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Finite projected entangled pair states for the Hubbard model
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We adapt and optimize the projected-pair-entangled-state (PEPS) algorithm on finite lattices (fPEPS) for two-
dimensional Hubbard models and apply the algorithm to the Hubbard model with nearest-neighbor hopping
on a square lattice. In particular, we formulate the PEPS algorithm using projected entangled pair operators,
incorporate SU(2) symmetry in all tensor indices, and optimize the PEPS using both iterative-diagonalization-
based local bond optimization and gradient-based optimization of the PEPS. We discuss the performance and
convergence of the algorithm for the Hubbard model on lattice sizes of up to 8×8 for PEPS states with U(1)
symmetric bond dimensions of up to D = 8 and SU(2) symmetric bond dimensions of up to D = 6. Finally, we
comment on the relative and overall efficiency of schemes for optimizing fPEPS.
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I. INTRODUCTION

One of the most important models used to study strongly
correlated electron systems is the Hubbard model [1]. Origi-
nally, it was conceived to model narrow energy bands within
many-body quantum systems in order to study the behavior of
observables at low temperatures and, in particular, to study the
Mott transition [2,3]. With the discovery of high-temperature
superconductors in the cuprates in 1986 [4], the focus of
interest shifted to using the two-dimensional Hubbard model
to model the electronic transport within copper-dioxide planes
common to all the high-Tc cuprates [5–8]. A tendency to-
wards superconducting pairing with d-wave symmetry found
in numerical and in perturbation-theory calculations [9] rein-
forced the picture of the two-dimensional Hubbard model as a
minimal model for high-Tc superconductivity in the cuprates.
Experimental studies by Tranquada and coworkers [10–12]
further expanded knowledge of phenomena found in cuprates
in that stripe structures, consisting of oscillating spins and
charge densities, were found to be present in the underdoped
region in a variety of high-Tc cuprates. These stripe phases
generally compete with the superconducting pairing, so that
superconductivity is suppressed, especially at particular com-
mensurate band fillings. Subsequent studies of the t-J-model
[13] and the underdoped Hubbard model [14] were able to
qualitatively reproduce aspects of this characteristic behavior.

Despite these and many other insights gained into the
behavior of the two-dimensional Hubbard model within and
outside of the context of high-temperature superconductors,
many aspects of the low-temperature behavior remain con-
tentious, such as the competition of different pairing orders
[14], the proper description of topological phases, and the
overall behavior in the thermodynamic limit in two dimen-
sions [15,16].

Many analytical and numerical methods exist for study-
ing strongly correlated quantum systems in general and the
Hubbard model in particular. For the ground-state calculation
in one dimension, the most efficient numerical method is
the density matrix renormalization group (DMRG) [17,18],

in which the wave function is efficiently approximated as
a matrix product state (MPS) [19]. Coupled chains as well
as more general two-dimensional systems of limited width
have been studied extensively using the DMRG [14,20–34]
by mapping the two-dimensional lattice onto the intrinsically
one-dimensional MPS. However, due to the linear increase of
entropy and thus exponential increase of computational effort
with the width of the lattice in two dimensions, the thermo-
dynamic limit will probably remain inaccessible [35,36]. In
order to circumvent this exponential computational hurdle,
Verstraete et al. introduced projected entangled pair states
(PEPS) [37], which are the natural generalization of MPSs to
two dimensions. It has been shown that PEPSs are the ground
states of local Hamiltonians [38–40] and are thus promising
candidates for studying two-dimensional quantum systems.
Murg et al. conducted one of the first numerical simulations
and provided benchmark results for hard-core bosons [41] and
frustrated spin systems [42]. Further PEPS-based simulations
were conducted by Lubasch and coworkers [43,44], who fo-
cused on the Heisenberg model.

Development and application of methods to treat fermions
using PEPS has been led by Corboz and coworkers, who
have concentrated primarily on the infinite PEPS (iPEPS)
algorithm originally introduced by Jordan et al. [45]. In this
method, translational invariance is emulated by replicating a
unit cell infinitely in all spatial dimensions. To distinguish the
original version of PEPS with open boundary conditions from
iPEPS, we designate it finite PEPS (fPEPS) here. In a series of
papers [46–49], Corboz et al. used both fPEPS and iPEPS to
examine the t-J-model, a simplified version of the Hubbard
model. They found the stripe structure, in which both the
charge and the spin density of electrons oscillate over multiple
sites and compete with d-wave pairing. In recent years, the
most prominent variation of PEPS algorithms has been iPEPS
optimized via imaginary time evolution. In addition, gradient
optimizations of the entire PEPS have proven to be successful
[50–52].

In this paper, we revisit the original finite PEPS algorithm,
which treats a finite lattice with open boundary conditions.
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Working on a specific finite lattice has the decided advantage
that energies and observables can be compared directly to
those obtained with other finite-lattice numerical methods, in
particular, with exact diagonalization and with the DMRG,
both of which are strictly variational. We note that PEPS-
based algorithms are not strictly variational in general because
the contraction of a two-dimensional tensor network must
be carried out approximately in order to be efficient [37,40].
In addition, optimization of PEPS states has typically been
carried out using imaginary-time evolution within the Trot-
ter approximation, which introduces an additional systematic
Trotter error, further complicating a variational comparison.
Therefore, our comparison will give us a stringent test bed
for evaluating the accuracy and convergence behavior of the
fPEPS as well as determining to what extent it obeys the
variational principle.

In developing our variant of the fPEPS algorithm, we have
made an effort to incorporate as large a scope of modern
ideas and methods as possible. In particular, the fact that
MPS-based algorithms have profited significantly from the
formulation of matrix-product operators (MPOs) has moti-
vated us to develop a general scheme for formulating fPEPS
algorithms in terms of the generalization of MPOs, projected
entangled pair operators (PEPOs) [53]. Since the Hubbard
model at general band filling and zero magnetic field has
SU(2) symmetry in the spin sector and U(1) symmetry in
the charge sector, we incorporate these symmetries explicitly
into our construction of PEPSs and PEPOs. In addition, we
build bookkeeping for the fermionic sign into our PEPOs,
which is a different formulation than the original one of
Refs. [46,54] in terms of fermionic swap gates. For MPS algo-
rithms, variational iterative diagonalization of a local effective
Hamiltonian is a powerful tool for optimizing an MPS and
forms the basis of the DMRG algorithm. We adapt a scheme
for carrying out a local-bond-based variational optimization
of a PEPS [55] to fPEPS, formulating variants that carry out
single site as well as bond optimization. Note that a local-
optimization-based treatment of the Hubbard model within
fPEPS using the a scheme based on Ref. [56] was recently
described in Ref. [57]. In order to reduce the size of the
effect Hilbert spaces that must be treated within local vari-
ational optimization, we generalize the recently formulated
controlled bond expansion (CBE) of Gleis et al. [58] to reduce
the numerical cost of local bond optimization in fPEPS. We
also apply an alternative optimization scheme for PEPS based
on a gradient of the energy functional that was first applied
by Vanderstraeten et al. [50] to PEPS algorithms to fPEPS.
In addition, we have reexamined and reworked the scheme for
approximately contracting an fPEPS network first described in
Ref. [37], concentrating on improving stability and efficiency;
here we have found a scheme to reduce the numerical effort
needed to optimize the contracted environment using an adap-
tation of the CBE mentioned above [58].

Clearly, our method is tailored for short-ranged two-
dimensional strongly interacting quantum lattice models,
especially ones with fermionic degrees of freedom and SU(2)
spin symmetry. Thus, our method is intended to treat the two-
dimensional Hubbard model, its extensions, as well as other
related models (e.g., Heisenberg models). As a benchmark
system, we take the usual two-dimensional Hubbard model

with nearest-neighbor hopping on a finite square lattice with
open boundary conditions, i.e., treat the Hamiltonian

H = − t
∑

〈i, j〉,σ
(c†

i,σ c j,σ + H.c.) + U
∑

i

ni,↑ ni,↓, (1)

where

ni,σ = c†
i,σ ci,σ

is the local particle-density operator. The notation 〈i, j〉 in-
dicates nearest-neighbor sites on an L×L lattice with open
boundary conditions. The total number of sites is then V = L2.
We work in the canonical ensemble, so that the numbers of
spin-up electrons N↑ and spin-down electrons N↓ or, equiv-
alently, the total particle number N ≡ N↑ + N↓ and the z
component of the total spin Sz ≡ (N↑ − N↓)/2, are conserved.
Conservation of total particle number corresponds also to the
conservation of the deviation from half filling Cz ≡ (N↑ +
N↓ − V )/2, which is the charge-sector analog of Sz. Here we
will be interested in non-magnetized ground states, so we will
take Sz = 0 in this paper. Ground states in the Sz = 0 sector
generically have total spin S = 0, so that we will concentrate
on this case for calculations that explicitly take the SU(2) spin
symmetry into account. We additionally specify the overall
band filling using the average particle number 〈n〉 = N/V and
take t = 1 to be the scale of the Hamiltonian so that there are
two independent physical parameters, the on-site interaction
U and the average particle number 〈n〉.

This paper is organized as follows: Section II A gives a
concise definition of PEPSs and their entanglement struc-
ture. In Sec. II B, we construct the corresponding projected
entangled pair operator (PEPO), which is the Hamiltonian
adapted to the topology of the PEPS. Section III introduces
a generic scheme to incorporate SU(2)-symmetries into the
PEPS-PEPO framework. In Sec. IV A, we explain in detail
how to calculate expectation values approximately within the
PEPS-PEPO scheme. Section IV B presents two different op-
timization procedures; the first is comprised of local updates
implemented using a sequence of iterative diagonalizations
of local effective Hamiltonians, similar to that used in the
DMRG. The second procedure is based on direct gradient
optimization of the PEPS tensors. We find that a combination
of the two procedures provides the best results. In Sec. V,
we present benchmark results for the two-dimensional Hub-
bard model, discussing accuracy and the convergence and its
dependence on overall bond dimension and on environment
dimension for lattices sizes ranging from 3×3 to 8×8. Finally,
we discuss the convergence issues and the state of develop-
ment of the fPEPS-PEPO scheme in Sec. VI.

II. PROJECTED ENTANGLED PAIR STATE SCHEME

In this section, we will define the states and operators
used in PEPS-based methods, concentrating on the finite-
lattice PEPS algorithm, as first proposed in Ref. [37]. We use
a tensor-network formulation to define operators and apply
them to a PEPS, i.e., we work in terms of PEPOs, analogous to
matrix product operators (MPOs). The extension of an MPO
to a more general tensor network can be termed a tensor
network operator (TNO), of which a PEPO is a special case.
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FIG. 1. Projected entangled pair state. (a) PEPS bulk tensor and
(b) PEPS on a 4×4 lattice.

We will first give a general definition of an fPEPS, followed
by a definition of a PEPO and its construction.

A. Finite projected entangled pair state

Consider a generic many-body wave function on N sites

|ψ〉 =
∑

j1,..., jN

ψ j1,..., jN | j1, . . . , jN 〉. (2)

Here | j1, . . . , jN 〉 = | j1〉 ⊗ · · · ⊗ | jN 〉 are many-body basis
states with ji = 1, . . . , d , where d is the dimension of a local
Hilbert space. A convenient way to store this wave function on
a two-dimensional lattice is as a PEPS as introduced by Ver-
straete and Cirac in 2004 [37]. In a PEPS, each bond between
adjacent sites is associated with a maximally entangled state

|φ〉 =
D∑

k=1

|k, k〉 (3)

in a virtual Hilbert space, where D is the maximum bond di-
mension. Conversely, this means that a bulk site i is connected
to four virtual bonds ui, di, li, and ri. If we define a projector
Qi that maps virtual bonds at site i to the physical bond ji, we
can define the rank-5 PEPS tensor

Ai = Aji
ui,di,li,ri

= 〈 ji|Qi|ui, di, li, ri〉, (4)

which is depicted graphically [59] in Fig. 1(a). Tensors at
the edges or the corners of the lattice are rank-4 and rank-
3, accordingly. There is no straightforward way of writing
the entire PEPS as an explicit equation due to the two-
dimensional arrangement of tensors, which is why we define
it simply as

|ψ〉 =
∑

j1,..., jN

F (A1 A2 . . . AN )| j1, . . . , jN 〉,

F (Ai A2 . . . AN ) = ψ j1,..., jN (5)

for a lattice of N sites, where F is a function that contracts
common indices in PEPSs. Figure 1(b) illustrates this arrange-
ment on a 4×4 lattice with virtual indices v and physical
indices p. Note that the construction of Ai via Qi is mainly
academic; in practical simulations, a PEPS will be initialized
as a product state with virtual indices of dimension one or via
random tensors. As the optimization proceeds, the dimensions
then may change and lead to states, which are, in general, not
maximally entangled.

PEPSs are promising candidates for describing ground
states in two-dimensional quantum systems [39,40,44,55,
60,61]. Their introduction, however, leads to two compli-
cations: First, the exact calculation of expectation values
〈ψ |O|ψ〉 scales exponentially with system size, which is why
it has to be carried out approximately, and, second, due to the
high rank of bulk tensors, PEPS-based algorithms scale with a
high power of the number of virtual states D. We will discuss
these complications as well as ways to deal with them in more
detail in the following.

