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Lévy flight for electrons in graphene: Superdiffusive-to-diffusive transport transition
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In this paper we propose an electronic Lévy glass, analogous to a recent optical realization. To that end,
we investigate the transmission of electrons in graphene nanoribbons in the presence of circular electrostatic
clusters, whose diameter follow a power-law distribution. We analyze the effect of the electrostatic clusters on
the electronic transport regime of the nanoribbons, in terms of its diffusion behavior. Our numerical calculations
show that the presence of circular electrostatic clusters induces a transition from Lévy (superdiffusive) to diffu-
sive transport as the energy increases. Furthermore, we argue that in our electronic Lévy glass, superdiffusive
transport is an exclusive feature of the low-energy quantum regime, while diffusive transport is a feature of the
semiclassical regime. We thus attribute the observed transition to the chiral symmetry breaking, once the energy
moves away from the Dirac point of graphene.

DOI: 10.1103/PhysRevB.107.155432

I. INTRODUCTION

Graphene is a unique platform to emulate wave optics by
electronic phenomena, since its linear dispersion relation at
low excitation energy coincides qualitatively with the pho-
ton’s dispersion [1–4]. This linear dispersion is due to the
honeycomb lattice of graphene, which can be seen as a trian-
gular Bravais lattice with a two-atom basis [5–7]. In graphene,
charge carriers behave as massless relativistic Dirac fermions,
and the lattice preserves chiral symmetry. These unique elec-
tronic properties give rise to Klein tunneling [8,9], where
massless fermions can tunnel through a potential barrier with
null reflection probability.

In this context, Ref. [10] reported the electronic analog
of Mie scattering in a graphene superlattice imbibed in a
cylindrical electrostatic potential [11,12]. Mie scattering is
an optical phenomenon, which takes place when light waves
are elastically scattered by spherical or cylindrical objects.
Furthermore, Ref. [13] studied the effects of a regular array
of electrostatic quantum dot clusters (EQDC) in otherwise
pristine graphene nanoribbons, which induces a local defor-
mation of the on-site potentials. Both theoretical predictions
were confirmed in Ref. [1], which presented an experimental
demonstration of an electronic analog of Mie scattering by
using a graphene superlattice as a conductor imbibed into
a regular EQDC array. They were followed by other rele-
vant work on the effect of circular electrostatic potentials in
graphene [14–19].

The experimental setup of Ref. [1], inventively, reminds
one of a remarkable optical wave transport work: A Lévy
flight for light [20]. Lévy flights are a particular class of non-
Gaussian random walks in which a heavy-tailed (power-law)
distribution describes the step length during the walk [21].
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Those flights are present in different fields of science such as
the migration pattern of animals [22,23], transport in turbulent
flows [24], optical wave transport [20,25–29], and electronic
transport [9,30–33]. Lévy flights lead to superdiffusive trans-
port, which is characterized by a mean-square displacement
growing faster than linear with time, i.e., 〈x2〉 ∝ tγD , where
γD > 1. Meanwhile, for γD = 1 we recover the regular diffu-
sive transport regime [21,34,35].

Reference [20] developed an optical material in which
the transport of light is governed by Lévy statistics: a Lévy
glass. The material was fabricated by suspending titanium
dioxide microspheres in sodium silicate, where the diameter
of the microspheres followed a heavy-tailed distribution. The
suspended microspheres are a scattering material with fractal
structures, where the larger particles give origin to Mie scat-
tering. Furthermore, since the configuration of microspheres
is fixed in the Lévy glass, subsequent steps are correlated,
in contrast to a standard Lévy walk, where the steps are all
uncorrelated [36]. The authors of Ref. [20] observed that
when the light is transmitted through the Lévy glass, it shows
superdiffusive transport instead of regular diffusive transport.
Therefore, the average transmission coefficient as a function
of the device length L follows [20,36,37]

〈T 〉 = 1

1 + (L/�)γ
, (1)

where � is the mean free path. When γ = 1, we have the usual
behavior giving rise to regular diffusive transport. Whereas,
when γ < 1, we have a slow decay of the transmission char-
acterizing a superdiffusive transport regime.

