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Magnetic quantum phase transition in a metallic Kondo heterostructure
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We consider a two-dimensional quantum spin system described by a Heisenberg model that is embedded
in a three-dimensional metal. The two systems couple via an antiferromagnetic Kondo interaction. In such a
setup, the ground state generically remains metallic down to the lowest temperatures and allows us to study
magnetic quantum phase transitions in metallic environments. From the symmetry point of view, translation
symmetry is present in two out of three lattice directions such that crystal momentum is only partially conserved.
Importantly, the construction provides a route to study, with negative-sign-free auxiliary-field quantum Monte
Carlo methods, the physics of local moments in metallic environments. Our large-scale numerical simulations
show that as a function of the Kondo coupling, the system has two metallic phases. In the limit of strong Kondo
coupling, a paramagnetic heavy-fermion phase emerges. Here, the spin degree of freedom is screened by means
of the formation of a composite quasiparticle that participates in the Luttinger count. At weak Kondo coupling,
magnetic order is present. This phase is characterized by Landau-damped Goldstone modes. Furthermore, the
aforementioned composite quasiparticle remains intact across the quantum phase transition.
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I. INTRODUCTION

The interplay of quantum spins with itinerant electrons
is pivotal for the understanding of heavy-fermion systems
[1–3] as well as for high-temperature superconductivity [4–6].
Magnetic heterostructures, in which the magnetic system has
a lower dimension as the metallic host, provide a particularly
rich realization of the above. For example, Heisenberg spin
chains on metallic surfaces with a Kondo coupling between
the spins and conduction electrons provide experimental re-
alizations of such dimensional mismatch [7]. Interestingly,
many phases and phase transitions can be realized in this
setup. At large Kondo coupling, the spins are Kondo screened,
leading to the formation of a composite quasiparticle that
participates in the Luttinger volume [8,9]. At weak couplings,
the fate of the spin chain depends on the nature of the two-
dimensional Fermi surface. For Dirac systems with point-like
Fermi surfaces, the Kondo exchange is irrelevant at weak
coupling, thus leading to an FL* phase and the absence of the
aforementioned emergent composite fermion [10]. In contrast,
for a generic Fermi surface, one observes dissipation-induced
order and no destruction of the composite fermion across
the phase transition [11]. Hence, depending on the nature of
the metallic state, one observes Kondo breakdown or Hertz-
Millis-type transitions.

The aim of this article is to generalize the above to two-
dimensional spin systems in a three-dimensional metallic
environment. This choice of dimensions relates, for instance,
to heterostructures of CeIn3 monolayers embedded in LaIn3

[12] in the limit where the interlayer distance is large. We
will show that as a function of the Kondo interaction, our
model system undergoes a magnetic quantum phase transi-
tion. Both phases are metallic. In the strong-coupling limit, we

observe a heavy-fermion metallic state, and the emergence of
a composite fermion that participates in the Luttinger count.
To make this statement precise, we note that our model is
invariant under translations along the magnetic plane, but
not perpendicular to it. Hence, we can understand it as a
multi-band model, where the direction perpendicular to the
magnetic plane reflects the band index. Within this setup,
the paramagnetic heavy-fermion phase has L + 1 electrons
per unit cell corresponding to L conduction electrons and the
local-moment electron. The magnetic phase is characterized
by Landau-damped magnons. In this phase, we show that
the composite fermion remains intact in the sense that it
participates in the Luttinger count. The numerical and analyt-
ical data we will present in this article aims at documenting
the interpretation that the model provides a Hertz-Millis-
type transition for quantum spins embedded in a metallic
environment.

From the technical point of view magnetic heterostructures
are particularly appealing since they provide a route to beat
the infamous sign problem in quantum Monte Carlo (QMC)
simulations. In particular, for systems with an extensive num-
ber of quantum spins and in dimensions greater than unity,
metallic states invariably suffer from the negative-sign prob-
lem. This stems from the fact that for repulsive interactions,
necessary for the very formation of local moments, the con-
dition for the absence of the negative-sign problem requires
particle-hole symmetry [13–15]. This results in a nested Fermi
surface, such that at low enough temperatures a magnetic
insulating state will occur. In contrast a subextensive amount
of local moments will not be able to gap out the Fermi surface.

The rest of this paper is organized as follows. In Sec. II,
we introduce the Hamiltonian and the lattice construction of
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FIG. 1. (a) Sketch of Kondo heterostructure, consisting of a
two-dimensional array of magnetic impurities (blue dots) and
three-dimensional itinerant conduction electrons, modeled by a
tight-binding Hamiltonian on a cubic lattice (yellow dots). (b) Three-
dimensional Fermi surface of conduction electrons. (c) Projected
Fermi surface. (d) Ground-state phase diagram of model in Eq. (1),
as extracted from QMC results.

the microscopic model. Furthermore, we discuss the nature
of the model in the weak-interaction limit and in the large-N
limit. In Sec. III, we describe our implementation of the QMC
approach for the present context. In Sec. IV, we present our
unbiased numerical results. Based on these results, we discuss
the dynamical behavior of local spin and fermion excitations.
Our conclusions and an outlook are given in Sec. V.

II. MODEL

We propose a model of a Kondo heterostructure in which
a layer of magnetic impurities is embedded in a three-
dimensional metal as depicted in Fig. 1(a). The metallic
environment is modeled by a tight-binding Hamiltonian on a
cubic lattice of linear length L and with translation invariance
in the x, y, and z directions. For the magnetic layer, we employ
a Heisenberg model with exchange JH on a square lattice
with the same lattice constant as that of the three-dimensional
cubic lattice. The two subsystems are coupled via a Kondo
interaction JK. Specifically, the Hamiltonian for this Kondo-
lattice-model heterostructure (KLM-hetero) is defined as

ĤKLM-hetero = ĤFermi + ĤHeisenberg + ĤKondo. (1)

Here,

ĤHeisenberg = JH

∑
〈i, j〉

Ŝ
f
i · Ŝ

f
j (2)

describes antiferromagnetic spin-1/2 Heisenberg interactions
on nearest-neighbor bonds 〈i, j〉 of the square lattice. The

Hamiltonian of the three-dimensional metal reads

ĤFermi = −t
∑

〈(i,Rz ),( j,R′
z )〉,σ

(
ĉ†

i,Rz,σ
ĉ j,R′

z,σ
+ H.c.

)

=
∑

k2,kz,σ

εk2,kz ĉ
†
k2,kz,σ

ĉk2,kz,σ
. (3)

Here, ĉ†
i,Rz,σ

creates an electron with z component of spin
σ in a Wannier state centered around the lattice site (i, Rz )
of the cubic lattice, and hopping on nearest-neighbor bonds
〈(i, Rz ), ( j, R′

z )〉 in all three directions.
We use periodic boundary conditions, and define Bloch

states,

ĉ†
k2,kz

= 1√
L3

∑
i,Rz

ei(k2·i+kzRz )ĉ†
i,Rz,σ

(4)

with three-dimensional crystal momentum k = (k2, kz ) ≡
(kx, ky, kz ). The dispersion relation reads εk2,kz =
−2t (cos kx + cos ky + cos kz ), and in the absence of coupling
to the magnetic plane, the three-dimensional crystal
momentum is conserved up to a reciprocal lattice vector.
The Fermi surface of the metal is shown in Fig. 1(b).

ĤKondo describes the Kondo coupling between the c con-
duction electrons and the magnetic impurities,

ĤKondo = JK

∑
i

Ŝ
c
i,Rz=0 · Ŝ

f
i , (5)

with coupling strength JK and Ŝ
c
i,Rz

=
1
2

∑
σ,σ ′ ĉ†

i,Rz,σ
σσ,σ ′ ĉi,Rz,σ ′ . Importantly, the two-dimensional

array of magnetic impurities couples to the layer of
conduction electrons at Rz = 0, such that kz is no longer
a good quantum number. Low-energy scattering processes
then involve states on the projected Fermi surface, obtained
from the summation over all kz. Technically, the projected
Fermi surface can be defined as the support of

ARz

c,0(k2, ω = 0) = − 1

π
Im
{
GRzRz

c,0 (k2, ω = 0)
}
, (6)

where

G
RzR′

z

c,0 (k2, ω) = −i
∑
i,σ

∫ ∞

0
dt eik2·ri+iωt

× 〈{ĉi,Rz,σ
(t ), ĉ†

0,R′
z,σ

(0)
}〉

0 (7)

denotes the noninteracting electronic Green’s function in the
two-dimensional reciprocal space. The projected Fermi sur-
face is depicted in Fig. 1(c).

A. Weak-coupling limit

At JK = 0, spins and conduction electrons decouple. To set
the stage, we will first discuss these degrees of freedom sep-
arately, and then investigate how they couple perturbatively
in JK.

The spin and charge excitations of the conduction electrons
are characterized by the noninteracting susceptibility

χ0(r − r′, τ − τ ′) ≡ 1
4 〈ĉ†

r (τ )σĉr (τ ) · ĉ†
r′ (τ ′)σĉr′ (τ ′)〉0 (8)
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with ĉr = (cr,↑, cr,↓), and where the expectation value is
taken with respect to ĤFermi. To simplify the notation, we
set r = (i, Rz ). The particle-hole symmetric conduction band
remains invariant under the transformation ĉ†

r → eiQ·rĉr with
Q = (π, π, π ), such that

χ0(r, τ ) = 3

2
eiQ·r

[
1

(2π )3

∫
BZ

d3k eik·reτε(k) f (ε(k))
]2

, (9)

where ε(k) = −2t (cos kx + cos ky + cos kz ), f (ε) is the Fermi
function, and we have set the lattice constant to unity. From
the above, one will see that at zero temperature,

χ0(0, τ ) = 3

2

(∫ 0

−∞
dε eτεN (ε)

)2

(10)

where N (ε) = 1
(2π )3

∫
BZ d3k δ(ε − ε(k)) is the density of

states. Since in three dimensions N (ε) has no singularity at
the Fermi energy, εF = 0, and since the long-imaginary-time
behavior of the integral stems from energies close to the Fermi
surface, we obtain the asymptotic form χ0(0, τ ) ∼ 1/τ 2 for
large τ . We now consider the spatial decay at equal time. For a
spherical Fermi surface, the k integration can be computed ex-
actly to obtain the large-distance behavior χ0(r, 0) ∼ 1/|r|4.

For the Heisenberg model, we follow Haldane’s derivation
of the O(3) nonlinear sigma model [16]. The starting point is
a spin-coherent-state formulation of the path integral. In the
large-S limit and assuming dominant antiferromagnetic spin-
spin fluctuations, the action for the local moments reads

SAFM = ρs

∫
d2xdτ

∑
μ

(∂μ�(x, τ ))2. (11)

In the above, we have neglected the Berry phase since it plays
no dominant role in the ordered state, �(x, τ ) is a space-
time-dependent unit vector accounting for the dynamics of the
antiferromagnetic O(3) order parameter, and μ runs over the
temporal and spatial directions. Finally, we have set the spin
wave velocity to unity. In the ordered state, the O(3) symmetry
is reduced to O(2), and for spontaneous symmetry breaking
along the z direction we consider the ansatz

�(x, τ ) = (n(x, τ ),
√

1 − n2(x, τ )) (12)

where n = (nx, ny ) denotes the transverse components
of the order parameter, with |n| � 1. Expanding in
|n| gives, SAFM = S(0)

AFM + S(1)
AFM + · · · with S(0)

AFM =
ρs
∫

d2xdτ
∑

μ(∂μn(x, τ ))2 and S(1)
AFM = ρs

4

∫
d2xdτ

∑
μ

(∂μn2(x, τ ))2. Under the scale transformation x → λx,
τ → λτ and n → n√

λ
, S(0)

AFM remains invariant and accounts
for the Lorentz-symmetric gapless transverse spin-spin
fluctuations. Under this transformation, the magnon-magnon
interactions described by S(1)

AFM scale as 1/λ and are hence
irrelevant at the spin-wave fixed point. Higher orders in the
expansion are even more irrelevant.