B. Projected entangled pair operators

Consider an electronic many-body system on a two-
dimensional square lattice that is described by the Hubbard
Hamiltonian (1), which we rewrite slightly as

H = −t
∑

〈i, j〉,σ
(c†

i,σ c j,σ + H.c.) + U
∑

i

c†
i,↑c†

i,↓ci,↓ci,↑. (6)

The fermionic creation and annihilation operators can be
written in terms of their action on the four basis states
{|0〉, |↑〉, |↓〉, |↑↓〉} spanning the local Hilbert space,

c†
↑ = |↑〉〈0| + |↑↓〉〈↓|,

c↑ = |0〉〈↑| + |↓〉〈↑↓|,
c†
↓ = |↓〉〈0| − |↑↓〉〈↑|,

c↓ = |0〉〈↓| − |↑〉〈↑↓|.
We wish to store the expression corresponding to Eq. (6) as

a PEPO, which has the same topology as the PEPS to which
it is supposed to be applied. We start by expanding the full
Hamiltonian for a lattice of a given width and height. For
example, for a 4×4 lattice with open boundary conditions, the
full operator reads, schematically,

H = (Uc†
↑c†

↓c↓c↑)1 ⊗ 12 ⊗ 13 ⊗ · · · ⊗ 116

+ 11 ⊗ (Uc†
↑c†

↓c↓c↑)2 ⊗ 13 ⊗ · · · ⊗ 116

. . .

+ 11 ⊗ 12 ⊗ · · · ⊗ 115 ⊗ (Uc†
↑c†

↓c↓c↑)16

+ (−tc†
↑P )1 ⊗ (c↑)2 ⊗ 13 ⊗ · · · ⊗ 116

+ 11 ⊗ (−tc†
↑P )2 ⊗ (c↑)3 ⊗ 14 ⊗ · · · ⊗ 116

. . .

+ (−tc†
↑P )1 ⊗ P2 ⊗ P3 ⊗ P4 ⊗ (c↑)5

⊗ 16 ⊗ · · · ⊗ 116

. . .
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FIG. 2. Sites and signaling channels in between for a 4×4 lattice.

where the parity operator

P = |0〉〈0| − |↑〉〈↑| − |↓〉〈↓| + |↑↓〉〈↑↓|
encodes the effect of the fermionic sign. The subscripts denote
the physical sites on which the operators act, whereas the
enumeration is chosen according to the scheme depicted in
Fig. 2.

Inspired by the construction of matrix product operators
via finite-state machines (FSMs), which was introduced by
Crosswhite et al. [62,63] and refined by Paeckel et al. [64],
we now conceptualize H as a regular expression. In particular,
for each unique sequence of operators on one site, we sub-
stitute one symbol (Uc†

↑c†
↓c↓c↑ →U, −tc†

↑P→A, c↑ →B,

−tc†
↓P → C, c↓ → D, tc↑P → E, c†

↑ → F, tc↓P → G,

c†
↓ → H, 1 → I, P → P). Nearest-neighbor hopping terms

are thus described by the four pairs AB, CD, EF, and GH.
Tensor products connecting different local Hilbert spaces are
then interpreted as concatenations, whereas the sums become
unions. In this way, all symbols form an alphabet, each sum-
mand of the many-body Hamiltonian becomes a word, and the
set of all words forms a regular language,

H = {UIIIIIIIIIIIIIII, IUIIIIIIIIIIIIII, . . . , IIIIIIIIIIIIIIIU,

ABIIIIIIIIIIIIII, IABIIIIIIIIIIIII, . . . ,

APPPBIIIIIIIIIII, . . .}.
Here we drop the subscripts—they are determined by the
position of a symbol in the sequence.

The PEPO we want to form will be a set of interconnected
FSMs, which generate all of the words of the language in
a two-dimensional fashion. In order to do this, we connect
adjacent sites through directed signaling channels, as depicted
in Fig. 2. The flow of information is defined as going upwards
and to the right. Information at the upper boundary is dropped,
while information at the right boundary is redirected to the
top, which makes the rightmost vertical channels of the lattice
the trunk. The upper-right corner (site 16 in Fig. 2) is thus the
sink, i.e., the location at which all the information passed by
the FSMs is gathered. Here it is determined whether a string
of symbols is actually a part of the language and, hence, is
a meaningful term of the Hamiltonian. For example, channel
5 reports what symbols have occurred on sites 5 and 6, and
channel 21 what symbols have occurred on sites 3, 7, and 11.

TABLE I. Finite-state machine for site 6 implemented as an
associative tensor. For the incoming states s4,i from channel 4 and
s16,i from channel 16, the symbol σi is inserted into the current word,
and s5,i and s17,i are emitted via channels 5 and 17.

C 4 C 16 C 5 C 17 S 6

s4,1 s16,1 s5,1 s17,1 σ1

s4,2 s16,2 s5,2 s17,2 σ2

s4,3 s16,3 s5,3 s17,3 σ3

. . .

Channel 23, as a trunk channel, carries information from the
entire block below, i.e., from all sites from 1 to 8. In this way,
each FSM can be seen as an associative tensor or table in
which a set of incoming and outgoing states forms a key, the
associated symbol represents their value, and the pair of both
is an element. The rank is equal to the coordination number,
which is two at the corners, three at the edges, and four
otherwise. As an example, the FSM on site 6 is schematically
described in Table I.

We define three distinct states, si, s f , and sP, which des-
ignate the initial state, the final state, and the parity state,
respectively. The symbol si indicates that, up to this point,
only identities (designated as “I”) have appeared, and the first
occurrence of a nontrivial symbol is pending. The symbol s f

designates the complement, namely that a valid combination
of nontrivial symbols has already appeared and, after the cur-
rent point, only identity symbols are allowed to be attached
to the word. Finally, the symbol sP takes the parity operators
(designated as “P”) from the Jordan-Wigner transformation
into account and connects vertical hopping terms in a way
that will be elucidated via an example later on. These states,
together with the two trivial symbols “I” and “P”, are used to
initialize the PEPO as depicted in Tables II and III. Note how
there are no elements with two incoming final states s f , which
prevents different words from mixing with each other.

After all of these preparations, the Hamiltonian can now
be converted into a PEPO by recasting every word into a set
of nontrivial pairs, with the first element being a nontrivial
symbol and the second the index of the site it acts on. Each
pair is then inserted into the PEPO by adding an element to
the tensor of the respective site. In this way, the entire PEPO
can be systematically constructed word for word.

For example, the word “IIIIIUIIIIIIIIII” translates as
{(U, 6)} and is incorporated into the PEPO by adding the
element {(si, si, s f , s f ),U } to the tensor at site 6 in accordance

TABLE II. Initial elements of a bulk tensor/FSM. Here C Il and
C Ib are the two incoming channels from left and bottom, and C Or

and C Ot are the outgoing channels to the right and top, respectively.

C Il C Ib C Or C Ot S

si si si si I
si s f si s f I
s f si s f si I
si sP si sP I
s f sP s f sP I
sP si sP sP P
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TABLE III. Initial elements of a trunk tensor/FSM. Here C Il and
C Ib are the two incoming channels from left and bottom, and Ot is
the outgoing channel to the top.

C Il C Ib C Ot S

si si si I
s f si s f I
si s f s f I
s f sP s f I
sP si sP P

with Table I. The remaining 15 identity symbols not explicitly
contained in the set are taken care of by the previous initial-
ization.

The next type of words are those which represent hor-
izontal hopping terms, such as “IIIIIABIIIIIIIII”, as is
depicted in Fig. 3. The set of pairs for this case reads
{(A, 6), (B, 7)} and the elements, which need to be attached
to the tensors of site 6 and 7 are {(si, si, {(A, 6)}, s f ), A}
and {({(A, 6)}, si, s f , s f ), B}, respectively. This means that
at site 6, a word is initialized by inserting the symbol “A”.
A final state is emitted upwards, meaning that no other non-
trivial symbol is expected above, while the intermediate state
{(A, 6)} is sent to the right. At site 7, the latter state is received
from the left, the second symbol B is attached to the word, and
a final state is emitted both upwards and to the right.

Finally, we consider terms that span multiple rows, taking
“IAPPPBIIIIIIIIII”, which describes vertical hopping between
sites 2 and 6, as a concrete example; this case is depicted
in Fig. 4. Since the parity operators have been already
taken into account through proper initialization, the term is
effectively local and can be represented by inserting just
two pairs {(A, 2), (B, 6)} and the according tensor elements
{(si, sP, {(A, 2)}), A} and {(sP, {(A, 2)}, s f , s f ), B} at sites 2
and 6, respectively.

When a Hamiltonian contains nonlocal terms (a case that
we will not further cover explicitly in this paper), elements
may have been generated by a previous update of another
(nonlocal) term. In this case, a single element can be used
as a component of two or more words. Finally, it is crucial
to note that intermediate states must be defined as unordered
sets, meaning that {(A, i), (B, j)} = {(B, j), (A, i)}.

FIG. 3. Graphical depiction of the word “IIIIIABIIIIIIIII” em-
bedded in the PEPO.

FIG. 4. Graphical depiction of the word “IAPPPBIIIIIIIIII” em-
bedded in the PEPO.

The three examples considered above should cover all pos-
sible variants of words needed for local Hamiltonians and
describe how to insert them into the appropriate tensors. After
the PEPO has been fully assigned, all of the intermediate
states within keys, which are symbolic, can be encoded as
unique numbers so that the PEPO can be stored efficiently.
(For the case of the Hubbard model, the number of states
required to represent the Hamiltonian is exactly seven, con-
sisting of si, s f , sp, and the four nontrivial operators.) This
numbering can then be translated into the corresponding quan-
tum numbers, which for the Hubbard model treated here are
the spin S, its z component Sz, and the deviation of the parti-
cle number from half filling Cz. Once these steps have been
completed, the symbols within the tensors are replaced by
the full quantum-mechanical operators that they represent. To
take full advantage of the SU(2)-spin symmetry, the PEPO
tensors must be compactified using Eq. (16). The PEPO is now
ready to be used to implement the tensor-network algorithm of
one’s choice, such as variational optimization or imaginary- or
real-time evolution.

Finally, we comment on the role of the fermionic sign. Our
approach starts by applying the Jordan-Wigner transformation
and effectively pushing the fermionic sign into the Hamilto-
nian through a sequence of parity operators. This allows us
to treat all subsequent tensor operations bosonically. Alterna-
tively, one could omit using parity operators altogether and
incorporate the sign into the PEPS through fermionic swap
gates [46,54], which requires bookkeeping that tracks parity
in addition to charge and spin. While this approach seems
to be well suited when working with Trotter gates, we have
found swap gates to be too cumbersome to use in conjunction
with PEPOs. As is evident from our construction, the addi-
tional state, sP, ensures that the Hamiltonian remains local and
that the bond dimension of the PEPO does not increase with
system size. Note that the PEPO of any local Hamiltonian,
bosonic or fermionic, requires a special state that connects
vertical hopping terms.

III. SU(2)-SYMMETRIC TENSORS

In order to optimize PEPSs and calculate their expectation
values, we need to work efficiently with the tensors of which
they and their corresponding PEPOs are composed. Especially
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FIG. 5. Compactification of an SU(2)-invariant rank-4 tensor.

useful for this purpose is the exploitation of continuous sym-
metries, which are present in most local Hamiltonians. The
Hubbard model, in particular, exhibits a U(1) symmetry for
the charge degrees of freedom and a SU(2) symmetry for
the spin degrees of freedom in the absence of an external
magnetic field. The implementation of U(1) symmetries in
tensor networks has already been covered thoroughly, for in-
stance in Refs. [65,66], and will not be discussed in this paper.
Instead, we give a generic and concise documentation of how
to incorporate SU(2) symmetries into a networks of PEPS
tensors. Some of our concepts are similar to those presented
in previous work on SU(2) [67–69], but several techniques
differ in ways that may impact both implementation and
performance.

In the following, we first define SU(2)-symmetrized ten-
sors in Sec. III A, then define additional manipulations of the
tensors and their indexes that we will need to evaluate and op-
timize PEPS/PEPO tensor networks: permutation (Sec. III B),
contraction (Sec. III C), charge fusion (Sec. III D), and index
reversal (Sec. III E).

