × S2) = Z top
k (T 2 × S2)

= 1

|H0||H1|
∑

a1,a2∈H1(M4,ZN )
b∈H2(M4,ZN )

e2π i k
N

∫
M4

a1a2b

= 1

N3

∑
{μi j}

e2π i k
N (μ11μ22−μ12μ21 )μ32

=
∑

μ32∈ZN

gcd(kμ32, N )2

= gcd(k, N )3g

(
N

gcd(k, N )

)
, (B14)

where the gcd-square-sum function is defined as g(n) =∑n−1
μ=0 gcd(μ, n)2. For the theory of N = 2 and k = 1, we have

GSD(S1 × S2) = g(2) = 22 + 12 = 5. This is the number of
nonequivalent particles and pure loop excitations. The results
agree with the field-theory calculations in the main text.

Similarly, if the spatial manifold is 3-torus T 3, the GSD
can be calculated as

GSDk (T 3) = Z top
k (S1 × T 3)

= 1

|H0||H1|
∑

a1,a2∈H1(M4,ZN )
b∈H2(M4,ZN )

e2π i k
N

∫
M4

a1a2b

= 1

N5

∑
{μi,ν j ,λkl }

e2π i k
N

∑
1�i, j�4

∑
1�k<l�4 sgn(i jkl )μiν jλkl .

(B15)

The summation in the exponent is over all μi, μ j, λkl ∈ ZN

for 1 � i, j � 4 and 1 � k < l � 4. For N = 2, the above for-
mula gives us GSD0(T 3) = N9 = 512 and GSD1(T 3) = 92.

APPENDIX C: DETAILED CALCULATION FOR
EXAMPLES OF FUSION RULES IN THE MAIN TEXT

In this Appendix, we derive the several fusion rules men-
tioned in Sec. III A in details.

1. ZN1 particle and ZN2 particle

The first example is the fusion of a ZN1 particle and a ZN2

particle. We can write

〈P100 ⊗ P010〉 = 1

Z

∫
D[Ai]D[Bi] exp (iS) exp

(
i
∫

γ

A1

)
× exp

(
i
∫

γ

A2

)
= 1

Z

∫
D[Ai]D[Bi] exp (iS) exp

(
i
∫

γ

A1+A2

)
= 1

Z

∫
D[Ai]D[Bi] exp (iS)P110

=〈P110〉 (C1)

and find that

P100 ⊗ P010 = P110. (C2)

This result indicates that by fusing two particles carrying
ZN1 and ZN2 gauge charges, respectively, we obtain a single
particle that carries both ZN1 and ZN2 gauge charges.

2. Two ZN1 particles

The second example is the fusion of two ZN1 particles:

〈P100 ⊗ P100〉 = 1

Z

∫
D[Ai]D[Bi] exp (iS) exp

(
i
∫

γ

A1

)
× exp

(
i
∫

γ

A1

)
= 1

Z

∫
D[Ai]D[Bi] exp (iS) exp

(
i2

∫
γ

A1

)
.

(C3)

Integrating out B1, B2, and A3, we obtain flat connection
conditions for A1, A2, and B3, respectively:

N1

2π
dAi = 0 ⇒

∮
A1 = 2πm1

N1
, (C4)

N2

2π
dA2 = 0 ⇒

∮
A2 = 2πm2

N2
, (C5)

N3

2π
dB3 = 0 ⇒

∮
B3 = 2πm3

N3
, (C6)

with m1,2,3 ∈ Z. Now 〈P100 ⊗ P100〉 becomes

〈P100 ⊗ P100〉 = 1

exp
(
i
∫ pN1N2N3

(2π )2N123
Ã1Ã2B̃3

)
× exp

(
i
∫

pN1N2N3

(2π )2N123
Ã1Ã2B̃3

)
× exp

(
i2

∫
γ

Ã1

)
= exp

(
i2

∫
γ

Ã1

)
= exp

(
i2 · 2πm1

N1

)
, (C7)

where Ã1, Ã2, and B̃3 are gauge field configurations satisfying
the above flat connection conditions. Since in this case the
gauge group is G = ∏3

i=1 ZNi = (Z2)3, we have

〈P100 ⊗ P100〉 = exp

(
i2 · 2πm

2

)
= 1

= 1

Z

∫
D[Ai]D[Bi] exp (iS) × 1 = 〈1〉,

(C8)

i.e.,

P100 ⊗ P100 = 1. (C9)

This result tells us that P100 is the antiparticle of itself which
is expected since P100 carries one unit of ZN1 = Z2 gauge
charge.
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3. Two ZN1 loops