With this background, we can now couple the two systems
perturbatively. Using fermion-coherent states for the conduc-
tion electrons and the spin-coherent states for the local mo-
ments, the partition function maps onto a bilinear fermionic
problem interacting with the space-and-time-dependent

spin-coherent state. At this point, one can integrate out the
fermions and expand the resulting action up to second order
in the Kondo coupling JK. Omitting the Berry phase, the
resulting action reads

S = SAFM + �

∫
d2xd2x′dτdτ ′

× �(x, τ )χ0
AFM(x − x′, τ − τ ′)�(x′, τ ′). (13)

Here, χ0
AFM(x, τ ) = 3

2 [ 1
(2π )3

∫
BZ d3k eik2·xeτε(k) f (ε(k))]2 and

� ∝ J2
K. Note that the magnetic layer lies at Rz = 0 and

k = (k2, kz ).
Let us concentrate on the equal time spacial and local

temporal correlations. In this case,

S � SAFM + �

∫
d2xdτdτ ′ �(x, τ ) · �(x, τ ′)

(τ − τ ′)2

+ �

∫
d2xd2x′dτ

�(x, τ ) · �(x′, τ )

|x − x′|4 . (14)

The ansatz of Eq. (12) then gives S = S(0) + S(1) + · · · with

S(0) = ρs

∫
d2xdτ [(∂xn(x, τ ))2 + (∂yn(x, τ ))2]

+ �

∫
d2xdτdτ ′ n(x, τ ) · n(x, τ ′)

(τ − τ ′)2

+ �

∫
d2xd2x′dτ

n(x, τ ) · n(x′, τ )

|x − x′|4 (15)

and

S(1) = ρs

∫
d2xdτ

⎡
⎣(∂τ n(x, τ ))2 + 1

4

∑
μ

(∂μn2(x, τ ))2

⎤
⎦

+ �

4

∫
d2xdτdτ ′ n2(x, τ )n2(x, τ ′)

(τ − τ ′)2

+ �

4

∫
d2xd2x′dτ

n2(x, τ )n2(x′, τ )

|x − x′|4 . (16)

Under the scale transformation x → λx, τ → λ2τ and n →
n
λ

, S(0) remains scale invariant and describes a Landau-
damped Goldstone-mode fixed point with dynamical expo-
nent z = 2. At this fixed point, S(1) is irrelevant.

To conclude, the dynamical spin-structure factor in the
weak-coupling limit is expected to show long-range mag-
netic order and to be described by Landau-damped Goldstone
modes governed by the fixed-point action of Eq. (15). A
corresponding spin-wave analysis, presented in Appendix D,
confirms this point of view.

B. Mean-field approximation

In this section, we consider a mean-field approximation
that accounts for Kondo screening as well as for magnetic or-

dering [17]. We use the pseudofermion representation f̂
†
i,σ =

( f̂ †
i,↑, f̂ †

i,↓) of the spin-1/2, Ŝ
f
i = 1

2 f̂
†
i σ f̂

†
i , that holds pro-

vided that we impose the constraint Q̂i = f̂
†
i f̂ i = 1. With this
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choice, the Kondo coupling can be written as

Ŝ
c
i,Rz=0 · Ŝ

f
i = Ŝc,z

i,Rz=0Ŝ f ,z
i

− 1

4

∑
σ

(
ĉ†

i,Rz=0,σ f̂i,σ + f̂ †
i,−σ ĉi,Rz=0,−σ

)2
,

(17)

where Ŝc,z
i,Rz=0 = 1

2 ĉ†
i,Rz=0σzĉi,Rz=0.

The above reformulation allows us to carry out mean-field
approximations that account for the Kondo effect, as de-
scribed in the large-N limit, and magnetism. We note that this
mean-field decomposition can be formulated for an SU(N)-
symmetric Kondo lattice model [18], in which magnetism
driven by the RKKY interaction becomes a 1/N effect. In
the mean-field approximation, squared order-parameter fluc-
tuations are neglected, i.e.,

Ô2 = (〈Ô〉 + 
Ô)2 = 〈Ô〉2 + 2〈Ô〉
Ô + (
Ô)2

≈ 2〈Ô〉Ô − 〈Ô〉2, (18)

where 
Ô = Ô − 〈Ô〉 are the fluctuations. Here, we consider
the following order parameters:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

〈
Ŝc,z

i,Rz=0

〉 = −mceiQ·i,〈
Ŝ f ,z

i

〉 = m f eiQ·i,〈
ĉ†

i,Rz=0,σ f̂i,σ + f̂ †
i,−σ ĉi,Rz=0,−σ

〉 = V,

(19)

where V accounts for the hybridization between the c and f
fermions, mc and m f denotes the magnetizations arising from
conduction electrons and impurity spins, respectively and Q =
(π, π ). By combining Eqs. (17)–(19), we obtain the effective
mean-field Hamiltonian

ĤMF = ĤFermi +
∑

i

λi( f̂ †
i,σ f̂i,σ − 1)

− JKV

2

∑
i,σ

(
ĉ†

i,Rz=0,σ f̂i,σ + H.c.
)

+ JK

∑
i

eiQ·i(m f Ŝc,z
i,Rz=0 − mcŜ f ,z

i

)

− JHm f zc

∑
i

eiQ·iŜ f ,z
i + ε0 (20)

where ε0 = L2[2JH(m f )2 + JKmcm f + JKV 2/2] and zc = 4
corresponds to the coordination number of the square lattice.
To suppress the charge fluctuations in the pseudofermion sec-
tor, we introduce the Lagrange parameter λi in the first line of
Eq. (20), which imposes the constraint Q̂i = 1 at each site.

In the above, we have not accounted for a spinon de-
scription of the quantum antiferromagnet, in which the
pseudofermions delocalize in the magnetic impurity plane. In
the magnetic phase, where the hybridization matrix element
vanishes, we can justify this choice from our knowledge that
the two-dimensional Heisenberg model on the square lattice
does not have a fractionalized ground state. In the heavy-
fermion state, V �= 0, the f pseudofermions acquire electric
charge and lose their gauge charge via the Higgs mechanism,
such that they can acquire a dispersion relation [8,9]. The
mean-field Hamiltonian ĤMF is bilinear in the fermions and

can hence be solved numerically exactly in polynomial time
for a given set of order parameters. For an analytical calcu-
lation in the heavy-fermion state, we refer to Appendix E.
The order parameters are obtained by the minimizing the free
energy ∂FMF/∂mc = ∂FMF/∂m f = ∂FMF/∂V = 0, leading to
a set of self-consistent equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mc = − 1

2L2

∑
k2,σ

(−1)σ
〈
ĉ†

k2+Q,Rz=0,σ
ĉk2,Rz=0,σ

〉
,

m f = 1

2L2

∑
k2,σ

(
(−1)σ

〈
f̂ †
k2+Q,σ

f̂k2,σ

〉)
,

V = 1

2L2

∑
k2,σ

(〈
ĉ†

k2,Rz=0,σ
f̂k2,σ

+ f̂ †
k2,σ

ĉk2,Rz=0,σ

〉)
,

1

L2

∑
i,σ 〈 f̂ †

i,σ f̂i,σ 〉 = 1.

(21)

The last equation in Eq. (21) corresponds to the half-filling
constraint for the pseudofermions. At λ = 0, the mean-field
Hamiltonian of Eq. (20) is particle-hole symmetric such
that this choice of the Lagrange parameter satisfies the con-
straint on average. Technical details concerning the numerical
solution of the self-consistency equations are provided in
Appendix A.

The resulting mean-field phase diagram at zero tempera-
ture is presented in Fig. 2(a). Here, we have set the hopping
parameter for the conduction electrons to t = 1, thereby set-
ting the unit of energy, fixed the Heisenberg coupling to
JH/t = 0.5, and varied the Kondo coupling JK. The phase
diagram is divided into two regimes. At weak Kondo cou-
pling, JK � 1, we observe an antiferromagnetic metallic
phase, in which the mean-field parameters satisfy mc �= 0,
m f �= 0, and V = 0. At strong Kondo coupling, JK � 1,
the model is in a paramagnetic heavy-fermion phase, char-
acterized by mc = m f = 0 and V �= 0. These two phases
are separated by a direct first-order transition around JK ≈
3.42, where the order parameters show discontinuities. A
cusp in the ground state, Fig. 2(b) reflects the corresponding
level crossing, consistent with the first-order nature of the
transition.

We expect that the single-particle spectral func-
tion Ac/ f (k2, ω) = − 1

π
ImGret

c/ f (k2, ω) will have
distinct features in each phase. Here, Gret

d (k2, ω) =
−i
∫∞

0 dt eiωt
∑

σ 〈{d̂k2,σ
(t ), d̂†

k2,σ
(0)}〉, with d̂k2,σ = ĉk2,Rz=0,σ

for the conduction-electron spectral function, and d̂k2,σ =
f̂k2,σ for the pseudofermion spectral function. In Fig. 3, we
plot the local density of states, Ac/ f (ω) = 1

L2

∑
k2

Ac/ f (k2, ω)
in the aforementioned two phases, using JK = 2.00 and
JK = 5.00. Furthermore, we are interested in states
characterized by all order parameters being nonzero.
Although such state are not realized as ground states at
the level of the mean-field approximation, it reflects the
coexistence of magnetic order and Kondo screening, as
observed in the forthcoming quantum Monte Carlo results.

For mc �= 0, m f �= 0, and V = 0, as observed at JK = 2.00,
the f fermions are localized. A f (ω), shown in Fig. 3(d),
consists of two Dirac δ functions and the origin of the gap
stems from the Weiss mean field m f �= 0. This is confirmed
by the momentum-resolved f spectral function, shown in
Fig. 4(d), which exhibits two flat bands. For the above mean-
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FIG. 2. (a) Mean-field order parameters at zero temperature.
Here, t = 1, JH = 0.5, and we set L = 100. The inset shows the
order parameters over a larger range, confirming the analytical result
V = 1 in the strong-coupling limit [Eq. (E14)]. (b) Free energy as
function of JK. Both (a) and (b) support a first-order transition.

FIG. 3. Local density of states Ac(ω) (top) and Af (ω) (bottom)
in antiferromagnetic (first column), heavy-fermion (second column)
and coexistence (third column) states in mean-field approximation.
The corresponding mean-field parameters are given in the title of
each column.

