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Bath-induced phase transition in a Luttinger liquid
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We study an XXZ spin chain, where each spin is coupled to an independent ohmic bath of harmonic
oscillators at zero temperature. Using bosonization and numerical techniques, we show the existence of two
phases separated by a Kosterlitz-Thouless transition. At low coupling with the bath, the chain remains in a
Luttinger liquid (LL) phase with a reduced but finite spin stiffness, while above a critical coupling, the system is
in a dissipative phase characterized by a vanishing spin stiffness. We argue that the transport properties are also
inhibited: The LL is a perfect conductor, while the dissipative phase displays finite resistivity. Our results show
that the effect of the bath can be interpreted as annealed disorder-inducing signatures of localization.
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I. INTRODUCTION

Localization is a spectacular quantum effect in which trans-
port properties are totally suppressed. It is mainly due to the
presence of quenched impurities, as predicted by Anderson
[1] for free fermions and recently argued to persist in the pres-
ence of interactions via the so-called many-body localization
(MBL) [2–7]. However, localization can also be induced by
quantum measurements or by the presence of an external bath.
The first case gives rise to the Zeno effect, originally intro-
duced as the mechanism that froze the dynamics of a two-level
system [8,9]. Today, it is generalized to many-body systems in
which the frequency of quantum measurement is at the origin
of phase transitions from a volume law to an area law for en-
tanglement entropy [10–19]. Localization induced by external
bath is much less studied. It is known that a subohmic bath at
zero temperature can freeze the quantum dynamics of simple
systems, such as a single spin or particle [20–23]. In this
paper, we investigate if these mechanisms are also relevant
in a many-body system. We show that a bath that produces
local phonons is a source of annealed disorder and study how
this disorder affects the transport properties. We focus on a
one-dimensional (1D) system that can be mapped to a two-
dimensional (2D) field theory, already studied by bosonization
[24] and Monte Carlo techniques [25] in a different context.
However, its phase diagram remains controversial, and it is
not clear how many phases appear varying the strength of the
coupling between the bath and the system. Here, we introduce
an approach which directly simulates the bosonized action
and allows us to reach large system sizes. Our results show a
simple scenario of two phases with a Kosterlitz-Thouless (KT)
transition between them. Increasing the coupling strength, a
dissipative phase with suppressed transport takes over a per-
fectly conducting Luttinger liquid (LL) phase.
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II. MODEL

We consider an XXZ spin chain with the Hamiltonian
HS = ∑N

j=1 JzS
z
jS

z
j+1 + Jxy(Sx

j S
x
j+1 + Sy

j S
y
j+1) and Jz/Jxy ∈

(−1, 1). This model displays a gapless low-energy spectrum,
and it is in a perfectly conducting phase known as LL [26].
Each spin j of the chain is in contact with its own indepen-
dent bath of harmonic oscillators with the Hamiltonian HB =∑

jk
P2

jk

2mk
+ mk�

2
k

2 X 2
jk (see Fig. 1). A different choice for local

baths was studied in Ref. [27]. The complete Hamiltonian is
given by

H = HS + HB + HSB,

HSB =
N∑

j=1

Sz
j

∑
k

λkXjk . (1)

Note that the coupling term h j (t ) = ∑
k λkXjk is equiva-

lent to a time-dependent magnetic field interacting with the
spins. The time-independent limit hj (t ) = h j corresponds to
a quenched disordered magnetic field. This case is well stud-
ied by bosonization [28] or powerful simulation techniques
[29], and a zero temperature localization transition from LL
toward a Bose glass phase takes place by varying the disorder
strength. Here, we employ bosonization to study the time-
dependent (annealed disorder) case. To fully characterize the
bath, we need to specify the low-frequency behavior of the
spectral function, defined as

J (�) = π

2

∑
k

(
λ2

k

mk�k

)
δ(� − �k ). (2)

In general, one has J (�) = πα�s for � ∈ (0,�D). Here,
α denotes the effective coupling strength with the bath, the
cutoff �D is the Debye frequency, and s sets the nature of the
bath. For our study, we take s = 1, which corresponds to an
ohmic bath.
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FIG. 1. Schematic representation of the microscopic system: A
one-dimensional XXZ spin chain (blue color) with each spin coupled
to its individual dissipative bath (red color). The baths are described
by a collection of simple harmonic oscillators kept at zero tempera-
ture. The parameter α is a measure of the coupling strength between
the bath and the associated spin.