A. Definition

Consider the tensor operator T k
q , with total angular momen-

tum k and its z component q ∈ {−k,−k + 1, . . . , k − 1, k}.
Consider in particular its transformation properties under the
rotation

R = R(θ) = exp (−i θ · j), (7)

where θ is a vectorial angle, and the components of j satisfy
the angular-momentum algebra

[ jk, jl ] = i εklm jm. (8)

If

R T k
q R−1 =

∑
q′

T k
q′ Rk

q′,q, (9)

with

Rk
q′,q = 〈k q′|R|k q〉,

we can apply the Wigner-Eckart theorem

〈t1 j1 m1|T k
q |t2 j2 m2〉

= 〈t1 j1‖T k‖t2 j2〉〈 j2 k m2 q|| j1 m1〉, (10)

where ji and mi again parametrize angular momentum and
its z component, respectively, and ti denotes some additional
degeneracy. The right-hand side consists of the reduced matrix
element, 〈t1 j1‖T k‖t2 j2〉, which has no m dependence, and the
Clebsch-Gordan coefficient (CGC), 〈 j2 k m2 q|| j1 m1〉. If we
substitute ( j3, m3, t3) for (k, q), P for T k , and C for the CGC,
we obtain the representation of an SU(2)-invariant rank-3
tensor,

Ti1i2i3 = T( j1m1t1 ),( j2m2t2 ),( j3m3t3 )

= P( j1t1 ),( j2t2 ),( j3t3 ) C( j1m1 ),( j2m2 ),( j3m3 ). (11)

The entire machinery of SU(2)-symmetric tensors is based
on Eq. (11), as a tensor of arbitrary rank can now be con-
structed by multiplying rank-3 tensors and summing over
common indices. Figure 5 illustrates the resulting compact-
ification for a higher-dimensional tensor. In the upper-left
corner, we start with a rank-4 tensor with unspecified direc-
tions of bonds, depicted as bidirectional arrows. The first step
is to think of this object as a sequence of four rank-three
tensors, leading to external indices, (1,2,3,4), given by the
original tensor and internal indices, (0, 1, a, 4, 0). The direc-
tions of the latter are arbitrary; we set them here as going from
left to right. We now apply the Wigner-Eckart theorem in the
form of Eq. (11) to each of the four tensors, leading to the
factorization in the second line of Fig. 5. The final step is to
sum over common indices ji, ti, and mi that do not connect
P and C, which leads to the last line and is equivalent to the
following formula for a rank-4 tensor:

T( j1m1t1 ),( j2m2t2 ),( j3m3t3 ),( j4m4t4 )

=
∑

ja

P ja
( j1t1 ),( j2t2 ),( j3t3 ),( j4t4 ) · C ja

( j1m1 ),( j2m2 ),( j3m3 ),( j4m4 ).

(12)
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The scheme depicted in Fig. 5 can easily be generalized to
tensors of arbitrary rank r, leading to

T( j1m1t1 ),...,( jr mrtr )

=
∑

ja1 ,..., jar−3

P
ja1 ,..., jar−3

( j1t1 ),...,( jr tr ) C
ja1 ,..., jar−3
( j1m1 ),...,( jr mr ). (13)

In addition to r external indices, we thus obtain r − 3 indepen-
dent, internal, indices connecting the reduced tensor elements
with the CGCs. This degeneracy is a corollary of the triangle
inequality of angular momenta, j1 − j2 � j � j1 + j2, and
stands in contrast to a plain U(1) symmetry, where Abelian
quantum numbers just add up and lead to a Kronecker delta.

Adopting the terminology of Singh and Vidal [67], who
performed the same decomposition using fusion-splitting

trees, we term C
ja1 ,..., jar−3
( j1m1 ),...,( jr mr ) an intertwiner. Intertwiners in-

herit the orthogonality relations of CGCs in the form∑
m1,...,mr

C
ja1 ,..., jar−3
( j1m1 ),...,( jr mr ) C

ja′
1
,..., ja′

r−3
( j1m1 ),...,( jr mr )

= N
ja1 ,..., jar−3
j1,..., jr

δ ja1 , ja′
1
, . . . , δ jar−3 , ja′

r−3
, (14)

where

N
ja1 ,..., jar−3
j1,..., jr

=
∑

m1,...,mr

C
ja1 ,..., jar−3
( j1m1 ),...,( jr mr ) C

ja1 ,..., jar−3
( j1m1 ),...,( jr mr ), (15)

which can be used to flesh out the reduced tensors P for a
given full tensor T ,

P
ja1 ,..., jar−3

( j1t1 ),...,( jr tr ) = (
N

ja1 ,..., jar−3
j1,..., jr

)−1

×
∑

m1,...,mr

C
ja1 ,..., jar−3
( j1m1 ),...,( jr mr ) T( j1m1t1 ),...,( jr mrtr ).

(16)

To verify SU(2) symmetry, one can then reinsert P into
Eq. (13) and check if the initial and final T are equal.

The purpose of this scheme is thus to be able to operate on
a compressed object P instead of the full tensor T , given that
the model under investigation is SU(2) invariant. Except for
the initialization of the algorithm, the intertwiners C are not
actually calculated, but serve as placeholding aids to derive
the elementary tensor operations discussed in the following.

B. Permutation

Consider the permutation of two adjacent indices in a rank-
4 tensor. Through Eq. (13), the two orders are defined as
follows:

T( j1m1t1 ),( j2m2t2 ),( j3m3t3 ),( j4m4t4 )

=
∑

ja

P ja
( j1t1 ),( j2t2 ),( j3t3 ),( j4t4 ) · C ja

( j1m1 ),( j2m2 ),( j3m3 ),( j4m4 ), (17)

T( j1m1t1 ),( j3m3t3 ),( j2m2t2 ),( j4m4t4 )

=
∑

j′a

P j′a
( j1t1 ),( j3t3 ),( j2t2 ),( j4t4 ) · C j′a

( j1m1 ),( j3m3 ),( j2m2 ),( j4m4 ). (18)

Note how the first internal index ja differs from the second
j′a. Since we want all orders of indices to be consistent with
respect to the decomposition in Fig. 5, we think of a given

FIG. 6. Permutation of an SU(2)-invariant rank-4 tensor.

P ja
( j1t1 ),( j2t2 ),( j3t3 ),( j4t4 ) as being multiplied by the corresponding

intertwiner, then permuted as usual, and finally compacti-
fied through Eq. (16), leading to the new reduced tensor
P j′a

( j1t1 ),( j3t3 ),( j2t2 ),( j4t4 ),

P j′a
( j1t1 ),( j3t3 ),( j2t2 ),( j4t4 )

= (
N j′a

j1, j3, j2, j4

)−1 ∑
ja

P ja
( j1t1 ),( j2t2 ),( j3t3 ),( j4t4 )

· X ja, j′a
( j1, j2, j3, j4 ),( j1, j3, j2, j4 ), (19)

where

X ja, j′a
( j1, j2, j3, j4 ),( j1, j3, j2, j4 )

=
∑

m1,m2,m3,m4

C ja
( j1m1 ),( j2m2 ),( j3m3 ),( j4m4 )

· C j′a
( j1m1 ),( j3m3 ),( j2m2 ),( j4m4 ). (20)

Figures 6(a) and 6(b) depict the clusters of CGCs that make up
N and X , respectively, where each circle represents a CGC and
each line a common index. Since Eq. (19) requires only their
ratio, the CGCs at the edges cancel out and lead to Fig. 6(c).
The left cluster can easily be calculated using the orthogonal-
ity relations of CGCs. The right cluster is proportional to a
Wigner 6-j symbol and can be calculated analytically using
the Racah-formula or numerically by generating the CGCs
and summing over indices according to the sketch. Note that
for every single ja, there are potentially multiple j′a.

The best way to implement an arbitrary permutation is
through successive permutations of two adjacent indices.
These computations are the only expensive ones within the
SU(2) bookkeeping, which is why the resulting prefactors
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FIG. 7. Contraction of two SU(2)-invariant rank-4 tensors.

N−1 · X are best calculated on demand and then cached for
future retrieval.

C. Contraction

As a minimal, but sufficiently general, example for the
contraction of tensors, we consider two rank-4 tensors, T 1 and
T 2, summed over two common indices. The first step is to
permute both orders of indices using the scheme outlined in
the previous section to bring them into the following form:

T 1
( j1m1t1 ),( j2m2t2 ),( j3m3t3 ),( j4m4t4 )

=
∑

ja

P1, ja
( j1t1 ),( j2t2 ),( j3t3 ),( j4t4 ) · C ja

( j1m1 ),( j2m2 ),( j3m3 ),( j4m4 ),

(21)

T 2
( j3m3t3 ),( j4m4t4 ),( j5m5t5 ),( j6m6t6 )

=
∑

ja

P2, ja
( j3t3 ),( j4t4 ),( j5t5 ),( j6t6 ) · C ja

( j4m4 ),( j3m3 ),( j5m5 ),( j6m6 ).

(22)

Note the different orders of indices in Eq. (22). The indexing
(3,4,5,6) on the degenerate level allows for the contraction to
be implemented as a matrix-matrix multiplication, whereas
the order (4,3,5,6) on the structural level leads to a trivial
cluster of CGCs. Analogously to Sec. III B, we think of the
reduced tensors P1 and P2 as being multiplied by their inter-
twiners, contracted, and then compactified via Eq. (16). If the

result is defined by

T 3
( j1m1t1 ),( j2m2t2 ),( j5m5t5 ),( j6m6t6 )

=
∑

ja

P3, ja
( j1t1 ),( j2t2 ),( j5t5 ),( j6t6 ) · C ja

( j1m1 ),( j2m2 ),( j5m5 ),( j6m6 ),

(23)

the reduced tensor P3 can be written as

P3, ja
( j1t1 ),( j2t2 ),( j5t5 ),( j6t6 )

= (
N ja

j1, j2, j5, j6

)−1 ∑
j3,t3, j4,t4

P1, ja
( j1t1 ),( j2t2 ),( j3t3 ),( j4t4 )

· P2, ja
( j3t3 ),( j4t4 ),( j5t5 ),( j6t6 ) · Y ja

( j1, j2, j3, j4 ),( j4, j3, j5, j6 ),( j1, j2, j5, j6 ),

(24)

where

Y ja
( j1, j2, j3, j4 ),( j4, j3, j5, j6 ),( j1, j2, j5, j6 )

=
∑

m1,...,m6

C ja
( j1m1 ),( j2m2 ),( j3m3 ),( j4m4 )

· C ja
( j4m4 ),( j3m3 ),( j5m5 ),( j6m6 ) · C ja

( j1m1 ),( j2m2 ),( j5m5 ),( j6m6 ). (25)

The clusters N and Y are depicted graphically in Figs. 7(a) and
7(b), respectively. Due to the advantageous order of indices,
the cluster Y and thus the ratio given in Fig. 7(c) is now
a trivial sum over CGCs that can be processed using their
orthogonality relations and the identity

〈 j1 m1 j2 m2|| j m〉 = (−1) j1+ j2− j〈 j2 m2 j1 m1|| j m〉. (26)

The generalization to arbitrary contractions is straightforward.
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FIG. 8. Fusion of three indices in an SU(2)-invariant rank-5 tensor.

The approach presented above can be shown to be equiv-
alent to the use of X symbols introduced by Weichselbaum
[69].

D. Charge fusion

In order to perform singular value decompositions in ten-
sor networks, indices need to be fused beforehand and split
afterwards. For this purpose, we take a rank-5 tensor as an
example and conceptualize its reduced version as a sequence
of rank-three tensors with internal angular momenta ja and jb
and fictitious, internal, dense, indices ta and tb, as depicted
in Fig. 8. Suppose that the indices 3, 4, and 5 have to be
fused by an isometry Q. Due to the selection rules of CGCs,
the external angular momenta, j3, j4, and j5, do not uniquely
identify the outcome of fusion, in contrast to the case of U(1)
symmetry, for which the outcome would simply be the sum
of Abelian quantum numbers. Instead, the final index of the
isometry is dictated by the internal index of the reduced tensor,
in this case ja. To isolate it, we think of the reduced isometry
as a sequence of rank-3 tensors as well, shown as four Q’s with
the reverse order of indices in Fig. 8. Adjacent P’s and Q’s are
now contracted from the inside out. The first two yield a result
proportional to δ j5, j′5 δt5,t ′

5
due to SU(2) invariance, which can

be absorbed to either the left or the right. The next contraction
eliminates ( jb tb), and the last one finally exposes ( ja ta). The
dimension da of ta is determined by

da =
∑

j3, j4, j5, jb

(d3 d4 d5) j3, j4, j5, jb . (27)

One may again contrast this with U(1) symmetry, where the
sum over jb would be missing. The next step is to determine

the proper prefactor Q
j′b
j5 j4 j3 j′a

that yields unitarity. With this in

mind, we note that the reduced isometry Q
j′b
( j5t5 ),( j4t4 ),( j3t3 ),( j′at ′

a )

is accompanied by the intertwiner C
j′b
( j5m5 ),( j4m4 ),( j3m3 ),( j′am′

a ). To

ensure Q Q† = 1, the following condition must then hold:

Q
j′b
j5 j4 j3 j′a

Q
j′b
j5 j4 j3 j′′a

·
∑

m5,m4,m3

C
j′b
( j5m5 ),( j4m4 ),( j3m3 ),( j′am′

a )

×C
j′b
( j5m5 ),( j4m4 ),( j3m3 ),( j′′a m′′

a ) = δ j′a, j′′a δm′
a,m

′′
a

(28)

⇒ Q
j′b
j5 j4 j3 j′a

=
√

2 j′a + 1

N jb
j5, j4, j3, j′a

. (29)

As in the case of permutation and contraction, we assume that
this example of charge fusion is sufficient to illustrate how to
proceed in the general case.