FIG. 4. Fermion spectral functions Ac(k2, ω) (top row),
Af (k2, ω) (center row), and Aψ (k2, ω) (bottom row) in antiferromag-
netic (left column), heavy-fermion (center column) and coexistence
(right column) phases in mean-field approximation. Here, we
consider the path �(0, 0) → M(π, 0) → K(π, π ) → �(0, 0).

field parameters, the conduction-electron resolvant matrix
reads Gc,σ (z) = (G−1

c,σ,0(z) − �c,σ )−1 with [G−1
c,σ,0(z)]k,k′ =

δk,k′ (z − ε(k)), [�c,σ ]k,k′ = σJKm f

2L δk2,k
′
2+Q, and z a complex

frequency. Here, k = (k2, kz ) and Q = (π, π ). From this
form, one can derive the spectral function, plotted in Fig. 4(a),

Ac(k2, ω) = − 1

π
Im

1

g−1
0 (k2, ω) − (JKm f )2

4 g0(k2 + Q, ω)
(22)

with g0(k2, ω) = 1
L

∑
kz

1
ω+i0+−ε(k2,kz ) . In the absence of mag-

netic ordering, the spectral function describes a continuum of
extended Bloch states in all three directions. At finite val-
ues of mc, we observe a back folding of this structure due
to scattering off the magnetic Bragg peak. In the vicinity
of the M point and ω � ±2.1t , we observe a pole that is
detached from the continuum. Note that at the M point, the
continuum of states obtained from g0(k2, ω) is bounded by
ω = ±2. Let |k2, kz〉 be the wave function corresponding to
the pole. Since the two-dimensional k2 vector is a conserved
quantity, up to a reciprocal lattice vector of the magnetic
Brillouin zone, an electron in this state cannot decay into
an extended three-dimensional state. Hence, we expect the
wave function to have a two-dimensional character. That is,
|k2, Rz〉 ≡ 1√

L

∑
kz

e−ikzRz |k2, kz〉 should decay exponentially
as a function of Rz, with Rz = 0 denoting the magnetic layer.
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In Appendix E, we provide an explicit calculation in the
paramagnetic phase, demonstrating this point. The two di-
mensionality of the pole shows up in Fig. 3(a). Here, we see
the saddle point of the dispersion at the M wave vector leads
to a two-dimensional van-Hove singularity with characteristic
logarithmic divergence [19].

At large JK = 5.00, shown in Figs. 3(b), 3(e), 4(b), and
4(e), only V takes a nonvanishing value. Here the f electron
delocalizes and participates in the Luttinger volume. This
notion can be made precise, since we can view the heterostruc-
ture as a two-dimensional Bravais lattice with a unit cell
consisting of L conduction electrons and one pseudofermion.
In the paramagnetic heavy-fermion phase, the pseudofermion
spectral function is given by

A f (k2, ω) = − 1

π
Im

1

ω + i0+ − (JKV/2)2g0(k2, ω)
. (23)

For values of k2 with cos kx + cos ky = 0, defining the Fermi
surface of the two-dimensional tight-binding model on the
square lattice, the above form matches the mean-field re-
sult of a single impurity in a one-dimensional metallic host.
Here, we observe a resonance at the Fermi energy for the
f spectral function, and a dip in the c spectral function.
These features are apparent in Figs. 3(b), 3(e), 4(b), and 4(e).
The momentum-resolved f spectral function, Fig. 4(e), shows
well-defined poles. Following the same discussion as above,
and as explicitly computed in Appendix E, these poles corre-
spond to two-dimensional states. In the vicinity of the M and
� points in the two-dimensional Brillouin zone, they form a
narrow band that leads to an enhanced density of states, very
visible in Figs. 3(b) and 3(e).

Finally, for a coexistence state, all mean-field order param-
eters take nonvanishing values. For our analysis, we choose
the mean-field parameters mc = 0.17, m f = 0.40, and V =
0.438. The dominant features in such state, as shown in
Figs. 3(c), 3(f), 4(c), and 4(f), can be understood by starting
from the paramagnetic heavy-fermion phase and allowing for
Q = (π, π ) scattering, which leads to shadow bands in the
extended zone scheme.

In an exact numerical calculation, we do not have ac-
cess to the pseudofermion, and it is convenient to consider
a so-called composite fermion operator defined as ψ̂

†
i,σ =∑

σ ′ ĉ†
i,Rz=0,σ ′σσ ′,σ · Ŝ

f
i [8,9,20–23]. By means of a canoni-

cal Shrieffer-Wolff transformation [24], one can derive the
Kondo lattice model from an Anderson model in the limit
where charge fluctuations on the localized impurity orbitals
is suppressed. In this framework, the composite fermion
operator merely corresponds to the Schrieffer-Wolff transfor-
mation of the fermion creation operator on localized impurity
orbitals [23]. In addition, one can represent the Kondo cou-
pling as the hybridization of the composite fermion and

c fermion, 1
2

∑
σ (ψ̂†

i,σ ĉi,Rz=0,σ + ĉ†
i,Rz=0,σ ψ̂i,σ ) = Ŝ

c
i,Rz=0 · Ŝ

f
i .

In the mean-field approximation, the Green’s function of the
composite fermion can be computed by expressing it as a
convolution of single-particle Green’s functions via Wick’s
theorem. The resulting momentum-dependent spectral func-
tion Aψ (k2, ω) is depicted for the three representative values
of JK in Figs. 4(g)–4(i).

We first focus on the behavior of the composite fermion
in a Kondo-screened phase. In the large-N limit, the com-
posite fermion reads ψ̂

†
i,σ ∝ 〈D̂i〉 2

N f †
i,σ [8], where N is the

number of fermion components, σ = 1, . . . , N , and D̂i =∑N
σ=1 f̂i,σ ĉ†

i,Rz=0,σ the hybridization. The Kondo-screened
phase is characterized by a finite hybridization parameter V ,
and we expect the spectral function of ψ fermion to follow
that of the f fermion. By comparing the results presented
in Figs. 4(e) and 4(h), we see that the mean-field calculation
agrees with the large-N approximation in the Kondo-screened
phase.

In the antiferromagnetic metal phase, the mean-field hy-
bridization parameter V vanishes, so that the f electron is
no longer related to the composite fermion ψ . The behav-
ior of the composite fermion spectral function in Fig. 4(g)
can be understood within a large-S approximation [8].
Using the Holstein-Primakoff representation of the spin al-
gebra and at lowest order in 1/S, we obtain

∑
σ Gψ

i, j (τ ) =
S2∑

σ 〈ĉi,σ (0)ĉ†
j,σ (τ )〉eiQ·( j−i). Hence, the composite fermion

Green’s function can be obtained from that of the c fermions,
albeit with momentum shifted by the magnetic wave vector Q.
This statement is verified upon comparing Figs. 4(a) and 4(g).

III. QMC SIMULATIONS

We use the ALF [25,26] implementation of the finite-
temperature [13,27,28] and projective [29,30] auxiliary-field
QMC algorithms to perform large-scale simulations of the
model defined in Eq. (1). For the QMC simulations, we con-
sider the Hamiltonian,

ĤQMC = −t
∑

k2,σ,Rz,R′
z

ĉ†
k2,Rz,σ

T (k2)Rz,R′
z
ĉk2,R′

z,σ

− JK

4

∑
i

(∑
σ

ĉ†
i,Rz=0,σ f̂i,σ + f̂ †

i,σ ĉi,Rz=0,σ

)2

− JH

4

∑
〈i, j〉

(∑
σ

f̂ †
i,σ f̂ j,σ + f̂ †

j,σ f̂i,σ

)2

+ U

2

∑
i

(∑
σ

f̂ †
i,σ f̂i,σ − 1

)2

, (24)

with T (k2)Rz,R′
z
= −2t (cos kx + cos ky)δRz,R′

z
− tδ|Rz−R′

z |,1 −
t (δRz,L−1δR′

z,0 + δRz,0δR′
z,L−1) and f̂i,σ the pseudofermion

operator. The Hubbard-U interaction in Eq. (24) suppresses
charge fluctuations of the pseudofermion. Crucially, the local
f -fermion parity, (−1)n̂ f

i , is a conserved quantity, such that
the unphysical even-parity states are suppressed exponentially
as βU grows. In the odd-parity sector, ĤQMC is equivalent
to the KLM-hetero Hamiltonian, ĤQMC|n̂ f

i =1 = ĤKLM-hetero.
In the practical finite-temperature (projective) simulations,
we keep the product βU > 10 (2�U > 10, where � is the
projection length), which is sufficient to suppress the charge
fluctuations of the f fermion.

Equation (24) provides a U(1)-gauge-theory description of
the Kondo-lattice problem. Following the path-integral for-
malism used in Ref. [9], we introduce bosonic fields bi(τ ) ∝
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c†
i (τ ) f i(τ ) and bf

i, j (τ ) ∝ f †
i (τ ) f j (τ ) by decomposing the

perfect square terms parametrized by JK and JH in Eq. (24),
where ci(τ ) and f i(τ ) are the Grassmann fields of the c and
f fermion operators. At U = ∞, the action has local U(1)
gauge invariance. f i(τ ) and bi(τ ) are the U(1)-gauge-charged
field variables. One can define the gauge-neutral composite
fermion field as f̃ i(τ ) = eiϕi (τ ) f i(τ ) with eiϕi (τ ) = bi (τ )

|bi (τ )| . The
composite fermion field carries electron charge and spin 1/2.
More importantly, the field variable f̃ i(τ ) corresponds to the
Grassmann variable of the composite fermion operator f̃ i ∝
ψi = Si · σci. This relation provides a route to understand the
dynamic-spin-correlation behavior from the heavy-fermion
band structure. We will come back to this point in the next
section.

In the QMC simulations, we treat the finite-size Kondo
heterostructure as a two-dimensional lattice containing L × L
unit cells with L + 1 orbitals per in-plane unit cell. The or-
bitals refer to the z-axis degrees of freedom. We use two
techniques to reduce the finite-size effects in the lattice simu-
lations. One is to follow the technique suggested in Ref. [31],
by including an orbital magnetic field of strength B = φ0/L2

in the z direction. Another technique we use is to average
over twisted boundary conditions in the z direction [32]. To
achieve this, we consider a distinct twist on every process
during the parallel computations. Averaging over parallel runs
then amounts to averaging over all possible twisted bound-
ary conditions. The details of this technique are presented in
Appendix B.

IV. RESULTS

In this section, we discuss our QMC results. We con-
sider three-dimensional systems with linear lattice sizes L =
4, 6, 8, 10, 12, and a mix of finite-temperature and zero-
temperature projective methods. In our simulations, we set
t = 1 to define the unit energy, fix JH/t = 0.5, and vary
the Kondo coupling. For projective QMC simulations, we
consider the projection length parameter � = 40 to ensure
convergence of the results.

