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Universal competitive spectral scaling from the critical non-Hermitian skin effect
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Recently, it was discovered that certain non-Hermitian systems can exhibit qualitative different properties at
different system sizes, such as being gapless at small sizes and having topological edge modes at large sizes L.
This dramatic system-size sensitivity is known as the critical non-Hermitian skin effect (cNHSE), and occurs due
to the competition between two or more non-Hermitian pumping channels. In this work, we rigorously develop
the notion of a size-dependent generalized Brillouin zone (GBZ) in a general multicomponent cNHSE model
ansatz, and found that the GBZ exhibits a universal a + b1/(L+1) scaling behavior. In particular, we provided
analytical estimates of the scaling rate b in terms of model parameters, and demonstrated their good empirical
fit with two paradigmatic models, the coupled Hatano-Nelson model with offset, and the topologically coupled
chain model with offset. We also provided analytic result for the critical size Lc, below which cNHSE scaling
is frozen. The cNHSE represents the result of juxtaposing different channels for bulk-boundary correspondence
breaking, and can be readily demonstrated in non-Hermitian metamaterials and circuit arrays.

DOI: 10.1103/PhysRevB.107.155430

I. INTRODUCTION

Non-Hermitian systems harbor a host of interesting physics
not found in equilibrium systems, such as exceptional point
sensitivity and robustness [1–17], enlarged symmetry classes
[18–21], and intrinsically nonequilibrium topological phases
[22–35]. Once thought to exist almost exclusively as mathe-
matical constructs, these novel phenomena have one by one
been experimentally demonstrated in the recent years, thanks
to rapid technical advances in ultracold atomic gases [36–40],
electrical circuits [41–53], photonic systems [11,23,54–62],
coupled acoustic cavities [63–67], as well as other metamate-
rials [68–80].

A particularly intriguing type of non-Hermitian phe-
nomenon is the breaking of conventional bulk-boundary
correspondences (BBCs), which generically occurs whenever
reciprocity is also broken. Topological BBCs relate bound-
ary topological states with bulk topological invariants, and
are cherished tenets in topological classification [81–86].
The most well-studied type of non-Hermitian BBC is the
non-Hermitian skin effect (NHSE) [87–104], which is char-
acterized by exponentially large boundary state accumulation
that leads to very different energy spectra under open and
periodic boundary conditions (OBCs and PBCs). To restore
an effective bulk theory, the customary approach has been to
define a generalized Brillouin zone (GBZ) with complexified
momentum [91,105–112], such that quantities computed in
the GBZ correctly correspond to physical observations.

Most interesting is the relatively little-understood scenario
of critical NHSE (cNHSE) [113], where even the scaling
properties of the system are drastically modified by non-
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Hermiticity. For instance, the same metamaterial exhibiting
cNHSE can behave qualitatively differently at different sys-
tem sizes, such as being gapless (metallic) at small sizes but
topologically insulating at large sizes [113–116]. Physically,
such peculiar size-dependent transitions are due to the com-
petition between multiple NHSE channels (nonreciprocity
strengths) in the system; at different length scales, the same
physical coupling can be “renormalized” to very different
values dependent on the dominant NHSE channel. Due to their
peculiar size dependency, the cNHSE systems also harbor
different entanglement scaling laws [113] from those of other
Hermitian and non-Hermitian phases [7–9,117–126].

In this work, we focus on addressing the following open
question: How exactly can we understand cNHSE scaling be-
havior in terms of the GBZ, which is widely used for restoring
the BBC in the thermodynamic limit? Specifically, we find
that a cNHSE system of finite size can be accurately described
through an “interpolated” GBZ that lies between the com-
peting GBZs describing the same (but behaviorally distinct)
system in the small and large size limits. Furthermore, this
interpolation occurs at a rate obeying a universal exponential
scaling law, with exponent inversely proportional to system
size. Since the effective GBZ allows one to represent the sys-
tem with a Hamiltonian with an effective Bloch description,
this scaling law carries over into most physical properties of
cNHSE lattices.