III. BOSONIZED ACTION

The bosonization procedure of the XXZ spin chain is
well known [26]. We map the chain with periodic condition
into a 1D fermionic system using Jordan-Wigner transforma-
tion. For Jz = 0, we recover the free-fermion problem that
can be diagonalized in the momentum space q = 2π l/(Na)
with a as lattice spacing and l ∈ (−N/2, N/2). The Fermi
momentum depends on the total magnetization M of the
spin chain, namely, qF = π (N − M )/(2Na), where qF is the
Fermi momentum of the spin chain and a is the lattice spacing
kept for dimensional matching reasons. Two cases should
be distinguished: In the zero sector of magnetization, qF is
commensurate with the lattice space, while it is incommen-
surate for the nonzero magnetization sector. Here, we focus
on the incommensurate case. Away from the sector of zero
magnetization, by linearizing the spectrum around qF , one
recovers the action for the well-known LL model:

SLL = 1

2π

∫
dxdτ

{
1

uK
[∂τφ(x, τ )]2 + u

K
[∂xφ(x, τ )]2

}
.

(3)

Here, φ(x, τ ) is a 2D field living in the physical space x ∈
(0, L) and in imaginary time τ ∈ (0, β ), β being the inverse
temperature of the system. At zero magnetization, there is
an extra term in the action Scos = − Jz

2π2

∫
dxdτ cos[4φ(x, τ )],

which is irrelevant for K > 1
2 . The constants u and K are

called LL parameters, and they depend on Jxy and Jz. These
parameters can be exactly calculated from the Bethe ansatz
(e.g., K−1

Bethe ansatz = (2/π ) arccos[−Jz/Jxy]), and they match
with the bosonization prediction in the regime Jz � Jxy

(K−1
bosonization =

√
1 + 4Jz/πJxy). However, away from half-

filling (nonzero magnetization sector), the bosonization pre-

diction between the LL parameters and the spin chain are
slightly more complicated and given by uK = aJxy sin(qF a)
and u/K = uK{1 + 2aJz

πvF
[1 − cos(2qF a)]}.

To tackle the dissipative problem, there are two different
approaches. Here, we map to an equivalent fermionic system
via Jordan-Wigner transformation and apply bosonization to
arrive at a 2D field theory. Alternatively, the quantum Hamil-
tonian can be mapped onto a hard-core bosonic system via
Holstein-Primakoff transformation and then numerically sim-
ulated via quantum Monte Carlo methods (indeed, bosons do
not suffer from the sign problem). In both cases, to integrate
the bath degrees of freedom, one must introduce the path
integral description of the system. The action associated with
the bath and the interaction between the bath and the system
are identical for bosons and fermions and are given by

SB + SSB =
∫ β

0
dτ

N∑
j=1

[
n j (τ ) − 1

2

] ∑
k

λkXk j

+
N∑

j=1

∑
k

(
mkẊ 2

k j + mk�
2
k

2
X 2

k j

)
, (4)

where n j = Sz
j + 1

2 is the density operator. Now, we can inte-
grate out the bath degrees of freedom and arrive at an effective
action for the system degrees of freedom only, where the effect
of the bath is encoded in the interacting part Sint:

Sint = −
∫∫ β

0
dτdτ ′

N∑
j=1

[
n j (τ ) − 1

2

]

× D(τ − τ ′)
[

n j (τ
′) − 1

2

]
. (5)

Here, D(τ − τ ′) is the dissipative kernel which is produced
from integrating over the bath modes. Its Fourier transform
can be expressed in terms of the bath spectral function J (�):

D(ωn) = 2

π

∫ ∞

0
J (�)

�

ω2
n + �2

. (6)

Using the form J (�) = πα� (s = 1), we get D(τ − τ ′) ∼
α|τ − τ ′|−2.