In this third example, we give a more complicated example of fusion of two ZN1 loops:

〈L100 ⊗ L100〉 = 1

Z

∫
D[Ai]D[Bi] exp(iS)2 exp

[
i
∫

σ

B1 + 1

2

2πq

N1
(d−1A2B3 + d−1B3A2)

]
δ

(∫
γ

A2

)
δ

(∫
σ

B3

)
× 2 exp

[
i
∫

σ

B1 + 1

2

2πq

N1
(d−1A2B3 + d−1B3A2)

]
δ

(∫
γ

A2

)
δ

(∫
σ

B3

)
. (C10)

By integrating out B1, B2, and A3, we can write

〈L100 ⊗ L100〉 = 1

exp
(
i
∫ pN1N2N3

(2π )2N123
Ã1Ã2B̃3

) exp

(
i
∫

pN1N2N3

(2π )2N123
Ã1Ã2B̃3

)
4 exp

[
i2

∫
σ

1

2

2π

N1

pN1N2N3

(2π )2N123
(d−1Ã2B̃3 + d−1B̃3Ã2)

]

× δ

(∫
γ

Ã2

)
δ

(∫
σ

B̃3

)
δ

(∫
γ

Ã2

)
δ

(∫
σ

B̃3

)
. (C11)

We first calculate
∫
σ

d−1Ã2B̃3 and
∫
σ

d−1B̃3Ã2. We notice that σ can be written as σ = γ × S1. By definition, d−1Ã2 =∫
[a,b]∈γ

Ã2 which is a 0-form with [a, b] being a segment on γ . Since
∫
γ

Ã2 = 2πm2
N2

,
∫

[a,b]∈γ
Ã2 = 2πk2

N2
with k2 is an integer and

there exists k′
2 such that k2 + k′

2 = m2. We conclude that
∫
σ

d−1Ã2B̃3 = d−1Ã2
∫
σ

B3 = 2πk2
N2

2πm3
N3

. On the other hand, d−1B̃3 =∫
A∈σ

B̃3 as a 1-form, where A is an open area on σ . Similarly, we have
∫
σ

d−1B̃3Ã2 = ∫
S1 d−1B̃3

∫
γ

Ã2 = 2πk3
N3

2πm2
N2

with k3 ∈ Z
and there exists k′

3 such that k3 + k′
3 = m3.

For the Kronecker delta functions, we have

δ

(∫
γ

Ã2

)
= δ

(
2πm2

N2

)
= 1

N2

[
1 + exp

(
i
2πm2 · 1

N2

)
+ exp

(
i
2πm2 · 2

N2

)
+ · · · + exp

(
i
2πm2 · (N2 − 1)

N2

)]
, (C12)

δ

(∫
γ

B̃3

)
= δ

(
2πm3

N3

)
= 1

N3

[
1 + exp

(
i
2πm3 · 1

N3

)
+ exp

(
i
2πm3 · 2

N3

)
+ · · · + exp

(
i
2πm3 · (N2 − 1)

N3

)]
. (C13)

Remind that N2 = N3 = 2, so

δ

(∫
γ

Ã2

)
= δ

(
2πm2

N2

)
= 1

2

[
1 + exp

(
i
2πm2

2

)]
=

{
1, m2 = 0 mod 2
0, m2 = 1 mod 2 (C14)

δ

(∫
γ

Ã3

)
= δ

(
2πm3

N3

)
= 1

2

[
1 + exp

(
i
2πm3

2

)]
=

{
1, m3 = 0 mod 2
0, m3 = 1 mod 2.

(C15)

It is easy to verify that δ(
∫
γ

Ã2)δ(
∫
σ

B̃3)δ(
∫
γ

Ã2)δ(
∫
σ

B̃3) = δ(
∫
γ

Ã2)δ(
∫
σ

B̃3).
With the above results, we have

〈L100 ⊗ L100〉 = 4 exp

[
i2

1

2

2π

N1

pN1N2N3

(2π )2N123

(
2πk2

N2

2πm3

N3
+ 2πk3

N3

2πm2

N2

)]
1

2

[
1 + exp

(
i
2πm2

2

)]
× 1

2

[
1 + exp

(
i
2πm3

2

)]
= 1 + exp

(
i
2πm2

2

)
+ exp

(
i
2πm3

2

)
+ exp

(
i
2πm2

2
+ i

2πm3

2

)
. (C16)

We can immediately find that

〈L100 ⊗ L100〉 = 1

Z

∫
D[Ai]D[Bi] exp (iS)

