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Chiral multifold fermions are quasiparticles that appear only in chiral crystals such as transition metal silicides
in the cubic B20 structure (i.e., the CoSi family), and they may show exotic physical properties. Here we study
the injection and shift photoconductivities and also the related geometrical quantities for several types of chiral
multifold fermions, including spin-1/2 as well as pseudospin-1 and -3/2 fermions, dubbed as Kramers Weyl,
triple-point, and Rarita-Schwinger-Weyl (RSW) fermions, respectively. We utilize the minimal symmorphic
model to describe the triple-point fermions (TPF). We also consider the more realistic model Hamiltonian for
the CoSi family including both linear and quadratic terms. We find that injection currents due to circularly
polarized light are quantized as a result of the Chern numbers carried by the multifold fermions within the linear
models. Surprisingly, we discover that in the TPF model, the linear shift conductivities, responsible for the shift
current generation by linearly polarized light, are proportional to the pseudo spin-orbit coupling and independent
of photon frequency. In contrast, for the RSW and Kramer Weyl fermions, the linear shift conductivity is
linearly proportional to photon frequency. The numerical results agree with the power-counting analysis for
quadratic Hamiltonians. The frequency independence of the linear shift conductivity could be attributed to the
strong resonant symplectic Christoftel symbols of the flat bands. Moreover, the calculated symplectic Christoffel
symbols show significant peaks at the nodes, suggesting that the shift currents are due to the strong geometrical

response near the topological nodes.
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I. INTRODUCTION

Multifold fermions are types of quasiparticles that only
appear in solids with particular crystal symmetries [1,2]. Their
pseudospin degrees of freedom are the degeneracies at the
high-symmetry points in the Brillouin zone. There is no coun-
terpart in the elementary particle model. Thus, the study of
the physical properties and genuine signatures of multifold
fermions in solids is of great interest.

Recent advances in solid state physics show that the topo-
logical and geometrical properties of quantum states manifest
in several physical quantities, one of which is photovoltaic
effect. It is the generation of dc current in a noncentrosym-
metric solid under the irradiation of light without an external
bias. Thus, the photovoltaic effect plays an important role in
the search for green energy supplications [3,4]. The photo-
voltaic response functions are closely related to the quantum
geometrical quantities, such as connections, quantum metric,
and Berry curvature. The quantum geometric properties are
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related to transport in a semiclassical picture. For anomalous
Hall effect, Berry curvature gives rise to the anomalous veloc-
ity of carriers [5,6]. More recently, the second-order response
of electrons to electromagnetic fields is shown to relate to the
quantum metric and Christoffel symbols, which give rise to
the gravity in momentum space [7,8]. The possibility of the
quantization of quantum metric in topological semimetals has
been discussed [9,10]. In another perspective, the photoelec-
tric response can be utilized to probe the quantum geometry
of Bloch states [3,11-13]. Therefore, the investigation of the
seemingly pure mathematical structure would deepen the the-
oretical and experimental understanding of solids.

The photovoltaic effect in topological semimetals has
been widely studied [7,14-25]. It has been found that the
Weyl semimetal possesses low-frequency divergence which
makes it a promising candidate for terahertz photodetec-
tors [7,15,17,20,22]. However, for chiral-symmetric Weyl
semimetals, the photovoltaic response of the topological node
and antinode cancels out unless the Weyl nodes are tilted [15].
In contrast, for chiral crystals, the Weyl points are separated
in energy, as a result of the chiral symmetry breaking. There
is an available energy window for nonvanishing photocurrent
even for upright cones. Therefore, the chiral Weyl semimet-
als are promising materials for realizing strong photovoltaic
response.

©2023 American Physical Society
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The relation between the second-order photoconductivity
tensors and topology has been investigated by several authors.
It has been theoretically shown that in chiral symmetry bro-
ken Weyl semimetals, the circular photogalvanic response is
quantized due to the Chern number of the Weyl node near the
Fermi level [4]. Moreover, the second-order photoconductiv-
ity is related to the connection and curvature, reflecting the
geometry of Bloch states involved in the transition [11].

The photoconductivities in chiral multifold fermions have
been studied in real materials, especially in the CoSi family
of space group 198 [20,22,26-32]. The material hosts several
types of topological semimetals, including type-I and type-
IT Weyl semimetal, and chiral multifold fermions [20,22,26—
28,32,33]. Thus, it is a very suitable material for investigation
of physical properties of topological semimetals.

For second-order photoconductivities, several mechanisms
that contribute to the second-order conductivities have been
proposed, such as anomalous [34,35], resonant photogalvanic
[36], double resonance, and higher-order pole [35]. In this pa-
per, we study two contributions: the injection and shift current.
The injection current is related to Berry curvature [7,14] and
quantum metric [8,9], while the shift current is related to Her-
mitian connections [3,11,37]. However, an understanding of
shift current and its geometrical origin for multifold fermions
has been lacking. How momentum space quantum geometry
contributes to optical response via Christoffel symbols has
not been carefully examined. This paper aims at shedding
light on this topic. Two model Hamiltonians for multifold
fermions are studied in this paper. The first is a pseudospin-1
excitation, which is dubbed as triple-point fermion (TPF). The
minimal symmorphic model for TPF, of which the degenerate
nodal point is protected by C4 and an anticommuting mirror
symmetry, is used in this study. The second is the low-energy
effective Hamiltonian for space group 198. When spin-orbit
coupling is switched off, the effective Hamiltonian represents
two degenerate TPFs (DTPFs). In contrast, when spin-orbit
coupling is included, the degenerate TPFs split into two sets
of degenerate points: a spin-3/2 excitation, dubbed as Rarita-
Schwinger-Weyl (RSW) or a fourfold fermion, and a spin-1/2
Weyl point.