In order to emulate the optical Lévy flight [20] with
electrons, we propose an electronic Lévy glass (ELG) and
develop realistic numerical calculations of the electronic
transport through graphene nanoribbons imbibed into the
EQDC, whose radii follow a heavy-tailed distribution, as
shown in Fig. 1. We find that our ELG show a Lévy-to-
diffusive transport transition as a function of the Fermi energy,
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FIG. 1. Illustration of (a) AGNR and (b) ZGNR connected to two
leads (red). Grey circles represent EQDC. (c) Histogram of cluster
radii (symbols); the solid line is a fit obtained from Eq. (5) with
β = 1.22 ± 0.01.

which is a particular feature of the graphene honeycomb
lattice. Furthermore, our analysis indicates that the most prob-
able cause of the observed transition is the breaking of chiral
symmetry, once the energy moves away from the Dirac point
of graphene. Finally, we believe that the Lévy-to-diffusive
transition can be experimentally verified by an adaptation of
the experimental setup in Ref. [1].

II. MICROSCOPIC MODEL

We study the electronic transmission through graphene
nanoribbons connected to two leads, and imbibed into ran-
domly located EQDC, as illustrated in Fig. 1. The scattering
matrix describing the electronic transport through the nanorib-
bons is given by [38]

S =
[

r t ′
t r′

]
, (2)

where t (t ′) and r(r′) are the transmission and reflection ma-
trix blocks, respectively. The transmission coefficient can be
calculated from the Landauer-Büttiker relation

T = Tr[tt†], (3)

which is valid in the linear response regime. Numerical cal-
culations of the transmission coefficient were performed with
KWANT [39], which is a Green’s function-based algorithm
within the tight-binding approach.

The tight-binding Hamiltonian for graphene is given by

Ĥ = −t0
∑
〈i, j〉

c†
i c j +

∑
i

εic
†
i ci, (4)

where the indices i and j run over all lattice sites and 〈i, j〉
denotes first-nearest neighbors. The first term in Ĥ represents
the usual electron hopping between lattice sites, ci (c†

i ) are the
annihilation (creation) operators and t0 is the hopping energy,
which has a typical value of 2.7 eV [7]. The second term in
the Hamiltonian is the electrostatic potential induced by the
EQDC. Therefore, the on-site electrostatic potential εi will be
εi = V when the site is inside the quantum dot area, and εi = 0
otherwise.

The Hamiltonian in Eq. (4) is identical to the one in
Ref. [13], which studied the effects of a regular array of EQDC
in otherwise pristine graphene nanoribbons, and motivated the
experiment developed in Ref. [1]. This is a deliberate choice,
which allows us to probe the effect of the Lévy-disorder
on electronic transport, and to perform a direct comparison
with a periodic disorder. Furthermore, Ref. [13] also did not
consider edge passivation in the nanoribbons since it should
not influence electronic transport significantly in the presence
of EQDC. Finally, the EQDC are not expected to modify
the hopping parameter significantly, and thus we consider the
same hopping energy inside and outside the clusters, also in
line with Ref. [13].

Figures 1(a) and 1(b) illustrate armchair (AGNR) and
zigzag (ZGNR) graphene nanoribbons, respectively, imbibed
into the EQDC. In order to build the ELG, we follow four
steps: (1) randomly select both a point on the lattice, which
will be the center of the quantum dot, and the radius R of the
quantum dot; (2) assign all sites inside the quantum dot area
a constant electrostatic potential value εi = V ; (3) randomly
select a new lattice point and radius: if the new quantum dot
overlaps with a pre-existing one, begin step 3 again, otherwise
go to step 2; and (4) stop after 5000 consecutive failed at-
tempts to introduce a new quantum dot. The maximum radius
of the quantum dot is limited to one eighth of the lattice
width without any loss of generality. In fact, this restriction
is common in studies involving Lévy distributions because of
the divergence of its second moment [21].