To motivate and substantiate our results, we consider a
generic two-component ansatz for modeling a cNHSE system
with two competing NHSE channels. Our ansatz encompasses
the minimal model studied in Ref. [127], and showcases
how some of its results can be generalized in the context
of arbitrary NHSE channels. By subsequently specializing
into two paradigmatic models, we provide detailed derivations
of the universal a + b1/(L+1) scaling behavior governing the
effective finite-size GBZ, where L is the system size, and
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a, b constants depending on the model details. We also pro-
vide detailed and empirically verified estimates of the lower
critical system size Lc above which such a scaling relation
holds.

We pause to briefly elaborate on the experimental prospects
for the cNHSE models discussed in this work. Most directly,
electrical circuits, i.e., “topolectrical circuits” can be con-
nected in very versatile manners, and are thus readily suited
for their experimental implementation [41–53]. In general,
operation amplifiers serve as almost perfectly linear compo-
nents with asymmetric Laplacians [42], and are thus ideal
building blocks for models with the asymmetric couplings
necessary for cNHSE. Recently, the coupled Hatano-Nelson
cNHSE model of this work has also been realized in an even
simpler experimental circuit platform [52] involving only
RLC circuit components since asymmetric couplings can be
rendered symmetric via a basis rotation in this model. Circuit
realizations can also be largely generalized to photonic plat-
forms [55,128–134]. Coupled resonator arrays can be used to
experimentally realize the arrays in our models, with the ring
resonators [128] (which are the primary resonators) represent-
ing the sites in our model chains. Experimental values of the
hoppings in such photonic systems are highly tunable, ranging
approximately from 5 to 30 GHz [135,136]. The optical gain
and loss in a photonic system can be used to experimentally
realize the gain and loss in our non-Hermitian models.

The paper is organized as follows: In Sec. II, we set up
the cNHSE formalism using a general two-component ansatz.
Next, we illustrate our results through detailed calculations
on two paradigmatic models, a coupled Hatano-Nelson model
with energy offset (Sec. III) and a model with size-dependent
topology (Sec. IV). We show how their OBC spectra and
effective GBZs depend greatly on the system size, and provide
quantitative derivations of their exponential scale dependence,
as well as the critical system size above which such scaling
holds. In Sec. V, we demonstrate the robustness of the scaling
of imaginary energy against substantial disorder. Finally, we
summarize the key findings in the discussion in Sec. VI.

II. GENERAL TWO-COMPONENT cNHSE ANSATZ

To understand the cNHSE phenomenon, we first review the
concept of the GBZ. The GBZ formalism restores the BBC
via a complex momentum deformation. For a momentum-
space one-dimensional (1D) Hamiltonian H (z) with z = eik ,
the GBZ corresponding to an eigenenergy E can be obtained
from solving for z = eik in the following characteristic Lau-
rent polynomial [89,105]:

f (z, E ) := det[H (z) − E I] = 0. (1)

For E that does not coincide with any of the PBC eigenen-
ergies, i.e., eigenvalues of H (eik ) for real k, we must have
complex k = −i ln z. Such E lies in the OBC spectrum when
the latter is very different from the PBC spectrum. It can be
shown that [87,89,91,99,101,110] in the thermodynamic limit,
the OBC eigenenergies are given by1 solutions of k that are

1This double degeneracy in Im(k) is required for the state to vanish
at two boundaries that are arbitrary far apart.

doubly degenerate in both Im(k) and E : For such solutions,
we define the GBZ as κ (k), where the complex momentum
deformation is given by k → k + iκ (k). In other words, we
say that the conventional (Bloch) BZ is replaced by the (non-
Bloch) GBZ defined by z → eike−κ (k).

To understand how the GBZ formalism needs to be
modified in a cNHSE system, we start from a generic
two-component ansatz cNHSE Hamiltonian, written in the
component basis Ck = (ck,A, ck,B)T as

Hg(z)=
(
Haa(z) Hab(z)
Hba(z) Hbb(z)