In this paper, we give analytical expressions of the second-
order photoconductivities in terms of geometrical quantities
and report the numerical results for TPF, DTPE, RSW, and
Kramer Weyl fermions. The injection conductivity is shown to
be related to quantum geometric tensors. The shift conductiv-
ity is not only contributed by Christoffel symbols, but also the
contorsion tensors. The numerical results show that the shift
conductivity can be merely given by the contorsion tensors,
whereas the corresponding Christoffel symbols vanish. Our
findings disclose the significance of contorsion tensors which
have been overlooked in previous studies [35]. Moreover, for
chiral fermions described by the quadratic Hamiltonian, our
results show that the lowest order of the second-order pho-
toconductivity scales as . Particularly, the lowest order of
the shift conductivity is proportional to the pseudo spin-orbit
coupling. In contrast, the lowest order of the injection con-
ductivity is independent of model parameters, in agreement
with the quantization of circular injection conductivity. The
remainder of this paper is organized as follows. In Sec. II,
the second-order photoconductivities and their relations to

the quantum geometrical quantities are given. In Sec. III, the
model Hamiltonians and the power counting analysis of the
second-order photoconductivities for quadratic Hamiltonians
are presented. The numerical results and discussions are given
in Sec. IV. Finally, the conclusion is given in Sec. V.

II. SECOND-ORDER PHOTOCONDUCTIVITIES
AND QUANTUM GEOMETRY

In this study, we consider two contributions to the dc
response of the second-order photoconductivities [38]. Ac-
cording to their mechanisms, they are characterized into two
processes: injection and shift current. The injection (shift)
refers to the change of group velocity (position) during the
interband transition. The topological and geometrical aspects
have been discussed in literature, and some of them will be
reviewed in this section.

The shift photoconductivity is given by [7,39]

3 d
ab __ —7T€ d k c,ab
where fiw,,, = E,, — E, is the energy difference between two
bands, d is the spatial dimension, and f,,, = f, — fm, Where
fu.m 1s the Fermi-Dirac distribution. The electron charge is —e
and e > 0. The integrand for shift conductivity is

b b
Ilflrla ( o thm)rnm rmn ’ (2)
where R::¢ is the shift vector
Rt = Fyyp — Vo 1 i0clOgr, 3)

and r;,, = (m|id,|n) is the Berry connection [40]. The term
rfjmrmn is the real part of the band-resolved quantum geomet-
ric tensor, defined as Q% = > _ S o Thre [41,42],
where (un)occ denotes the (un)occupied bands. The real part
of Q% is the quantum metric g, while the imaginary part is

proportional to Berry curvature Q. The relation is

Qba _ gba _ égba- (4)

Equation (2) can also be written as i(ry, ré, = —

where ry, = 01y, — (T — T, .- Notably, 2 Fym.c 18 @
geometrlcal quantity for the quantum states [11]. We define
Ched = rb rd .. The non-Abelian Berry connections form
tangent vectors in the manifold of the Bloch states. In the sub-
space of the tangent vectors, C2<“ is the Hermitian connection
that defines the covariant derivative. Note that the order of the
index for Hermitian connections is bca for the conductivity
tensor cab. C¥ is in general complex. The real part of C2¢ is

the metric connection and the negative imaginary part of C2
is the symplectic connection. Note that the metric connection

here is different from the Levi-Civita connection

Fﬁfna = (acgnm + 9, gl;m - ahgn?n) (5)

when the number of bands in the system exceeds two. The dif-
ference is characterized by the contorsion tensors. We define a
generalized complex-valued contorsion tensor K2 such that
it satisfies

mn c mn)

sz Re[cbca

nm

Kot (6)
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and define the corresponding symplectic part by
[hea = —Im[Cle — K22). (7)

The expression of the contorsion tensor is given in Ap-
pendix A. The fully symmetric part with respect to the
permutation of b, ¢, and a of the Im[K,f,;“] is chosen to be
zero. Equation (6) [Eq. (7)] is the Levi-Civita connection part
of the metric (symplectic) connection. We refer to ['>@ (["bce)
as (symplectic) Christoffel symbols in this paper.

The real part of the shift photoconductivity (called linear
shift photoconductivity hereafter, as in [7]), which is responsi-
ble for the shift current generation by linearly polarized light,
can be written in terms of the symplectic Christoffel symbols,

c,ab —7'[6 ddk rbca ach
Gshlft L= / (21‘[ )d Z fnm (an + an

- Im[K,f;“ + K“Cb])S(cumn - w). 8)

nm

The imaginary part of the shift photoconductivity (called cir-
cular shift photoconductivity hereafter), which is the response
to circularly polarized light, can be written in terms of the
Christoffel symbols of the first kind,

3 d
o ab —Te d’k bca ach
thtt Cc — hz (2” )d Z fnm an an
- Re[Kr?ana K/?;;b])a(wmn — w). ©)]

For numerical calculations, C2¢ is written in terms of the
velocity operators and double derivatives of the Hamiltonian

b c a a c
bca __ Unm [ ac Uinn Amn + UmnAmn
nm mn

gm Wmn

m n U;ln Ucn
Tl o

pmn

where wil =i~ <m|dk o |ny, vy, =h" (m| |n) and
a p— a a

An = Vm ~ Vi L
The injection conductivity is given by

2méd dk
cab __
ginj =—T—5 2 [(2ﬂ)d anm

mnrnmrmn(s(wmn - a))a

Y

where t is the relaxation time [43]. For topological semimetal
that carries topological charges under the irradiation of cir-
cular polarized light, trace of the injection conductivity is
quantized, dubbed as quantized circular photogalvanic effect
[14,18]. oy o @ — jByCt, where > _cya denotes the sum-
mation over c, a, b in cyclic permutation, C is the topological
charge of the semimetal, 8y = ”h—f and 4 is the Planck con-
stant.