A Lévy distribution is characterized by the probability
density of a random variable P(R), which has a power-law
tail [21,33,40]. The probability density is given by

P(R) ∝ 1

Rβ+1
, (5)

where 0 < β < 2. If 0 < β < 1, the first and second moments
of P(R) diverge because of heavy-tails, while for 1 � β < 2
only the second moment diverges. Figure 1(c) shows the
radii histogram obtained from 104 different AGNR samples
with width WA = 49.5a0 and length LA = 51.4a0, where a0 =
2.49 Å is the graphene lattice constant. The histogram can be
adjusted to the power law given in Eq. (5) with an exponent
β = 1.22 ± 0.01. Because of the Lévy distribution behavior,
a set of quantum dots with radius R occupies approximately
the same area as another set of quantum dots with a different
radius. Similar behavior was reported by Ref. [20]. Further-
more, in our simulations the fraction of the nanoribbon area
occupied by quantum dots is 42.24% ± 0.03, and it remains
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FIG. 2. (a) Transmission through the ELG as a function of Fermi energy (solid lines); dotted lines are for the pristine nanoribbons.
(b) Transmission as a function of length L for three different energies (increasing from bottom to top). The circles are for AGNR with constant
electrostatic potential εi = V in all sites, while squares are for AGNR with Anderson disorder. (c) Average transmission as a function of length
L for AGNR, with Fermi energy E/t0 = 0.2 (circles), 0.34 (squares), and 1.2 (diamonds); (d) same for ZGNR, with E/t0 = 0.2 (circles), 0.4
(squares) and 1.2 (diamonds). Solid lines in (c) and (d) are fits obtained from Eq. (1).

unchanged for different device lengths L, widths, and edge
types.

III. RESULTS

To understand the effect of the EQDC on the average trans-
mission coefficient, we build an ensemble of ELG for AGNR
and ZGNR. We kept fixed the widths, WA = 49.5a0 and
WZ = 49.6a0, and the electrostatic potential V = 0.25t0, while
varying the length up to LA = 1050.7a0 and LZ = 1050.5a0,
respectively. Besides, for future comparison between honey-
comb and square lattices, we also build a set of square lattices,
which we refer to as two-dimensional electron gas (2DEG),
with W2D = 50a0 and L2D up to 1050a0.

We begin by plotting the transmission coefficient as a
function of Fermi energy in Fig. 2(a) for LA = 1050.7a0 and
LZ = 1050.5a0. For the ELG, the transmission (solid line)
presents strong fluctuation due to EQDC, and is generally
smaller when compared to the pristine nanoribbons (dotted
lines). Meanwhile, Fig. 2(c) shows the average transmission
through the AGNR as a function of length L for three differ-
ent Fermi energies, E/t0 = 0.2, 0.34, and 1.2. The average
transmissions (symbols) were calculated from a set of 6000
different ELG and conveniently normalised to range between
0 and 1. Figure 2(d) is the equivalent for a ZGNR with
E/t0 = 0.2, 0.4 and 1.2.

The average transmission of Figs. 2(c) and 2(d) decrease
as power-law functions of length L. Therefore, we can fit the

data with Eq. (1) and obtain the exponent γ for each Fermi
energy. The exponent characterizes the diffusive (γ = 1) and
superdiffusive (γ < 1) transport regimes. Figures 2(c) and
2(d) show that for high Fermi energy (E/t0 = 1.2) the expo-
nent is γ � 1 for both AGNR and ZGNR. Meanwhile, when
we decrease the Fermi energy the exponent decreases to γ �
0.5, which indicates a nontrivial Lévy-to-diffusive transport
transition as the Fermi energy increases.

Before proceeding with our investigation, we could ask
ourselves: Is the average transmission behavior shown in
Figs. 2(c) and 2(d) really due to the EQDC? To answer
this question, we first developed a numerical calculation of
the transmission through nanoribbons with a constant elec-
trostatic potential εi = V in all sites, at three different Fermi
energies. Figure 2(b) shows that for the AGNR the transmis-
sion remains almost constant as function of length (circles).
As a second verification, we ran a numerical calculation with
a typical Anderson disorder [41,42]. In this case, the electro-
static potential εi varies randomly from site to site according
to a uniform distribution in the interval (−V/2,V/2). Again,
we found that for the AGNR the transmission remains almost
constant as a function of length, Fig. 2(b) (squares). The
same behavior was observed for a ZGNR, which leads to
the conclusion that the Lévy-to-diffusive transition is indeed
a consequence of the EQDC, and not due to some arbitrary
electrostatic potential.