)
=

n+∑
n=−n−

(
haa

n hab
n

hba
n hbb

n

)
zn, (2)

where n± ∈ Z, z = eik . In principle, cNHSE exists as long
as Haa and Hbb exhibit dissimilar inverse skin localization
lengths κ (k), and couplings Hab,Hba �= 0. The former con-
dition is equivalent to having asymmetric hoppings haa

n �= haa
−n

and hbb
n �= hbb

−n for some n, as well as haa
n /haa

−n �= hbb
n /hbb

−n.
To implement OBCs, we first Fourier transform to real

space, where one obtains the real-space tight-binding Hamil-
tonian

Hgr =
L∑

i=1

n+∑
n=−n−

C†
i

(
haa

n hab
n

hba
n hbb

n

)
Ci+n, (3)

where L is the system size, i.e., number of unit cells,
1 � n± � L/2, Ci = (ci,A, ci,B)T with the annihilation
(creation) operator ci,α (c†

i,α) on site α (α = A, B)
in cell i. For a real-space wave function |ψ〉 =
(ψ1,A, ψ1,B, ψ2,A, ψ2,B, . . . , ψL,A, ψL,B)T, we express the
real-space Schrödinger equation Hgr |ψ〉 = EOBC|ψ〉 as⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

n+∑
n=−n−

(
haa

n ψi+n,A+hab
n ψi+n,B

)=EOBCψi,A,

n+∑
n=−n−

(
hba

n ψi+n,A+hbb
n ψi+n,B

)=EOBCψi,B,

(4)

where Hgr is the Hamiltonian matrix of Hgr in the basis
(C1,C2, . . . ,CL )T and EOBC is the eigenenergy under OBC.
To relate to the complex momenta present in non-Hermitian
skin modes, we solve the real-space Schrödinger equation via
the ansatz

(ψn,A, ψn,B)T =
∑

j

(β j )
n
(
φ

( j)
A , φ

( j)
B

)T
, (5)

where A, B are the site indices in the cell, and n represents
the position of the cell (A,B) in the real space. Here, β j

are specific solutions to z = eik , and characterize the spatial
localization of the boundary skin-localized wave function. By
substituting Eq. (5) into (4), we can write the bulk eigenequa-
tion as⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎣ n+∑

n=−n−

haa
n (β j )

n−EOBC

⎤
⎦φ

( j)
A +

n+∑
n=−n−

hab
n (β j )

nφ
( j)
B = 0,

n+∑
n=−n−

hba
n (β j )

nφ
( j)
A +

⎡
⎣ n+∑

n=−n−

hbb
n (β j )

n−EOBC

⎤
⎦φ

( j)
B = 0.

(6)
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Equation (6) can be recast into the energy dispersion charac-
teristic equation

E2
OBC −

n+∑
n=−n−

(
haa

n + hbb
n

)
(β j )

nEOBC

+
⎡
⎣ n+∑

n=−n−

haa
n (β j )

n

⎤
⎦
⎡
⎣ n+∑

n=−n−

hbb
n (β j )

n

⎤
⎦

−
⎡
⎣ n+∑

n=−n−

hab
n (β j )

n

⎤
⎦
⎡
⎣ n+∑

n=−n−

hba
n (β j )

n

⎤
⎦ = 0, (7)

where we have labeled the solutions β j with increasing mag-
nitude |β1| � |β2| � · · · � |β2M |. Here M = n− + n+.

Importantly, the key property required for restoring
BBCs, the complex momentum deformation (effective GBZ),
does not require intimate knowledge of most of these
β solutions. This is because fundamentally, the required
complex deformation depends on the decay rate of the
eigenstates, which turns out to depend only on two dom-
inant β solutions. Below, we derive the precise conditions
from the bulk eigenequations (6) as well as constraints
from the OBCs ψ−n−,α = · · · = ψ−1,α = ψ0,α = ψL+1,α =
ψL+2,α = · · · = ψL+n+,α = 0 (α = A, B; 1 � n± � L/2).

By eliminating φ
( j)
B in terms of φ

( j)
A , we obtain 2M

simultaneous linear equations in φ
( j)
A ( j = 1, 2, . . . , 2M ),

which yield nonvanishing solutions only if the
determinant

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

F (a,1)
1 β1 F (a,1)

2 β2 · · · F (a,1)
2M β2M

F (b,1)
1 β1 F (b,1)

2 β2 · · · F (b,1)
2M β2M

...
...

...
...