The explicit forms of the injection conductivity tensors
in terms of quantum geometrical tensor are given below. By
taking the real part of Eq. (11), the linear injection photocon-
ductivity is

2me’ dk
c,ab c
Uinj;L =T hz / (27_[)‘1 anm mngnmfs(wmn - (,())

12)

By taking the imaginary part of Eq. (11), the circular injection
photoconductivity is

c,a me’ d'k AC a
O—inﬁ;g =T—5 / (27?)‘1 anm anzmS(a)mn - CL)),

(13)

where g = Re[rtr] and Q2 = —2Im[r’r] are band-

resolved quantum metric and Berry curvature, respectively.
In the numerical calculation, the Dirac delta function in the

equations is replaced with the Lorentzian function
1 y/2
o (Wmn — ) + (V/Z)Z’

where y is the broadening.

(14)

III. MODEL HAMILTONIANS AND POWER
COUNTING ANALYSIS

The model Hamiltonians of the triple-point fermion and
the multifold fermions in the CoSi family are introduced in
this section.

The first model Hamiltonian considered in this paper is the
minimal symmorphic model for TPF [44]. This model can
be viewed as stacked layers of Chern insulators along the z
direction and thus the time-reversal symmetry is broken. The
topological charge of the Weyl point is +2. The band disper-
sion is a result of the coupling between the quadratic Weyl
point and an additional flat band via pseudo spin-orbit cou-
pling. The minimal two-band Hamiltonian for the quadratic
Weyl fermions is

Hq(§) = {s[2 — cos(k,) — cos(ky)] — 2t cos(k;)}o;

+ 2b sin(k,) sin(ky )oy
+ 2b[cos(k,) — cos(ky)]oy, (15)

where b is the pseudo spin-orbit coupling strength and s is
the on-site hopping strength. The z-direction hopping term
t, lattice constant a and % are taken to be 1 in this model.
The Weyl points are at (0, 0, &7 /2) and of opposite chirality.
By introducing a flat band that couples to the quadratic Weyl
fermions, we obtain an effective 3 x 3 Hamiltonian for the
triple-point fermion [44,45]:

H, AL
H,(k) = At (16)
Ay A O

where Ay = A"/ (sink, Fi sink,). Hereafter, we
choose A = /2 and ¢ = 7 /2 for isotropic dispersion (to the
lowest order).

The coupling between the flat band and H, preserves the
symmetry of H,. Both Hamiltonians obey Cy rotation symme-
try and anticommute with mirror symmetry R,, that maps x <
y, preserving chiral symmetry, while time-reversal symmetry
is broken. The two opposite topological nodes are related
by the mirror symmetry along the z direction M,. The sign
change of the matrix elements for the photoconductivities un-
der M, are shown in Table I. The conductivity tensor of which
components with odd numbers of z changes sign for opposite
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TABLE 1. The sign change for the matrix elements under z-
mirror symmetry (M,).

Oun(k) = L0 (k)

Tonz(6) o e (k) i (k) g, (k) v, () (k) ()
+1 -1 -1 -1 -1 +1 +1

nodes, leads to a vanishing response for the lattice. To break
the chiral symmetry, an additional term that breaks the mirror
symmetry along the z direction, d sin(k;)lzy3, is added to the
Hamiltonian [Eq. (16)], where I3, is the 3 x 3 identity matrix
[14]. Thus, the chiral symmetry is broken and the two TPFs
are separated in energy. In the following, we consider the
response near one of the nodes. We consider the low-energy
expansion of the Hamiltonian, Eq. (16), up to quadratic order
of k near the node. Thus, AL = A" @7/ (k, F ik,) and H,
becomes
- ki +k; s

Hy(k) = ST + 2ck; |0, + 2bkckyo, + b[ky — kx]ax,

a7

where ¢ = F1 is the chirality of the Weyl point for the node
at (0, 0, & /2). The quadratic term in the diagonal does not
change the Chern number of the bands. Thus, changing the
value of s can be treated as a smooth deformation to the
Hamiltonian. The eigenenergies are 0, and

1 167 + (4b2 + 52)kd + 8sk.A2, (18)

where k? = k2 + ky2 + k2, kﬁ =k>+ kf.. The dispersion rela-
tions for A = 0, /2 with b = 1, s =1 are shown in Fig. 1.
For A = 0, the upper and lower bands are quadratic, while for
A = +/2, the upper and lower bands disperse linearly. The spin
excitation sits at zero energy, labeled by Wrpg.

0. (a) _ (b)
3
0.11
= Wrer
w 0 2
0.1
1
0.2
0.1 0 0.1 -0.1 0 0.1

k(m/a) // [110] k(m/a) // [110]

FIG. 1. The energy band along the [110] direction for H'
[Eq. (6)] to the quadratic order withb =1,s =1. () A =0.(b) A =
/2. The numbers annotated on the figure label the band indexed from
low to high energy. The energy at which the TPF lies is denoted by
Wrpg.

For a more realistic model, we take the effective Hamil-
tonian for transition metal silicides that belong to the space
group 198. There is one threefold rotation symmetry along
the (111) axis and three twofold screw symmetries along the
x, y, and z axes for this group [16,46].

In order to isolate the multifold fermions at the high-
symmetry point, we expand the tight-binding Hamiltonian
to the second order of crystal momentum k. The effective
low-energy Hamiltonian for the I point is [16]

Hryog = Z (HD + HP), (19)

where H('? is the spinless part, H{s2 is the spin-orbit
coupled term and the superscripts (1,2) denote the order in
momentum k of the expansion. For the effective Hamiltonian
to the linear order, i = 1. For the quadratic order, the sum-
mation runs over i = 1,2. Each part of the Hamiltonian is
given by

H(Sl) = 30 + v1[Ty + Totx + o]
v
+ _p[l’L}’kX + ‘C}'Mzky + ‘L'y,bLsz], (20)

2
1
HS(O)C = v, [1y0; + TolbyOx + T Uy0y]

Vg
+ E[Txo-xkx + ‘Cx/'LxO'yky + anzkz]s (21)

2
H{Ez) _ —nk —v;
2 8

tru(ky + k) + (k2 +6)]. 2

[oe(k? + &)

o [noni +K)

+ ToltyOx (ky2 + kzz) + T14y0y (kf + kzz)]
’

v
+ Zr[fyﬂzo'xkxky + Tyﬂxoykykz + /J“yo'zkzkx], (23)

@ _
HSOC -

where 7, u, o are Pauli matrices and lattice constant a has
been taken to be 1. The parameters are obtained from fit-
ting to the first-principles calculations. For RhSi, the fitted
parameters are vy =0.55, v, =0.16, v, =-0.76, v, =
—0.03, v, =0.01, vy = —0.04 (eV) [16]. The tight-binding
model preserves the screw and threefold rotation symmetry
of the space group 198. It was constructed with symmetry-
allowed nearest-neighbor hoppings [16].