In order to characterize the Lévy-to-diffusive transition,
it is convenient to relate the Fermi energy to the number
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FIG. 3. (a) Transmission vs Fermi energy. The value at the plateaus corresponds to the number of channels N in the AGNR, ZGNR and
2DEG leads. The exponent γ as a function of N for: (b) A set of ELG samples with WA = 49.5a0, WZ = 49.6a0 and W2D = 50a0. (c) Just one
ELG sample with WA = 49.5a0, WZ = 49.6a0 and W2D = 50a0. (Triangular symbols are for an AGNR device with second-nearest-neighbor
hopping.) (d) One ELG sample with WA = 59.5a0 and WZ = 60.0a0. Solid lines in (b), (c), and (d) are just to guide the eyes.

of channels in the nanoribbon N . This dimensionless integer
corresponds to the number of propagating wave modes in the
ribbon, which is proportional to both the width W and the
Fermi vector kF through N = kFW/π . Since our aim is to
study electronic localization, we keep W fixed and increase
the graphene length L tuning N only by the Fermi energy.
If the width W is kept fixed, the electronic structure of each
nanoribbon remains unchanged during the numerical calcula-
tion. Nonetheless, we have verified that the transition does not
depend on W , as discussed below.

Figure 3(a) shows the transmission coefficient of pristine
AGNR, ZGNR, and 2DEG as a function of the Fermi en-
ergy. The value at the plateaus corresponds to the number
of channels, i.e., T (E ) = N . For the AGNR (blue line), we
have a relation between E/t0 = 0.02, 0.05, 0.08, . . . and N =
1, 2, 3, · · · , similarly for ZGNR (red line) and 2DEG (black
line). Knowing the relation between the Fermi energy and the
number of channels, we can study how the exponent γ varies
as a function of N .

Figure 3(b) shows the exponent γ as a function of N rang-
ing from 1 to 55 for the AGNR, ZGNR, and 2DEG. When
N > 10, Fig. 3(b) presents a plateau close to γ = 1 for the
three types of ELG, which indicates regular diffusive trans-
port. On the other hand, when N < 10 the honeycomb and
square lattices behave differently. For AGNR and ZGNR, we
have a plateau close to γ = 0.5, which is consistent with Lévy
transport. However, for the 2DEG with N < 10, the average
transmission can no longer be fitted by Eq. (1). Instead, they
follow an exponential, which is compatible with Anderson
localization [43].

The results of Fig. 3(b) confirm the presence of a Lévy-to-
diffusive transition in graphene nanoribbons imbibed into the
EQDC. This transition is an exclusive feature of honeycomb
lattices, it does not depend on the edge type, and can be
tuned by the Fermi energy. However, in order to access this
transition in Fig. 3(b) we had to produce an ensemble with
6000 samples, which makes the effect experimentally inac-
cessible.

Nonetheless, a viable experimental setup can be realized
with only one ELG, by linearly increasing the electrostatic
potential V from 0.23t0 to 0.27t0, forming a fictional time
series T (V ) with 6000 time steps [44,45]. We calculated the
average transmission as a function of length L from the time
series and extracted the exponent γ , shown in Fig. 3(c). The
results of Fig. 3(b), obtained from 6000 different samples,
and those of Fig. 3(c), obtained from only one sample, are
fully compatible, which shows the robustness of the Lévy-to-
diffusive transport transition.

In order to further assert the robustness of the transition, we
developed a numerical calculation including hopping param-
eters between second-nearest neighbors [7]. The triangular
symbols in Fig. 3(c) correspond to the data for an AGNR
including second-nearest-neighbor hopping with energy t ′

0 =
0.1t0 [7]. As expected, we see a Lévy-to-diffusive transport
transition, which shows that the inclusion of second-nearest-
neighbor hopping does not change our results. Finally, we
also increased the width of the nanoribbons to WA = 59.5a0

and WZ = 60.0a0, and implemented the one sample proce-
dure described above to obtain Fig. 3(d). Once again, the
Lévy-to-diffusive transition is visible in both cases, and is

155432-4



LÉVY FLIGHT FOR ELECTRONS IN GRAPHENE: … PHYSICAL REVIEW B 107, 155432 (2023)

not suppressed by an increase in ribbon width, as we asserted
above.

The experiments in Ref. [1] demonstrate a high degree of
precision and control over the electrostatic cluster deposition
process, capable of avoiding overlap between individual clus-
ters. Nonetheless, we expect our results to remain unchanged
for a low cluster overlap density. However, in the case of
large cluster overlap, the nanoribbon will approach a situation
of constant electrostatic potential in all sites, and we expect
its transmission will become similar to the one in Fig. 2(b)
(circles).

