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Chern insulator phases and spontaneous spin and valley order in a moiré lattice model
for magic-angle twisted bilayer graphene
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At a certain “magic” relative twist angle of two graphene sheets it remains a challenge to obtain a detailed
description of the proliferation of correlated topological electronic phases and their filling dependence. We
perform a self-consistent real-space Hartree-Fock study of an effective moiré lattice model to map out the
preferred ordered phases as a function of Coulomb interaction strength and moiré flat-band filling factor. It is
found that a quantum valley Hall phase, previously discovered at charge neutrality, is present at all integer fillings
for sufficiently large interactions. However, except for charge neutrality, additional spontaneous spin/valley
polarization is present in the ground state at nonzero integer fillings, leading to Chern insulator phases and
anomalous quantum Hall effects at odd filling factors, thus constituting an example of interaction-driven non-
trivial topology. At weaker interactions, all nonzero integer fillings feature metallic inhomogeneous spin/valley
ordered phases which may also break additional point group symmetries of the system. We discuss these findings
in the light of previous theoretical studies on and recent experimental developments related to magic-angle
twisted bilayer graphene.
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I. INTRODUCTION

Magic-angle twisted bilayer graphene (MATBG) provides
a tunable platform for studying the properties of strongly
correlated electrons on moiré superlattices [1–4]. The moiré
lattice is generated by the relative twist, which may, at certain
angles, lead to very narrow low-energy minibands hosting
electrons with large interactions relative to their respective
kinetic energy [5–7]. At the magic angle of θ � 1.1◦ the flat
bands are well separated from the dispersive bands at higher
energies. An incipient Berry curvature of the moiré flat bands
additionally imprints the correlated electronic states with non-
trivial topology. The resulting emergent electronic behavior
includes both unusual normal state properties and the forma-
tion of different electronic phases exhibiting magnetic and
superconducting signatures at low temperatures [3,4]. Thus,
MATBG is interesting in its own right and may also help shed
light on the more general outstanding questions pertaining to
strange-metal behavior and the origin of unconventional su-
perconductivity [1,2]. Therefore, it is important to understand
this system and elucidate the nature of the emergent electronic
phases appearing in MATBG moiré superlattices.

Experimentally, a series of mainly transport and scanning
tunneling spectroscopy (STS) measurements on MATBG has
investigated its phase diagram as a function of temperature
and electronic density, reporting correlated insulating states
at integer filling factors separated by superconducting domes
at the lowest temperatures [1,2,8–15]. At some filling fac-
tors of the moiré flat bands, there is evidence of magnetism
and quantum anomalous Hall response [8,13,16–19]. Other
correlated states under consideration include Chern insula-
tors and nematic phases also at integer moiré band filling
[20–23] and translation symmetry-breaking spin or charge

density wave order at certain half-integer fillings [24]. Local
electronic compressibility and STS measurements recently
revealed a sequence of distinct phase transitions near the
integer fillings of the moiré unit cell, establishing a cascade
of transitions associated with split-off bands of particular spin
or valley character [25–27]. The detailed properties of the
phase diagram appear to depend rather sensitively on the twist
angle, substrate potential, or degree of alignment of one of
the graphene sheets with the hexagonal boron nitride encap-
sulation layers, which breaks an inherent C2 symmetry of the
graphene bilayer itself [8,9,17,18]. The twist-generated corre-
lated phases have also been explored in other graphene-based
systems, including twisted trilayers and twisted double bi-
layer graphene. Such stacked graphene sheets also feature rich
phase diagrams with superconductivity and tunable insulator
states, sensitive to both twist angle and electric displacement
field [28–32].