F (a,n+ )
1 (β1)n+ F (a,n+ )

2 (β2)n+ · · · F (a,n+ )
2M (β2M )n+

F (b,n+ )
1 (β1)n+ F (b,n+ )

2 (β2)n+ · · · F (b,n+ )
2M (β2M )n+

G(a,1)
1 (β1)L−(n−−1) G(a,1)

2 (β2)L−(n−−1) · · · G(a,1)
2M (β2M )L−(n−−1)

G(b,1)
1 (β1)L−(n−−1) G(b,1)

2 (β2)L−(n−−1) · · · G(b,1)
2M (β2M )L−(n−−1)

...
...

...
...

G(a,n− )
1 (β1)L G(a,n− )

2 (β2)L · · · G(a,n− )
2M (β2M )L

G(b,n− )
1 (β1)L G(b,n− )

2 (β2)L · · · G(b,n− )
2M (β2M )L

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, (8)

as derived in more detail in Appendix A. This determinant
expression captures the constraints from OBCs at both bound-
aries. In general, it is a complicated expression, but can still
be written explicitly in terms of β j and EOBC for the two-band
ansatz:

F (a,i)
j =

n+∑
n=−(i−1)

(
haa

n + f jh
ab
n

)(
β j
)n − EOBC, (9)

F (b,i)
j =

n+∑
n=−(i−1)

(
hba

n + f jh
bb
n

)
(β j )

n − f jEOBC, (10)

G(a,i)
j =

n−−i∑
n=−n−

(
haa

n + f jh
ab
n

)
(β j )

n − EOBC, (11)

G(b,i)
j =

n−−i∑
n=−n−

(
hba

n + f jh
bb
n

)
(β j )

n − f jEOBC, (12)

where

f j = φ
( j)
B

φ
( j)
A

= EOBC −∑n+
n=−n− haa

n (β j )n∑n+
n=−n− hab

n (β j )n

=
∑n+

n=−n− hba
n (β j )n

EOBC −∑n+
n=−n− hbb

n (β j )n
. (13)

Equation (8) can be rearranged in a compact multivariate
polynomial form

∑
P,Q

J (βi∈P, β j∈Q, EOBC)

[∏
i∈P

(βi )
k

]⎡
⎣∏

j∈Q

(β j )
k′

⎤
⎦=0, (14)

where k = 1, . . . , n+, k′ = L−(n−−1), . . . , L, sets P and
Q are two disjoint subsets of the set {1, 2, . . . , 2M} with
M elements, respectively, and J (βi∈P, β j∈Q, EOBC) is the
EOBC-dependent coefficient corresponding to a particular per-
mutation of P and Q. By separating the product contributions
of the βs which are exponentiated by L, we can extract out
contributions that scale differently with L.

Furthermore, in the case n+ = n− where the maximal left
and right hopping distances are the same, Eq. (14) simplifies
to

∑
P,Q

J (βi∈P, β j∈Q, EOBC)

[∏
i∈P

(βi )
L+1

]
=0. (15)

In the thermodynamic limit, the large L in the exponents picks
up the slowest decaying terms, and these would be the phys-
ically dominant contributions amidst the complicated jungle
of terms. Specifically, in Eq. (15), we find that there are two
leading terms proportional to (βMβM+2βM+3 . . . β2M )L+1 and
(βM+1βM+2βM+3 . . . β2M )L+1, which yield in the limit of large
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system size L

∣∣∣∣ βM

βM+1

∣∣∣∣ �
∣∣∣∣−J (βi∈P1 , β j∈Q1 , EOBC)

J (βi∈P2 , β j∈Q2 , EOBC)

∣∣∣∣
1

L+1

EOBC=E∞

, (16)

where P1 = {M + 1, M + 2, M + 3 . . . , 2M}, Q1 =
{1, 2, 3, . . . , M}, P2 = {M, M + 2, M + 3, . . . , 2M}, Q2 =
{1, 2, . . . , M − 2, M − 1, M + 1}, M = n+ + n−, and L is
the system size with L → ∞. We emphasize that the form
of this result (16) with L → ∞ still holds for general
higher-component or multiband models [see Eq. (B19),
albeit with more complicated J functions], as derived in
Appendix B. The details are complicated, but physically,
we expect qualitatively similar behavior because the critical
NHSE essentially arises from the competition between the
NHSE and the couplings, and with greater number of bands,
we will have more avenues for the competition. But unless
the model is fine tuned, we will generically still see the direct
competition between pairs of bands, which thus reduces
qualitatively to two-band behavior.