E. Index reversal

The contraction of two tensors sometimes requires the
reversal of indices, so that joint indices to be summed over
are always ingoing for one and outgoing for the other. If
all indices are initialized so that this condition is met in the
beginning of a tensor network algorithm, and their directions
are consistently reassigned during decompositions, it is suf-
ficient to implement the reversal of all indices of a tensor
only. To this end, we again consider our standard example of
a rank-4 tensor, this time with specified directions of indices,
say (out,in,in,out)

T( j1m1t1 ),( j2m2t2 ),( j3m3t3 ),( j4m4t4 )

=
∑

ja

P ja
( j1t1 ),( j2t2 ),( j3t3 ),( j4t4 ) · C ja

( j1m1 ),( j2m2 ),( j3m3 ),( j4m4 ). (30)

We denote the flipped set of directions, (in,out,out,in), by a
tilde

T̃( j1m1t1 ),( j2m2t2 ),( j3m3t3 ),( j4m4t4 )

=
∑

ja

P̃ ja
( j1t1 ),( j2t2 ),( j3t3 ),( j4t4 ) · C̃ ja

( j1m1 ),( j2m2 ),( j3m3 ),( j4m4 ). (31)

Since the indices of a full tensor T can be flipped simul-
taneously without changing its value, T = T̃ . Following the
methods of the previous sections, we multiply a given P
with its intertwiner C, flip the indices, and compactify using
Eq. (16), applying the intertwiner C̃ with reversed external
indices,

P̃ ja
( j1t1 ),( j2t2 ),( j3t3 ),( j4t4 ) = (

Ñ ja
j1, j2, j3, j4

)−1 ∑
ja

P ja
( j1t1 ),( j2t2 ),( j3t3 ),( j4t4 )

×Z ja, ja
( j1, j2, j3, j4 ),( j1, j2, j3, j4 ), (32)

Z ja, ja
( j1, j2, j3, j4 ),( j1, j2, j3, j4 ) =

∑
m1,m2,m3,m4

C ja
( j1m1 ),( j2m2 ),( j3m3 ),( j4m4 )

· C̃ ja
( j1m1 ),( j2m2 ),( j3m3 ),( j4m4 ). (33)

The resulting clusters N and Z are depicted in Figs. 9(a) and
9(b), respectively, and can again be processed by utilizing the
orthogonality relations of CGCs.
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FIG. 9. Index reversal of an SU(2)-invariant rank-4 tensor.

IV. EVALUATING AND OPTIMIZING A PEPS

We now turn to extracting physical properties from an
fPEPS (or, more precisely, a tensor network composing of
fPEPS and PEPOs). First, we need to describe how to evaluate
expectation values of fPEPS-PEPO tensor networks; they are
required to implement optimization schemes as well as to
measure observables. Subsequently, we describe two different
schemes to variationally optimize fPEPS: local updates based
on the iterative diagonalization of effective Hamiltonians for
a single site or a single bond, and a global optimization of
the fPEPS in which an approximation to the gradient of the
energy functional is used as the basis of a gradient-based
optimization scheme.

A. Expectation values

Given the representations of PEPSs and PEPOs described
in previous sections, we now consider the calculation of

(a) (b)

(c) (d)

(e) (f)

FIG. 10. Naive contraction of a PEPS-based tensor network. (a) 〈ψ |Ô|ψ〉 as a tensor network, (b) Contraction of first environment,
(c) Contraction of second environment, (d) Contraction of third environment, (e) Contraction of fourth environment, and (f) Contraction
of remaining tensors.
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≈

FIG. 11. Approximation of environment.

expectation values using these representations, i.e., 〈ψ |Ô|ψ〉.
The straightforward sequential contraction of an fPEPS-
PEPO-fPEPS tensor network one might naively utilize to do
this is illustrated in Fig. 10 for a 4×4 lattice. Figure 10(a) de-
picts the initial tensor network. The upper, middle, and lower
planes are the fPEPS, PEPO, and adjoint fPEPS respectively.
The subsequent contraction steps, depicted in Figs. 10(b)–
10(e), successively build environments until the border is
reached and the remaining tensors are contracted into a single
number, yielding 〈ψ |Ô|ψ〉 in Fig. 10(f).

The difficulty with this naive approach is evident: In every
new contraction step, the rank of the intermediate tensors
increases; this explosion of tensor complexity cannot be
circumvented by choosing any other conceivable order of
contractions. The exact contraction of fPEPS-based tensor
networks thus scales exponentially with respect to system
size and is therefore not feasible to carry out in realistic
applications. However, we can circumvent this problem by
constructing a sufficiently well-controlled approximation for
each environment.

The environment approximation scheme we use here is
depicted in Fig. 11; this scheme is is similar to the boundary-
MPO construction used in Ref. [43]. Suppose we are given
the arrangement of tensors on the left, which consist of en-
vironment blocks Ei−1, j , typically retained from a previous
calculation step, fPEPS tensors Ai, j , their adjoints A†

i, j , and
PEPO tensors Wi, j . The goal is to find the tensors Ei, j on
the right, which, as a whole, approximate the cluster on the
left as well as possible by forming cumulative indices γi, j

with a predetermined maximum bond dimension χ [37]. If
we interpret the former network as a full vector, i.e.,

|ψ〉 = (Ei−1,1 · Ai,1 · Wi,1 · A†
i,1)·

. . . · (Ei−1,N · Ai,N · Wi,N · A†
i,N ), (34)

and the latter as a truncated vector,
˜|ψ〉 = Ei,1 · Ei,2 · · · · · Ei,N , (35)

the problem can be stated as finding the maximum of the
fidelity

F = 〈ψ |ψ̃〉〈ψ̃ |ψ〉
〈ψ̃ |ψ̃〉〈ψ |ψ〉 , (36)

whose solution, in general, is given by

〈ψ̃ |ψ̃〉 = 〈ψ̃ |ψ〉. (37)

Using Eq. (37) to find the optimal ˜|ψ〉 as a whole is not
possible because ˜|ψ〉 consists of multiple tensors, and con-
tracting all of them is actually what we want to avoid. Instead,

(a) (b)

(c) (d)

(e) (f)

(g)
(h)

FIG. 12. Initialization of truncated environment ˜|ψ〉. (a) Initial
arrangement, (b) Contraction, (c) Decomposition, (d) Contrac-
tion, (e) Decomposition, (f) Contraction, (g) Decomposition, and
(h) Contraction.

we start with a trial vector constructed as shown in Fig. 12.
The cluster in Fig. 12(a) is the original |ψ〉, while the subse-
quent figures illustrate how to systematically forge a truncated
environment with a bond dimension of one by alternately
carrying out contractions and truncated SVDs. The outcome,
Fig. 12(h), is then the starting point for an iterative algorithm.

The optimization of ˜|ψ〉 proceeds similarly to that carried
out to find the ground state in the density matrix renormal-
ization group (DMRG): Most of its tensors are fixed in that
〈ψ̃ |ψ̃〉 and 〈ψ̃ |ψ〉 are calculated partially starting from both
sides. The individual steps are shown in Fig. 13, which depicts
an aerial view; here the tensors F and G represent intermediate
contractions for 〈ψ̃ |ψ̃〉 and 〈ψ̃ |ψ〉, respectively. Only two
sites, labeled j and j + 1 here, are not contracted over, which
makes it possible to determine the optimal joint environment
block Xj, j+2 = Ej, j+1 · Ej+1, j+2 by requiring that

〈ψ̃ |ψ̃〉/X †
j, j+2 = 〈ψ̃ |ψ〉/X †

j, j+2 (38)

in this reduced vector space. The calculation necessary to
obtain the right-hand side is depicted in Fig. 14, yielding the
inhomogeneity B. The contraction is best performed by cal-
culating the left and right halves of the cluster separately, then
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FIG. 13. Intermediate contraction steps. (a) Intermediate con-
traction steps of 〈ψ̃ |ψ̃〉 and (b) Intermediate contraction steps of
〈ψ̃ |ψ〉.

multiplying the two results with each other. Figure 15 shows
how Fi, j and Fi, j+2 are then contracted, yielding the rank-4
tensor M. Finding the solution to Eq. (38) now amounts to
solving M · X = B for all columns of B, which is depicted in
Fig. 16. However, if one performs a QR decomposition on the
environment tensors E , they become isometries, and all F and
thus M are identity matrices. The solution X is then simply
the inhomogeneity B. Its decomposition into Ei, j and Ei, j+1 is

FIG. 14. Calculation of the inhomogeneity B. (a) Initial setup and
(b) Contraction result.

FIG. 15. Calculation of M.

depicted in Fig. 17. This generates the composite index γi, j+1,
which has the predetermined maximum bond dimension χ ,
i.e., the maximum bond dimension of environment tensors. It
is important not to confuse χ with the maximum number of
virtual states within the PEPS, D. Note that algorithms based
on MPSs as well as other acyclic tensor networks do not, in
general, have a numerical parameter χ , as the corresponding
environments are processed exactly.

The scheme presented above still contains one major draw-
back: If the maximum bond dimension is χ , the contraction in
Fig. 14 generates a temporary number of states χ̃  χ , most
of which are dropped in the subsequent truncation in Fig. 17
and are therefore superfluous. This issue is not restricted
to finding the best virtual basis within environment tensors
in our fPEPS-PEPO-scheme, but is a general computational
bottleneck in tensor network algorithms, in particular, in the
typical scheme in which the bond dimension between two
adjacent tensors is significantly enlarged, then optimized via
the maximum overlap or minimal energy, and subsequently
truncated again. In order to reduce the cost of such steps, Gleis
et al. [58] have recently developed the so-called “controlled
bond expansion” (CBE) for calculating ground-state MPSs.
In this method, one picks ξ orthogonal states with the largest
weight, adds them to the current χ states in tangent space,
optimizes the combined set of states, and, finally, truncates it
to the desired dimension. If ξ is chosen such that χ̃  χ + ξ ,
one can thus perform a two-site optimization at one-site cost.
In the following, we will sketch how to use their method for
the environment approximation described above.

We start by formulating the completeness relations in
Figs. 18(a) and 18(b) for the tensors Ei, j and Ei, j+1, respec-
tively. Due to the QR decomposition (described above), the
approximated environment ˜|ψ〉 is in a form that is essentially
the mixed canonical form typically used for MPSs, and the
rank-8 tensors E · E† on the left are projectors onto E , i.e.,
onto the tangent space. The right-hand sides of both fig-
ures consist of unit tensors, which are formally constructed as
the tensor product of Kronecker deltas and are simply depicted
as lines. These configurations define the orthogonal projectors
E ′ · (E ′)†, which are then used to enlarge the bond between
two tensors in a controlled manner. Figure 19(a) shows how
the contraction of the left orthogonal projector with the left
half of Fig. 14(a) is carried out. The first step is to decompose
the tensors G and E in the manner depicted in Fig. 19(b),
while the new index δi, j is truncated from χ to ξ . Afterwards,

FIG. 16. Solving for a joint environment tensor.
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FIG. 17. Decomposition of joint environment tensor.

both clusters are contracted and subtracted, yielding the left
orthogonal block depicted in Fig. 19(c). A second truncated
decomposition, Fig. 19(d), isolates the weight 
V T from the
left block, which is then passed on to the right orthogonal
block, Fig. 20(a). After the weight is absorbed, Fig. 20(b),
the clusters are contracted and subtracted, as depicted in
Fig. 20(c). The final decomposition, Fig. 20(d), yields the
truncated complement V T , which encodes those bonds or-
thogonal to the current basis with the largest weight [58]. If
the current dimension of γi, j+1 between Ei, j [Fig. 18(a)] and
Ei, j+1 [Fig. 18(a)] is given by dim(γi, j+1), the bond dimension
of γ ′

i, j+1 in Fig. 20(d) is set to

dim(γ ′
i, j+1) = χ + ξ − dim(γi, j+1). (39)

In the final step of the CBE, we add V T to Ei, j+1; here
Eq. (39) ensures that the dimension of the bond in the sum
does not exceed χ + ξ . An additional QR decomposition and
the contraction depicted in Fig. 13(b) allows us to solve for
Ei, j using the cluster depicted in Fig. 21. If the dimension of
γi, j+1 is greater than χ , the sequence of operations depicted in
Fig. 22 can be used to truncate the dimension back to χ .

To summarize, the CBE allows one to circumvent the oper-
ations depicted in Figs. 14 and 17 by instead using orthogonal
projectors and a series of contractions and truncated SVDs,

FIG. 18. Completeness relations of environment tensors. (a) Left
completeness and (b) Right completeness.

FIG. 19. Calculation of left orthogonal block. (a) Initial setup,
(b) Truncated decompositions, (c) Contraction and subtraction, and
(d) Truncated decomposition.

avoiding operating on a rank-8 tensor with indices of full
dimension.

In order to progressively improve the environment, one can
sweep repeatedly from left to right and from right to left in a
manner similar to the optimization of an MPS in the DMRG.
The state ˜|ψ〉 then converges to the best approximation of
|ψ〉 within the given maximum bond dimension χ . Thus, the
scaling of the computational cost of contracting PEPS-based
tensor networks with system size becomes linear rather than
exponential if the contraction is carried out approximately in
this manner.
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FIG. 20. Calculation of right orthogonal block. (a) Initial setup,
(b) Contraction of weight from left block, (c) Contraction and sub-
traction, and (d) Truncated decomposition.

FIG. 21. Calculation of left environment tensor.

FIG. 22. Truncation of two adjacent environment tensors. (a)
Initial setup, (b) Decompositions, (c) Contraction, (d) Truncated
decomposition, and (e) Contractions.