Theoretically, the existence of insulating states in MATBG
has been addressed with a large variety of techniques and
approximations [33–70]. The search for a detailed quantitative
theoretical description of the origin and interplay of different
flavor-ordered phases and their dependence on, e.g., filling
and twist angle is still ongoing. These efforts are important
not only from the perspective of understanding transport and
tunneling measurements but potentially also for identifying
the “normal state” from which superconductivity emerges at
lower temperatures. From the perspective of Hartree-Fock
(HF) approximated interactions, such an approach can lead
to insulating behavior from induced order, causing a spec-
tral gap, typically arising from one or more spontaneously
broken symmetries of the original Hamiltonian. Applica-
tion of HF theory to handle electronic interactions has been
widely applied to MATBG in order to describe the correlated
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insulator phases [48,54,57,58,60–62,65,67,69]. Such studies
have proposed, depending on the band filling factor, a rather
large variety of spontaneously symmetry broken candidate
phases relevant for MATBG. These include spin and valley
ferromagnetic phases, intervalley coherent insulators, valence
bond solids, nematic semimetals, quantum valley Hall and
quantum spin Hall insulators, incommensurate Kekulé spiral
order, and various other forms of inhomogeneous density
wave order [33–69].

Most theoretical works depart from the Bistritzer-
MacDonald model with extended continuum wave functions
and Coulomb interactions projected into the continuum states,
including a number of the remote bands. A complemen-
tary Wannier description to study the correlated phases of
MATBG was suggested by Kang and Vafek in which the
Coulomb interaction is projected onto the localized Wannier
states of the four spin-degenerate moiré flat bands [38]. Due
to Wannier obstruction, symmetry requirements within this
framework lead to crucial nonlocal assisted-hopping-like in-
teraction terms in real space [38]. A previous work studied
the effect of these assisted-hopping interactions on the ground
state of MATBG at charge neutrality via HF mean-field stud-
ies and quantum Monte Carlo (QMC) simulations [65]. It
was found that the normal state Dirac semimetal phase was
unstable and insulating already at weak coupling, which was a
consequence of an induced quantum valley Hall (QVH) phase
[65]. Upon variation of the relative strength of the assisted-
hopping interactions and overall interaction strength, several
other insulating phases were found to emerge. These include
(1) on-site intervalley coherence (IVC) order, which breaks
the spin-valley SU(4) symmetry of the interacting part of the
model, and (2) an insulating columnar valence bond solid
state. A main result of Ref. [65] was the importance of the
assisted-hopping term in stabilizing the QVH and IVC states.
It was concluded, therefore, that an experimental observation
of these quantum states at charge neutrality would provide
evidence of the importance of nonlocal topologically driven
interactions in MATBG.

Here, we extend the HF studies of Ref. [65] to address
other filling factors of the moiré flat bands. We perform an
unrestricted mean-field real-space study which allows for both
homogeneous and inhomogeneous solutions. In the former
case, we benchmark the results against a momentum-space
formalism, which additionally allows for determination of
the interaction-renormalized band structure. Our theoretical
study focuses on the case of zero external magnetic field. At
charge neutrality we find that interactions induce a gapped
homogeneous QVH phase, in agreement with earlier studies
using the same model [65]. At other integer fillings, the QVH
phases coexists with spin/valley-flavor symmetry-broken or-
der, consisting of spin/valley polarized phases for interaction
strengths larger than approximately the bandwidth. We ana-
lyze the topological properties of the resulting gapped phases
where the spontaneous order has lifted the degeneracy of the
flavor symmetries of the bare band. For weaker interaction
strengths at nonzero integer filling factors or at certain half-
integer fillings, the model prefers metallic inhomogeneous
spin- and valley-ordered phases. We analyze these results in
light of recent experimental developments related to MATBG.

FIG. 1. (a) Illustration of the cluster charge term Q(R) entering
Eq. (1). Shaded gray areas are the density distribution of a Wannier
orbital at the honeycomb site marked by a black dot. (b) Schematic of
the assisted-hopping term T (R). Blue horizontal (red vertical) lines
show the density distribution of a Wannier orbital centered at the blue
(red) honeycomb site. The overlap within the hexagon highlighted
in green is finite and non-negligible. (c) Fifth NN hoppings in H0.
Hoppings marked in blue are the terms in the R′ summation for R =
R0, and hoppings marked in red are included when the R summation
reaches hexagons marked by R and R′ = R0.