A. Phase diagram

From the mean-field analysis, we anticipate at least one
magnetic quantum phase transition as a function of JK. To
pin down the location of a possible phase transition, we use
a renormalization-group-(RG)-invariant quantity, the correla-
tion ratio, given by

Rc
((

JK − Jc
K

)
L1/ν, Lz/β, L−ω

) = 1 − Cf (Q + dk2, 0)

Cf (Q, 0)
(25)

where Cf (k2, 0) is the spin structure factor of the impurity
spins,

Cf (k2, τ ) =
∑

k2

e−ik2·(i− j)〈Ŝ f
i (τ )Ŝ f

j (0)
〉
, (26)

and dk2 = (2π/L, 0) is the smallest momentum difference
on the finite-size system. The RG-invariant quantity Rc ap-
proaches one in the magnetically-ordered phase and drops to
zero for short-ranged spin correlations. Since we a priori do
not know the value of the dynamical exponent z, we have
used the projective algorithm, such that we can set Lz/β = 0

(a)  (b)

K

K

K

K

FIG. 5. (a) Correlation ratio Rc(L, JK ) as function of Kondo
coupling JK from projective QMC for different lattice sizes L.
(b) Finite-size critical point Jc

K(L) as function 1/L. The extrapolation
towards the thermodynamic limit indicates a single quantum critical
point at Jc

K = 3.019(4).

in the above equation. If the corrections to scaling are small
(i.e., ω is large), we expect a universal crossing at Jc

K. In
Fig. 5(a), we plot the result of Rc for L = 4, 6, 8, 10, 12 at zero
temperature. The finite-size critical points Jc

K(L) is defined
by the intersection of the correlation ratio between different
system sizes, Rc(Jc

K(L), L) = Rc(Jc
K(L), L + �). In Fig. 5(b),

we consider � = 2, 4, and use a polynomial fit to determine
the crossing point. We see that Jc

K(L) drifts as a function of
growing size and stabilizes to Jc

K = 3.019(4) at the two largest
system sizes in our calculation. As we will demonstrate below,
in contrast to the mean-field result, the QMC spectral func-
tions indicate that hybridization between conduction electrons
and local moments occurs throughout the magnetic phase. The
QMC phase diagram therefore consists of just two different
phases: An antiferromagnetic heavy-fermion phase for small
JK < Jc

K and a paramagnetic heavy-fermion phase for large
JK > Jc

K, see Fig. 1(d).

B. Spin spectral function

We turn our attention on the spin susceptibility of the
magnetic impurity layer. Using the ALF [25] implementa-
tion of the stochastic Maximum Entropy method [33,34],
we extract the dynamical spin structure factor S(k2, ω) =
χ ′′

f (k2, ω)/[1 − exp(−βω)] from imaginary time spin corre-
lation function. Specifically,

Cf (k2, τ ) = 1

π

∫
dω

e−τω

1 − e−βω
χ ′′

f (k2, ω). (27)

At weak coupling, such as JK = 0.50, Fig. 6(a), the dominant
features of the dynamical spin structure factor follow the
spin-wave result with a linear mode around the ordering wave
vector Q = (π, π ). Upon increasing the Kondo coupling to
JK = 2.50, Fig. 6(b), which is still in the magnetically-ordered
phase, we observe marked differences from the spin-wave
result: The spectral weight broadens and the data is consistent
with a lower edge of the spectra that follows ω ∝ (k2 − Q)2

near Q. This is consistent with the notion of Landau-damped
Goldstone modes originating from the Kondo coupling of
the spins to the metallic host, as presented in Sec. II A and
discussed in Appendix D. Figure 6(c) demonstrates that this
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=0.10 Jc< Jc<=2.50

J c≈=3.04

=0.10 Jc< Jc<=2.50

J c≈=3.04 >Jc=4.50

FIG. 6. Spin spectral function S(k2, ω) along a high-symmetry
path in the Brillouin zone from finite-temperature QMC for different
values of JK, using β = 40 and L = 12.

feature is apparent up to the critical point Jc
K. At strong cou-

pling, JK = 4.50 > Jc
K, Fig. 6(d), we are in the paramagnetic

heavy-fermion phase. The absence of long-range magnetic or-
der with associated Bragg peaks at the antiferromagnetic wave
vector leads to a strong suppression of low-energy weight.
We, however, still observe low-energy spectral weight: The
heavy-fermion phases are characterized by the emergence of
the composite fermion operator. As mentioned above, and
within a field-theoretical framework, this can be understood
in terms of a Higgs mechanism in which eiϕi (τ ) fi(τ ) is a
well-defined low-energy excitation. The low-energy spectral
weight corresponds to the particle-hole bubble of this com-
posite fermion. On the other hand, the high-energy spectral
weight is reminiscent of the Kondo insulator [3,35] that cap-
tures triplon dynamics.

Following the weak-coupling-limit discussion and the ob-
servation of Landau damping in the dynamical spin structure
factor, we foresee that the dynamical exponent is given by
z = 2 at the magnetic critical point Jc

K. Since the dynamical
exponent encodes the asymmetry between space and time,
we consider real-space equal-time spin correlations Cf (i −
j, τ = 0) in Figs. 7(a)–7(c), as well as local time-displaced
correlations Cf (0, τ ) in Figs. 7(d)–7(f). Here,

Cf (i − j, τ ) = 〈Ŝ f
i (τ )Ŝ f

j (0)
〉
. (28)

For this set of calculations, we have used the finite-
temperature code with β = L2/2 so as to observe ground-state
properties. At JK = 2.60 < Jc

K, Figs. 7(a) and 7(d), the
Heisenberg model has long-range order, such that the spin
correlations saturate to a constant both in space and imagi-
nary time. We note that our simulations explicitly preserve
SU(2) spin symmetry, so that we cannot distinguish between
longitudinal and transverse modes. In other words, the data of

FIG. 7. Spin-spin correlations Cf (i − j, τ ) in impurity layer as
function of distance r at equal time τ = 0 (left column) and imagi-
nary time τ at equal position r = 0 (right column) for different values
of JK in the antiferromagnetic phase (top row), quantum critical
regime (center row), and paramagnetic heavy-fermion phase (bottom
row), from finite-temperature QMC, using β = L2/2. Dashed blue,
black, and red lines represent power-law decay functions f (x) ∼
1/x, 1/x2, and 1/x4 for reference. The red solid line at (b), (c), (e),
and (f) represent the numerical fitting of the QMC data.

Figs. 7(a) and 7(d) are dominated by the long-range order, and
we are blind to the transverse critical modes.

At the critical point JK = 3.00 ≈ Jc
K, Figs. 7(b) and 7(e),

the data suggest power-law decays of the form Cf (i − j, τ =
0) ∝ 1/|i − j|αr and Cf (0, τ ) ∝ 1/ταt , respectively. By per-
forming a numerical fit, we have extracted the values of the
exponents, resulting in αr = 1.384(2) and αt = 0.68(2), sat-
isfying αr = 2αt within numerical uncertainty, consistent with
z = 2 at the critical point. The fits are represented as solid red
lines in Figs. 7(b) and 7(e).

Finally, in the paramagnetic heavy-fermion phase,
Figs. 7(c) and 7(f), the spin-spin correlations inherit the scal-
ing of the host metal. That is, Cf (i − j, τ = 0) ∝ 1/|i − j|4 in
space and Cf (0, τ ) ∝ 1/τ 2 in imaginary time. We understand
this from the point of view of the composite fermion operator
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(a)
cA

(f)
A

(b) (c) (d) (e)

(g) (h) (i) (j)

FIG. 8. Fermion spectral functions Ac(k2, ω) (top row) and Aψ (k2, ω) (bottom row) from finite-temperature QMC, using β = 40 and
L = 12. The Kondo coupling JK increases from left to right.

[36],〈
Ŝ

f
i (τ )Ŝ

f
j (0)

〉 = 〈 12 f̂
†
i (τ )σ f̂ i(τ ) · 1

2 f̂
†
j (0)σ f̂ j (0)

〉
= 〈 12 f̃

†
i (τ )σ f̃ i(τ ) · 1

2 f̃
†
j (0)σ f̃ j (0)

〉
. (29)

In the paramagnetic heavy-fermion phase, the spin correla-
tions are well understood by considering the bubble of the
above particle-hole correlation function. In fact, in the large-N
limit, vertex contributions vanish, and as shown in Ref. [18]
for the specific case of the half-filled two-dimensional Kondo
lattice model, the large-N saddle point is adiabatically
connected to the SU(2) model. Since the f̃ i(τ ) operator has
the same quantum numbers as that of the electron operator,
we expect it to have the same scaling dimension.

C. Composite-fermion and conduction-electron
spectral functions

The composite-fermion spectral function is a very useful
quantity to assess the presence of Kondo screening. Let us
start with the corresponding periodic Anderson model. In this
case, Kondo breakdown corresponds to an orbital-selective
Mott transition [37], and the single-particle spectral function
of the impurity-orbital fermion operator d̂† will show a gap.
In the limit where charge fluctuations on the impurity orbitals
are suppressed and the periodic Anderson model maps onto
the Kondo lattice model, the composite fermion is nothing but
the canonical Schrieffer-Wolff transformation of the d̂† oper-
ator. Hence, Kondo breakdown corresponds to an absence of
spectral weight at the Fermi energy of the composite fermion
operator.

In Fig. 8, we present the evolution of the c-fermion spec-
tral function Ac(k2, ω) and the composite-fermion spectral
function Aψ (k2, ω) upon varying the Kondo coupling JK.
At weak coupling, JK = 0.1 and JK = 0.5, the magnetic
impurities exhibit long-range antiferromagnetic order. The c-
fermion spectral function is very similar to the corresponding
mean-field result. The composite-fermion spectral function

Aψ (k2, ω) reveals a momentum shift of Q = (π, π ) with re-
spect to Ac(k2, ω), see also Fig. 4(g). In addition, the intense
composite-fermion spectral weight at ω � 0 at the � point
suggests Kondo screening throughout the antiferromagnetic
phase for all JK > 0. This feature becomes clear by comparing
Figs. 8(f) and 8(g) with the mean-field composite-fermion
spectral function in the coexistence phase, Fig. 4(i).

As one enhances the Kondo coupling into the finite-
temperature quantum critical fan, JK = 2.50 and JK = 3.04,
we observe growing (decreasing) low-energy spectral weight
in the composite-fermion (c-electron) spectral function. Due
to the reduction of the antiferromagnetic order parameter,
band folding features in the composite-fermion spectral func-
tion become weaker as compared to smaller values of JK.

At large Kondo coupling, JK = 4.50, deep in the param-
agnetic heavy-fermion phase, magnetic correlations are short
ranged and the c fermion strongly hybridizes with the f
pseudofermion. In Fig. 8(e), we observe that the low-energy
c-fermion spectral weight is greatly suppressed. This is con-
sistent with the mean-field result of Fig. 4(b). On the other
hand, Fig. 8(j) shows that the composite fermion has substan-
tial low-energy weight, again in accordance to the large-N
calculation of Fig. 4(h).