When the spin-orbit coupling is turned off, i.e., v,, v/, vy =
0, there are two degenerate spin-1 excitations at the I" point in
the Brillouin zone. The energy band diagram for the quadratic
Hamiltonian without spin-orbit coupling is shown in Fig. 2(a).
The bands show spin-1 excitation and are doubly degen-
erate, dubbed as double TPFs. The node locates at energy
Wprpr = —0.07 eV. The low-energy dispersion is similar to
that of H,, although with different symmetry properties from
H;. Therefore, the two models have different nonvanishing
components of the optical conductivities even though the
pseudospin degrees of freedom are the same.

When spin-orbit coupling (SOC) is turned on, the sixfold
degenerate point splits up into two sets [46], as denoted by the
dashed lines in the band diagram in Fig. 2(b). One is the four-
fold degenerate point which is a pseudospin —3/2 excitation
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a b
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< Wgrsw
3 N\ | Py I
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‘0.1" -____ /™ 7\ l/!/s_
0.2 ]
0.1 0 0.1 -0.1 0 0.1
k(m/a) // [111] k(m/a) // [111]

FIG. 2. Energy bands along the [111] direction for Hrjog
[Eq. (19)] to the quadratic order. (a) Without spin-orbit coupling.
The bands are doubly degenerate. The black dashed line denotes the
energy level at the double TPF node. (b) With spin-orbit coupling.
The blue (red) dashed line indicates the energy levels of the RSW
node (Kramer Weyl). The blue numbers denote the band index of the
RSW node. The zero energy denotes the Fermi level.

and named as RSW fermion. The other is the twofold crossing
point, which is a spin-1/2 excitation. The energy of each
node is Wrsw = —0.04 eV for RSW and Wy = —0.131 eV for
Kramer Weyl. The energy levels for the three nodes studied in
this model are listed in Table II. Because the degenerate point
is at the I" point, which is one of the time-reversal invariant
momenta, the twofold degenerate point is called a Kramer
Weyl [47]. The effective Hamiltonian for the Kramer Weyl
is

Hx =k -G, (24)

where o is the Pauli matrix for electron spin, not pseudospin
degrees of freedom. As a result, the real spin of a Kramer Weyl
aligns along the principal axis ki, ky, k; [47].

Power counting analysis. The resonance effect of photore-
sponse in topological semimetals is interesting, because it
suggests the potential application as terahertz photodetectors.
By dimension analysis, the dependence of the shift and in-
jection conductivity on photon frequency can be revealed. In
previous studies [7,48], the analysis was constrained for the
k-linear Hamiltonian. Since in our study, the quadratic terms
have significant roles, we will include linear and quadratic
terms in the Hamiltonian for dimension analysis. The follow-
ing analysis considers the three-dimensional case, i.e., d = 3.
The dimension of the Hamiltonian is

H ~ hvk + W'k? (25)

TABLE II. Notations for energy levels at each topological node
for H, 198

Worer —0.07 eV
Wg —0.131 eV
Wrsw —0.04 eV

and the eigenenergy is denoted by E. Thus, the dimension for
Berry connection is

“Eok T E
For E in the denominator, to the lowest order of k gives E =~
hvk. Thus,

10H  hv+ 'k
_ it vk (26)

ro by 27
k v
and
r ~1+iv—/+§<v—,>2+<v—/)3 (28)
Bk v  k\v v/’

to the lowest order w ~ vk.
The delta function, 8(wy, — @), has dimension w~!. Thus,
the shift conductivity scales as

63 a_y v v/2
Ogh ™~ F ? + ao; + Q]F(,() + H.O.T. 5 (29)

where a_; o1 are dimensionless coefficients given by the mo-
mentum space integration in Eq. (1). Note that the a_;™!
diverging term is contributed only by the k-linear terms in
the Hamiltonian and vanishes for upright Weyl cones [7,48],
which is the case for the multifold fermions considered in this
study. Thus, a_; = 0. The second term shows that the shift
conductivity is independent of w, but proportional to v’. A
similar result was found in a previous study that shows the
linear shift conductivity for a Dirac surface state is linearly
dependent on the warping term and independent of photon
frequency [49].

For injection conductivity, A ~ v + v’k and r> ~ k=2 +
2L+ (L)

7’ v
Oinj ~ ? <Co +c Ea) + H.O.T.> s (30)

and ¢y, are dimensionless coefficients given by the momen-
tum space integration in Eq. (11). The leading term, which is
independent of frequency, does not depend on the model pa-
rameters. This term corresponds to the quantization of circular
injection conductivity. The values of the coefficients a_; ¢
and ¢ | are determined by the details of the Hamiltonian.

IV. NUMERICAL CALCULATIONS

In this section, we present the calculated second-order
photoconductivity spectra and also related geometric quan-
tities for the model Hamiltonians described in the preceding
section.