[
1 + exp

(
i
∫

γ

A2

)
+ exp

(
i
∫

σ

B3

)
+ exp

(
i
∫

γ

A2 + i
∫

σ

B3

)]
= 〈

1 ⊕ P010 ⊕ L001 ⊕ L010
001

〉
. (C17)

Therefore, we can conclude that

L100 ⊗ L100 = 1 ⊕ P010 ⊕ L001 ⊕ L010
001. (C18)

This is a non-Abelian fusion rule which tells us that if we fuse two ZN1 loops we would obtain the superposition of a vacuum, a
ZN2 particle, a ZN3 loop, and a ZN3 loop decorated by a ZN2 particle.
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4. ZN1 loop and ZN2 loop

In the fourth example, we continue to consider L100 ⊗ L010:

〈L100 ⊗ L010〉 = 1

Z

∫
D[Ai]D[Bi] exp (iS)2 exp

[
i
∫

σ

B1 + 1

2

2πq

N1
(d−1A2B3 + d−1B3A2)

]
δ

(∫
γ

A2

)
δ

(∫
σ

B3

)
× 2 exp

[
i
∫

σ

B2 − 1

2

2πq

N2
(d−1B3A1 + d−1A1B3)

]
δ

(∫
σ

B3

)
δ

(∫
γ

A1

)
. (C19)

After integrating out B1, B2, and A3 and plugging these constraints of discretized gauge fields back to the path integral and
recalling N1 = N2 = N3 = 2, we get

〈L100 ⊗ L010〉 =
〈
exp

[
i
∫

σ

B1 + B2 + 1

2

2πq

N1
(d−1A2B3 + d−1B3A2) − 1

2

2πq

N2
(d−1B3A1 + d−1A1B3)

]〉
× 4

8
×

[
1 + exp

(
i
2πm1

N1

)
+ exp

(
i
2πm2

N2

)
+ exp

(
i
2πm1

N1
+ i

2πm2

N2

)]
×

[
1 + exp

(
i
2πm3

N3

)]
= 〈

L110 ⊕ L100
110

〉
. (C20)

To see this, we can write

〈
L110 ⊕ L100

110

〉 = 1

Z

∫
D[Ai]D[Bi] exp (iS)

×
{

2 exp

[
i
∫

σ

B1 + B2 + 1

2

2πq

N1
(d−1A2B3 + d−1B3A2) − 1

2

2πq

N2
(d−1B3A1 + d−1A1B3)

]
+2 exp

[
i
∫

γ

A1 + i
∫

σ

B1 + B2 + 1

2

2πq

N1
(d−1A2B3 + d−1B3A2) − 1

2

2πq

N2
(d−1B3A1 + d−1A1B3)

]}
× δ

(∫
γ

A2 − A1

)
δ

(∫
σ

B3

)
= 1

Z

∫
D[Ai]D[Bi] exp (iS)4 exp

[
i
∫

σ

B1 + B2+ 1

2

2πq

N1
(d−1A2B3+d−1B3A2)− 1

2

2πq

N2
(d−1B3A1 + d−1A1B3)

]
× 1

2

[
1 + exp

(
i
∫

γ

A1

)]
× δ

(∫
γ

A2 − A1

)
δ

(∫
σ

B3

)
= 1

Z

∫
D[Ai]D[Bi] exp (iS)4 exp

[
i
∫

σ

B1 + B2 + 1

2

2πq

N1
(d−1A2B3 + d−1B3A2)

− 1

2

2πq

N2
(d−1B3A1 + d−1A1B3)

]
δ

(∫
γ

A1

)
δ

(∫
γ

A2

)
δ

(∫
σ

B3

)
, (C21)

where we have used δ(
∫
γ

A1) = 1
2 [1 + exp(i

∫
γ

A1)] and δ(
∫
γ

A1)δ(
∫
γ

A2 − A1) = δ(
∫
γ

A1)δ(
∫
γ

A2). Compared to (C19), one

finds that 〈L110 ⊕ L100
110〉 just equals to 〈L100 ⊗ L010〉.