As mentioned at the beginning of this section, it is cru-
cial to understand whether the f -fermion spectral function
has finite spectral weight at the Fermi energy, since this
a measure for Kondo screening. In Fig. 9, we present the
temperature dependence of the local density states near
the Fermi level Ac/ψ (ω = 0, T ) as function of tempera-
ture. Here we use the approximate relation Ac/ψ (ω = 0) ≈
β

πN

∑
k2

Gc/ψ (k2, τ = β

2 ) to obtain this quantity directly, cir-
cumventing the need for analytical continuation. Note that
for a smooth density of states at the Fermi level, this
equation becomes exact in the low-temperature limit. At low
temperatures, as presented in Fig. 9(a), the c-fermion local
density of states, Ac(ω = 0), decreases with growing Kondo
coupling. When JK > Jc

K, Ac(ω = 0) becomes very small at
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(a) (b)

FIG. 9. Local density of states Ac(ω = 0) (left) and Aψ (ω = 0)
(right) near the Fermi level as function of temperature T = 1/β

for different values of JK from finite-temperature QMC. Here, we
consider L = 10 and restrict the data to the temperature range with
smallest finite-size effects.

low temperatures. In contrast, the results for the composite-
fermion local density of states Aψ (ω = 0), as shown in
Fig. 9(b), suggest that this quantity does not vanish for any
finite JK in the zero-temperature limit. Since composite and
c fermions have the same quantum numbers, the supports of
both spectral functions are expected to be identical. However,
the spectral weight can differ substantially. Hence, we under-
stand that the low-energy spectral weight of the conduction
electrons deep in the paramagnetic heavy-fermion phase does
not vanish. Further data, demonstrating that these results are
representative of the thermodynamic limit, are provided in
Appendix C.

On the whole, the results shown in this section provide
numerical evidence of a metal-to-metal magnetic transition
across which Kondo screening does not break down.

V. CONCLUSIONS AND OUTLOOK

The model of the Kondo heterostructure presented in this
work provides a unique possibility to numerically investi-
gate the physics of quantum spins in a metallic environment
without encountering the infamous negative-sign problem.
The model can be seen as a dimensional generalization
of a spin-chain on a metallic surface [10,11], leading to
a two-dimensional quantum antiferromagnet embedded in
a three-dimensional metal. Our model is relevant for the
description of Kondo heterostructures such as CeIn3/LaIn3

superlattices studied experimentally in Ref. [12].
Combining a weak-coupling analysis and a mean-field

calculation, we foresee the existence of a magnetic quan-
tum critical point in a metallic environment driven by the
Kondo interaction. This is confirmed by unbiased large-
scale auxiliary-field QMC simulations. The antiferromagnetic
heavy-fermion phase is characterized by Landau-damped
Goldstone modes and the quantum critical point is consistent
with a dynamical exponent z = 2. Both aspects are a direct
consequence of the metallic environment. In the paramagnetic
heavy-fermion phase, the spin correlations of the magnetic
system inherit those of the host metal, in accordance with the
large-N calculation. This result can be understood in terms of
the emergence of a composite fermion operator that carries the

quantum number of the electron and hence possesses the same
scaling dimension. Within a U(1) gauge theory of the Kondo
lattice, the composite fermion corresponds to the bound state
of the Abrikosov pseudofermion and the phase of the bosonic
hybridization field.

Of crucial importance for the understanding of the transi-
tion is the fate of the aforementioned composite fermion and
the associated Kondo effect. In fact, up to the smallest Kondo
coupling we considered, JK = 0.1, the composite-fermion
spectral function does not develop a gap, such that we can
exclude Kondo breakdown. We note that Kondo breakdown
within the magnetically-ordered phase would not violate Lut-
tinger’s theorem due to the doubling of the magnetic unit
cell [38]. Hence, the quantum critical point in our model
describes an interesting metal-to-metal magnetic transition in
a model with SU(2) local spins, in which the heavy-fermion
quasiparticle does neither disintegrate at the transition nor in
the magnetic phase. Consequently, this transition falls into
the category of Hertz-Millis [39,40], albeit with the important
property that only the two-dimensional crystal momentum is
conserved up to a reciprocal lattice vector. The understanding
of this transition and a possible non-Fermi liquid charac-
ter is left for future work. Another intriguing issue is the
finite-temperature phase diagram. In the very same way that
dissipation stabilizes long-range order in the ground state of a
one-dimensional spin-chain [41], one might expect the Kondo
heterostructure to show magnetism at finite temperature.
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APPENDIX A: NUMERICAL SOLUTION
OF SELF-CONSISTENCY EQUATIONS

In the mean-field analysis, we employ the standard iterative
method to solve the self-consistency equations, Eq. (21). We
denote the set of mean-field parameters at the nth step of
the iteration as xn, with n ∈ N. The iterative method starts
with an initial guess of the mean-field order parameters x1 =
(mc,1, m f ,1,V1). At each step of the iteration, we compute the
single-particle Green’s function by diagonalising the mean-
field Hamiltonian ĤMF, Eq. (20), with input parameters xn.
The convergence is determined using a quantity ρ2

n , defined
as

ρ2
n = ρ2

c,n + ρ2
f ,n + ρ2

V,n, (A1)
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where

ρc,n = mc,n + 1

2L2

∑
k2,σ

(−1)σ
〈
ĉ†

k2+Q,Rz=0,σ
ĉk2,Rz=0,σ

〉
n, (A2)

ρ f ,n = m f ,n − 1

2L2

∑
k2,σ

(−1)σ
〈
f̂ †
k2+Q,σ

f̂k2,σ

〉
n, (A3)

ρV,n = Vn − 1

2L2

∑
k2,σ

〈
ĉ†

k2,Rz=0,σ
f̂k2,σ

+ H.c.
〉
n
, (A4)

where 〈. . . 〉n denotes expectation value with respect to ĤMF at
the nth step of the iteration, i.e., with input parameters xn. If
ρ2

n is larger than or equal to a small threshold value r � 1, the
algorithm proceeds to the next iteration, and we update the
mean-field parameters xn+1 according to Eq. (21), using the
Green’s function obtained in the previous step. For ρ2

n < r,
we have obtained a fixed-point solution xn with a precision of
r. In our analysis, we set the threshold value of r to 10−10,
which is sufficient for a system size of L = 100.

APPENDIX B: TWISTED BOUNDARY CONDITIONS
IN z DIRECTION

For periodic boundary conditions, the fermion operator
satisfies ĉr+La = ĉr, where a = 1, 2, 3 represents the x, y, z
directions. For twisted boundary conditions along the z di-
rection, the condition transforms into ĉr+La = e2π i�/�0δa,z ĉr.
The twist in the boundary can be removed at the expense
of a vector potential in the Hamiltonian that can be locally
but not globally removed with a gauge transformation [42].
Specifically we can consider the canonical transformation

d̃r = e− 2π i�
�0

ez ·r
L c̃r. (B1)

d̃r satisfies periodic boundary conditions,

d̃r+La = d̃r (B2)

and the hopping part of our Hamiltonian transforms to

ĤFermi = −t
∑
〈r,r′〉

d̂†
r e

2π i�
�0

(r−r′ )·ez
L d̂r′ (B3)

Fourier transform gives

ĤFermi =
∑

k

[
−2t

3∑
a=1

cos

(
ka + δa,3

�

�0

2π

L

)]
d̂†

k d̂k. (B4)

In the QMC calculation, we obtain the observable by av-
eraging over different twisted boundary condition �/�0 ∈
[0, 1] to reduce finite-size effects. In particular for a one-
dimensional noninteracting system it was pointed out in
Ref. [32] such an averaging over boundary conditions yields
exact results for any value of L.

Hence, for a given operator Ô, we evaluate

〈Ô〉 =
∫ 1

0
d�〈Ô(�)〉. (B5)

This strategy improve the data quality in the free fermion
system by increasing the momentum resolution for finite-
system sizes. In Fig. 10, we provide a simple benchmark of
the noninteracting c-fermion Green’s function at the impurity

(a)  (b)

FIG. 10. Imaginary part of c-fermion Green’s function
Im GRz=0

c (k2, ωn) as function of Matsubara frequency ωn =
(2n + 1)π/β for (a) k2 = (π/2, π/4) and (b) k2 = (π/2, π/2).
Green dots follow Eq. (D5). Purple (orange) dots are obtained from
finite-size lattice calculations with linear size L = 8 and inverse
temperature β = 40 with periodic boundary conditions (twisted
boundary conditions, averaged over ten different twists). Lines
represent guides to the eye.

layer, obtained from ĤFermi, defined as

GRz=0
c,0 (k2, ωn) = −

∫ β

0
dτ eiωnτ

〈
ĉk2,Rz=0(τ )ĉ†

k2,Rz=0(0)
〉
0

(B6)

where ωn = (2n + 1)π/β is the Matsubara frequency. By
considering Eq. (B3) in continuous momentum space,
GRz=0

c,0 (k2, ωn) follows the analytic form given in Eq. (D5),
see the green line in Fig. 10. In the lattice calculation, this
quantity suffers from the finite momentum resolution and de-
viates from the analytic form at low frequency, which is well
observed for periodic boundary conditions, shown in purple in
Fig. 10. The orange dots shown in Fig. 10 represent the results
of finite-size lattice calculations with twisted boundary condi-
tions. In this calculation, we average over ten different twists,
satisfying �/�0 = 0.1n for n ∈ [0, 1, . . . , 9]. As presented
in Fig. 10, the mismatch between the finite-size calculation
and the analytic form of GRz=0

c (k2, ωn) at low frequency can
be reduced effectively by using twisted boundary conditions,
at least in the noninteracting system. On this ground, we
believe this technique can alleviate finite-size effects also in
the interacting system.

APPENDIX C: FINITE-SIZE EFFECTS ON LOCAL
DENSITY OF STATES

In this Appendix, we provide additional plots for the local
density of states Ac/ψ (ω = 0, T ), in order to illustrate the
finite-size effects. In Figs. 11 and 12, we compare the data
obtained from different system sizes, using different values of
the Kondo coupling JK. For the considered range of param-
eters, T > 0.025, JK > 0.1, lattices with linear-system sizes
L � 10 appear to be representative of the thermodynamic
limit.
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(a)

A
A

(b)

(c) (d)

FIG. 11. Conduction-electron local density of states Ac(ω =
0, T ) near the Fermi level as function of temperature T for differ-
ent lattice sizes L. In each panel, different colors indicate different
system sizes. The Kondo coupling JK increases from left to right and
top to bottom.

APPENDIX D: SPIN-WAVE THEORY
IN ANTIFERROMAGNETIC PHASE

To confirm the existence of Landau-damped Goldstone
modes in the antiferromagnetic phase within a spin-wave de-
scription, we perform a Holstein-Primakoff transformation of

(a)

A

(b)

(c)

A

(d)

FIG. 12. Same as Fig. 11, but for the composite-fermion local
density of states Aψ (ω = 0, T ).

(a) (b)

FIG. 13. (a) Crystallographic Brillouin zone (blue) and back-
folded magnetic Brillouin zone (yellow). (b) Magnon self-energies
π in one-loop perturbation theory from Eqs. (D9) (top) and (D10)
(bottom).

the local moments. The latter are then perturbatively coupled
to the conduction electrons. From a theoretical perspective,
this procedure provides a combined expansion in both the
inverse spin lengths of the local moments 1/S and the Kondo
coupling JK. In particular, if the magnon modes can dissipate
energy by exciting electrons, this is reflected in the magnon
propagator, which we will compute in the following.