Note that the approach presented above is not the only
possibility for approximating environments. The original al-
gorithm upon which our scheme is based, see Refs. [37,70],
optimizes the environment tensors individually in a single-site
manner. While this approach can be used in addition to the
CBE optimization described above, on its own, it does not
change the basis of the environment from that selected by the
initialization and thus cannot converge to the best solution, as
bonds are not optimized. In another approximation introduced
in Ref. [71], physical indices rather than virtual indexes are
bundled, which turns out to be less accurate than the approach
of Ref. [43]. The least expensive way to approximate the
environment is via a so-called “simple update” [72], which
depends solely on the SVD of two adjacent environment
tensors; however, this is also insufficiently accurate. Lubasch
et al. [43] have proposed a compromise between the simple
update and a full sweep by considering a cluster around the
environment tensor one wants to optimize. This approach may
be explored in addition to the scheme presented above, but
introduces the cluster size as an additional numerical parame-
ter. In addition, it is unclear to what extent this approximation
would be beneficial for evaluating the PEPS-PEPO-network
that we treat here.
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B. Variational optimization

Having now covered all the necessary preliminaries, we
discuss in the following two different methods for variation-
ally optimizing an fPEPS to approximate the ground state.
The first method, which we will term local updates involves
contracting the fPEPS-PEPO-fPEPS until a local effective
Hamiltonian, either for one site or for two sites (i.e., a bond),
is formed. We diagonalize this Hamiltonian, which satisfies a
generalized eigenvalue equation, using an iterative diagonal-
ization scheme and then optimize the fPEPS locally, keeping
the size of the basis fixed. This local-update optimization
method is in the spirit of DMRG optimization of an MPS
using the iterative diagonalization of an effective Hamilto-
nian followed by singular value decomposition. In the second
method, termed gradient updates, we keep the basis fixed and
optimize all local tensors in the fPEPS simultaneously using a
gradient-based nonlocal optimization method.

Both optimization methods have shortcomings. In particu-
lar, local bond updates temporarily expand the Hilbert space
and thus form the optimal virtual basis in a DMRG-like fash-
ion, but are limited by the property that only two adjacent
PEPS tensors are optimized at each step. Gradient updates are
complementary to local updates in that all PEPS tensors are
varied simultaneously to minimize the energy; however, this
is done while keeping the virtual basis fixed.

We start with a rectangular lattice of a given width
and height, the corresponding representation of the Hubbard
Hamiltonian as a PEPO, and a particular sector of quantum
numbers within which we want to find the ground state.
Here we assume that we initialize the algorithm by convert-
ing a product state within that sector into an fPEPS. (Other
initializations, such as a suitable randomized state, are also
possible.)

1. Local updates

Let us consider first the case of two-site local optimization:
assume that we want to optimize two adjacent bulk tensors,
say Ax,y and Ax+1,y. In order to do this, we first partially con-
tract the network of the Hamiltonian, 〈fPEPS|PEPO|fPEPS〉,
as depicted in Fig. 10(a), and also the network of the norm,
〈fPEPS|fPEPS〉. We do this by building environments from
above and below using the scheme described in Sec. IV A.
This leaves us with four tensor sequences, two for the energy,
Ei,y+1 and Ei,y−1, and two for the norm, Ni,y+1 and Ni,y−1. Sub-
sequently, we calculate environment blocks within row y by
starting at both x = 0 and x = xmax and contracting according
to the scheme depicted in Fig. 23. The tensors Ai,y, Wi,y, and A†

belong to the fPEPS, PEPO, and adjoint fPEPS, respectively;
note that the latter two are partially obscured in Fig. 23. In the
left diagram, Ei−1,y does not exist in the initial step at the edge
of the lattice but, in subsequent steps, contains the outcome
of the previous contraction for i > 0. The contractions on the
right take place analogously. One can picture this process as
consisting of two zippers that close in on the two sites (x, y)
and (x + 1, y) from either side.

The configuration at the end of this process is depicted in
Fig. 24. The effective Hamiltonian Heff, Fig. 24(a), consists of
six environment tensors E as well as the last two tensors of the
PEPO that have not been contracted, Wx,y and Wx+1,y, whereas

FIG. 23. Zipper contraction of blocks between two approximated
environments.

the environment for the norm Nenv, Fig. 24(b), consists of six
norm tensors N only. Bonds connecting two E ’s or two N’s
are cumulative and are created during the approximation of
the environment. Those connecting both W ’s or one W and
one E represent states in an FSM. The free indices protruding
from E ’s or N’s encode quantum-mechanical entanglement
within the PEPS, and the dangling links of both W ’s are
physical Hilbert spaces. The clusters Heff and Nenv satisfy the
generalized eigenvalue problem

Heff |ψ〉 = E Nenv |ψ〉. (40)

Its solution is the wave function |ψ〉 = Ax,y · Ax+1,y that min-
imizes the energy E . Note that PEPSs cannot be put into any
equivalent of the Schmidt form, in which the norm of a single
tensor is equal to the norm of the overall wave function. If this
were the case, we would have been able to find a gauge so that
〈ψ |Nenv|ψ〉 = 〈ψ ||ψ〉, as in the DMRG.

FIG. 24. Two-site optimization. (a) Effective Hamiltonian Heff

and (b) Norm environment Nenv.
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FIG. 25. Decomposition of PEPS tensors. (a) Two adjacent PEPS
tensors, (b) Decompositions, and (c) Contraction.

In principle, one could now proceed with an optimization
of |ψ〉 by carrying out iterative diagonalization directly. How-
ever, it is more efficient to first employ the bond optimization
proposed by Corboz [55], whose initialization is illustrated in
Fig. 25. We decompose the PEPS tensors Ax,y and Ax+1,y,
Fig. 25(a), into (X, p) and (q,Y ), respectively, Fig. 25(b).
We then contract the middle tensors, p and q, to form r,
which carries both of the physical indices, Fig. 25(c). The
tensors X and Y are then absorbed into the environment,
leading to the decompositions Ĥ = Heff · X · X † · Y · Y † and
N̂ = Nenv · X · X † · Y · Y †, which are depicted in Figs. 26(a)
and 26(b), respectively. After applying the gauge proposed
by Lubasch et al. [44], the tensor r can be optimized using
a variation of the Davidson algorithm [73] adapted for the
generalized eigenvalue problem. Subsequently, we factorize

FIG. 26. Bond optimization. (a) Effective Hamiltonian Ĥ and
(b) Norm environment N̂ .

FIG. 27. One-site optimization. (a) Effective Hamiltonian and
(b) Norm environment.

r back into p and q and then truncate the bond in between to
a predetermined maximum number of states D. We then carry
out a full update [46,74], which strips the wave function of
cyclic entanglement [75] and improves the convergence.

In addition to bond optimization, one can also carry out
one-site optimization, in which we again start with the con-
figuration of Fig. 24, then apply the contraction of Fig. 23
to one open site, and, finally, arrive at the setup depicted in
Fig. 27 for (a) the effective Hamiltonian and (b) the norm
environment. Note that bond optimizations are able to explore
new subsectors of the Hilbert space, analogously to a two-site
DMRG algorithm for MPSs, whereas one-site optimizations
can only optimize within a given basis.

Bond optimization is beset by the same problem as the
environment approximation described in Sec. IV A: If the
maximum bond dimension is D, the effective Hamiltonian of
Fig. 26(a) will generate D̃  D states, most of which will be
dropped in the subsequent truncation. To avoid this, we again
apply the CBE to circumvent contracting large tensors so that
we can perform the bond optimization at one-site cost. Here
we will not reprise the details of the CBE, but will instead only
describe the adaptations necessary to apply it to PEPS tensors.
First, we have to reexamine the bond between two tensors, as
shown in Fig. 28. The product r = A · σ · B is what we would
normally optimize as a whole within the bond optimization.
Note that, for MPSs, the norm environment N factorizes into
two terms. We now choose the bond matrix σ so that it
satisfies the weighted trace gauge [75], which can be seen as
the generalization of left- and right normalization for cyclic
tensor networks. The resulting orthogonality conditions are
depicted in Fig. 29 for (a) the left norm and (b) the right norm.
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FIG. 28. Bond setup.

Subsequently, the completeness relations, depicted in Fig. 30,
can be used to flesh out the orthogonal projectors A′ · (A′)† and
B′ · (B′)†. Aside from these two customizations, the CBE for
PEPS tensors is structurally identical to the original version
developed for MPSs [58] and the adaptation for environment
tensors described in Sec. IV A.

The overall procedure for variational optimization via
local updates for a 4×4 lattice is illustrated in Fig. 31. The
sketches are to be read row-wise and from left to right, as
indicated by the numbering. Sketch 1 in the upper left corner
is a reduced aerial projection of Fig. 10(a) and depicts the
starting point. The red arrows in sketch 2 denote three suc-
cessive constructions of approximate environments for both
the energy and the norm, which isolates the lowest row. The
blue arrow in sketch 3 represents the zipper contraction of
the two sites on the right, which prepares the system for
the two-site optimization of the lower-left corner using the
scheme described above. Subsequently, we make two steps
to the right, optimize both times via bond optimization or
CBE, reverse direction, and again optimize twice. In sketch
8, the treatment of the next row is prepared by building the
environment of the recently processed first row. Sketches 9 to
13 illustrate the optimization of row 2 in the same order. The
remaining sketches follow the same pattern, repeating until
the uppermost row is reached. As a whole, the 25 sketches
illustrate one horizontal sweep, which contains four DMRG-
like optimizations of each row and, in the case of the Hubbard
model, moves charge and spin across the lattice to minimize
the energy. A vertical sweep can be implemented simply by
rotating every sketch in Fig. 31 by 90 degrees. We denote a
horizontal sweep followed by a vertical sweep a “full sweep”.

FIG. 29. Weighted trace gauge. (a) Left norm and (b) Right norm.

FIG. 30. Completeness relations. (a) Left completeness and
(b) Right completeness.

As a final remark, we note that, due to the approximate
construction of environments, the Rayleigh-Ritz variational
principle is, unfortunately, violated. Therefore, the energy
of the PEPS is not necessarily bounded from below by the
ground-state energy of the Hamiltonian.

2. Gradient updates

Assuming that we have an fPEPS within a particular, fixed,
virtual basis, we now consider the functional of the energy,
varying one particular site i,

f (Ai ) = Ai Hi Ai

Ai Ni Ai
= e

n
. (41)

Here the Ai are elements of a PEPS tensor reshaped to a vector,
while Hi and Ni are the effective Hamiltonian [Fig. 27(a)]
and norm environments [Fig. 27(b)], respectively, reshaped to
matrices. Note that Hi and Ni depend on all Aj �=i. The gradient

FIG. 31. Horizontal sweep in variational optimization of fPEPS
on a 4×4 lattice.
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with respect to one site reads

∇ f (Ai ) = 2

n2
(n Hi − e Ni )Ai. (42)

The complete gradient can be constructed from one-site gra-
dients by concatenation,

∇ f = (∇ f (A1),∇ f (A2), . . . ,∇ f (AN )). (43)

Once f and ∇ f are available, one can employ any suitable
gradient-based optimization algorithms to optimize the set of
local tensors Ai. In the context of tensor networks, the conju-
gate gradient method was used by Vanderstraeten et al. [50] to
carry out such an optimization within iPEPS. Here we instead
utilize the L-BFGS algorithm [76,77], which is a memory-
efficient, quasi-Newton method. We find the L-BFGS method
to be substantially more effective, as might be expected since
it is a second-order method, while conjugate gradient is first
order.

V. RESULTS

In this section, we apply the fPEPS methods described
above to the two-dimensional Hubbard model with Hamil-
tonian (1) and open boundary conditions on lattices ranging
from 3×3 to 8×8. Our goal is to test the efficacy and perfor-
mance of the method and to investigate its convergence as a
function of the algorithmic parameters: the bond dimension
D, the environment dimension χ , and the nature and number
of update steps, where both local updates (Sec. IV B 1) and a
combination of local and gradient updates (Sec. IV B 2) will
be carried out. As a measure of convergence, we use primarily
the ground-state energy, which we compare to (numerically)
exact or, for larger lattice sizes, accurate variational results.
As an accurate variational estimate of the ground-state energy
E0, we use a highly efficient DMRG program developed by G.
Ehlers [78] keeping 4000 states for all simulations. This esti-
mate is numerically exact for 3×3 and 4×4 lattices, should be
quite accurate for 6×6 lattices, and will give a fairly accurate
upper bound to the ground-state energy for 8×8 lattices. In
addition to ground-state energies, we will also investigate the
behavior of local observables, in particular, local hole density
1 − 〈ni〉, with ni = ni,↑ + ni,↓ and local spin density〈

S2
i

〉 = 3
4 〈ni − 2ni,↑ni,↓〉.

For the case of U(1) symmetry, we will also calculate
〈Sz

i 〉 = 〈 1
2 (ni,↑ − ni,↓)〉, which is identically zero for an SU(2)-

symmetric state, but can be nonzero for a U(1)-symmetric
state, as an approximate numerical algorithm such as fPEPS
can numerically break spin-inversion symmetry.