To bosonize Eq. (5), we recall that the bosonized version
of Sz

j is given by

Ŝz = − 1

π
∇φ + 1

πa
cos(2φ − 2qF x). (7)

Using Eq. (5), the dissipative part of the action is given by

Sint = − 1

2π2

∫ L

0
dx

∫∫ β

0
dτdτ ′

×
{
−∇φ(x, τ ) + 1

a
cos[2φ(x, τ ) − 2qF x]

}

× D(τ − τ ′)
{
−∇φ(x, τ ′) + 1

a
cos[2φ(x, τ ′) − 2qF x]

}
.

(8)

After multiplying all the terms, one can put a = 1, which was
there for dimensional purposes. For the expansion, we will be
making a few observations here:
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(1) At equal time (τ = τ ′), the dissipative action is (Sz
j )

2,
which is identity. Hence, this term does not contribute
anything to the physics, and we can neglect the con-
stant term in D(τ − τ ′).

(2) The terms of the form ∇φ(τ ) cos[2φ(τ ′) − 2qF x] will
oscillate rapidly for nonzero magnetization due to the
2qF x term, and hence, it will integrate to zero. Simi-
larly, the cos[2φ(τ ) − 2qF x] cos[2φ(τ ′) − 2qF x] term
can be broken up into two terms; one of these terms
will be of the form cos{2[φ(τ ) + φ(τ ′)] − 4qF x}. This
term can also be integrated to zero due to the rapidly
oscillating term 4qF x.

(3) The ∇φ(τ )∇φ(τ ′) term is the forward scattering term
and is irrelevant by power counting.

Hence, the action of the full system turns out to be

Stot = SLL + Sint, (9)

Sint = − α

4π2

∫
dxdτdτ ′ cos{2[φ(x, τ ) − φ(x, τ ′)]}

|τ − τ ′|2 . (10)

IV. OBSERVABLES AND BOSONIZATION

Thermodynamic quantities of the spin chain can be ex-
pressed in terms of the correlation functions of the field φ.
The propagator G(q, ωn) = 〈φ(q, ωn)φ(−q,−ωn)〉 can be re-
lated to the susceptibility χ and spin stiffness ρs by the two
equations:

χ = lim
q→0

lim
ωn→0

q2

π2
G(q, ωn), (11)

ρs = lim
ωn→0

lim
q→0

ω2
n

π2
G(q, ωn). (12)

Here, ωn = 2πn/β, n ∈ (−∞,∞) are the Matsubara frequen-
cies. In the LL phase, GLL(q, ωn) = πK/(ω2

n/u + uq2), and
hence, χ = K/(uπ ) and ρs = uK/π = K2/(π2χ ). The bath
introduces a long-range cosine interaction in the τ direction
only, and the strength of this potential is controlled by the
parameter α. A perturbative renormalization group study [24]
shows that, for K < Kc = 0.5, the cosine term is relevant, and
the LL phase is destroyed, whereas for K > Kc and small α,
the system stays in the LL phase but with renormalized LL
parameters Kr and ur . For K � Kc, the transition is of the KT
type: The critical point αc(K ) is still LL with Kr = Kc = 0.5.
The nature of the dissipative phase is not clear: For mod-
erate K and very large α, the action should be gapless and
harmonic, obtained by the quadratic expansion of the cosine
term. For K � Kc, a large-N argument suggests the existence
of a gapped disordered phase. Monte Carlo simulations [25]
were performed on the 1D hard-core bosonic chain, which
can be mapped to free fermions (K = 1). Increasing α, they
found that χ increases, and at αc, the system undergoes a
continuous second-order phase transition with vanishing ρs.
Below, we propose a simple scenario able to conciliate the
puzzle of contradictory results.