II. MODEL AND METHOD

Constructing an interacting lattice Hamiltonian modeling
MATBG is complicated due to the fragile topology of the
narrow bands preventing a faithful representation in terms
of standard localized Wannier orbitals, a property known as
Wannier obstruction [71,72]. To overcome this obstruction
one must either add (trivial) remote bands by including addi-
tional orbitals or implement some of the required symmetries
nonlocally by including longer-range interactions. The model
presented by Kang and Vafek [38] takes the latter approach
and implements the C2T symmetry nonlocally, where C2

refers to a twofold rotation with respect to the z axis and T
denotes time reversal. This procedure allows for a projection
of the screened Coulomb potential to the appropriate low-
energy Wannier orbitals residing on a bipartite honeycomb
lattice [38,73]. The projection was performed in Ref. [38] and
led to the following interaction term:

Hint = U

2

∑
R

[Q(R) + T (R)]2, (1)

where

Q(R) = 1

3

5∑
p=0

∑
τ,σ

c†
pτσ (R)cpτσ (R) (2)

and

T (R) = α

5∑
p=0

∑
τ,σ

(−1)p[c†
pτσ (R)cp+1τσ (R) + H.c.]. (3)

Here, U sets the overall interaction strength, R labels the po-
sition of a hexagon, and p labels the six sites in each hexagon
(see Fig. 1). The factor of 1/3 in Q(R) accounts for the triple
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counting, and τ = ±1 (σ =↑,↓) is the valley (spin) degree of
freedom of the Wannier orbitals represented by the operators
cpτσ . As illustrated in Figs. 1(a) and 1(b), the low-energy Wan-
nier orbitals in MATBG exhibit an inherent nonlocality where,
instead of the usual exponentially localized, single-peak, wave
function, an orbital centered at site p exhibits three symmetric
peaks in the adjacent hexagon centers [73,74]. In Fig. 1(a)
we depict the cluster charge interaction term Q(R), a standard
charge density term apart from the nonlocal wave function
distribution. Thus, the contribution to Hint from Q2(R) is anal-
ogous to a hexagon-centered density-density Hubbard term
containing on-site and up to third-nearest-neighbor interac-
tions in the projected model orbitals.

The assisted-hopping interaction term T (R) is schemati-
cally shown in Fig. 1(b), where horizontal blue (vertical red)
lines indicate the density distribution of a Wannier orbital
residing at the blue (red) honeycomb site. While the total

overlap of the two neighboring orbitals must be zero because
of orthogonality requirements, the overlap within a single
hexagon [highlighted in green in Fig. 1(b)] can be finite due to
the Wannier obstruction preventing all symmetries from being
implemented locally [38]. Thus, this term is topological in
nature. In Ref. [38] the authors found that the overlap integral
α ∼ 1/3, yielding comparable interaction strengths for the
Q(R) and T (R) terms. The assisted-hopping interactions are
pivotal to all results presented in this paper.

The kinetic terms of the Hamiltonian were proposed, e.g.,
in Refs. [73–75]. The effective tight-binding model is defined
on the AB/BA honeycomb lattice of the moiré superlattice
and includes nearest-neighbor (NN) as well as complex fifth-
NN hopping. The model has eight narrow bands reflecting
the spin, valley, and sublattice degrees of freedom. In the
notation of Eq. (1), the minimal tight-binding kinetic part
reads

H0 =
∑

R

∑
p,τ,σ

[
− μ

3
c†

pτσ (R)cpτσ (R) + t1e(−1)p−1iτφc†
pτσ (R)cp+1τσ (R) + 1

3

∑
R′

[(t2 − τ it ′
2)c†

pτσ (R)cpτσ (R′) + H.c.]
]
, (4)

where μ is the chemical potential, t1 is the NN hopping amplitude, and the phase factor e(−1)p−1iτφ arises from a convenient gauge
transformation ensuring α ∈ R in Eq. (3) [38]. In the last term R′ refers to three next-NN hexagons to R related by C3 symmetry.
As the site indices p within R and R′ are identical, these terms are fifth-NN hoppings with real (t2) and imaginary (t ′

2) hopping
amplitudes, respectively [see Fig 1(c)].