Integrate out the Lagrange multipliers and we have

〈
L110 ⊕ L100

110

〉 =
〈
exp

[
i
∫

σ

B1 + B2 + 1

2

2πq

N1
(d−1A2B3 + d−1B3A2) − 1

2

2πq

N2
(d−1B3A1 + d−1A1B3)

]〉
× 4

8
×

[
1 + exp

(
i
2πm1

N1

)
+ exp

(
i
2πm2

N2
− i

2πm1

N1

)
+ exp

(
i
2πm2

N2

)]
×

[
1 + exp

(
i
2πm3

N3

)]
(C22)

which is exactly 〈L100 ⊗ L010〉. Therefore, we can conclude that

L100 ⊗ L010 = L110 ⊕ L100
110. (C23)

This is another non-Abelian fusion rule. The output of fusion of a ZN1 loop and a ZN2 loop is the superposition of a pure
(ZN1 ,ZN2 ) loop, L110, and a (ZN1 ,ZN2 ) loop decorated by a ZN1 particle, L100

110. We should notice the following equivalence
relation as indicated in Table III: L110 = L110

110 and L100
110 = L010

110.
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5. Two ZN1 loops decorated by ZN3 particle

In this example, we consider L001
100 ⊗ L001

100. In path integral, this fusion process is written as〈
L001

100 ⊗ L001
100

〉 = 1

Z

∫
D[Ai]D[Bi] exp (iS)42 × exp

[
i2

∫
σ

B1 + i2
∫

σ

1

2

2πq

N1

(
d−1A2B3 + d−1B3A2

)
+i2

∫
γ

A3 + i2
∫

γ

1

2

2πq

N3
(d−1A1A2 − d−1A2A1)

]
(C24)

× δ

(∫
γ

A2

)
δ

(∫
σ

B3

)
δ

(∫
γ

A1

)
. (C25)

We integrate out the Lagrange multipliers and denote the remaining gauge fields as Ã1, Ã2, and B̃3. Since Ã1, Ã2, and B̃3 are
forced to be Z2 valued, we have

exp

[
i2

∫
σ

1

2

2πq

N1

(
d−1Ã2B̃3 + d−1B̃3Ã2)] = 1, (C26)

exp

[
i2

∫
γ

1

2

2πq

N3

(
d−1Ã1Ã2 − d−1Ã2Ã1

)] = 1. (C27)

Therefore, 〈
L001

100 ⊗ L001
100

〉 = 42 × 1

2

[
1 + exp

(
i
∫

γ

Ã1

)]
× 1

2

[
1 + exp

(
i
∫

γ

Ã2

)]
× 1

2

[
1 + exp

(
i
∫

γ

B̃3

)]
= 2

〈
1 ⊕ P100 ⊕ P010 ⊕ L001 ⊕ P110 ⊕ L100

001 ⊕ L010
001 ⊕ L110

001

〉
(C28)

and we conclude that this fusion rule is

L001
100 ⊗ L001

100 = 2
(
1 ⊕ P100 ⊕ P010 ⊕ L001 ⊕ P110 ⊕ L100

001 ⊕ L010
001 ⊕ L110

001

)
. (C29)

We notice that the fusion of two L001
100’s produces two vacuums. In fact, for L001

010 and L001
110, the fusion of their two copies also leads

to the same output as L001
100 ⊗ L001

100, as shown in Table. IV. In Eq. (C29), the fusion output is two copies of the direct sum of all
Abelian excitations. For simplicity, we denote Ab ≡ 1 ⊕ P100 ⊕ P010 ⊕ L001 ⊕ P110 ⊕ L100

001 ⊕ L010
001 ⊕ L110

001. Loosely speaking,
Ab in the fusion output is be resulted from the three Kronecker delta functions in Eq. (C24). The reason for the two copies of
Ab is that the factor of L001

100 is 4:

4 × 4 × (
1
2

)3 = 2. (C30)

As for the factor in the front of L001
100, it comes from the fact that

L100 ⊗ P001 = L001
100 (C31)

in which

L100 =2 exp

[
i
∫

σ

B1 + 1

2

2πq

N1
(d−1A2B3 + d−1B3A2)

]
δ

(∫
γ

A2

)
δ

(∫
σ

B3

)
(C32)

and

P001 =2 exp

[
i
∫

γ

A3 + 1

2

2πq

N3
(d−1A1A2 − d−1A2A1)

]
δ

(∫
γ

A1

)
δ

(∫
γ

A2

)
. (C33)

One may wonder if we could assume there is only one vacuum after L001
100 ⊗ L001

100 then determined the factor of L001
100. Unfortunately,

such factor would violate the requirement that fusion coefficients are integers. In conclusion, the two-vacuum output of L001
100 ⊗

L001
100 is a result from field-theoretical aspect. Since L001

100 is a decorated loop, one possible explanation is that one vacuum is
resulted from the fusion of particle and its antiparticle while the other comes from the fusion of pure loop and its pure antiloop.
We hope future work could provide a deeper understanding for this result.
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