IV. DISCUSSION

A graphene nanoribbon imbibed in an EQDC shows a
Lévy-to-diffusive transport transition as a function of Fermi
energy. The transport is superdiffusive in the quantum regime,
i.e., N < 10, and diffusive in the semiclassical regime, N >

10 [44,46]. Reference [47] showed that the transmission fluc-
tuations of graphene as a function of magnetic field are
multifractal close to the Dirac point and monofractal far away
from it. This multifractality has its origin in the quantum cor-
relations induced by an external parameter such as a magnetic
field or electrostatic potential, which decreases as the number
of channels N (or the Fermi energy) increases [44]. Nonethe-
less, graphene presents a linear energy dispersion close to
the Dirac point, which preserves chiral symmetry. However,
both linear dispersion and chiral symmetry are broken by
increasing the Fermi energy [48–50].

Given this scenario, what could possibly be the origin of
our Lévy-to-diffusive transport transition? We list two poten-
tial causes: (1) loss of multifractality induced by the increase
of the Fermi energy; (2) chiral symmetry breaking also in-
duced by an increase in Fermi energy. In what follows, we
critically examine both possibilities and conclude that our
results are most compatible with the second one.

In order to answer the question above, and understand
the electronic transport in both regimes, we analyzed the
current density of AGNR with LA = 1050.7a0 and N =
1, 2, 5, 10, 20, and 47 (top to bottom), as shown in Fig. 4. The
current flow deviates from the electrostatic quantum dots in

FIG. 4. Current density for an AGNR with LA = 1050.7a0 and
N = 1, 2, 5, 10, 20, and 47 (top to bottom). Current density increases
as the color changes from blue to red.

FIG. 5. (a) Histogram of the transmission velocity �T/�V and
its respective q-Gaussian fits from Eq. (6) for AGNR superlattices
with WA = 49.5a0 and LA = 1050.7a0 with N = 1 (black), 10 (red),
and 33 (blue). The inset shows the histogram of �T/�V for a 2DEG
sample. (b) The exponent γ as a function of the parameter q, for
AGNR and ZGNR.

the quantum regime N < 10, due to the multifractality of the
transmission, accompanied by the slow transmission dynamic
[51], i.e., Lévy transport. Besides, the Lévy transport regime
gives rise to vortices surrounding the smaller quantum dots.
Those vortices are an evidence of turbulence-like behavior in
an integer quantum Hall transition, as reported in Ref. [45].
Meanwhile, in the semiclassical regime N > 10, the current
flow fills all of the ELG due to the fast transmission dynamic
and destroys the vortices, compatible with a regular diffusive
regime. We have obtained similar results for a ZGNR.

We can understand the slow and fast dynamics, i.e., Lévy-
to-diffusive transition, using the fictional time series T (V ).
Figure 5(a) shows the histogram of the transmission velocity,
defined as �T/�V [52], where �T = T (V + �V ) − T (V ).
The data corresponds to an AGNR with LA = 1050.7a0 and
N = 1, 10 and 33. For N = 1 we have a non-Gaussian dis-
tribution (black circles) with a narrow peak around zero and
heavy tails, while for N = 10 and 33 the distribution ap-
proaches a Gaussian. According to Ref. [44], this transition
from non-Gaussian to Gaussian behavior is due to the loss
of multifractality induced by the increase of the Fermi en-
ergy. On the other hand, the inset of Fig. 5(a) shows that the
2DEG sample also presents a transition from non-Gaussian to
Gaussian distribution, which indicates that the loss of multi-
fractality is not an exclusive feature of the honeycomb lattice.
Hence, we can conclude that the loss of multifractality cannot
be the cause of our transition, since it is not an exclusive
feature of the honeycomb lattice.
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Although the loss of multifractality is not the cause of the
Lévy-to-diffusive transition, we can still use the histograms to
characterize it. The histograms of Fig. 5(a) can be fitted by
q-Gaussian probability density functions

P(x) =
√

β0

Cp
[1 + (q − 1)β(x − x0)2]

1
1−q (6)

with

Cq =
√

π �
( 3−q

2(q−1)

)
√

q − 1 �
(

1
q−1

) ,

where 1 < q < 3, β0 is a measure of the width of the distribu-
tion, and x0 its mean. We remark that Eq. (6) can be formally
derived from a maximization of the Tsallis entropy [53], and
note that, when q → 1, P(x) converges to the Gaussian distri-
bution. Therefore, values of q different from 1 can be seen as
a measure of non-Gaussianity.