We comment on a few key takeways from Eq. (16).
Without any assumption on the detailed hoppings in the 1D
tight-binding model, we showed how the requirement of sat-
isfying OBCs at both ends generically led to Eq. (16), which
relates |βM/βM+1|L+1 with a combination of L-independent
model parameters. It picks out the solutions βM and βM+1

of Eq. (7) as the dominant ones at large L, although in this
regime, the L dependence is also generally weak since the ex-
ponent 1/(L + 1) changes slowly. Below, we discuss further
on the large L and moderate L regimes separately.

In the thermodynamic limit of L → ∞, the right-hand side
of Eq. (16) tends to unity, giving rise to the standard GBZ re-
sult |βM | = |βM+1| discussed in [87,89,91,110,113,127,137].
Hence, to draw the GBZ for L → ∞, we uniformly vary the
relative phase between βM and βM+1, and trace out the trajec-
tory Cβ satisfying |βM | = |βM+1|. Since L is large, each point
in the GBZ curve is separated by a 2π/L phase interval that
converges to a continuum, resulting in continuum complex
energy bands.

For finite L away from the thermodynamic limit, we
emphasize that this standard GBZ construction for E∞ =
limL→∞EOBC may no longer be valid. While in many cases,
EOBC does not change significantly as L is extrapolated down
to moderate [i.e., L ∼ O(10)], in cNHSE cases, the spectra
and hence other physical properties vary strongly with system
size. To characterize such cNHSE scenarios at finite L, we
note from Eq. (16) that the magnitudes |βM | and |βM+1| can
no longer be treated as equal. Physically, this implies that the
OBC eigenstates are superpositions of different modes with
inverse spatial decay lengths of either −ln|βM | or −ln|βM+1|.
As such, the effective cNHSE GBZ is described by both |βM |
and |βM+1|, which are no longer equal. Contributions from
other β j solutions affect the eigenstate decay rates negligibly
even in the presence of cNHSE, as numerically verified for
our illustrative coupled Hatano-Nelson model in Appendix C.

In the following two sections, we shall elaborate on how
the pair of GBZ solutions |βM | and |βM+1| scale with sys-
tem size L. Since the exact scaling dependencies can be
highly complicated, we shall illustrate our results concretely
through two paradigmatic cNHSE models, the minimal cou-

(a)

FIG. 1. (a) Coupled Hatano-Nelson chain model [Eq. (18)] with
interchain hopping t0, intrachain hopping asymmetries t±

a = t1 ± δa

and t±
b = t1 ± δb, and chain energy offsets ±V . (b) Energy spectra of

Eq. (18) under PBCs (blue) and OBC (red) in the L → ∞ limit for
(b1) V = 0 and (b2) V = 0.5. Parameters are t0 = 0.01, t1 = 0.75,
and δa = −δb = 0.25. While the PBC and OBC spectra coincide in
the V = 0 case studied in [127], they deviate when V �= 0, leading to
broken bulk-boundary correspondence.

pled Hatano-Nelson model with energy offset in Sec. III and
a model with size-dependent topological states in Sec. IV.

III. COUPLED HATANO-NELSON MODEL
WITH ENERGY OFFSET

In this section, we elaborate on a cNHSE model formed
by coupling the simplest possible NHSE chains: two equal
and oppositely oriented Hatano-Nelson chains. Going beyond
the minimal model introduced in Ref. [127], which provided
elegant analytic results, we additionally introduce onsite en-
ergy offsets ±V on the two chains, respectively, such that
the interchain coupling now also faces nontrivial competition
from the energetic separation of 2|V |. The coupled chains are
illustrated in Fig. 1(a), with each chain constituting one of
the sublattices A and B. In the basis Ck = (ck,A, ck,B)T , its
momentum-space Hamiltonian is