Here we treat the ground state in zero magnetic field only,
so that both the total spin S and its z component Sz are taken
to be zero for all calculations. This setup leads to two possible
choices of symmetry groups: The first is U(1)spin ⊗ U(1)charge,
describing the local conservation of both the deviation from
half-filling cz, and the z component of the spin sz. (We use
small letters to denote conserved quantum numbers on sites,
virtual indices, and state kets and capital letters to denote the
corresponding conserved quantum numbers for states of the
entire lattice.) The corresponding bonds of tensors are then

parameterized by |sz, cz, t〉, with t iterating over any additional
degeneracy. within a symmetry sector of given cz and sz.

The second choice is to take advantage of the full spin-
rotation symmetry and classify all states using SU(2)spin ⊗
U(1)charge. This yields the far richer states |s, cz, t〉 that, for
a given total spin s, encompass the entire spin multiplet, that
is, the set of states with sz = −s, . . . , sz = s. In the following,
we designate the use of the U(1)spin ⊗ U(1)charge symmetry as
“U(1)” and the use of the SU(2)spin ⊗ U(1)charge symmetry as
“SU(2)”.

The central parameter for controlling the variational accu-
racy in fPEPS simulations (and in tensor network algorithms
in general) is the number of virtual states D, usually referred
to as the “bond dimension”. Since we have to approximate
the contraction of the tensor network for any optimization
scheme, we must also choose the dimension χ of the environ-
ment tensors, as defined in Sec. IV A for a given set of model
parameters, a given symmetry group, and a given bond dimen-
sion D. We do this empirically by choosing χ to be sufficiently
large so that the stability of local updates and the accuracy are
satisfactory, i.e., so that they are not significantly improved
by increasing χ . For local updates (Sec. IV B 1), we optimize
the environment tensors by carrying out sweeps consisting of
two CBE sweeps followed by one one-site sweep. For gradient
updates (Sec. IV B 2), the virtual basis of the D states is fixed;
we therefore choose to keep the basis of the χ states fixed
as well and perform only one one-site sweep to optimize the
environment.

To initiate the simulations, we use product states made up
of patterns of different local states defined either on a site or on
a bond. For U(1)-spin-symmetric simulations, we make up the
initial product states out of the states |↑〉 = |sz = 1

2 , cz = 0〉,
|↓〉 = |sz = − 1

2 , cz = 0〉, and |0〉 = |sz = 0, cz = − 1
2 〉 (the

empty local state). For SU(2)-spin-symmetric simulations, we
make up the initial product states out of the local states |0〉 =
|s = 0, cz = − 1

2 〉 and |↑↓〉 = |s = 0, cz = 1
2 〉 and also out of

the bond-singlet state

|BS〈i, j〉〉 = −∣∣s = 1
2 , cz = 0

〉
i
⊗ ∣∣s = 1

2 , cz = 0
〉

j
, (44)

where 〈i, j〉 denotes the pair of nearest-neighbor sites i and
j. As we will discuss in the following, we find that the con-
vergence behavior of fPEPS does depend on the choice of
initial state. We will therefore describe the particular initial
product state used for each simulation as well as the effect of
the choice of initial state on the convergence. As a reference,
we depict product states used to initialize the 3×3 lattice with
〈n〉 = 8/9 for SU(2) as well as for U(1) symmetry in Fig. 32.

In order to investigate the fundamental convergence of
the fPEPS algorithm, we start with the minimal case for
which all aspects of the algorithm come into play; this is the
3×3 lattice. Furthermore, we first take U = 0 as this does not
engender trivial convergence of fPEPS so that we can test the
convergence behavior and compare the computational cost for
a case that is very easy to calculate exactly with almost any
numerical method. Note that U = 0 is also a nontrivial case
for a real-space DMRG calculation.

We first carry out a simulation that only uses local op-
timization (i.e., no gradient optimization step) in order to
explore the efficacy of the local optimization scheme. In
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FIG. 32. Depiction of initial product states for the 3×3 lattice,
where states (a), (b), (c), and (d) are used with SU(2) symmetry
and state (e) with U(1) symmetry. Here a black circle depicts the
empty local state |0〉, an isolated blue uparrow the local state |↑〉, an
isolated red downarrow the local state |↓〉, a pair of arrows the doubly
occupied local state |↑↓〉, and a thick purple line the state |BS〈i, j〉〉, a
bond singlet between nearest-neighbor sites i and j.

Fig. 33, we display the convergence of the ground-state energy
for 100 full sweeps of local optimization two different bond
dimensions, D = 7 and D = 8, utilizing SU(2) symmetry.
Here N = 8 electrons, so that 〈n〉 = 8/9 ≈ 0.89, a value as
close to half filling as is possible for a 3×3 lattice. As the
initial state, we take the columnwise SU(2) product state,
Fig. 32(a); we will discuss the choice of the initial state in
more detail in the context of the combined local and gradi-
ent (supersweep) algorithm below. As can be seen, for both
values of D, there is systematic convergence to the ground-
state energy to a relative accuracy of 10−6 as the number of
local update full sweeps is increased for both values of D.
Furthermore, at least up to approximately 60 update sweeps,
there is a systematic improvement of the energy with D.
(A possible cause for the poorer convergence of the D = 8
calculation relative to the D = 7 calculation above 60 sweeps
could be that the environment dimension, χ = 500, is too
small for the higher bond dimension, D = 8.) Particularly
notable, however, is how slow the convergence is, especially
with the number of sweeps, but also with D. As described in
Sec. IV B 1, each full sweep encompasses 18 bond optimiza-
tions, where each includes an iterative diagonalization. Thus,

FIG. 33. Relative error in the ground-state energy of the Hubbard
model on a 3×3 lattice with open boundary conditions for U = 0,
S = 0, and N = 8 (i.e., 〈n〉 = 8/9), calculated with fPEPS with
SU(2) symmetry using local optimizations only E (lu)

0 , with respect to
the exact ground-state energy E0 plotted as a function of the sequence
of full local update sweeps. For both indicated bond dimensions D,
the environment dimension χ = 500.

carrying out 100 sweeps is computationally quite expensive—
here ca. 8 days of wall time for the D = 7 and 58 days for
the D = 8 runs exclusively using all 16 cores in parallel on a
2.5 GHz Intel Xeon 4215 processor-based compute node. (We
will use this compute-node configuration, utilized exclusively
and in parallel, as a measure for computational cost for all
calculations described in this paper; we will term this measure
our “reference compute node”.) In contrast, the ground-state
energy for this system can be obtained numerically to essen-
tially arbitrary accuracy with exact diagonalization or DMRG
in under a second of computer time.

Nevertheless, we emphasize that Fig. 33 demonstrates that
systematic variational convergence does occur in fPEPS with
local optimization, a result that we have found to be quite hard
to achieve. In particular, we have found that if the approximate
contraction is not carried out sufficiently carefully (e.g., with a
value of χ that is too small), the variationality of the optimiza-
tion procedure is disturbed, and the variational determination
of the energy through iterative diagonalization of the effective
Hamiltonian (with a given norm environment), see Fig. 24,
becomes unstable.

We now address the question of whether the speed and/or
the degree of convergence can be improved by the addition
of gradient optimization. Note that the gradient updates de-
scribed in Sec. IV B 2 optimize all local PEPS tensors Ai

simultaneously rather than only two at once for local bond up-
dates and one at once for single-site update (see Sec. IV B 1),
but, like single-site updates, cannot change the structure of the
basis. Thus, we have found that it is favorable to carry out a
mixture of local and gradient optimization, i.e., combinations
of the two types of sweeps, which we denote “supersweeps”.
In particular, we perform successive supersweeps, each con-
sisting of three full local update sweeps followed by 100
gradient updates, repeating until either a saturation of the
convergence or a reasonable limit of computer time has been
reached. We have empirically found this supersweep configu-
ration to be optimal and use it for all subsequent calculations
described below.
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FIG. 34. Relative error in the ground-state energy calculated with
fPEPS with SU(2) symmetry using supersweeps consisting of 3 full
local update sweeps followed by 100 gradient updates, E (ss)

0 , with
respect to the exact ground-state energy E0 on the 3×3 Hubbard
model with open boundary conditions, U = 0, S = 0, and N = 8 for
the indicated values of bond dimension D and χ = 500. The lowest
energy for every local update sweep and the energy of every tenth
gradient update is plotted.

The results for the relative error in the ground-state energy
are plotted in Fig. 34 for values of the bond dimension ranging
from D = 4 to D = 7. As can be seen, there is a regular,
systematic convergence with supersweep steps for all values
of D. The D = 4 curve saturates after approximately two
supersweeps (26 update steps), while the curves for higher
values of D continue to go down up to the maximum of 15
supersweeps displayed. Going from D = 4 to D = 5, there is
a very large jump in convergence; D = 4 saturates at a rela-
tive accuracy slightly above 10−3, while the highest relative
accuracy of D = 5 is below 10−8. Further increasing D, as
can be seen from the D = 6 and 7 curves, actually reduces the
accuracy, with both curves lying approximately on top of one
another. Thus, for a U = 0 on a 3×3 lattice, there seems to be
a breakdown of systematic convergence with D above D = 5.

In order to understand the origin of this breakdown, we
have examined the state structure of the bond truncation at
which the divergence occurs in detail for D = 5 and D = 6.
The D states in the retained set are distributed over various
s, cz quantum numbers, with one or, at most, two states per
quantum number. These sets of quantum numbers differ, with
a set being retained for D = 5 that is not retained for D = 6.
In view of this, it is our hypothesis that the granularity of the
state selection is very sensitive to which states are selected at
critical steps; this selection seems to be particularly fortuitous
for D = 5 in the U = 0 case treated here. An examination of
the local spin and hole densities, displayed in Fig. 35, shows
that the single hole is almost exclusively distributed over the
four corner sites of the 3×3 lattice. (The spin and charge
densities displayed in Fig. 35 are calculated using fPEPS so
that the SU(2) symmetry is explicitly preserved; for D = 5,
they are essentially numerically exact on the scale of the plot.)
This unevenness of this hole distribution is an artifact of the
lack of interaction, i.e., that U = 0; the distribution of the
exact values of the hole densities between the different corner
sites is also quite unstable; calculations of lesser accuracy or
without SU(2) symmetry result in uneven distributions. Such

FIG. 35. Local spin density 〈S2
i 〉 (size of blue arrows) and local

hole density 1 − 〈ni〉 (diameter of green-shaded circles) on a 3×3
lattice for U = 0, S = 0, and N = 8, calculated using combined local
and gradient updates and SU(2) symmetry with D = 5 and χ = 500.
The black numbers on the top edge are the averages of the spin
densities on the column of sites below, and the green numbers on
the bottom edge are the averages of the hole densities on the column
of sites above.

an uneven hole distribution that is so sensitive to fine details
of the variational state is consistent with the sensitivity to
granular state selection described above.

We also note that the convergence behavior is significantly
dependent on the initial product state taken. Here we use
the checkerboard SU(2) state, Fig. 32(b), which yields the
most accurate energies for the U = 0, 3×3 system for all D
values except D = 5. For D = 5, using a columnwise SU(2)
initial state, Fig. 32(a), yields an energy curve similar to the
D = 5 curve in Fig. 34, but with a ground-state energy that
is approximately a factor of two more accurate (not shown).
For all other D values, however, the energies obtained with
a columnwise initial state are significantly less accurate than
those in Fig. 34. We therefore also ascribe the anomalously
accurate energy for the D = 5 case with a columnwise initial
state to a fortuitous bond truncation similar to that of the
checkerboard initial state, but one that happens to be slightly
more fortuitous.

We now turn on the interaction to U = 8, treating the
same system size, 3×3, and band filling, 〈n〉 = 8/9. For this
system, we have found that using local optimization alone
does not lead to systematic convergence. We therefore only
use the supersweep scheme here. However, we do carry out
and compare calculations using both the U(1)-symmetric and
the SU(2)-symmetric fPEPS states. For the U(1) calculations,
we initialize all runs with the columnwise U(1) product state,
Fig. 32(e), while for the SU(2) calculations, we use the tri-
angle SU(2) product state, Fig. 32(c). Empirically, we have
found these initial states to give the best overall convergence
for each symmetry.

We display the convergence of the relative error in the
ground-state energy as the algorithm progresses in Fig. 36.
For both U(1) and SU(2) symmetry, there is initial rapid con-
vergence for the first few supersweeps, with runs with larger
values of D converging to a higher accuracy in that the rapid
convergence continues for a larger number of supersweeps.
For both symmetries, small wave-like fluctuations are visible
at the end of each supersweep, especially for larger values of
D. These are the points at which the optimization switches
from gradient updates to local updates. At these points, the
slope of the convergence of the energy becomes flatter or, in
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FIG. 36. Relative error in the ground-state energy of the Hubbard
model on a 3×3 lattice with open boundary conditions, U = 8,
S = 0, and N = 8 (〈n〉 = 8/9), calculated with fPEPS with U(1)
and SU(2) symmetry, as indicated, using supersweeps consisting
of three full local optimization sweeps followed by 100 gradient
optimizations E (ss)

0 with respect to the exact ground-state energy E0

for χ = 500 and various D. The lowest energy for every local update
sweep and the energy of every tenth gradient update is plotted.

some cases, particularly where a plateau in the convergence
has been reached, actually becomes larger. However, when
gradient sweeps begin again, after three full local update
sweeps, corresponding to three points, the slope of the con-
vergence becomes steeper again. The behavior demonstrates
that neither type of optimization alone displays systematic
convergence. The local updates do lead to rapid convergence
at the beginning as the basis is adapted from a product state
to a more suitable basis for the many-body ground state, but
the convergence then slows down significantly. Once a new
basis is formed, gradient updates initially lead to a rapid con-
vergence within that basis, but the convergence then saturates,
as the basis cannot be changed within the gradient updates.
Subsequent local updates do change the local basis, but do not
necessarily improve the energy; however, following gradient
updates can then continue to improve the energy until satura-
tion is reached once again. Note that this behavior can also be
seen for the U = 0 case in Fig. 34, albeit at a slightly smaller
scale so that it is not as visible.