The validity of mean-field approaches in describing interacting electrons in moiré flat bands is questionable. However,
as mentioned above, HF theory has been rather widely applied and has provided insight into the possible ordered phases.
Additionally, relevant for the present model, HF results were shown to agree surprisingly well with QMC simulations at charge
neutrality. Motivated by these previous results, we proceed by performing an unrestricted HF decoupling of Eq. (1), yielding

HHF
int = U

∑
R

⎛
⎝n̄(R)[Q(R) + T (R)] −

∑
all

⎡
⎣∑

n,m

αn(p′)αm(p)〈c†
p′+nτ ′σ ′cp+mτσ 〉

⎤
⎦c†

pτσ cp′τ ′σ ′

⎞
⎠, (5)

with

n̄(R) =
∑

p′,τ ′,σ ′

(
1

3
〈c†

p′τ ′σ ′cp′τ ′σ ′ 〉 + α(−1)p′
[〈c†

p′τ ′σ ′cp′+1τ ′σ ′ 〉 + 〈c†
p′+1τ ′σ ′cp′τ ′σ ′ 〉]

)
. (6)

Here,
∑

all = ∑
p,p′

∑
τ,τ ′

∑
σ,σ ′ , and n, m ∈ {−1, 0, 1}. We

have suppressed the R dependence of the operators
for clarity and defined α(p) ≡ (α−1(p), α0(p), α1(p)) =
(α(−1)p−1, 1/3, α(−1)p). Note from the definition of α(p)
that setting α �= 0 inevitably introduces nonlocality in the
Fock exchange terms since, e.g., NNN hopping c†

pcp′=p+2 will

contain contributions from on-site mean fields 〈c†
p+2−1cp+1〉

for n = −1 and m = 1.
The unrestricted HF decoupling leading to Eq. (5)

allows for spontaneous breaking of all symmetries,
including translational invariance, yielding a total of
Rtot/3 × 24 × 24 ∼ O(105) different mean fields to be
solved for typical systems sizes with a total number
of hexagons Rtot = 300 [see Fig. 3(d) below]. The
resulting decoupled Hamiltonian, H = H0 + HHF

int , is
solved self-consistently with unbiased initial conditions.
For the results reported in this paper, we have defined the
convergence criterion to be

∑N
n=1 |En(m − 1) − En(m)| <

N × 10−10t1, where m denotes an iteration counter

and N = Rtot/3 × 24 × 24 is the total number of
eigenenergies En. Guided by Refs. [38,75], we fix
{t1, t2, t ′

2, φ, α} = {1.0, 0.025, 0.1, 0.743π, 0.23} while
the filling is controlled by varying μ during the iterations until
the desired filling factor is reached. Further technical details
of the HF procedure can be found in Appendix C of Ref. [65].
As usual, we denote the filling factor by ν, which is related to
the carrier density n by ν = 4n/ns, where ns is the density of
the filled moiré superlattice flat bands. The temperature is set
to T = 2.5 × 10−5t1, representative of the T = 0 limit, in all
computations below.

III. RESULTS

A. Phase diagram: Homogeneous phases

We start by presenting a main result of the paper in Fig. 2:
the full phase diagram as a function of interaction strength
at all integer fillings. Focusing first on homogeneous phases
found at sufficiently large interaction strengths U/W , the
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FIG. 2. Phase diagram indicating the preferred order at integer
filling factors as a function of interaction strength U/W , where W =
6t1 is the bare bandwidth. Charge neutrality features only a QVH
phase in this range of interactions. The other integer fillings exhibit
different ferromagnetic order with spin/valley polarization beyond
a certain interaction threshold. Below this critical interaction value,
all nonzero integer fillings prefer different inhomogeneous metallic
phases. Note that the metallic phase marked in gray at ν = −3 is only
partially spin and valley polarized (pSP, pVP).

emergent orders are (i) QVH order consisting of imaginary
next-nearest-neighbor (iNNN) hopping, Im〈c†

pτσ cp+2τσ 〉 �= 0
[see Fig. 3(a)], (ii) fully spin polarized (SP) order character-
ized by ferromagnetic on-site mean fields, 〈n↑〉 − 〈n↓〉 = 1, 2,
with 〈nσ 〉 = 1

3

∑
pτ 〈c†

pτσ cpτσ 〉, i.e., an excess of either one or
two spin-up electrons per moiré unit cell, and (iii) fully valley
polarized (VP) order defined by 〈n+1〉 − 〈n−1〉 = ±1, with
〈n±1〉 = 1