H(z) =
(

t+
a z + t−

a /z + V t0
t0 t+

b z + t−
b /z − V

)
, (17)

where t±
a = t1 ± δa, t±

b = t1 ± δb, t0 is the interchain hopping,
and ±V is the onsite potential energy. We denote z = eik as
before, where k is the momentum. It is related via Fourier
transformation to the corresponding real-space tight-binding
Hamiltonian

Hr =
∑

n

(t+
a c†

n,Acn+1,A + t−
a c†

n+1,Acn,A + t0c†
n,Acn,B

+ t+
b c†

n,Bcn+1,B + t−
b c†

n+1,Bcn,B + t0c†
n,Bcn,A

+V c†
n,Acn,A − V c†

n,Bcn,B), (18)
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where cn,α (c†
n,α) is the annihilation (creation) operator on site

α (α = A, B) in unit cell n. Evidently, t+
a /t−

a and t+
b /t−

b are
the hopping asymmetries of chains A and B.

The energy eigenvalues of the Hamiltonian (17) under
PBCs are given by

E (±)
PBC(k) = 2t1 cos k + i(δa + δb) sin k

±
√

[i(δa − δb) sin k + V ]2 + t2
0 , (19)

where k ∈ R and t±
a = t1 ± δa, t±

b = t1 ± δb. In Fig. 1(b1), we
see that in the large-L limit, the PBC spectrum (blue) agrees
well with the OBC spectrum (red) only in the V = 0 case
which Ref. [127] has considered. When V �= 0 [Fig. 1(b2)],
the OBC spectrum lies in the interior of the PBC loops
and can only agree with E (±)

PBC(k) if we perform an ap-
propriate complex momentum deformation k → k + iκ (k)
[89,91,99,101,110,113]. While it may appear here that the
V = 0 case does not experience BBC breaking (i.e., the
NHSE), that is actually untrue once we consider finite system
sizes [127]. Below, we show that this model exhibits cNHSE
at finite system sizes for all values of V , and compare some
analytic approximations with numerical results.

A. Finite-size scaling from the cNHSE

To understand how the PBC and OBC spectra
differ beyond the thermodynamic limit shown in
Figs. 1(b1) and 1(b2), we examine the real-space
Schrödinger’s equation Hr |ψ〉 = EOBC|ψ〉, where
|ψ〉 = (ψ1,A, ψ1,B, ψ2,A, ψ2,B, . . . , ψn,A, ψn,B, . . . )T:{

t−
a ψn−1,A+t0ψn,B+t+

a ψn+1,A+V ψn,A =EOBCψn,A,

t−
b ψn−1,B+t0ψn,A+t+

b ψn+1,B−V ψn,B =EOBCψn,B,
(20)

where Hr is the Hamiltonian matrix of Hr in the basis
(C1,C2, . . . ,Cj, . . . )T . Based on the approach developed in
Sec. II, we can use as an eigenstate ansatz which is a linear
combination of β solutions, such as to solve the real-space
Schrödinger equation [87,112,127](

ψn,A

ψn,B

)
=

4∑
j=1

(β j )
n

(
φ

( j)
A

φ
( j)
B

)
. (21)

This allows us to rewrite Eq. (20) as(
t+
a β + t−

a β−1 + V t0
t0 t+

b β + t−
b β−1 − V

)(
φA

φB

)

= EOBC

(
φA

φB

)
, (22)

where we have written β j = β and φ
( j)
α = φα (α = A, B) for

notational simplicity since Eq. (22) applies separately to dif-
ferent j. Essentially, this ansatz has allowed us to replace
z = eik by β. Nontrivial solutions to Eq. (22) satisfy the bulk
characteristic dispersion equation

t+
a t+

b β2 − [(t+
a + t+

b )EOBC + (t+
a − t+

b )V ]β

+(t+
a t−

b + t−
a t+

b + E2
OBC − t2

0 − V 2
)

−[(t−
a +t−

b )EOBC+(t−
a −t−b )V ]β−1+t−at−bβ−2 = 0. (23)

FIG. 2. OBC energy spectra of the coupled Hatano-Nelson
model Hamiltonian (18) with (a1) V = 0 and (b1) V = 0.5 at dif-
ferent finite system sizes L = 10 (black), 20 (blue), 50 (red), 100
(yellow), ∞ (green). When V = 0, the spectrum is real for short
chains, but complex for long chains due to the strong effective
couplings from large L. But interestingly for V �= 0, short chains can
possess some complex energies, and long chains possess some real
energies. PBC energy spectra of the coupled Hatano-Nelson model
Hamiltonian (18) with (a2) V = 0 and (b2) V = 0.5 at different finite
system sizes L = 10 (black), 20 (blue), 50 (red), 100 (yellow), ∞
(green). Parameters are t0 = 0.01, t1 = 0.75, and δa = −δb = 0.25,
the same as those in Fig. 1.