V. METHODS

To make progress, on one side, we compute the correla-
tion function G(q, ωn) numerically by generating equilibrated
configurations φ(x, τ ) from the action in Eq. (9) with the help

of Langevin dynamics (see Appendix C). The long-distance,
low-energy behavior of this correlation function allows us to
classify the system in two possible phases. One possibility is
that the system remains in the LL phase with renormalized
values of u and K . The second possibility is the appearance
of a new dissipative phase, where α becomes relevant. The
analytical behavior of G(q, ωn) in this new phase was pro-
posed in Ref. [24] using a harmonic expansion around the
cosine potential. Here, we use a variational approach and
propose an improved expression of the correlation function
in the dissipative phase:

G−1
var (q, ωn) = urq2

2πKr
+ αr

π2
|ωn| + a1|ωn|3/2 + a2ω

2
n. (13)

The macroscopic behavior of this phase depends only on
the two parameters ur/Kr and αr . The parameters a1 and a2

are introduced to account for finite-sized effects. From the
analysis of our result, we will show that, by varying α, the
long-distance properties are always captured either by the LL
or by the variational propagator [Eq. (13)} with renormalized
parameters ur, Kr , and αr .

A. Variational ansatz

To derive the correlation function of Eq. (13), we
need to find an effective quadratic action of the form
Svar = 1

2βL

∑
q,ωn

φ∗(q, ωn)G−1
var (q, ωn)φ(q, ωn). We use the

variational method: We minimize the free energy Fvar =
− 1

β

∑
q,ωn

log Gvar + 1
β
〈S − Svar〉Svar [with (S − Svar) aver-

aged over Svar] with respect to the variational Green’s
function:

G−1
var = 1

2πK

(
uq2 + ω2

n

u

)
+ α

π2

∫
dτD(τ )(1 − cos ωτ )

× exp

{[
− 1

π2

∫ ∞

−∞
dqdω Gvar(q, ω)(1 − cos ωτ )

]}
.

(14)

We try to solve this self-consistent equation by making

the following ansatz: G−1
var (q, ω) = 1

2πK (uq2 + ω2
n

u ) + α
π2 F (ω),

where F (ω) = a(α)|ω|ψ + b(α)|ω|. With this assumption,
for large τ , the behavior of G(ω) is governed by the |ω|
term. It can be easily shown that

∫ ∞
∞ dqdω Gvar(q, ω)(1 −

cos ωτ ) ≈ C(α) − [ τc (α)
τ

]1/2, where C(α) and τc(α) are α-
dependent constants. For a more systematic expansion in
powers of 1/τ , one can use the results in Ref. [30]. Putting
this back into the self-consistent equation for F (ω), we
obtain

a(α)|ω|ψ + b(α)|ω| =
∫

dτD(τ )(1 − cos ωτ )

× exp

(
−

{
C(α) −

[
τc(α)

τ

]1/2
})

large τ≈
∫

dτD(τ )(1 − cos ωτ )

× e−C(α)

{
1 +

[
τc(α)

τ

]1/2
}

. (15)
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FIG. 2. Calculation of different quantities for K = 0.75 that characterizes Luttinger liquid (LL; α = 1, top row) and dissipative phase
(α = 8, bottom row). Blue and red points correspond to L = β = 384 and 128, respectively. The average is performed over 6000 to 12 000
configurations. (left) Due to symmetry, πχ = Kr/ur is equal to K/u = 0.75 for all values of α and all length scales. (middle) For α = 1,
ωnC(ωn) saturates to Kr/2 = 0.349 as ωn → 0; whereas for α = 8,

√
ωnC(ωn) saturates to [Krπ/(8αrur )]1/2 = 0.392. The other fitting

constants are a1 = 0.2493 and a2 = 3.572. (right) For α = 1, 〈cos(φ)〉 decays as a power law, which allows us to extract Kr = 0.694, consistent
with the fit of ωnC(ωn). For α = 8, it saturates to a constant, as predicted by the variational ansatz (the fit gives c1 = 0.62, c2 = 0.603, and
c3 = −0.531).

The ω dependence can be easily extracted from these equa-
tions, which turns out to be |ω| and |ω|3/2. The coefficient of
|ω| should be determined self-consistently, and in our analy-
sis, we take it as a fitting parameter αr/π

2. The coefficient in
front of ω2 will be renormalized by higher-order terms from
variational analysis. Hence, the variational propagator is given
at low order in ω by Eq. (13).