3

∑
pσ 〈c†

p,±1,σ cp,±1,σ 〉.
Despite the rich variety of possible symmetry breaking in

MATBG, we find QVH order to be present in the ground
state across all integer fillings in a wide range of interaction
strengths. In Fig. 2 the QVH phase is indicated by dark blue
when it is not symmetry breaking, light blue when it coex-
ists with the spin polarization, and green when it coexists
with both spin and valley polarization. At charge neutrality,
the QVH phase is induced even for very small interaction
strengths, in agreement with Ref. [65], whereas at all nonzero
integer fillings stabilization of the QVH phase requires a crit-
ical value of U/W . The emergent iNNN hopping leads to an
insulating gap as expected from the Haldane model [76]. The
QVH phase preserves the Uv (1) symmetry, yielding a total of
four decoupled sectors (valley × spin) of the Haldane bands.
The direction of the iNNN hopping is dictated by the valley
flavor alone [see Fig. 3(a)]. Finally, we note that both H0 and
Hint break particle-hole symmetry, resulting in a significant
particle-hole asymmetry of the phase diagram in Fig. 2 [65].

B. Resulting band structure

We turn now to the band structure associated with the
homogeneous phases present in the phase diagram of Fig. 2.
The left panel in Fig. 3(b) shows the bare bands, exhibiting
the well-known semimetallic Dirac dispersion [73–75]. The
middle and right panels of Fig. 3(b) display the band structure
at U/W = 2.0 and ν = −2, 2, respectively. From the renor-
malized bands at ν = −2 it is evident that the interactions shift
the minima of the occupied bands from 	m to Km (K ′

m). The
shift is caused by the assisted-hopping interactions, which,
as mentioned in the previous section, introduce longer-range
hoppings, leading to a nontrivial structure of Hint. Combin-
ing this interaction-originated structure with the bare bands
leads to distinct renormalization of the four lower and upper
bands, respectively. At weak interactions (U/W � 1.0) the
renormalization of the four lower bands suppresses the band-
width significantly, followed by the inversion evident in the
middle panel of Fig. 3(b) at larger interaction strength. On
the contrary, since the upper four bands exhibit a momentum
dependence similar to Hint, the interactions will enhance the
bandwidth of these bands for all interaction strengths, leading
to reduced gap sizes as well as larger critical U/W for all
ν > 0 [see the right panel of Fig. 3(b)].

By further inspection of Fig. 3(b) several similarities be-
tween the band structures at ν = −2 and 2 can be identified.
Both structures exhibit significant energy gaps in two out of
four Haldane sectors [red sectors in Fig. 3(b)], in agreement
with their respective fillings. However, more strikingly, we
note that these two sectors are identical at the two different
fillings. As such, the sole qualitative discrepancy between
ν = −2 and 2 is whether the remaining two gapless sectors
[black sectors in Fig. 3(b)] are empty (ν = −2) or full (ν = 2).
The similarity between the QVH band structures in Fig. 3(b)
serves as an example of the general interpretation of the QVH
phases across all integer fillings, as illustrated in Fig. 3(c).
At ν = −4 the system consists of four empty, gapless, and
decoupled band sectors characterized by the valley and spin
degrees of freedom {τ, σ }. Doping the narrow bands to the
first commensurate filling (ν = −3) results in an accumula-
tion of all electrons into a single flavor. This accumulation
is energetically favored because it allows for a gap opening in
the corresponding band sector at the expense of spontaneously
generated loop currents (i.e., iNNN hoppings). Upon further
electron filling, the mechanism repeats at each integer filling
where a gap is introduced in one of the (previously gapless)
sectors, until all four flavors are fully gapped at charge neu-
trality (ν = 0). Increasing the electron density further, the
mechanism reverses such that at each integer filling, an addi-
tional conduction band is fully occupied. Since all anomalous
hopping terms (i.e., spin/valley flipping hoppings) vanish, the
electrons in the fully occupied sectors are effectively blocked,
leading to a gap closing because iNNN hopping is prohibited.
We attribute this behavior to be related to the cascade of
transitions seen experimentally [25–27].