For the U(1) calculations, the relative error reaches suc-
cessively lower plateaus for all values of D with the largest
value, D = 8, reaching a value of approximately 0.02 after
five supersweeps. The SU(2) calculations also have an initial
rapid convergence for all D values that crosses over to either
a plateau for D = 4 and D = 5 or a more gradual decline
for D = 6 and D = 7 on a scale of approximately five su-
persweeps. The accuracy improves systematically and rapidly
with D. The irregular convergence with D seen for the U = 0
calculations with SU(2) symmetry in Fig. 34, where accuracy
in the energy is much higher for D = 5 than for D = 6 and
D = 7, is not present here. We observe that the distribution
of charge and spin for the U = 8 case, displayed in Fig. 37
(here calculated numerically exactly using the DMRG), is
much more uniform than that for the U = 0 case, Fig. 35.
Evidently, turning on the interaction leads to a much more

FIG. 37. Local spin density 〈S2
i 〉 and local hole density 1 − 〈ni〉

on a 3×3 lattice for U = 8, S = 0, and N = 8, calculated using
the DMRG with D = 4000 states kept and plotted using the same
scheme as in Fig. 35.

uniform distribution and, presumably, reduces the problems
due to granularity in state selection within the bond trunca-
tion. Note, however, that the relative error in the ground-state
energy is, in fact, much smaller in best case for U = 0, D = 5,
than in the most accurate U = 8 calculation, which has the
highest bond dimension, D = 7.

In all cases, a particular SU(2) calculation is significantly
more accurate than the U(1) calculation with the same D. This
significant improvement in going from U(1) to SU(2) symme-
try is expected, as one SU(2) state comprises an entire spin
multiplet, as discussed in Sec. III. Thus, a given SU(2) bond
dimension D effectively encompasses a region of the total
Hilbert space that could only be encompassed with a U(1)-
symmetric fPEPS with a significantly higher bond dimension.
We also note that SU(2)-symmetric calculations explicitly
preserve the fundamental spin-rotation symmetry present in
the system, which is not the case for U(1) calculations.

The minimum relative error reached, for the D = 7, SU(2)
calculation, is just under 3×10−4. This calculation took ap-
proximately nine days of wall time on our reference compute
node. Thus, the fPEPS method is certainly not competitive
either in accuracy or in computational efficiency with other
numerical methods that are numerically exact on this small
system, such as exact diagonalization and the DMRG.

We now turn to larger system sizes. Based on the results for
the 3×3 system discussed above, we expect the computational
effort needed to obtain reasonable convergence, i.e., at least to
the level of Fig. 36, to be unreachably large for larger lattice
sizes. Nevertheless, we have carried out runs that are as long
as practicably possible in order to gain knowledge about the
convergence behavior.

We first consider the 4×4 lattice, whose ground state is
still accessible using exact diagonalization. Our primary pur-
pose here (and for the 6×6 lattice treated below) is to test
the convergence behavior. Thus, we try to minimize detailed
physical effects due to charge inhomogeneity and treat the
half-filled system, i.e., take 〈n〉 = 1, that is, N = 16 electrons
on the 4×4 lattice. This choice also simplifies the choice of the
initial state: for U(1) symmetry, we start the simulation with
a Néel state, i.e., a product state with antiferromagnetically
alternating local spins, a pattern corresponding to the spin
pattern in Fig. 32(e) (i.e., with no hole). For the SU(2) calcu-
lations, we take a columnwise SU(2) state, i.e., the half-filled
analog of Fig. 32(a) on a 4×4 lattice, that is, two columns of
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FIG. 38. Relative error in the ground-state energy of the Hubbard
model on a 4×4 lattice with open boundary conditions, U = 8,
S = 0, and N = 16 (half filling), calculated with fPEPS with U(1)
and SU(2) symmetry, as indicated, using supersweeps consisting
of three full local optimization sweeps followed by 100 gradient
optimizations E (ss)

0 with respect to the exact ground-state energy E0

for various D with the indicated χ . The lowest energy for every local
update sweep and the energy of every tenth gradient update is plotted.

doubly occupied local states interspersed with two columns
of unoccupied states. We have ascertained that choosing a
physically reasonable alternate initial product state, in partic-
ular, one in which the lattice is covered by vertically oriented
bond-singlet pairs, cf. Fig. 32(d), does not significantly effect
the convergence behavior. In this sense, fPEPS for this larger,
half-filled system seems to be significantly less sensitive to
choice of initial states than the 3×3 systems with one hole
discussed above.

Figure 38 depicts the the relative error in the ground-state
energy on a half-filled 4×4 lattice at U = 8 as a function
of the optimization step for runs with both U(1) and SU(2)
symmetry and various bond dimensions ranging from D = 4
to D = 8. Consistent with the behavior for the 3×3, U = 8
system, there is systematic convergence both with increasing
supersweep step and with increasing D. As before, utilizing
SU(2) rather than U(1) symmetry for a given fixed D also
leads to a significant improvement in the relative accuracy
for the 4×4 system. The best relative accuracy in energy of
about 0.01 is obtained from the SU(2) simulation with D = 6
states, which took approximately four days of wall time on our
reference compute node; this is the largest bond dimension
that we could practicably retain for this system. Taking the
3×3, U = 8 calculations as a guide, at least 15 supersweeps
would likely be required to achieve reasonable convergence
for D = 6. This would correspond to a wall time of approxi-
mately one month on our reference compute node.

Figure 39 displays corresponding results for the accuracy
of the ground-state energy on a 6×6 lattice relative to DMRG
calculations. (Note that the DMRG energy is no longer nu-
merically exact on a 6×6 lattice, but should be accurate to
at least 2 or 3 significant digits more than the best fPEPS
calculation.) The initial states are scaled-up versions of those
used for the half-filled 4×4 calculations: columnwise states

FIG. 39. Relative error in the ground-state energy of the Hubbard
model on a 6×6 lattice with open boundary conditions, U = 8,
S = 0, and N = 36 (half filling), calculated with fPEPS with U(1)
and SU(2) symmetry, as indicated, using supersweeps consisting
of three full local optimization sweeps followed by 100 gradient
optimizations E (ss)

0 with respect to the ground-state energy calculated
using the DMRG E0, for various D with the indicated χ . The lowest
energy for every local update sweep and the energy of every tenth
gradient update is plotted.

with alternating columns of double- and zero-occupied sites
for SU(2) symmetry and a Néel state for U(1) symmetry. The
overall features of the energy convergence found in the cal-
culations for U = 8 on the 3×3 and 4×4 lattices are retained
for this larger system size: there is systematic convergence
in supersweep step and in the energy convergence curves as
D is increased. For a given bond dimension D, the SU(2)
calculations are substantially more accurate than the U(1)
calculations, albeit at a higher computational cost. Due to the
cost of the calculations, none of the runs could practicably
be carried out for more than two supersweeps except for the
computationally least expensive D = 4, U(1) calculation. The
best accuracy of the energy relative to DMRG achieved in this
scope, for the D = 6, SU(2) calculations, is approximately
7%, almost an order of magnitude less accurate than the best
accuracy obtained for the 4×4 lattice. Note that, as for the
4×4 system, we vary χ from run to run in order to balance sta-
bility and accuracy with computational cost. In particular, the
D = 5 and D = 6, SU(2)-symmetric runs require higher val-
ues of χ to ensure stability than runs with the corresponding
D for the 4×4 lattice. As on the 4×4 lattice, the SU(2), D = 6
case is far from converged in the number of supersweeps. The
wall time needed for the calculation shown, which comprises
less than one full supersweep, is approximately 14 days, so
that reasonable convergence in the number of supersweeps
would take at least several months if not years of wall time
on our reference compute node. While it would be useful to
be able to extract systematics in the scaling of accuracy and
computational cost with system size D and χ for half-filled
systems, it is not practical to do this here, as we have not
been able to achieve sufficient convergence with reasonable
computational resources for the two smallest system sizes;
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FIG. 40. Relative error in the ground-state energy for the Hub-
bard model on an 8×8 lattice for U = 8, S = 0, and N = 56 (〈n〉 =
0.875), calculated with fPEPS with U(1) and SU(2) symmetry, as in-
dicated, using supersweeps consisting of three full local optimization
sweeps followed by 100 gradient optimizations E (ss)

0 with respect to
the ground-state energy from a DMRG calculation (see text) E0. For
every local update sweep, the lowest energy is plotted, and the energy
of every tenth gradient update is plotted.

treating larger systems is clearly outside of reasonable scope
for the computational resources available to us.

However, in order to explore to what extent the fPEPS
method can capture the essential physics of the doped two-
dimensional Hubbard model qualitatively, we nevertheless
present here simulation results for the 8×8 lattice at 1/8-
doping, i.e., with N = 56 electrons so that 〈n〉 = 0.875. The
simulations were initialized with scaled-up versions of the
pair SU(2) state, Fig. 32(d), for the SU(2) simulations and
with scaled-up versions of columnwise U(1) state for the U(1)
simulations. We have found that the choice of initial state
does have a substantial effect on the initial convergence of
the SU(2) simulations especially; for example, the accuracy
is substantially lower if a columnwise SU(2) state, i.e., a
scaled-up version of Fig. 32(a), is used for the SU(2) simula-
tions. Figure 40 displays the error in the ground-state energy
relative to DMRG calculations. Here we expect the DMRG
calculations to have substantially lower relative accuracy than
then 6×6 calculations, so that we estimate that the relative
error in the ground-state energy obtained using the DMRG
could be up to the order of 1%. However, as can be seen in
Fig. 40, the deviation of the ground-state energy calculated
with fPEPS from that calculated using the DMRG does not
go below 10%. In this sense, it is not necessary to have more
accurate variational estimates of the ground-state energy for
comparison. Surprisingly, we find that a slightly lower χ ,
as compared to the 6×6, half-filled system, is sufficient for
stable SU(2) simulations, despite the fact that the system size
is larger. Thus, doping seems to lead to greater stability in
the variational optimization for given D and χ . The origins of
this behavior are unclear: while the Hilbert space of the doped
system is smaller than the half-filled system, the 1/8-doped
8×8 system should nevertheless have a larger Hilbert space
than the half-filled 6×6 system. It could be that the breaking

of translational invariance in both the charge and spin sectors
due to stripe structures (see below) helps increase the stability
of the calculations.

The smaller environment dimensions χ required allow us
to carry out calculations with comparable values of D [includ-
ing even a higher value, D = 8, in the U(1) calculations] and a
comparable number of supersweep steps as for the half-filled
6×6 system. The convergence behavior is qualitatively similar
to that of the U = 8 calculations on all other system sizes in
that the convergence systematically improves as a function
of supersweep step, of D, and in going from U(1) to SU(2)
symmetry. The wavelike variations at the boundaries between
supersweeps is also present. Note, however, that the lowest
ground-state energy obtained (actually for the D = 8 U(1)
calculation) is about 10% above the DMRG energy. The wall
time required for the D = 8, U(1) calculation, which consists
of approximately half of a supersweep, was a little more than
21 days on our reference compute node. For the D = 6, SU(2)
calculation, the wall time was almost 29 days.

In order to gain insight into the convergence behavior and
understand to what extent the fPEPS calculations can capture
the physical behavior of the doped two-dimensional Hubbard
model qualitatively, we now examine the local spin and hole
densities for both U(1) and SU(2) calculations. We note that
doing this on the 8×8 rather than on smaller lattices is ap-
propriate because the ground state is expected to have a stripe
structure with wavelength λ = 8 stripes [14]. Such a stripe
structure would be frustrated on smaller lattices, leading to
complicated patterns in the local spin and hole densities and,
potentially, to instabilities in the energetically most favorable
configurations.

We depict the local spin density 〈Sz
i 〉 = 1

2 (ni,↑ − ni,↓) and
local hole density 1 − 〈ni〉 graphically on the 8×8 lattice for
the most accurate U(1)-symmetric calculation, the one with
D = 8 and χ = 300, in Fig. 41. [Since the U(1) calculation
breaks spin-rotation symmetry, the magnetic structure can
best be seen using maps of 〈Sz

i 〉.] The stripe structures found
in Ref. [14] using a variety of independent, state-of-the-art
numerical methods is well reproduced: There is a vertical
site-centered hole stripe separating antiferromagnetic regions
with an antiphase boundary between the regions that has a
total wavelength of λ = 8. Note that this state is significantly
evolved from the initial state, which is a product state with
a Néel configuration in the first seven columns and a ver-
tical line of holes in the eighth column. If one examines
the corresponding spin and hole densities as the convergence
progresses, i.e., as more supersweep steps are carried out,
one can see that the initial configuration evolves step-by-step
to the configuration depicted in Fig. 41 in that the line of
holes on the eighth column are moved to the left and spread
out and that the antiferromagnetic spin structure with oppo-
site phase forms to the right of the stripe. Stripe structures
intermediate between the initial product state and those of
Fig. 41 are also found in U(1) calculations with smaller bond
dimension D.