VI. RESULTS

A. Phase diagram

In the following, we present our results for the correlation
functions of the action S = Sint + SLL, with u = 1, K = 0.75,
and different α. For our simulations, we set β = L. The first
observation is that the action of Eq. (10) is invariant under
tilt transformation (see Appendix B). As a consequence, χ

is not affected by the presence of Sint. We measure Kr/ur

both at low and high α, as shown in Fig. 2, left. Note that
the susceptibility corresponds to the q → 0 limit, but due to
the symmetry, Kr/ur is invariant at all length scales and all
values of α. We conclude that Kr/ur = K/u for all values
of α. In Fig. 2, middle, we present our results for C(ωn) =
(1/πL)

∑
q〈|φ(q, ωn)|2〉 = 1

πL

∑
q G(q, ω). Using the LL and

the variational propagator, we find that

C(ωn → 0) =

⎧⎪⎨
⎪⎩

Kr
2ωn

LL

√
Krπ

8αr ur

1√
ωn

variational.
(16)

We see that, indeed, for small α, C(ωn) behaves as expected
for the LL phase, while for large α, C(ωn) shows an agree-
ment with the variational approach. To confirm our prediction,

we compute an independent quantity, namely, 〈cos(φ)〉. This
quantity decreases with a characteristic finite-sized behavior:
It goes to zero as 〈cos(φ)〉LL ∼ L−Kr/4 in the LL phase and
saturates to a constant as 〈cos(φ)〉var ∼ c1 + c2/

√
L + c3/L

within the variational ansatz (here, c1, c2, and c3 are fitting
cutoff-dependent parameters, see Appendix A). Figure 2,
right, confirms the scenario of a transition between a LL to
a dissipative phase described by the variational ansatz. More-
over, the value of Kr extracted from 〈cos(φ)〉 matches nicely
with the prediction of C(ωn). In Fig. 3, we rationalize our
results of the renormalized parameters, obtained by varying α.
For K = 0.75, we observe that the stiffness decreases with α

in the LL phase and vanishes in the critical region α ∈ (3, 4).
Moreover, just before the transition, Kr approaches Kc = 0.5
and ρsc = 1/(4π2χ ), as predicted by the KT transition. In the
Appendix, we provide further results for u = 1, K = 0.55 (see
Fig. 4), which are also in agreement with this picture.

B. Transport properties

With our approach, one can compute thermodynamic quan-
tities without direct access to transport properties. However,
via Wick rotation, the conductivity can be related to the
propagator:

σ (ω) = e2

π2h̄
[ωnG(q = 0, ωn)]iωn→ω+iε .

For LL, the DC conductivity σDC ≡ Re[σ (ω → 0)] =
(e2uK/h̄)δ(ω), which shows the system is perfectly conduct-
ing. For the dissipative phase, we use Eq. (13) for Wick rota-
tion and get σDC = e2/h̄αr , proving that the system has finite
conductivity. For a generic bath, G(q = 0, ωn) ∼ 1/(αr |ωn|s),
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FIG. 3. Behavior of different renormalized parameters as a func-
tion of dissipative coupling α. Kr/ur (red square points) remains
constant and equal to K/u = 0.75 for all values of α. Kr , extracted
from 〈cos(φ)〉 analysis (purple circular points) agrees with the one
from the C(ωn) analysis (blue triangular points). It approaches Kc =
0.5 as α reaches the critical point. The parameter αr (green circular
points) starts to be defined in the dissipative phase and increases
rapidly with increase in α. This behavior of the parameter allows us
to locate the different phases: For α < 3, the system is in Luttinger
liquid (LL) phase, whereas for α > 4, the system is in dissipative
phase. The phase transition takes place for α ∈ (3, 4).

and hence, Re[σ (ω)] = (e2/h̄αr )(ε/(ω2 + ε2)s/2). Especially
when the bath is subohmic (s < 1), the DC conductivity of
the system goes to zero, which is a signature of bath-induced
localization in the system.

VII. DISCUSSION AND CONCLUSIONS

It remains important to clarify how to conciliate our
observations of a KT transition with Kc = 0.5 and the hard-
core bosonic Monte Carlo simulations (at K = 1 instead of
K = 0.75) that show a vanishing stiffness at the transition
[25]. A possibility is that it is an artifact of the commensurate-
incommensurate crossover of the system as the system size,

as well as the incommensurate parameter, used in the Monte
Carlo study is small. Another possibility remains that our
action misses some term that is relevant for the microscopic
lattice model.