C. Topology and edge states of the insulating phases

The emergence of loop currents and spin polarization nat-
urally leads to a consideration of time-reversal symmetry
breaking (TRSB). As all four flavor sectors remain decoupled
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FIG. 3. (a) Illustration of emergent imaginary NNN hoppings in the QVH phases. The arrow direction indicates the direction of the
corresponding loop currents dictated by the valley flavor. (b) Bare bands at charge neutrality (left panel) and renormalized bands at interaction
strength U/W = 2.0 for ν = −2 (middle panel) and ν = +2 (right panel). Gapless (gapped) band sectors are marked in black (red). The inset
in the left panel shows the miniature Brillouin zone. (c) Schematic of successive filling of bands and resulting gap opening or closing at all
integer filling factors of the four decoupled Haldane sectors. Each sector is characterized by the spin and valley flavor {τ, σ }. (d) In-gap local
density of states ρ�(r) of the spin- and valley-polarized QVH phase at ν = 3.0 and U/W = 3.0. A single topologically protected edge state
is present in the only remaining gapped sector {−,↓}. The results in (d) are computed by opening the boundaries in a result converged with
periodic boundary conditions.

in the QVH phases throughout the entire doping range, it is
evident that the QVH order is accompanied by flavor polariza-
tion at all nonzero integer fillings. Specifically, all even filling
factors (ν = ±2) are spin polarized, while all odd filling fac-
tors (ν = ±1,±3) exhibit both valley and spin polarization.
Thus, time-reversal symmetry is spontaneously broken in the
QVH phases at all nonzero integer filling factors. Since TRSB
is the crucial element to obtain nontrivial topological bands
in the Haldane model, it is reasonable to assume that the
QVH phases discussed here also exhibit nontrivial topology.
To verify this explicitly, we compute the Chern numbers
at all integer fillings by evaluating the usual momentum
integral

Cn = 1

2π

∫
mBZ

d2k Tr[�n(k)], (7)

where the Berry curvature is defined by

�n(k) = iPn(k)
[
∂kx Pn(k), ∂ky Pn(k)

]
(8)

and Pn is the projector to the corresponding band defined
by the flavor sector and particle or hole character. The re-
sulting Chern numbers are Cn = ±1 (∓1) for the valence
(conduction) band in τ = ±1 insulating sectors. The invari-
ants are independent of spin direction, in agreement with the

purely valley defined hopping direction depicted in Fig. 3(a).
Not surprisingly, the nongapped, fully occupied sectors yield
Cn = 0 for both bands, which is verified by introducing a
perturbative splitting prior to the Chern number computation.
Thus, all half-filled sectors host a single edge state, while
fully occupied sectors do not. An example of this property is
shown in Fig. 3(d), which displays the in-gap local density
of states ρ�(r) for all four sectors in the QVH phase at
ν = 3. As the propagation direction of the edge states is set
by the valley degree of freedom, these findings yield quantum
anomalous Hall phases, i.e., a nonzero total Chern number, for
all valley polarized QVH phases, that is, for all odd-integer
fillings.

D. Phase diagram: Inhomogeneous phases

As indicated in Fig. 2, inhomogeneous metallic phases
exist at all finite integer filling factors in the regime of low
to intermediate interaction strengths, as expected for weak-
coupling approaches. In Fig. 2 these phases are indicated in
either orange [Uv (1) preserving] or purple [Uv (1) breaking]
as the gapless and inhomogeneous properties are common to
all. However, the flavor order degree of freedom as well as
the specific ordering vector(s) are found to depend on the
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FIG. 4. Examples of inhomogeneous metallic spin-ordered
phases for (a) U/W = 0.5 and (b) U = 0.33 at ν = 1.0. Contours in
gray show the local z component of the spin, i.e., σz = 1

2

∑
τ (〈niτ↑〉 −

〈niτ↓〉). The structure in (a) breaks C3 symmetry, and a single or-
dering vector has condensed along all three directions of the Bloch
sphere. The structure shown in (b) preserves C3 symmetry, and
three symmetry-related ordering vectors have condensed in all three
directions.

particular filling factor and interaction strength. The variety
of phases identified in the low to intermediate interaction
regime implies a plethora of (near-)degenerate states in this
region. This combined with the impact of finite size effects in
self-consistent computations of inhomogeneous ground states
causes significant convergence difficulties, and the notion of
simulations trapped in local minima in the extensive phase
space cannot be dismissed. Nonetheless, the breaking of trans-
lation symmetry and the gapless energy spectrum are highly
robust features across all nonzero integer fillings at these
interaction strengths.