A. Triple-point fermions

The only symmetry for the effective triple-point fermion
model H, in the low-energy expansion is C; symmetry along
the z axis. As a result of the lowest symmetry, H; has more
nonzero components of second-order photoconductivity than
the CoSi family. Furthermore, because of the broken time-
reversal symmetry, all four types of the photocurrents are
present, namely, linear and circular shift currents as well
as circular and linear injection currents [7]. From symmetry
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Q Q
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5 o001 5,
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-0.02 - 0.0
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~ 0.4
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3 2 081 —— xzx
5 401 5
& ' —e— xzx £
2.0 L wx -1.2
—e— 772
0.0 ' 1.6 ,
00 01 02 0.3 00 01 02 0.3
w(t) w(t)

FIG. 3. Some of the nonvanishing components of the photocon-
ductivity tensors for the TPF model. (a) Linear injection, (b) circular
injection, (c) linear shift, and (d) circular shift conductivity. For all
the panels, the chemical potential is set to —0.1¢. The vertical dashed
line denotes that w = |u/.

analysis, there are 11 nonvanishing linear and 10 nonvanish-
ing circular conductivity tensor elements [50]. Among them,
there are four (three) independent linear (circular) conduc-
tivity elements. For simplicity, we show the most prominent
conductivity elements in Fig. 3.

Linear injection current. The linear injection conductivity
spectra are shown in Fig. 3 (a). The xzx and zxx components
are both linear with photon frequency. The linear injection
conductivity is related to the quantum metric g**. In Fig. 4(a),
g~ and g™ are plotted as a function of k. The metric element
g shows a more drastic change near the node k, = 0, while
g~ is zero along k,. As shown in Fig. 4(b), g&* on the k, =0
plane is an odd function in k,. Therefore, the integration over
the plane is zero. For linear injection conductivity cri’;"‘L, gis
multiplied by A7, which is also an odd function, and the mo-
mentum space integration gives rise to nonvanishing values, as
shown in Fig. 3(a). The distribution of g on the k£, = 0 plane
is shown in Fig. 4(c). For linear injection conductivity oiﬁjf"L,
g is multiplied by AZ,, which is a constant because the
Hamiltonian is linear in k.. The values are all positive. Thus,
aﬁfj"L is proportional to the momentum space integration of
the quantum metric g**.

Circular injection current. The circular injection conduc-
tivity is shown in Fig. 3(b), which is related to the Berry
curvature. The Berry curvature is an antisymmetric tensor
and thus its diagonal elements Q2 vanish. Therefore, only
the nondiagonal element Q2% of Berry curvature is shown in
Fig. 4(d). Clearly, 2* is approximately odd in k,. Thus, when
multiplied by A},,, the integral gives rise to a nonvanishing
circular injection current element in Fig. 3(b). The C4 sym-
metry requires that Q% (—k,, —k,) = —Q(k,, k,), but does

(b) g*
0.1
©
E 0
¥>\
0.1
02 o0 0.2
0.5 0 0.5 kx (m/a)
kz(1/a)
(c) g (d) O
0.2 1 0.2 2
s s _
E o0 LI — 0
2 & .
0.2 4 02 >
02 0 0.2 02 0 0.2

kx (/a) kx (rt/a)

FIG. 4. Quantum metric tensor elements related to the linear
injection conductivity (a)—(c) [components xzx and zxx] and circular
injection (d) conductivity [component xyz], respectively, for the TPF
model with u = —0.1z. (b)—(d) are plotted on the k, = O plane for
the TPF model.

not guarantee that Q% (ky, —k,) = —Q%(k,, k,). The analysis
is given in Appendix B. When the photon frequency is larger
than the chemical potential, the value saturates at ~0.65. This
value is close to one-third of the topological charge for TPF.
When taking the trace of the injection conductivity tensor, the
value is close to the Chern number, albeit, with slight devi-
ation. The deviation results from the nonzero Chern number
between each pair of bands for the quadratic Hamiltonian. In
Fig. 5, the chcl ocab spectrum for Hrjog to the linear order is
shown. Clearly, with the linear order expansion of the Hamil-
tonian, the conductivity is quantized at 2, the Chern number
of the Weyl node; while with the second-order expansion, the
conductivity shifts away from the integer at higher photon

2O S T Y ST I T
Y
: 2
;,i’ \
1'57 : g —e— linear Cy2
IE g === linear Cy3
—_ ll gl —»— quadratic C12
o . o .
Q ,' g =+ quadratic Cq3
e T e
=~ I Ozt
I:
1 00 02 04 06 08 10 12
1 E(®)
0.51 ! .
pi -x=- linear
LA .
oo ---- quadratic
0.8 — ; ' , ,
.00 0.25 0.50 0.75 1.00 1.25

w(t)

FIG. 5. Circular injection conductivity for linear and quadratic
Hamiltonians of the TPF model. B.. = > ab €ap0 /T, Where €.qp
is the Levi-Civita symbol.
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frequency. This is due to the nonzero Berry curvature between
a pair of bands. For injection and shift current, only the in-
terband transitions are considered. Thus, we write the Chern
number as a combination of the Berry curvature between pairs
of bands. Assume only the lowest band is occupied and the
bands are indexed from 1 to 3 starting from the lowest energy
band. The Chern number is decomposed into

C=Cp+Ci, (3D

where C,,, is obtained from the the surface integration of the
Berry curvature [€2,,,(0, ¢)],

1 T 2
Com = — / do / dd Qm(®.9).  (32)
27'[ 0 0

(m| 55 |n) (nl 55 Im)
Qun(0, ) = —2Im E, —E, ) (33)

The calculation is done in spherical coordinate and the Chern
number is obtained after integrating the Berry curvature on
the constant energy surface. For the quadratic Hamiltonian,
C13 becomes nonzero at higher energy, as shown in the inset of
Fig. 5. As aresult, the cyclic trace of the injection conductivity
between the optically active pair of bands is not quantized for
the quadratic Hamiltonian.