In the absence of Kondo interactions, the local moments
form a Heisenberg antiferromagnet in the impurity layer.
We introduce two sublattices A and B to take the stag-
gered magnetization into account. The leading order of the
Holstein-Primakoff transformation in the limit S → ∞ reads

Ŝ+
i∈A �

√
2Sai, Ŝ+

i∈B �
√

2Sb†
i ,

Ŝ−
i∈A �

√
2Sa†

i , Ŝ−
i∈B �

√
2Sbi,

Ŝz
i∈A = S − a†

i ai, Ŝz
i∈B = −S + b†

i bi, (D1)

where the bosonic operators a(†)
i , b(†)

i annihilate (create) a
spin-wave excitation. To consider the coupling between these
magnons and the conduction electrons, we first have to es-
tablish a description of the full three-dimensional electronic
band structure that is compatible with the Néel order in the
impurity layer at Rz = 0. To this end, we formally introduce
the same A, B sublattices in all layers with A − A stacking in
the Rz direction, such that hopping processes between layers
with different Rz, but identical in-plane coordinate i, do not
change the sublattice type. This reformulation is equivalent
to considering a square lattice in each layer with a basis that
contains two neighboring sites of the original lattice. Like in
a two-dimensional system, the corresponding band structure
is therefore obtained by backfolding the in-plane part of the
dispersion relation εk2,kz with Q, see Fig. 13(a). This gives rise
to the two new bands

ε
(1,2)
k2,kz

= ∓2t (cos kx + cos ky) − 2t cos kz = ±εk2 + εkz .

(D2)

In this way, ĤFermi from Eq. (3) becomes

ĤFermi =
∑

k2,kz,σ
n=1,2

ε
(n)
k2,kz

ĉ†
k2,kz,n,σ

ĉk2,kz,n,σ
, (D3)
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and consequently, also the associated bare propagator acquires
a matrix form in the band space with indices n1,2 = 1, 2,

(G(0))n1,n2,kz,qz,σ (k2, ω) =
⎛
⎝ δkzqz

iω−ε
(1)
k2 ,kz

0

0 δkzqz

iω−ε
(2)
k2 ,kz

⎞
⎠, (D4)

where the matrix structure in the out-of-plane momentum
space has been introduced, anticipating the violation of
momentum conservation by the interactions. In analogy to
the main text, we define the local propagators at Rz =
0, g(0)

n1,n2,σ
(k2, ω) = 1/L

∑
kz,qz

(G(0))n1,n2,kz,qz,σ (k2, ω). For the
tight-binding dispersion considered here, one has

g(0)
n1,n2,σ

(k2, ω) = δn1,n2√(
iω − εk2 + 2t

)√(
iω − εk2 − 2t

) . (D5)

Next, we turn to the perturbative corrections arising from
ĤKondo given in Eq. (5). The most important term is of
order O(SJK ) and describes the interaction with the static
staggered magnetization contained in the Ŝz components of
Eq. (D1). The corresponding mean-field-like Hamiltonian
reads

HMF = −JKS

2L

∑
k2,kz,qz,σ

σ
(
c†

k2,kz,σ,1ck2,qz,σ,2 + H.c.
)
, (D6)

where spin up (down) correspond to the value σ = ±1.
Since the perturbation is quadratic, it gives rise to the static
self-energy (�MF)n1,n2,kz,qz,σ = �̃MF

n1,n2,kz,qz,σ
/L = −σJKS(1 −

δn1,n2 )/(2L), which is independent of momentum. The fact
that the self-energy is nonzero only for interband processes
stems from the staggered magnetization: Any scattering event
from the alternating pattern translates to a shift by Q in
momentum space that connects identical wave vectors, but
changes the band index. Note that �MF is equivalent to the
mean-field form discussed above Eq. (22), with the additional
simplification that in the perturbative regime the staggered
magnetization is given by m f = S. The solution to the Dyson
equation [GMF]−1 = [G(0)]−1 − �MF is given in terms of the
scattering form

GMF
σ (k2, ω)

= G(0)
σ (k2, ω) + G(0)

σ (ω, k2) · T MF
σ (k2, ω) · G(0)

σ (k2, ω),
(D7)

where the dots denote matrix multiplication both in band and
kz space, and the T matrix is given at the mean-field level by

T MF
σ (k2, ω)

= 1/L

1 − (SJK/2)2g(0)
11,σ (k2, ω)g(0)

22,σ (k2, ω)

×
(

(SJK/2)2g(0)
22,σ (k2, ω)A −σSJK/2 · A

−σSJK/2 · A (SJK/2)2g(0)
11,σ (k2, ω)A

)
.

(D8)

As in Eq. (D4), the outer 2 × 2 matrix refers to the band index,
whereas the out-of-plane momentum structure for L layers is
incorporated by the inner L × L matrices proportional to A.
Since the Kondo interaction is localized in only of the layers,

HMF does not introduce correlations between the initial and
final out-of-plane momenta, and we have (A)kz,qz = 1 for all
kz, qz. Physically, T MF

σ can be understood as the T matrix that
arises from scattering a single particle off a δ potential of
strength −σSJK. However, even (odd) powers of JK appear in
the diagonal (off-diagonal) terms, because a single scattering
event changes the band index. Note that GMF

σ includes all
orders of S and JK, which turns out crucial in order to perform
a consistent expansion.

Next, we have to consider the perturbative interaction terms
from HKondo that contain magnon fields. From the Holstein-
Primakoff transformation (D1) of the spin components Sx,y

i ,
one obtains a Hamiltonian that is linear in the magnons and
involves spin flips in the electron sector,

H1 = JK

√
S

2L

∑
p2,q2

n=1,2

[(
c†

q2−p2,Rz=0,↑,ncq2,Rz=0,↓,n
)(

a†
p2

+ b−p2

)

+ (c†
q2−p2,Rz=0,↑,ncq2,Rz=0,↓,n̄

)(
b−p2

− a†
p2

)+ H.c.
]
.

(D9)

Here, n̄ denotes the complementary value of n in band space,
i.e., if n = 1, then n̄ = 2, and vice versa. In other words, the
first line describes intraband and the second line interband
processes. In addition, we have the two-magnon terms from
the O(S0) contribution to Sz

i in Eq. (D1),

H2 = σJK

2L2

∑
q2,p2,l2
σ,n=1,2

[(
c†

q2+l2−p2,Rz=0,σ,ncq2,Rz=0,σ,n
)(

b†
p2

bl2−a†
p2

al2

)

+ (c†
q2+l2−p2,Rz=0,σ,ncq2,Rz=0,σ,n̄

)(
a†

p2
al2 + b†

p2
bl2

)]
.

(D10)

To incorporate the effects of H1,2 properly via perturbation
theory, we use a coherent-state path integral formulation and
integrate out the conduction electrons. This yields the ef-
fective partition function Z = ∫ D[a, b] exp(−S[a, b]) of the
magnons. In particular, the quadratic part of the action S[a, b]
acquires self-energy corrections by the Kondo interactions but
the condition 〈ap2

〉 = 0 = 〈bp2
〉 is retained since the mean-

field expectation value of the staggered magnetization remains
unchanged. The dressed quadratic magnon action reads

S[a, b] =
∫

d�

2π

∑
p2

(
a∗

p2,�

b−p2,−�

)
D−1(�, p2)

(
ap2,�

b∗
−p2,−�

)
,

(D11)

where

D−1

=
(−i� + EH − πa∗a(p2,�) EHγ ∗

p2
− πa∗b∗ (p2,�)

EHγp2
− πba(p2,�) i� + EH − πbb∗ (p2,�)

)
.

(D12)

Here, the contributions at vanishing JK that stem from the
Heisenberg Hamiltonian are encoded in EH = JHSzc, with
coordination number zc and γp2

= 2(cos px + cos py)/zc. In
contrast, the πab functions include the effects from the Kondo
interactions. The lowest-order self-energies generated by H1
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and H2 are depicted in Fig. 13(b), in which the internal elec-
tron lines are to be evaluated using GMF.

For the remaining part of this Appendix, we assume the
limits of large S and small JK in a way that the product
JKS remains small. As a result, the particle-hole bubbles,
which are generated by H2

1 ∼ J2
KS, can be evaluated with

G(0), since the next-to-leading term from the T matrix in
GMF is suppressed by an additional factor JKS. Therefore,
the corresponding self-energies result in noninteracting local
density-density correlation functions,

π
(1)
a∗a(p2,�) = −J2

KS

4

∑
n1,n2=1,2

�(0)
n1,n2

(p2,�),

π
(1)
a∗b∗ (p2,�) = −J2

KS

4

∑
n1,n2=1,2

(−1)n1−n2�(0)
n1,n2

(p2,�),

(D13)

and furthermore we have π
(1)
bb∗ (p2,�) = π

(1)
a∗a(p2,�) and

π
(1)
ba (p2,�) = π

(1)
a∗b∗ (p2,�). In the above, the band-selective

correlation functions read

�
(0)
nl (p2,�)=

∫
d2q2

(2π )2

∫
dω

2π
g(0)

nn↑(q2 + p2, ω + �)g(0)
ll↓(q2, ω).

(D14)

Before evaluating them, we consider the perturbative correc-
tion from H2 that gives rise to the fermion loop formed by a
single GMF, yielding the constant

π
(2)
a∗a(p2,�)

= JK

2L3

∫
dω

(2π )

∑
k2,kz,qz
σ,n1,n2

(−1)n1−n2σ
(
GMF

σ (k2, ω)
)

n1,n2,kz,qz

� J2
KS

2

[
�

(0)
12 (0, 0) + �

(0)
21 (0, 0)

]
, (D15)

where the second line refers to the lowest order in JK.
Note that the diagonal terms of GMF cancel identically
by symmetry to all orders, such that one finds anal-
ogously π

(2)
a∗a(p2,�) = π

(2)
b∗b(p2,�). In addition, we have

π
(2)
ba (p2,�) = 0 = π

(2)
a∗b∗ (p2,�). The total magnon self-

energies are obtained by adding the contributions from
Eqs. (D13) and (D15), i.e.,

πa∗a(p2,�) = −J2
KS

4

∑
n1,n2=1,2

�(0)
n1,n2

(p2,�)

+ J2
KS

2

[
�

(0)
12 (0, 0) + �

(0)
21 (0, 0)

]
,

πa∗b∗ (p2,�) = −J2
KS

4

∑
n1,n2=1,2

(−1)n1−n2�(0)
n1,n2

(p2,�),

(D16)

and πa∗a(p2,�) = πb∗b(p2,�), πba(p2,�) = πa∗b∗ (p2,�).
The above implies the periodicity properties πa∗a(p2 +
lQ,�) = πa∗,a(p2,�), πa∗b∗ (p2 + lQ,�) = (−1)lπa∗b∗ (p2 +
lQ,�) for l ∈ Z. Moreover, all the magnon self-energies ap-

proach, in the limit � → 0, p2 → 0, the same value,

−J2
KS

4

[
�

(0)
12 (0, 0) + �

(0)
12 (0, 0) − �

(0)
12 (0, 0)−�

(0)
21 (0, 0)

]
.