Examples of typical inhomogeneous phases are shown
in Fig. 4. Figure 4(a) displays the spin structure of the
converged result at U/W = 0.5 and ν = 1, where a single
ordering vector has condensed in all three directions of the
Bloch sphere. The spin modulations in the three directions
have relative phase shifts resulting in a spin spiral with
a net relative magnetization of 〈Sz

i 〉/〈|Si|〉 = 0.24 per site.
For lower interactions U/W = 0.33 at ν = 1, the ground
state exhibits the spin pattern shown in Fig. 4(b) with a
net relative magnetization of 〈Sz

i 〉/〈|Si|〉 = 0.97 per site ac-
companied by C3-preserving ordering vectors for each spin
direction.

Figure 5 shows an example of a valley-ordered phase
exhibited at weak coupling at ν = 2.0. This phase is character-
ized by spatially modulating intervalley coherence, breaking
both translation and Uv (1) symmetries. The direction of
this modulating intervalley coherence is restricted to the
xy plane of the valley Bloch sphere; that is, the occu-

FIG. 5. Example of inhomogeneous metallic valley-ordered
phase for U/W = 0.33 at ν = 2.0. Contours in gray show the local
x component of the valley order, i.e., τx = ∑

σ Re(〈c†
i,+,σ ci,−,σ 〉 +

〈c†
i,−,σ ci,+,σ 〉). The order is restricted to the xy plane of the valley

Bloch sphere, and the unit cell is enlarged to a′
m = 2.5am, as indi-

cated by the blue rhombus.

pation of the two valleys is identical. In this case, the
order is defined by C3-related vectors of length |qi| =
0.4|Gm|, where Gm denotes the reciprocal lattice vec-
tors of the moiré Brillouin zone (mBZ). Interestingly, a
modulated intervalley coherence phase was also recently
explored within HF studies of the Bistritzer-MacDonald
model, and it was found to be the preferred ground state
across all nonzero integer fillings in the presence of a small
C3-breaking heterostrain [67,69]. There, access to the
graphene scale has identified this order as an incommensurate
Kekulé pattern.

Finally, we stress that while the inhomogeneous phases
discussed above are driven by a single degree of freedom,
the order is generally inherited in the remaining degrees of
freedom. An example is the negligible, yet finite, spin order
(〈|Si|〉 = 0.002 per site) in the valley-ordered phase depicted
in Fig. 5.

E. Modulated phases at half-integer filling

Recently, Bhowmik et al. [24] studied MATBG proxim-
itized by a layer of WSe2 and reported distinct features in
magnetotransport and thermoelectricity consistent with or-
dered phases setting in at half-integer filling factors, ν = ±0.5
and ν = ±3.5. These results were interpreted in terms of
correlation-induced modulated spin- and charge density wave
order with doubled unit cell order at the moiré scale. We
computed the mean fields at ν = ±0.5 and show the resulting
intervalley coherent order at ν = −0.5 and U/W = 0.33 in
Fig. 6. As can be seen, the order is similar to the intervalley
coherence spiral shown in Fig. 5 with an additional breaking
of C3 symmetry. The intervalley order is restricted to the xy
plane of the valley Bloch sphere, and we find a well-defined
ordering vector of length |q| = 0.2|Gm| with a relative phase
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FIG. 6. Example of inhomogeneous metallic valley-ordered
phase for U/W = 0.33 at ν = −0.5. Contours in gray show the local
x component of the valley order, i.e., τx = ∑

σ Re(〈c†
i,+,σ ci,−,σ 〉 +

〈c†
i,−,σ ci,+,σ 〉). The order is restricted to the xy plane of the valley

Bloch sphere defined by a single ordering vector of length |q| =
0.2|Gm| (a′

m = 5am) with a relative phase between the x and y di-
rections yielding an intervalley coherent spiral.

between the x and y directions, yielding an intervalley co-
herent spiral along q. Similar to the inhomogeneous phases
discussed in the previous section, the phase shown in Fig. 6 is
metallic.