On a more general framework, many efforts are currently
being made to observe localization transition in open quan-
tum systems. The most popular approach is to consider the
bath as a perturbative source of quantum measurements. In
this Markovian limit, one can rely either on the Lindblad
formalism [31], which is microscopically more accurate but
is limited to very small system sizes, or introduce models
with quantum circuits which display localization transitions
but are very simplistic. In both cases, localization appears as
a many-body Zeno effect. Here, the bath is non-perturbative
and equivalent to annealed disorder. Hence, the localization
observed here is a non-Markovian effect, more like the lo-
calization due to quenched impurities. It remains an open
question to compare the differences of these two kinds of
bath-induced localization.
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APPENDIX A: SYSTEM SIZE DEPENDENCE
OF ORDER PARAMETER

In this section, we find an analytical expression for the
quantity 〈cos[φ(x, τ )]〉, which is equal to exp{− 1

2 〈[φ(�r)]2〉}
for Gaussian theories.

For our variational ansatz, we need to calculate

〈cos[φ(�r)]〉 = exp(S1) = exp

⎛
⎝− 1

2βL

∑
q,ωn

1
u

πK q2 + 2α
π2 |ωn| + 2a1|ωn|3/2 + 2a2ω2

n

⎞
⎠.

To calculate the sum inside the exponential, we send the limit
of integration over q from zero to infinity and the integral over
ω from 1/β to 1/l0, where l0 is the microscopic cutoff. By
doing so, one can find the small ω behavior of the sum as
below:

S1 = 1

4

√
K

πu

[
a1π

3

(2α)3/2l0
− 2π√

2αl0

]
+

√
πK

8uα

1√
β

− a1π
3

4

√
K

8uα3

1

β
. (A1)

We put this back into the expression of 〈cos[φ(�r)]〉, and from
a large β (zero temperature limit) expansion, we obtain the

finite-sized dependence of the order parameter:

〈cos[φ(�r)]〉var = c1 + c2√
β

+ c3

β
,

c1 = exp

{
1

4

√
K

πu

[
a1π

3

(2a)3/2l0
− 2π√

2αl0

]}
,

c2 = c1

√
πK

8uα
,

c3 = c1

(
πK

16uα
− a1π

3

4

K

8uα3

)
. (A2)
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FIG. 4. Calculation of different quantities for K = 0.55 that characterizes Luttinger liquid (LL; α = 0.05, top row) and dissipative phase
(α = 10, bottom row). Blue and red points correspond to L = β = 384 and 128, respectively. (left) Due to symmetry, πχ = Kr/ur is equal
to K/u = 0.55 for all values of α and all length scales. (middle) For α = 0.05, ωnC(ωn) saturates to Kr/2 = 0.273 as ωn → 0; whereas for
α = 10,

√
ωnC(ωn) saturates to [Krπ/(8αrur )]1/2 = 0.156. The other fitting constants are a1 = 16.61 and a2 = 571.4. (right) For α = 0.05,

〈cos(φ)〉 decays as a power law, which allows us to extract Kr = 0.546, consistent with the fit of ωnC(ωn). For α = 10, it saturates to a constant,
as predicted by the variational ansatz (the fit gives c1 = 0.788, c2 = 0.215, and c3 = 0.012). (bottom row) Behavior of different renormalized
parameters as a function of dissipative coupling α. Kr/ur (red square points) remains constant and equal to K/u = 0.55 for all values of α.
Kr , extracted from 〈cos(φ)〉 analysis (purple circular points) agrees with the one from the C(ω) analysis (blue triangular points). It approaches
Kc = 0.5 as α reaches the critical point. The parameter αr (green circular points) starts to be defined in the dissipative phase and increases
rapidly with increase in α. This behavior of the parameter allows us to locate the different phases: For α < 0.25, the system is in LL phase,
whereas for α > 2, the system is in dissipative phase. The phase transition takes place for α ∈ (0.25, 2). We believe α = 0.25 to be in the
critical region as Kr extracted from 〈cos(φ)〉 is very close to Kc = 0.5, αr is very small, and ωnC(ωn) saturates for a long range of ωn but then
starts decreasing.