Linear shift current. Figure 3(c) shows the linear shift
conductivities. zxx, xzx, and zzz components are independent
of photon frequency after the photon frequency is larger than
the chemical potential. The result is the lowest order in w, as
suggested by Eq. (29). To understand the numerical results, we
resort to the analytical solutions. For analytical calculation,
we use Eq. (3) with Berry connections. Below, the results
for the zzz and zxx components are presented. We define
160 = %" fund$%. To the lowest order of k, the analytical
form of 159 for the isotropic cone is

2
3b(k} + k7)
4K6

IZZZ ~

(34

and
b[2k; + 5k (ky + Kk2) + 3k} (k} + k2) ]
4k '
It shows that the linear shift current depends linearly on the
pseudo spin-orbit coupling b. After inserting the integrand
to Eq. (1) and converting to spherical coordinate, d*k be-
comes dS$2;k*dk, where € is the solid angle in k space,
and §(w,,, — w) is replaced with §[k — k(w)]/|dE /dk|, where
|dE/dk| ~ 2 in the linear order of k and k(w) = w/2. The
integral becomes

: —e Sk —k :
O,c,ab — _e / ko / kzdk [ (w)] ILab- (36)
2h2 2

One obtains 0%% & 7.07b uA/V? and 0% ~ 8.99b uA/V2.
In Fig. 3, b = 1 is used for the numerical calculation. The an-
alytical values are close to the numerical values with less than
4% error. Thus, the plateau corresponds to a model-dependent
value. Similarly, the xzx component for both the linear and
the circular shift conductivity is independent of w, as shown
in Figs. 3(c) and 3(d).

The relevant momentum-resolved symplectic Christoffel
symbols for linear shift conductivity zzz and zxx are shown

IZ)C)C ~

(35)

>50
-0.5 (b)
&
2o K ||
>
0.5 "
05 0 05
>50
-0.51 (c)
©
2 0 0
<
; 0.5 "
P05 0 | 05 05 0 05
k, (1/a) kx (1/a)

FIG. 6. Momentum-resolved symplectic Christoffel symbol for
TPF. (a) Along k,, (b) on the k, = 0 plane for the zzz component,
and (c) on the k; = 0 plane for the xzx component. The chemical
potential is set slightly below the node, it = Wypr — 0.1 eV.

in Fig. 6. The zzz and xzx components both show a peak near
the node in the k,-resolved plot. On the k, = 0 plane, the zzz
component is circularly symmetric, while the xzx component
shows mirror symmetry about the k, = k, plane.

Circular shift current. Components of the circular shift
conductivity are shown in Fig. 3(d) for s=1 and b = 1.
Interestingly, both xzx and zyx components of the circular
shift conductivity vanish when s = 0, showing that this term
is vulnerable to the deformation of the on-site hopping. The
corresponding Christoffel symbol of the first kind for o**
is shown in Fig. 7. The k,-resolved I' in Fig. 7(a) indi-
cates that both xxz and zxx components change sign near
the node k, = 0. For the circular shift zyx component, the
Christoffel symbols are zero along k,. Equation (9) shows that
the contribution to the zyx circular shift conductivity is the
contorsion tensor, not the Christoffel symbol. Figure 8 shows

25— >10
@ Xzi‘j -0.5{(b)
Q
151 o4 0 o 0
¥>\
0.5 "
—_ T <-
5 5 05 0 05
L >10
-0.51(c)
51 _
©
3 01 = 0
S »
-151 0.51
o5 0 05 05 0 o5 <10
k. (1/a) kx (1/a)

FIG. 7. Momentum-resolved Christoffel symbol of the first kind
('™ and I'*) for the TPF model. (a) Along k,, (b) on the k, =0
plane for the zzz component, and (c) on the k, = 0 plane for the xzx
component. The chemical potential is set slightly below the node,
M = WTPF —0.1eV.
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FIG. 8. Momentum-resolved contorsion tensor Re[K**] for the
TPF model. This tensor contributes to the circular shift conductivity
zyx. (a) Along k, and (b) on the k, = O plane.

the contorsion tensor Re[K**] in the momentum space. Be-
cause Re[K™] = —Re[K”*], only the xzy component is
shown. For other components of conductivities, the numerical
values of the contorsion tensor are negligible compared to
the Christoffel symbols; thus their contorsion tensors are not
shown.

If we further simplify the Hamiltonian to the linear order of
k, the Berry curvature for each band of the TPF has a simple
form Fsinf, 0 for the valence, conduction, and flat band,
respectively, thereby giving rise to the Chern number of F2, 0.
Nevertheless, the shift current vanishes after integration, since
the integrands are either O or odd functions.

B. Multifold fermions in the CoSi family

In this section, we present the numerical results of the
model Hamiltonians for multifold fermions in the CoSi fam-
ily. Since these model Hamiltonians have the time-reversal
symmetry, only the linear shift current and circular injection
current would occur [7].

Double triple-point fermions. Hriog without SOC is a
degenerate TPF, dubbed as DTPF. An symmetry analysis
indicates that the xyz element is the only nonvanishing inde-
pendent component for both circular injection and linear shift
current, which is plotted as a function of photon energy (fw)
in Figs. 9(a) and 9(b), respectively. Figure 9(a) shows that
for the chemical potential being set slightly below the DTPF
node (u = Wptpr — 0.005 eV), the circular injection current
is nearly zero when 7w is smaller than the energy difference
between p and Wptpgr (0.005 eV). Nevertheless, it increases
sharply when hw approaches 0.005 eV and quickly becomes
saturated as /iw further increases. As a result of the topological
charge carried by the degenerate point, the circular injection
response would show quantization. Figure 9(a) indicates that
the circular injection conductivity is quantized at 4 when
hw > 0.005 eV because of the double degeneracy of the Weyl
point with chiral charge 2.