For larger interaction strengths at half-integer filling
ν = ±0.5 the ground states remain periodically modulated
metallic phases dominated by order in the valley degree of
freedom. For example, at U/W = 1.0 and ν = −0.5 the order
is a modulated valley polarization preserving Uv (1) symmetry,
while intervalley coherence is present in the valley-ordered
state at ν = +0.5. However, it should be noted that, at these
higher interaction strengths, significant order is also present
in the spin degree of freedom with magnitudes smaller than
but comparable to the valley order. Thus, the appearance of
modulated ordered phases is a robust feature also at half-
integer fillings of the current model, and this may be related
to the unusual magnetotransport features detected in recent
experiments [24].

IV. DISCUSSION AND CONCLUSIONS

We have performed an unrestricted self-consistent HF
study of a moiré lattice model designed for MATBG with both
local and nonlocal interactions truncated to NN sites, obtained
from Wannier projected Coulomb repulsion, and mapped out
the preferred ordered phases as a function of interaction
strength and the moiré flat-band filling factor. This model pro-
posed by Kang and Vafek was previously addressed, e.g., from
a strong-coupling perspective and also studied via numeri-
cal methods, including QMC simulations and density matrix
renormalization group (DMRG) calculations [38,40,60,65].
For example, Ref. [60] recently studied the model in the

flat-band, flavor-polarized limit at half filling using a DMRG
approach (corresponding to half filling of one of the four
decoupled band sectors discussed in Sec. III B with H0 = 0).
The study reports a first-order phase transition from a stripe
charge density wave phase to the QVH phase at a critical
assisted-hopping interaction of αc/U ≈ 0.12. Interestingly,
the authors found a remarkably low von Neumann entropy of
the QVH phase and argued, therefore, that a similar ground
state should be well captured by a self-consistent mean-field
description, a conjecture consistent with the results presented
here even in the non-flat-band limit without assuming flavor
polarization.

Furthermore, previous HF studies of the Kang-Vafek
model restricted to charge neutrality but including a NN tight-
binding hopping term in the Hamiltonian obtained the QVH
phase and were shown to agree well with QMC simulations
[65]. Here, we have extended such HF studies to include other
electron filling factors and explored the resulting preferred
ordered phases. As seen from Fig. 2, for interaction strengths
that are large enough we obtain ferromagnetic spin/valley
polarized order coexisting with the QVH phase. This, in turn,
gives rise to a particular filling dependence of the moiré
bands with Chern insulator phases at integer filling factors
and the presence of quantum anomalous Hall effect at odd
filling factors. Thus far, experimental efforts have revealed
a multitude of Chern insulator phases in MATBG under the
application of an external magnetic field [20–23]; however,
it has proved challenging to observe topological signatures of
the correlated insulators in the absence of external fields, most
likely due to sample imperfections [18,19]. Nevertheless, two
observations of (nearly) quantized anomalous Hall effects
at ν = +1,+3 alongside a detailed inverse compressibility
study down to zero field at ν = +1,+2,+3 were pub-
lished recently [17,18,22]. Interestingly, while many reports
on field-stabilized Chern insulators in MATBG found se-
quences of {C, ν} = {±4, 0}, {±3,±1}, {±2,±2}, {±1,±3},
the zero-field Chern insulators at ν = +1,+3 (ν = +2) have
quantizations of |C| = 1 (C = 0), in agreement with the re-
sults presented here.

At weak to intermediate interaction strengths U/W � 1,
the preferred ground states become inhomogeneous with
density wave order in spin/valley degrees of freedom. Sim-
ilar inhomogeneous phases are found at certain half-integer
filling factors, which appears to be consistent with recent
experimental reports of ordered spatially modulated phases
at certain half-integer filling factors [24]. We stress that the
modulated phases discussed here are intrinsic, i.e., generated
solely by the interactions. In actual samples external inho-
mogeneities from, e.g., strain or twist-angle variations will
lead to additional spatial variations of pinned order, possibly
producing a mosaic of regions featuring different topological
properties [19]. Inclusion of such effects and a more detailed
comparison to experiments in terms of the derived spectral
properties and transport coefficients are beyond the scope of
the current work. Here, we have focused on mapping out
the filling dependence of the preferred ordered phases of the
present moiré lattice model. This already exhibits a plethora
of different phases, some of which constitute fascinating
examples of interaction-driven nontrivial topological states
of matter.
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