APPENDIX B: TILT SYMMETRY OF THE ACTION

In this section, we explain why the parameter K/u, which
identifies with the susceptibility χ , remains constant for all
dissipative coupling α [32,33]. To compute the susceptibility,
we introduce a finite magnetic field h in the z direction. Then
the susceptibility can be written as χ = ∂2

∂ (hβ )2 (ln Z[h]), where
Z is the partition function and β is the inverse temperature of
the system. In the bosonized language, the term −h

∑
j Sz

j in

the Hamiltonian gives rise to the term − h
π

∫
[∇φ(x, τ )]dxdτ

in the action. Hence, the partition function of the system can

be written as

Z[h] =
∫

D[φ] exp

{[
−SLL − Sint + h

π

∫
∇φ(x, τ )dxdτ

]}
.

(B1)

One can rewrite the terms u
2πK (∇φ)2 − h

π
∇φ as u

2πK (∇φ −
hK
u )2 − h2K

2πu . Introducing the tilt φ̃ → φ − hKx
u , the partition

function can be rewritten:

Z[h] =
∫

D[φ̃] exp

{(
−SLL[φ̃] − Sint[φ̃] + β2h2K

2uπ

)}
.

(B2)
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The key point is that the interacting action Sint is invariant
under the tilt transformation Sint(φ̃ + hkx

u ) = Sint(φ̃). From the
previous equation, it can be easily seen that

ln Z[h] = β2h2K

2uπ
+ ln Z[h = 0]. (B3)

From this expression, the susceptibility can be easily com-
puted, which is finally given by

χ = ∂2

∂ (βh)2

β2h2K

2uπ
= K

uπ
. (B4)

APPENDIX C: NUMERICAL DETAILS

In this section, we describe the numerical procedure for
this paper. We denote the discretized two-dimensional field
as φi j , where i ∈ [1, L] and j ∈ [1, β] with periodic boundary
conditions in both directions. Our strategy is to start from a
flat interface φi j = 0 at t = 0 and then let it evolve according
to the Langevin equation [34]:

dφi j (t )

dt
= −δS[φi j (t )]

δφi j
+ ηi j (t ), (C1)

where ηi j (t ) is a white noise, specified by the correlations
〈ηi j (t )〉 = 0 and 〈ηi j (t )ηi′ j′ (t ′)〉 = 2δi,i′δ j, j′δ(t − t ′). Note that
the time t that appears in Eq. (C1) should not be confused
with the imaginary time τ . When t → ∞, the surface φi, j (t )
obtained by direct integration of Eq. (C1) is equilibrated with
the action S[φ]. Hence, the Langevin equation, which we

numerically simulate, is given by

dφi j (t )

dt
= α

π2

∑
j′

D(| j − j′|) sin[2(φi j′ − φi j )]

+ 1

uKπ
[φi, j+1 + φi, j−1 − 2φi, j]

+ u

Kπ
[φi+1, j + φi−1, j − 2φi, j] + ηi j (t ). (C2)

To obtain a correct discretization of the long-range kernel
D( j − j′), we use the same protocol as in Ref. [35]. For β →
∞, we set

D( j − j′) =
∫ 2π

0

dω

2π
exp[iω( j − j′)]{2[1 − cos(ω)]}1/2

= 1

( j − j′)2 − 1
4

.

At finite β, the periodic boundary conditions are implemented
as

D( j − j′) =
β/2∑

k=−β/2

1

(| j − j′| + kβ )2 − 1
4

. (C3)

To conclude, we remark that, in the numerical integration,
the term δS[φi j (t )]

δ(φ) is multiplied by �t , whereas ηi j (t ) is mul-

tiplied by
√

�t . Here, we use the stochastic second-order
Runge-Kutta algorithm for white noise [34]. Using this is
preferable, as this is much faster than the standard Euler’s al-
gorithm. We choose the value of the Langevin time step �t =
0.05. To benchmark the equilibration time of the surface,
we used the harmonic approximation sin[2(φi j′ − φi j )] →
2(φi j′ − φi j ) that can be analytically solved.
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