In Fig. 9(b), the linear shift conductivity is shown. In-
terestingly, the shift conductivity for the chemical potential

0.005 0.010
hw (eV)

0.000 0.015

FIG. 9. (a) Circular injection and (b) linear shift conductivity
for Hrigg without spin-orbit coupling with the chemical potential
set slightly below the DTPF node (u = —0.075 eV = Wprpr —
0.005 eV). In (b), the curve for the chemical potential at the DTPF
node is also displayed.

at the node and below the node are opposite in sign. The
major contribution comes from the quantum geometry of the
flat band. At low photon frequency, the flat band changes
from being unoccupied at u = Wprpr — 0.005 to occupied at
i = Wprer. This change is approximately equivalent to taking
the complex conjugate of the Hermitian connection. Since the
linear shift conductivity is given by the imaginary part of the
Hermitian connection, the shift of the chemical potential leads
to the sign change. This is similar to the sign change of the
Berry curvature when the chemical potential shifts across the
node. In both cases, the magnitude of the shift conductivity
increases monotonically as /iw increases from zero. Similar to
the circular injection current, the shift conductivity becomes
saturated when Ziw is well above 0.005 eV. Nevertheless, in
contrast to the circular injection current, the saturation of the
shift conductivity apparently does not result from its quanti-
zation behavior. The saturation can be understood from power
counting analysis, which shows that the lowest order of the
shift conductivity is proportional to agv’/v.

Since the linear shift conductivity comes from the diver-
gent behavior of the symplectic Christoffel symbols near the
topological nodes, we show in Fig. 10 the symplectic Christof-
fel symbols for the DTPF node. Figure 10 indicates that the
yxz component is more than one order of magnitude stronger
than the zxy component, and the linear shift conductivity

155434-8
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FIG. 10. Momentum-resolved symplectic Christoffel symbol for
the DTPF node at u = Wprpg. (2) Along k;, (b) on the k, = 0 plane
for the zxy component and (c) on the k, = 0 plane for the yxz compo-
nent. At the I" point, both zxy and yxz components diverge negatively,
and thus, after the integration of k., k,, the value is negative, as shown
by the peak at k, = 0 in (a).

reveals mainly the yxz component of the symplectic Christof-
fel symbols.

RSW fermions. When the spin-orbit coupling is included
in Hrjog, the DTPF nodal point [see Fig. 2(a)] splits into
the RSW and Kramers nodes [see Fig. 2(b)]. The calculated
photoconductivity spectra for the RSW node are displayed
in Fig. 11. Figure 11(a) shows that the circular injection
conductivity for the RSW fermions increases when hw ap-
proaches 0.002 eV and becomes nearly saturated at ~3p
between 0.0025 and 0.005 eV. As hw further increases, it
first dips slightly and then increases rapidly to the saturated
value of 4 [see Fig. 11(a)]. This interesting behavior of the
circular injection conductivity for the RSW node can be un-
derstood by the band dispersion of the RSW Hamiltonian
displayed in Fig. 2(b) where the RSW bands of RSW are
labeled with blue numbers 1-4. When only the transition from
the lowest band is active, the circular injection conductivity
reveals the Chern number of the lowest band, which is 3,
and this explains the first plateau of ~3. At higher photon
frequencies, the transition between the second and the third
band also occurs, giving rise to a quantization of 1. The
saturated value of the circular injection conductivity thus re-
veals the sum of the Chern numbers of the lowest two bands,
which is 4.

The linear shift conductivity for the RSW node is displayed
in Fig. 11(b). Interestingly, the conductivity in the low-light
frequency region below ~0.007 eV changes sign when the
chemical potential is slightly lowered from the RSW node to
Wrsw — 0.003 eV. Specifically, when u = Wrsw (red curve),
the linear shift conductivity is negatively proportional to w.
When . = Wrsw — 0.003 eV (blue curve) (i.e., slightly below
the RSW node), the conductivity shows a pronounced positive
peak at the low frequencies. In this low-frequency region,
it can be seen from the band structure [Fig. 2(b)] that the
optically active bands are the second and third (first and sec-
ond) for © = Wrsw (Wrsw — 0.003) eV. Thus, the linear shift

5
(a)
;[ S SO -SSRV
S 3 g y
Q —e— Wgrsw-0.003
Q. —— Wk-0.002
= 21
14
0
20
(b) — WRSW
—e— Wgrsw —0.003
~ 101
ik — Wk
3
><b 0
[0
<
_10-
0.000 0.005 0.010 0.015
hw (eV)

FIG. 11. (a) Circular injection and (b) linear shift conductiv-
ity for Hrjog with spin-orbit coupling (i.e., the RSW and Kramers
nodes).

conductivity reveals that the symplectic Chirstoffel symbols
are opposite in sign between different pairs of bands. More-
over, for the xyz component of the linear shift conductivity, the
related components of the Christoffel symbols are zxy and yxz.
We calculate both components of the symplectic Christoffel
symbols for the RSW fermions, as shown in Fig. 12. [V

>300
J004 —e— zxy x 10 -0.24(b)
(a yxz ©
S0 0
P o WIS o S 2
0 0.2 S
n 0.2 0 0.2 <300
. 1001 >300
-0.2{(c)
_200- g 0 ” °
&2
0.2
T — o o5 L1<300
_0.2 0 0.2 -012 O 0.2
k,(1/a) kx (1/a)

FIG. 12. Momentum-resolved symplectic Christoffel symbol for
the RSW node, u = Wrsw. () Along k., (b) on the k, = 0 plane
for the zxy component, and (c) on the k, = 0 plane for the yxz
component.
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FIG. 13. Momentum-resolved symplectic Christoffel symbol for
Kramer Weyl of Hrjos. 1 = Wx — 0.002. (a) Along k., (b) on the
k. = 0 plane for the zxy component, and (c) on the k, = 0 plane for
the yxz component.

shows a very strong peak near k, = 0. As for the DTPF node
(Fig. 10), in contrast, ['# is much weaker and no resonance
is found at k, = 0. Thus, the major contribution to the linear
shift conductivity is the yxz component of the symplectic
Christoffel symbol. The distribution of T" on the k. = 0 plane
is also shown in Figs. 12(b) and 12(c). There is a drastic
change near the node.