For each value of EOBC, there are four solutions β = β j ,
j = 1, 2, 3, 4, since the maximal and minimal powers of β

are n+ = n− = 1.

1. Finite-size scaling of the OBC spectra

To understand the OBC spectrum EOBC in terms of non-
Bloch theory, we need to obtain its effective GBZ. For finite
L, the GBZ comprises the two dominant β solutions such that
EPBC(−i ln β ) numerically coincides with EOBC. The numer-
ically computed EOBC is shown in Fig. 2 for both (a) V = 0
and (b) V = 0.5. Evidently, the OBC spectra in both cases
depend strongly on L, being real for small L (i.e., L = 10),
and gradually morphing into the large-L spectrum previously
shown in Fig. 1. Physically, the spectrum remains real when
the couplings (here with small bare values t0 = 0.01) are
strong enough for the directed amplifications from both chains
to cancel;2 as the system gets larger, the cNHSE becomes
exponentially stronger and the couplings serve to “close up”
[52,115,138] the amplification loops, causing unchecked am-
plification that corresponds to complex energies. For V �= 0,
some eigenenergies can remain real even at arbitrarily large
system sizes presumably because the potential offsets obstruct
unchecked amplification.

2Thus directed amplification provides an alternative mechanism
for achieving real non-Hermitian spectra [97,139], unrelated to PT
symmetry.
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FIG. 3. GBZ of the coupled Hatano-Nelson model Hamiltonian
(18) at different finite system sizes L = 10 (black), 20 (blue), 50
(red), 100 (yellow), ∞ (green) for (a) V = 0 and (b) V = 0.5. At
finite L, the GBZ is given by solutions βM = β2 and βM+1 = β3; as
L → ∞, the β2 and β3 loops converge towards the standard GBZ
solution |β2| = |β3|. Note that this standard GBZ can consist of
two loops [as in (b)] since this is a two-band model. Parameters
are t0 = 0.01, t1 = 0.75, and δa = −δb = 0.25, the same as those in
Fig. 1.

2. From OBC spectra to size-dependent cNHSE GBZs

While the size-dependent spectra in Fig. 2 unambiguously
signify the presence of cNHSE, size dependencies in the
spectra are model specific. Key to more fundamental under-
standing of cNHSE scaling is the scaling behavior of the
GBZ.3 To compute the GBZ, we substitute the OBC ener-
gies into the characteristic equation (23) and obtain the β

solutions. Here, for each EOBC point, we have four solutions
|β1| � |β2| � |β3| � |β4| and the GBZ is given by the two
solutions βM = β2 and βM+1 = β3. Figure 3 shows the GBZ
computed at various finite system sizes L = 10, 20, 50, 100;
the L = ∞ case (green) is plotted by solving Eq. (23) with
the standard condition |β2| = |β3| (i.e., intersecting β2 and
β3 solution curves) [91,106–112] valid in the thermodynamic
limit. For the finite-size cases under V = 0 shown in Fig. 3(a),

3Although the GBZ also depends on the model, at least it remains
invariant across models related by conformal transforms in the com-
plex EOBC plane [99,101].

there are two loops in the Re(β)-Im(β) plane for each value of
L, corresponding to the β2 and β3 solutions. As the system
size L increases to infinity, they converge towards each other,
as expected from the condition |β2| = |β3|. Similarly, for the
V �= 0 case in Fig. 3(b), the two loops in the Re(β)-Im(β)
plane get closer and closer to each other as the system size
L increases. However, in this case, they do not converge into
one single loop because the GBZ solution |β2| = |β3| itself
consists of two loops [green in Fig. 3(b)]. Here the GBZ solu-
tions are also highly anisotropic in the wave number arg(β ),
exhibiting cusps at β corresponding to branch points in the
spectrum [99,101].