We also examine the spin and hole densities for the most
accurate SU(2)-symmetric calculations, for D = 6 and χ =
300, in Fig. 42. Since 〈Sz

i 〉 = 0 identically on all sites i for
SU(2)-symmetric calculations, we instead depict the local
spin moment 〈S2

i 〉, which is large in magnetically ordered
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FIG. 41. Local z component of the spin 〈Sz
i 〉 = 1

2 (ni,↑ − ni,↓)
(size, color, and direction of arrows) and local hole density 1 − 〈ni〉
(diameter of green-shaded circles) on an 8×8 lattice with open
boundary conditions calculated with U(1) symmetry, bond dimen-
sion D = 8, and χ = 300. Here U = 8, Sz = 0, and N = 56 so that
〈n〉 = 0.875. The black numbers are the average 〈Sz

i 〉 for the column
of sites below, and the green numbers on the bottom edge are the
average hole densities for the column of sites above.

regions, but cannot depict the antiferromagnetic structure
explicitly. (This could be done by calculating spin-spin corre-
lations between pairs of sites.) The initial product state for the
SU(2) calculation is a pair-bond state of the type depicted in
Fig. 32(d) for the 3×3 lattice, but with vertical bond-singlet
states covering the first seven columns and a vertical line of
zero-occupied local states in the eighth column. As can be
seen in Fig. 42, this state evolves towards a stripe configu-
ration roughly consistent with that of the U(1) calculation,

FIG. 42. Local spin density 〈S2
i 〉 (size of blue arrows) and lo-

cal hole density 1 − 〈ni〉 (diameter of green-shaded circles) for the
Hubbard model on an 8×8 lattice with open boundary conditions
and U = 8, S = 0, and N = 56 so that 〈n〉 = 0.875, calculated with
SU(2) symmetry, bond dimension D = 6, and χ = 300. The black
numbers are the average spin density for the column of sites below,
and the green numbers on the bottom edge are the average hole
densities for the column of sites above.

Fig. 41. We note that the distribution of holes is, however, not
quite as symmetric in both the horizontal and in the vertical
directions as that of the U(1) calculation and that the hole
stripe is not as clearly site centered on the fifth column of
sites. It is important to realize that this calculation is fairly
far from convergence in that only three local update sweeps
and 30 gradient updates have been carried out within the first
supersweep and that the energy is substantially higher than the
lowest energy for the U(1), D = 8 calculation in Fig. 40. Thus,
we ascribe these discrepancies to the fact that the SU(2) cal-
culation is, relatively speaking, more poorly converged than
the U(1) calculation.

VI. SUMMARY AND DISCUSSION

In this paper, we have developed the groundwork to carry
out variational optimization of finite projected entangled pair
states. We treat the two-dimensional Hubbard model in this
paper because we are interested in developing methods for
short-range itinerant fermionic models in which a high de-
gree of symmetry is present. The single-band model with
nearest-neighbor hopping displays interesting and compli-
cated physical behavior, which is partially, but not fully,
understood, and is accessible to a set of other numerical meth-
ods, albeit at a level that pushes the limits of these methods.
In this sense, it is suited to be a stringent and demanding
test bed for our methods. However, we emphasize that the
fPEPS method is applicable to wide set of short-ranged,
two-dimensional quantum lattice models: in particular, to
quantum-spin-based models such as Heisenberg and t-J mod-
els, to spinless-fermion models, as well as to extended
versions of the Hubbard model that include features such as
longer-range hopping or interaction and multiple bands.

Our method is based on the following essential build-
ing blocks: (i) a general framework to create and handle
projected entangled pair operators for arbitrary local Hamilto-
nians (Sec. II B), (ii) a generic scheme to incorporate SU(2)spin
symmetry (Sec. III) into PEPS states at the level of ten-
sor representations, (iii) a procedure, which optimizes the
environment within PEPS-based contractions using a two-
block configuration (Sec. IV A), and (iv) the utilization of
a generalized version of the controlled bond expansion [58]
to circumvent contracting large tensors. We have integrated
these technical contributions with methods and representa-
tions from the extensive existing body of knowledge about
tensor networks in order to formulate a comprehensive,
PEPO-based framework for calculating ground-state proper-
ties of two-dimensional quantum lattice systems.

Given this framework, which enables us to represent vari-
ational states as finite PEPS and operators on these states as
PEPOs, the crucial component to build an algorithm to ap-
proximate the ground state is a method to optimize the fPEPS
tensor network for a given Hamiltonian, i.e., given a PEPO.
Here we have formulated two optimization methods: a local-
update optimization procedure that optimized two adjacent
local tensors within the fPEPS via iterative diagonalization
and a gradient-update optimization scheme that optimizes the
elements of all local tensors simultaneously. We find that the
methods are complementary in that local optimization can
change the structure of the basis (i.e., what states with which
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quantum numbers are included) on a particular bond between
local tensors in addition to optimizing the elements of these
two tensors, whereas gradient optimization carries out its si-
multaneous optimization of all local tensor elements within a
fixed basis of all tensor indices.

Test simulations, presented in Sec. V, show that our im-
plementation of the fPEPS algorithm does, in fact, achieve
systematic variational improvement in the number of opti-
mization steps if combined local and gradient optimizations
are carried out (what we call the “supersweep” procedure), as
long as care is taken that the environment dimension χ is cho-
sen to be high enough for all systems and that a suitable initial
state is chosen. For small values of the bond dimension D, the
convergence saturates after a certain number of optimization
steps; for the larger values of D, such a saturation does not
occur on the scale of computer time accessible to our calcu-
lations. For all systems with nonzero Hubbard interaction U ,
increasing the bond dimension D for calculations with either
U(1) or SU(2) symmetry systematically lowers the variational
approximation to the ground-state energy. Note that this is not
so for the 3×3, U = 0 test case, for which the best numerical
accuracy is achieved for bond dimension D = 5, and further
increasing D actually increases the approximate ground-state
energy. A detailed analysis suggests, however, that this behav-
ior can likely be ascribed to particularities of the U = 0 state
with one hole, namely, a very inhomogeneous distribution of
the single hole over the corner sites and a near-degeneracy to
variations of the hole density on these sites. For all systems,
calculations with SU(2) symmetry with a given bond dimen-
sion D are substantially more accurate than U(1)-symmetric
calculations with the same D. This is as expected because
a single SU(2) state, in general corresponds to a multiplet
of states in the U(1) representation. Note, however, that an
SU(2) calculation is generally substantially more expensive
computationally, both in computer time and in memory, than
a U(1) calculation with the same D. Nevertheless, for all
systems except for 8×8, U = 8, we have achieved the most
accurate results using SU(2) symmetry.

Despite these generally satisfying aspects of the conver-
gence behavior, the results show that fPEPS is not competitive
with other numerical methods, in particular, with MPS-
based method such as the DMRG, in calculating the ground
state of the two-dimensional Hubbard model and other two-
dimensional quantum lattice models. The main obstacle seems
to be the poor convergence of the optimization process. Ex-
cept for U = 0, local updates alone do not seem to be able to
reach the lowest possible energy for a given bond dimension
D. Adding gradient updates within the supersweep procedure
overcomes this barrier, but the variational ground-state energy
for a given D only approaches the exact ground state energy
E0 after an unreasonably large number of optimization steps,
as is exemplified for the 3×3, U = 8 test system in Fig. 36;
the runs with larger values of D do not converge in opti-
mization steps at all for reachable computer time, even for
this small test system. For larger systems, we do observe that
increasing D leads to lower energies, but, due to the com-
putational cost of carrying out these calculations, it is hard
to estimate at what point and at what level of accuracy of
the energy would converge in these runs. The best relative
error in the ground-state energy reached is, in absolute terms,

quite bad for a variational calculation: ca. 1% for the 4×4
and ca. 7% for the 6×6, U = 8, half-filled systems, and ca.
10% for the 8×8, U = 8, 1/8-doped systems. Nevertheless,
the results do display some aspects that are encouraging: for
the lowest values of D, there does seem to be convergence
in optimization steps, even for the 8×8 system [at least with
U(1) symmetry]. The behavior of the spin and hole densities
of the doped Hubbard model on the 8×8 lattice, Figs. 41
and 42, is in qualitative agreement with the expected stripe
configuration known from calculations with other methods,
both for U(1) symmetry, and, to a lesser extent because of
the rather incomplete convergence, for the SU(2) symmetry,
despite the relatively inaccurate ground-state energies.

Thus, we are lead to the question of whether it is pos-
sible to substantially improve the convergence behavior of
fPEPS. This question can be divided into two aspects: First,
how well does an fPEPS approximate a particular many-body
ground state on a fundamental level? Second, can existing
optimization procedures be improved or alternative optimiza-
tion procedures be developed so that the optimal fPEPS for
a given bond dimension D can efficiently be found? As to
the first question, our results have both encouraging and cau-
tionary aspects. Encouraging is that increasing D or going
from U(1) to SU(2) symmetry does seem to systematically
improve the fPEPS approximation to the ground state. How
this improvement takes place and what D is required to obtain
a given accuracy for given Hamiltonian parameters, particle
number, and system size could only be explored to a limited
extent due to the poor convergence for all but the smallest
systems. Cautionary is the rather sensitive dependence of not
only the rate of convergence, but also the level of appar-
ent convergence after many optimization steps, on the initial
state.

As to the second question, the fact that both local opti-
mization and gradient optimization have features that work in
a complementary fashion indicates that neither method alone
is sufficient to carry out an efficient optimization. Successive
local optimizations of adjacent sites do not seem to lead to-
wards a minimum of the entire fPEPS, whereas gradient-based
optimization is, by construction, unable to modify the bases
on the local tensor bonds to form an fPEPS that efficiently
approximates the many-body ground state. Combining the
methods partially overcomes these problems, but the synergy
between the two methods is limited, so that convergence is
still very slow. A more effective optimization algorithm would
presumably have to combine the basis adaptation of the local
updates and the nonlocal optimization of PEPS tensors of the
gradient updates in a coherent way.

Note that a large amount of previous work on both fPEPS
and iPEPS algorithms uses imaginary time evolution to op-
timize the PEPSs. Usually, this is done by carrying out a
Trotter decomposition and applying terms of the Hamiltonian
locally on sites and bonds. We therefore expect imaginary
time evolution to have, at best, a convergence along the lines
of, but poorer than that of our local optimization scheme. In
addition, imaginary time evolution introduces an additional
systematic Trotter error.

While the DMRG may still be faster and more accurate
than fPEPS for all system sizes treated here, it is limited in
scaling two-dimensional systems to the thermodynamic limit
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due to the exponential increase of states needed to maintain
accuracy as the lattice width is increased, which is due to
the entropy area law [35]. PEPSs, on the other hand, are, in
principle, capable of efficiently describing states of arbitrarily
large two-dimensional lattices as long as they satisfy the en-
tropy area law [37]. Thus, should it be possible to overcome
the poor convergence of fPEPS using a better optimization
scheme, fPEPS could potentially be competitive with MPS-
based methods as two-dimensional lattices are scaled to larger
size. In principle, one would like to compare the results of
fPEPS simulations to those of iPEPS simulations [79]. Since
an iPEPS represents, by construction, a wavefunction in the
thermodynamic limit, the crucial step for bringing the fPEPS
results onto the same footing would be a finite-size extrapo-
lation of the fPEPS results. Note that such an extrapolation
is necessary to compare any numerically exact finite-lattice
results, such as those from exact diagonalization or DMRG,
to infinite-system results; a comparison of such extrapolated
results for the Hubbard model has already been carried out in
Ref. [14]. For both iPEPS and fPEPS, extrapolation in bond
dimension D and environment dimension χ should also be
carried out; how best to do this for imaginary-time-evolved
iPEPS results is discussed extensively in Ref. [79].

An additional possible direction for further development
is in applying the methods for representing, manipulating,
and optimizing PEPS-like states developed in this paper to

the iPEPS algorithm. The iPEPS method carries out the ap-
proximate contraction of the PEPS tensor network using a
corner-transfer matrix rather than the row-wise contraction
into an effective MPS used for fPEPS, so that a number of as-
pects of the methods developed here would have to be adapted
to the iPEPS contraction scheme. iPEPS usually works with
either a single translationally invariant local PEPS tensor or
with a unit cell of such tensors of limited size, used when
the physics of the system is expected to break translational
invariance. The convergence problems in fPEPS occur only
for system sizes of 3×3 or larger because in smaller fPEPS,
the environment reduces to what is essentially a pure MPS. It
would be interesting to investigate the convergence behavior
of local and gradient optimization methods when applied to
iPEPS when a unit cell of 3×3 independent local tensors or
more is used.
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