The solid lines in Fig. 5(a) represent the best fits to Eq. (6),
and it is apparent that q decreases as N increases, making it
possible to associate the transmission exponent γ with the
parameter q. Figure 5(b) shows γ as a function of q, where
the Lévy-to-diffusive transition is apparent around q = 3/2,
for both AGNR and ZGNR. When q < 3/2 the transmission
is diffusive and monofractal, while for q > 3/2 it is superdif-
fusive and multifractal. As reported by Refs. [54–56], the
transition from a non-Gaussian to a Gaussian distribution is
often associated with a phase transition. Therefore, Fig. 5(b)
is strong evidence that the Lévy-to-diffusive transition is a
nonequilibrium phase transition.

The main feature of the graphene honeycomb lattice is its
linear energy dispersion close to the Dirac point, while the
square lattice has a parabolic dispersion. As a consequence
of the linear dispersion, charge carriers behave as relativistic
massless Dirac fermions and can tunnel through electrostatic
potential barriers with null reflection probability, i.e., Klein
tunneling effect. However, the linear dispersion is lost far from
the Dirac point, due to an increase of Fermi energy, hence, the
charge carriers behave as massive fermions.

We can also interpret this behavior in the context of ran-
dom matrix theory [57]. The electronic transport through the
honeycomb lattice in the absence of a magnetic field and
spin-orbit interaction is described by the BDI class of chiral
ensembles, while for the square lattice it is described by the AI
class of Wigner-Dyson ensembles at Cartan’s nomenclature
[49]. The honeycomb lattice preserves time-reversal, particle-
hole, and chiral symmetries at the Dirac point [49]. However,
far away from it, the BDI class crosses over to the AI class
because of the chiral symmetry breaking [48–50]. This ex-
plains the different behavior between honeycomb and square
lattices in the quantum regime N < 10, and the similar behav-
ior in the semiclassical regime N > 10 shown in the Figs. 3(b)
and 3(c).

Thus, we are led to conclude that the superdiffusive trans-
port is an exclusive feature of ELG in the quantum regime,

while diffusive transport is a feature in the semiclassical
regime. Therefore, the most compelling explanation for the
observed Lévy-to-diffusive transition in our calculations is the
chiral symmetry breaking. Furthermore, Refs. [58,59] indicate
that chiral symmetry breaking has been associated with a
phase transition, reinforcing that our transport transition can
be a nonequilibrium phase transition associated with chiral
symmetry breaking and, hence, the loss of linear energy dis-
persion.

Finally, it is interesting to compare our findings with those
in Ref. [20]. Light has a linear energy dispersion similar to
graphene close to the Dirac point. Thus, when light is submit-
ted to an optical material in which its transport is governed
by Lévy statistics, it leaves the regular diffusive regime and
enters the Lévy one. However, light is not expected to show
a Lévy-to-diffusive transition because its dispersion is always
linear, unlike that of graphene.

V. CONCLUSIONS

In conclusion, we proposed an electronic Lévy glass, anal-
ogous to a recent optical realization. We investigated the
transmission of electrons in AGNR and ZGNR in the pres-
ence of circular electrostatic clusters, whose diameter follow
a power-law distribution. We analyzed the effect of the EQDC
on the electronic transport of nanoribbons and its diffusion
regime, in comparison to a 2DEG. Our numerical calculations
showed that the presence of the clusters induces a transition
from Lévy (superdiffusive) to regular diffusive transport as the
Fermi energy increases, which was verified by a q-Gaussian
analysis, as shown in Fig. 5(b). We conclude that the su-
perdiffusive transport in ELG is an exclusive feature of the
low-energy quantum regime, while diffusive transport is a
feature of the semiclassical regime. Therefore, the observed
Lévy-to-diffusive transport transition is mostly likely caused
by chiral symmetry breaking once we move away from the
graphene Dirac point. It would be interesting to investigate
how the shape of the EQDC affects the electronic transport
behavior and if the superdiffusive regime also appears in the
case of noncircular clusters.
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