(D17)

Next, we diagonalize S[a, b] from Eq. (D11) via a bosonic
Bogoliubov transformation in the presence of the magnon
self-energies,

(
ap2,�

b∗
−p2,−�

)
=
(

up2,�
vp2,�

vp2,�
up2,�

)(
αp2,�

β∗
−p2,−�

)
. (D18)

As usual, the real parameters up2,�
, vp2,�

satisfy u2
p2,�

−
v2

p2,�
= 1 to keep the measure of the path integral in-

variant. The standard parametrization up2,�
= cosh θp2,�

,
vp2,�

= sinh θp2,�
and the choice tanh(2θp2,�

) = −[EHγ ∗
p2

−
πa∗b∗ (p2,�)]/[EH − πa∗a(p2,�)] yield the diagonal action

S[α, β] =
∫

d�

(2π )

∑
k2

(
α∗

p2,�

β−p2,−�

)
D̃

−1
(p2,�)

(
αp2,�

β∗
−p2,−�

)
,

(D19)

with

D̃
−1 =

(−i� + ε(p2,�) 0
0 i� + ε(p2,�)

)
(D20)

and the frequency-dependent dispersion

ε(p2,�)=
√

(EH−πa∗a(p2,�))2 − (EHγ ∗
p2
−πa∗b∗ (p2,�))2.

(D21)

Let us consider the limit of low frequencies and momenta.
With γp2→lQ = (cos px + cos py)/2 ≈ (−1)l [1 − (p2 −
lQ)2/4] for coordination number zc = 4, the periodicity
properties given below Eq. (D16), and the common value
from Eq. (D17), we find that ε(0, lQ) vanishes for all integer
l , such that the magnons are gapless at small energies, as
expected from Goldstone’s theorem. At small, but finite,
frequency � and momentum deviations δp2 = p2 − lQ, one
has the dispersion including only the leading contributions
in JK,

ε(δp2,�)

�
√

c̃2
B(δp2)2 − 2[πa∗a(δp2,�) − πa∗b∗ (δp2,�)]EH,

(D22)

with the renormalized magnon speed c̃B =
1
2

√
E2

H − 2EHπ (0, 0). The leading asymptotic behavior of
πa∗a(δp2,�) − πa∗b∗ (δp2,�) stems from the discontinuity
of the local propagators from Eq. (D5) Im gn1,n2,σ (ω →
0, k2) → δn1,n2θ (2t − |εk2 |)sgn(ω)/(4t2 − ε2

k2
), which is

finite only in the projected two-dimensional Fermi surface
shown in Fig. 1(c). As a result, we obtain the nonanalytic
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behavior

πa∗a(δp2,�) − πa∗b∗ (δp2,�)

� −J2
KS
∫
[

proj.
2D FS

]′ d2k2

(2π )2

×
∫

dω

2π

sgn(ω + �)sgn(ω) − sgn(ω)2

4t2 − ε2
k2

= 2J2
KS

π
|�|
∫
[

proj.
2D FS

]′ d2k2

(2π )2

1

4t2 − ε2
k2

≡ J2
KSα|�|. (D23)

Note that the van Hove singularities at the boundary of the
projected two-dimensional Fermi surface are regularized by
inserting the full GMF rather than only the noninteracting part,
such that α is well-defined. In the above this is indicated by
the prime on the integration boundary. As a consequence, the
low-frequency asymptotics of the magnon dispersion,

ε(δp2 → 0,� → 0) �
√

c̃2
B

(
δp2

2

)2 + EHJ2
KSα|�|, (D24)

is dressed by a frequency-dependent term that has the same
functional form as Landau damping (in imaginary frequen-
cies), generated by the density fluctuations of a Fermi gas [43]
at finite wave vector Q. These results allow to make contact
with the scaling analysis of Sec. II A for the weak-coupling
regime: By Fourier transformation, the Landau damping
correction is associated with the scale-invariant temporal fluc-
tuations at large imaginary times in the dressed action S(0) of
Eq. (15). Similarly, the renormalization of the magnon speed
is expected to correspond to the long-distance fluctuations at
equal times.

Finally, we calculate the spin spectral function to connect
these results with the numerical simulations discussed in the
main text. We start out from the (connected) spin structure fac-

tor in imaginary time S(τ, i) = −〈Tτ [Ŝ
f
i (τ ) · Ŝ

f
i=0(0)]〉c where

we replace the spin operators via the Holstein-Primakoff
transformation (D1) and consider terms up to order S. Phys-
ically, these correspond to correlations of 〈Sx,y, Sx,y〉, while
fluctuations in the z direction require a change in the mag-
nitude of the staggered magnetization, corresponding to a
high-energy process. Next, we Fourier transform to imaginary
frequencies and momenta, followed by the bosonic Bogoli-
ubov transformation (D18), and obtain

S(p2,�) = −S
(
u2

p2,�
+ v2

p2,�
+ 2up2,�

vp2,�

)
× 2ε(p2,�)

�2 + ε(p2,�)2
. (D25)

Inserting the standard identities of bosonic Bo-
goliubov transforms u2

p2,�
+ v2

q2,�
= cosh(2θp2,�

) =
1/

√
1 − tanh2(2θp2,�

) and 2up2,�
vp2,�

= sinh(2θp2,�
) = tanh

(2θp2,�
)/

√
1 − tanh2(2θp2,�

) with the value of tanh(2θp2,�
)

given above Eq. (D19), yields u2
p2,�

+ v2
p2,�

+ 2up2,�
vp2,�

→
2EH/ε(p2,�) in the vicinity of the K point, p2 → Q, and
small �. In total, we find for the structure factor in the limit

FIG. 14. Spin spectral function χ ′′(δp2, ω) in Eq. (D27) along
the high-symmetry path M(π, 0) → K(π, π ) → �(0, 0). Here, we
have used the parameters t = 1, JK = 2.5, JH = 0.5, S = 1/2, c̃B =
0.447, and α = 0.3.

δp2 = p2 − Q → 0

S(δp2,�)→ −4EHS

�2 + ε2(δp2,�)
= −4EHS

�2 + c̃2
Bδp2

2 + EHJ2
KSα|�| .

(D26)

The spin spectral function χ ′′(p2,�) = −π−1Im S(i� →
ω + i0+, p2) is obtained via analytic continuation. In the
vicinity of the K point, this results in

χ ′′(δp2, ω) = 1

π

4E2
HS2J2

Kαω

c̃2
B(δp2)4 + (EHJ2

K Sαω
)2 , (D27)

where the bare ω2 term has been neglected, since it is ir-
relevant for the low-energy asymptotics. In contrast to the
pure Heisenberg dynamics with sharp linear magnons at the
K point, χ ′′ exhibits a feature of broadened, Landau-damped
magnons in the presence of finite Kondo coupling, see Fig. 14,
to be compared with Fig. 6 in the main text. In addition,
the scaling of typical frequencies and momenta is given by
ω ∼ δp2

2, corresponding to the dynamical critical exponent
z = 2, as discussed in Sec. II A.

APPENDIX E: MEAN-FIELD THEORY
IN PARAMAGNETIC PHASE

In this section, we study the structure of the mean-field the-
ory in further detail, to provide some analytic understanding
of the numerical observations made in Sec. II B, in particular,
the existence of two-dimensional states. We focus on the para-
magnetic Kondo phase to simplify the procedure. Setting the
magnetic order parameters mc, f and also λ to zero, in order
to ensure particle-hole symmetry, the mean-field Hamiltonian
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from Eq. (20) acquires the form

ĤMF =
∑
k2,Rz

σ

[
εk2 c†

k2,Rz,σ
ck2,Rz,σ −t

(
c†

k2,Rz+1,σ
ck2,Rz,σ +H.c.

)]

− JKV

2

∑
k2,σ

(
ĉ†

k2,Rz=0,σ
f̂k2,σ + H.c.

)+ L2JKV 2

2
. (E1)

Here, we have performed a partial Fourier transform to the
in-plane momentum space, but kept the formulation of the
out-of-plane dimension in real space, as in the main text. This
brings the in-plane part of the tight-binding Hamiltonian to
a diagonal form, as seen in the first line of the above equa-
tion. Solving the mean-field theory requires to diagonalize
the given one-particle Hamiltonian. Physically, this is equiv-
alent to finding the eigenstates of the Schrödinger equation
ĤMF|ψ〉 = E |ψ〉. For each k2, ĤMF acts on a L + 1 dimen-
sional Hilbert-space formed by the chain of L c sites along
the z direction and the additional f site. In the following, we
label the c sites as Rz = −L/2,−L/2 + 1, ..., 0, ...L/2 − 1
for even L with periodic boundary conditions and the f -site
simply by f . Since only the site at Rz = 0 is coupled to the
additional f orbital via the hybridization parameter V , the
translational symmetry of the chain is broken in the presence
of finite V . Consequently, the L + 1-dimensional eigenvectors
(ψ (Rz ), ψ ( f )) of ĤMF are not given by Bloch states.

There are three different types of wave functions:
(a) Odd superpositions of Bloch waves of the unperturbed

lattice at JK = 0. These are characterized by the wave vectors
k(−)

z ,

ψ
(−)
k2,k

(−)
z ,σ

(Rz ) =
√

2

L
sin(k(−)

z Rz ),

ψ
(−)
k2,k

(−)
z ,σ

( f ) = 0, (E2)

associated with the noninteracting Bloch energies E (−)
k2,k

(−)
z

=
εk2 + εk(−)

z
from the tight-binding dispersion. The k(−)

z
are given by the wave vectors of the free tight-binding
chain kz = 2πn/L, n ∈ {−L/2,−L/2 + 2, . . . , L/2 − 1} ex-
cluding kz = 0 and kz = π , which give only rise to vanishing
wave functions. This implies L/2 − 1 different eigenstates
ψ (−). Physically, they are not affected by the interactions,
because of the zero amplitude in the impurity layer,
ψ

(−)
k2,kz,σ

(Rz = 0) = 0.
(b) Even scattering states. These are described by a wave

vector k(+)
z and an associated phase shift φk(+)

z
,

ψ
(+)
k2,k

(+)
z ,σ

(Rz ) = A(+)

√
2

L
cos(k(+)

z Rz + φk(+)
z

sgnRz ),

ψ
(+)
k2,k

(+)
z ,σ

( f ) = A(+)

√
2

L

4 sin k(+)
z sin φk(+)

z

JKV
, (E3)

with energy E (+)
k2,kz

= εk2 + ε
(+)
kz

and amplitude A(+). Note that
the wave functions are continuous at Rz = 0, but the slopes
differ when approaching Rz = 0 from the left or the right.
Periodicity restricts the wave vectors to the form

k(+)
z = 2πn − 2φk(+)

z

L
= kz − 2φk(+)

z

L
, (E4)

while the phase shifts are obtained from the equation

sin k(+)
z tan φk(+)

z
= − J2

KV 2

8
(
εk2 + εk(+)

z

) . (E5)

Since the right-hand side is not bounded and may attain both
positive and negative values, the phase shifts may vary in the
interval φk(+)

z
∈ [−π/2, π/2]. According to Eq. (E4), the k(+)

z
are therefore adiabatically connected to the closest noninter-
acting wave vector kz since adjacent kz differ by 2π/L. For
instance, we can consider Eqs. (E5) and (E4) as an iterative
scheme to determine both k(+)

z and φk(+)
z

at finite JK. Take
as initial condition a Bloch state with momentum (k2, kz )
(except kz �= 0, π ) and eigenenergy εk2 + εkz that is part of
the noninteracting three-dimensional Fermi surface shown
in Fig. 1(b). In this case, Eq. (E5) generates a phase shift
that obeys sgnφk(+)

z
= sgnkz. As a result, Eq. (E4) implies

|k(+)
z | < |kz| and therefore E (+)

k2,k
(+)
z

< 0, such that the resulting

scattering state at finite JK is part of the Fermi sea of quasi-
particles. On the contrary, initializing the procedure with a
Bloch state with positive energy gives rise to an interacting
state with E (+)

k2,k
(+)
z

> 0. Furthermore, Eq. (E5) implies that,

for large L, a wave vector k(+)
z = −2�k(+)

z
/L corresponding

to kz = 0 only exists if εk2 + εkz=0 > 0. This is the case in
the four corners of the two-dimensional Brillouin zone of k2

outside of the projected two-dimensional Fermi surface from
Fig. 1(c). On the other hand, kz = π admits only a wave
vector k(+)

z = π − 2�k(+)
z

if εk2 + εkz=π < 0, which happens
in the inner part of the two-dimensional Brillouin zone en-
closed by the projected two-dimensional Fermi surface from
Fig. 1(c). In both cases we have L/2 extended scattering
states. Finally, for k2 inside of the projected Fermi surface,
neither kz = 0, π can be associated with a k(+)

z . However,
the noninteracting state with the minimal bare energy |εk2 +
εkz | ∼ 1/L corresponding to the noninteracting state closest
to the Fermi surface admits two scattering states: First, we
have the iterative solution for k(+)

z from above, which obeys
sgn(εk2 + εk(+)

z
) = sgn(εk2 + εkz ) and in addition we find a

second solution with sgn(εk2 + εk(+)
z

) = −sgn(εk2 + εkz ) that
is generated by a phase shift �k(+)

z
∼ 1/L. Again, we find L/2

different scattering states ψ
(+)
k2,k

(+)
z ,σ

.