After turning on the spin-orbit coupling in Hrjgg, the band
structure changes drastically. The flat band in DTPF no longer
exists in the RSW node. The existence and absence of the flat
band would alter the quantum geometry. The difference can
be observed in comparing the symplectic Christoffel symbols
(Figs. 10 and 12]. As a consequence, the linear shift conduc-
tivity would have different behaviors. Comparing the linear
shift conductivity [Figs. 9(b) and 11(b)], the dependence on
the photon frequency changes to be linear. The difference is
likely to be the result of the large Christoffel symbols of the
flat band.

Kramers Weyl fermions. The calculated photoconductivity
spectra for the Kramers Weyl fermions are also shown in
Fig. 11. In this case, © = Wx = —0.131 eV, and the circular
injection current probes the Chern number of the Kramer
Weyl node. Thus, the circular injection conductivity is quan-
tized at 1 for /iw > 0.005 eV.

Interestingly, the linear shift conductivity for the Kramers
Weyl node is proportional to w, thus exhibiting the same trend
as the type-I Weyl points [48]. In Fig. 13, the symplectic
Christoffel symbols for the Kramer Weyl node are displayed,
which is the source of the linear shift current. Figure 13
thus indicates that the linear shift conductivity o** is dom-
inated by the yxz component of the symplectic Christoffel
symbol, similar to that of the DTPF and RSW nodes shown
above.

The numerical results presented in this section were ob-
tained under the assumption of zero absolute temperature in
the Fermi-Dirac distribution. At finite temperature, the results
for chemical potentials at the nodes would be different be-
cause the energy differences between bands are the smallest at

the nodes and are more prone to thermal energies. For chem-
ical potentials away from the nodes, as the smallest energy
gap is larger than the thermal energy, the results would be
qualitatively the same.

In addition, the numerical results are for a low-energy
effective Hamiltonian. The energy bands at much higher and
lower energy regimes are ignored in the calculation. Thus,
the conductivities are calculated at low photon frequency and
valid for the energy regime where the nodes are isolated.

V. DISCUSSION AND CONCLUSION

The second-order photoconductivities and geometrical
properties of chiral multifold fermions are studied in this
paper. The analytical expressions for the injection and shift
conductivities in terms of geometrical objects are given. As a
result of the chiral symmetry breaking, the topological node
and antinode are separated in energy. Thus, we study the
second-order optical response of a single node. Our dimension
analysis reveals that the lowest order of second-order pho-
toconductivity is ow® and the second to the lowest order is
oxw'. The quantities are calculated for the minimal symmor-
phic TPF model and the effective Hamiltonian for the CoSi
family. Whether the «° term survives depends on the details of
the Berry connections. For the TPF, RSW, and Kramer Weyl
nodes, the circular injection conductivity shows quantizations,
as a result of the Chern number carried by the node. The linear
shift conductivity for the RSW and Kramer Weyl node is xw.
This behavior is similar to the type-I Weyl node. In contrast,
the linear shift conductivity for the TPF node is independent
of w, but proportional to pseudo spin-orbit coupling. This
relation has not been found in other Weyl semimetals, to
the best of our knowledge. Furthermore, by analyzing the
momentum-resolved geometrical objects, it is found that the
quantum metric and Christoffel symbols are strongest near
the nodes. The shift conductivities are related to contorsion
tensors. The numerical results show that the contorsion ten-
sors in general are at least one order of magnitude smaller
than Christoffel symbols and symplectic Christoffel symbols
for both model Hamiltonians. However, the contorsion ten-
sors could be dominant. It is found that the circular shift
conductivity ¢¥* for the symmorphic TPF model is solely
contributed by contorsion tensors, whereas the corresponding
Christoffel symbols are zero. The study of these geometrical
objects sheds light on the optical probe of the Hilbert space of
lattices.
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APPENDIX A: SECOND-ORDER PHOTOCONDUCTIVITIES IN TERMS OF QUANTUM GEOMETRICAL QUANTITIES

The second-order conductivity tensors are expressed in terms of geometrical quantities in Egs. (8) and (9) of which the

contorsion tensor K¢ is defined as

bea _ | b ¢ .a ac)a b . ¢ b a a .b b .a
Knm - 7 |:rnm Z (rmprpn - rmprpn + Tm Z (rmprpn - rmprpn) ~Tum Z (rmprpn - rmprpn)

pF#m,n

pFm,n

i
a b ..c c b
_gRe |:rnm > (rmpr[m = Tl pn

Here, §;" is imaginary and fully symmetric with respect
to the permutation of b, ¢, and a. Since Eq. (6) is sat-
isfied with any choice of S}, we take S} =0 in this

bca’ bca
work.

APPENDIX B: SYMMETRY ANALYSIS FOR THE BERRY
CURVATURE UNDER C; SYMMETRY

The Berry curvature is the curl of the Berry connection
@, =V x A,, where n is the band index and A,, = (n|iV|n).
Under Cy rotation symmetry, k, — ky, ky, — —k., k; — k..
Because the Hamiltonian preserves C4 symmetry, the Berry
connection transforms as AY — A}, A; — —A*, A — A%

Thus, as required by the symmetry condition, the Berry

p#m,n

p#m,n

p#m,n

) - ”Zm Z (rslpr[bm - rrﬁprlpln):| + SZZZ (AD

[
curvature obeys

Q (ky, —ky, k) = Q) (ky, ky, k),

&, (ky, —ky, ko) = =2, (ky, ky, k2),

Qi (ky, —ky, k) = Q5 (ky, ky, k). (B1)

Since C, symmetry implies C, symmetry, the effect of
C, is analyzed below. Under C, rotation symmetry, k, —
—ky, ky, — —k,, k; — k;. The Berry connection transforms
asA* — A;, Ay, — —A, A — A:. Thus, the symmetry con-
dition requires

@, (—ky, —ky, ko) = =, (ky, ky, k2),
Qz(_kx’ _kyv k;) = _Qﬁ(k)m ky7 k),
Qzﬁ(_kx’ _kya kz) = Q;(kxa kya kz) (Bz)
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