(c) Two two-dimensional states. Neglecting corrections that
are exponentially small in the system size, we have:

(i) A state below the minimum of the tight-binding disper-
sion minkz (εk2 + εkz ),

ψ
(min)
k2,σ

(Rz ) = A(min)e−κ|Rz |, κ > 0,

ψ
(min)
k2,σ

( f ) = A(min) 4t sinh κ

JKV
, (E6)

with energy E (min)
k2

= εk2 − 2t cosh κ . The parameter κ satis-
fies

sinh κ = − J2
KV 2

8t (εk2 − 2t cosh κ )
, (E7)

and the normalization reads A(min) = [1 − 2/(1 − exp(2κ )) +
(4t/JKV )2 sinh2 κ]−1/2. Since cosh κ > 1 for all real κ �= 0,
this state has indeed an energy below the tight-binding en-
ergies of the extended states discussed before. By inserting
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FIG. 15. Examples of the different wave functions on the c sites
for system size L = 40: The dots represent the eigenstates obtained
by diagonalizing ĤMF numerically at JK/t = 5.1, V/t = 0.2, and
εk2/t = −0.2. The solid lines are comparisons with the analytic
solutions given in the text for this set of parameters. In particular,
the extended states in the first line are (a) odd superpositions of Bloch
waves and (b) even scattering states with phase shift. The second line
shows the two-dimensional states with (c) minimal and (d) maximal
energy.

E (min)
k2

into the right-hand side of the last equation, we find

furthermore E (min)
k2

< 0.
(ii) A state of maximal energy above maxkz (εk2 + εkz )

ψ
(max)
k2,σ

(Rz ) = A(max) cos(πRz )e−κ|Rz |, κ > 0,

ψ
(max)
k2,σ

( f ) = −A(max) 4t sinh(κ )

JKV
, (E8)

with energy E (max)
k2

= εk2 + 2t cosh κ , where

sinh κ = J2
KV 2

8t (εk2 + 2t cosh κ )
, (E9)

and A(max) = A(min). Here, we have in addition E (max)
k2

> 0.
The presence of two-dimensional states has already been

anticipated in Sec. II B: The spectral functions in Fig. 4 show
sharp features of definite sign above and below the continuum
of tight-binding energies. Note that these are observable irre-
spective of the presence of antiferromagnetic order.

In total, we find (L/2 − 1) + L/2 + 2 = L + 1 eigenstates
per spin orientation, as expected for a Hamiltonian of dimen-
sion (L + 1)2. Plots of the different states can be found in
Fig. 15.

After solving the effective Schrödinger equation, we can
rewrite the mean-field Hamiltonian from Eq. (D6) in diagonal
form as follows:

HMF = JKL2V 2

2
+
∑
k2,σ

∑
kz,s=±

E (s)
k2,k

(s)
z

c†
k2,k

(s)
z ,σ

ck2,k
(s)
z ,σ

+
∑
k2,σ

∑
s=min,max

E (s)
k2

c†
k2,s,σ

ck2,s,σ . (E10)

Here, the new fermionic operators ck2,k
(±)
z ,σ

annihilate a quasi-

particle in the extended state ψ
(±)
k2,k

(±)
z ,σ

, whereas ck2,s,σ , with

s = min, max, annihilates a fermion in the two-dimensional

state ψ
(s)
k2,s,σ

, and analogously for the creation operators.
Furthermore, the matrix elements required to transform the
operators from the (Rz, f ) basis to the new one are also given
by the corresponding wave functions. In the ground state, the
quasiparticles form, at the mean-field level, a Fermi sea with
energy

E0 = JKL2V 2

2
+
∑
k2,σ

1

2

∑
k(±)

z

θ
(− E (±)

k2,k
(±)
z

)
E (±)

k2,k
(±)
z

+
∑
k2,σ

E (min)
k2

.

(E11)

The factor 1/2 in the first sum is needed to avoid double-
counting the extended states. The mean-field parameter V
satisfies the equation ∂E0/∂V = 0. However, one may ask
about the behavior of V in the thermodynamic limit L → ∞,
since the contributions from the extended states in E0 scale
like the volume of the system L3, whereas all other terms only
scale like the area of the layer L2. To answer this question, we
first note that the energies E (−) drop out in ∂E0/∂V because
they are independent of V . From the energies εk2 + εk(+)

z
of the

extended scattering states we infer that they are located within
the bare three-dimensional Fermi surface. and, moreover, in
the limit L → ∞ they approach

εk2 + εk(+)
z

=
(

εk2 − εkz − 2t

L
sin kz φk(+)

z
+ O(L−2)

)
. (E12)

With the above, the mean-field equation ∂E0/∂V = 0 be-
comes independent of system size in the thermodynamic limit,

JKV − 2t
∫

3D FS

d2k2dkz

(2π )3
sin kz

∂φk(+)
z

∂V
= 4t

∫
d2k2

(2π )2

∂ cosh κ

∂V
.

(E13)

The solution to this equation corresponds to the behavior of
V in the paramagnetic heavy-fermion phase in Fig. 2. The
asymptotics of V in the limit JK → ∞ can be extracted in
closed form: Equation (E5) entails that all phase shifts ap-
proach φk(+)

z
→ ±π/2, irrespective of V . Furthermore, from

Eq. (E7), we find cosh κ ≈ JK|V |/(4t ). Searching for a real,
positive V , the solution approaches

JKV = 4t
∫

d2k2

(2π )2

JK

4t
⇒ V = 1, (E14)

which agrees with the numerical evaluation presented in
Fig. 2. Furthermore, we can answer how many quasiparticle
states are occupied at a given in-plane momentum k2. For
k2 in the inner part of the two-dimensional Brillouin zone
that is enclosed by the projected Fermi surface [see Fig. 1(c)]
we have L occupied single-particle states per spin orientation
since all L/2 − 1 odd bare states, all L/2 extended scattering
states and the two-dimensional state with minimal energy
have negative energies (see also Fig. 3). In this case, the num-
ber of quasiparticles agrees with the number of conduction
electrons L =∑kz

〈n̂c(k2, kz )〉 per spin state. The outer four
corners of the two-dimensional Brillouin zone outside of the
projected Fermi surface provide an enhanced occupation since
the two-dimensional state with minimal energy is occupied
whereas 〈n̂c(k2, kz )〉 = 0. For k2 within the projected two-
dimensional Fermi surface we count the occupied states as
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follows: Each pair of bare momentum components ±kz (with
kz �= 0) inside of the three-dimensional Fermi surface of con-
duction electrons corresponds to two negative energy states
of ĤMF: one noninteracting odd state and one even, extended
scattering state. The missing state kz = 0 is compensated by
ψ

(min)
k2,s,σ

. As discussed above, the bare wave vector kz with
minimal |εk2 + εkz | is associated with an additional negative-
energy eigenstate of ĤMF if εk2 + εkz > 0, which happens
for half of the in-plane momenta within the projected two-
dimensional Fermi surface. In other words, the occupation
number of quasiparticles is given by

∑
kz
〈n̂c(k2, kz )〉 in one

half of the projected Fermi surface and by
∑

kz
〈n̂c(k2, kz )〉 + 1

in the other half. Taken the three regions together, we find
that the quasiparticle occupation number is enhanced by one
in exactly one half of the two-dimensional Brillouin zone.
Summed over k2 and spin states, we therefore obtain L + 1
electrons per lattice site of a two-dimensional layer of size L2

for the half-filled band of conduction electrons. Consequently,
the f fermion participates indeed in the Luttinger count, as
discussed in the main text.

Finally, we consider the structure of the resulting prop-
agators. The effects of interactions at the mean-field level
are most easily determined by representing the hybridization
part of ĤMF from Eq. (E1) completely in momentum space.
This yields the term −JKV/(2L1/2)

∑
k2,kz,σ

(ĉ†
k2,kz,σ

f̂k2,σ

+ H.c.) . Firstly, this implies the self-energy of the conduction
electrons

�MF
c (ω, k2)kz,k′

z
= J2

KV 2

4L
G(0)

f (ω, k2) = J2
KV 2

4L

1

iω
, (E15)

which is off-diagonal in the out-of-plane direction because
one-dimensional scattering events break the conservation of

momentum. Secondly, the self-energy in the f sector is
given by

�MF
f (ω, k2) = J2

KV 2

4
g0(ω, k2). (E16)

The solution of the Dyson equation for the conduction elec-
trons is therefore obtained by dressing the propagator by the
scattering T matrix of the (dynamical) potential,

GMF
c,σ (k2, ω)kz,k′

z
= G(0)

c,σ (k2, ω, kz )δkz,k′
z

+ G(0)
σ (ω, k2, kz )T MF(k2, ω)G(0)

c,σ (k2, ω, k′
z),

(E17)

with the T matrix

T MF(k2, ω)kz,k′
z
= �MF

c (ω, k2)kz,k′
z

1 − �MF
c (ω, k2)kz,k′

z
g0(k2, ω)

. (E18)

We note that Eqs. (E17) and (E18) correspond to Eqs. (D7)
and (D8), but here in the case of a single band due to the
absence of sublattice magnetization. The propagator of the f
electrons reads in turn

GMF
f = 1

iω − �MF
f (ω, k2)

= 4T MF(k2, ω, Rz = 0)

J2
KV 2

, (E19)

which give rise to the local spectral function in Eq. (23).
After analytic continuation to real frequencies, the two-
dimensional-states manifest themselves via poles in the
spectral functions Ac, f (ω, k2) at energies ω = εk2 ± 2t cosh κ .
As discussed in the main text, the k2-integrated spectral func-
tions show therefore logarithmic van Hove singularities that
are typical for two-dimensional systems.
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