3. Finite scaling behavior of the GBZ

Having numerically seen how the GBZ varies with system
size, we now rigorously derive the scaling rules governing
it. To do so, we examine the OBC constraints in detail. As
elaborated in Appendix D, imposing open boundaries at x = 1
and L, i.e., ψ0,α = ψL+1,α = 0 gives rise to the condition

X1,4X2,3[(β1β4)L+1 + (β2β3)L+1]

−X1,3X2,4[(β1β3)L+1 + (β2β4)L+1]

+X1,2X3,4[(β1β2)L+1 + (β3β4)L+1] = 0, (24)

where Xi, j are defined as

Xi, j ≡ t+
a (β j − βi ) + t−

a

(
β−1

j − β−1
i

)
(25)

with i, j = 1, 2, 3, 4. This result is equivalent to Eq. (8), but
specialized to our coupled Hatano-Nelson model Hamilto-
nian. Interestingly, it is independent of V and EOBC, even
though they both definitely affect the values of β j since the
individual β j solutions are determined by the characteristic
dispersion equation (23). When L is varied, the β j solutions
of Eq. (23) vary since EOBC changes with L. How exactly
EOBC can change is indirectly constrained by Eq. (24), which
imposes a L-dependent relation between the β j solutions cor-
responding to the value of EOBC.

To make progress in deriving the finite-size scaling prop-
erties of the βs, our strategy is to consider the large-L limit
and obtain the leading-order scaling behavior. In this limit,
we can approximate the boundary equation (24) by retain-
ing only the two dominant terms −X1,3X2,4(β2β4)L+1 and
X1,2X3,4(β3β4)L+1. To make further headway, we note that the
cNHSE is already well manifested when the bare value of the
coupling t0 is very small, i.e., t0 = 0.01 as in Fig. 1. (In fact,
if t0 is of the same order as the two Hatano-Nelson chains, it
would be difficult to see the weak coupling/small-L limit with
real spectra.) As such, we can expand up to the second order
of the coupling parameter t0 (see Appendix E) to obtain∣∣∣∣β2

β3

∣∣∣∣ �
∣∣∣∣X1,2X3,4

X1,3X2,4

∣∣∣∣
1

L+1

≈ ∣∣(t+
a t−

b −t−
a t+

b )2f∞(E∞)t2
0

∣∣ 1
L+1 , (26)

where E∞ ≡ limL→∞ EOBC, and

f∞(E∞) =
√

(E∞ − V )2 − 4t+
a t−

a

√
(E∞ + V )2 − 4t+

b t−
b

h2(E∞)
,

(27)
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FIG. 4. The GBZ radii |β2| and |β3| of our coupled Hatano-Nelson model Hamiltonian (18) with V = 0.5, plotted against the system size L
for (a) arg(β ) = π

2 and (b) arg(β ) = π

4 . Results obtained from the numerical OBC spectra exhibit excellent fitting with the exponential scaling
of Eq. (28), with fitted parameters a[arg(β ) = π

2 ] ≈ 0.050, b[arg(β ) = π

2 ] ≈ 78.65, a[arg(β ) = π

4 ] ≈ −0.057, and b[arg(β ) = π

4 ] ≈ 198.11.
The scaling is frozen below the lower critical length Lc ≈ 14, limited by the bare asymmetric couplings t±

a and t±
b . Parameters are t0 = 0.01,

t1 = 0.75, and δa = −δb = 0.25, the same as those in Fig. 1.

h(E∞) = E2
∞(t−

a − t−
b )(t+

a − t+
b ) + (t+

a t−
b − t−

a t+
b )2 + 2E∞

× (t+
a t−

a − t+
b t−

b )V + (t+
a + t+

b )(t−
a + t−

b )V 2. Notice that E∞
in Eq. (26) depends on t0. Equation (26) is Eq. (16) specialized
to our coupled Hatano-Nelson model Hamiltonian [Eq. (18)].
It expresses the ratio of the GBZ quantities |β2| and |β3| as
a constant exponentiated by 1/(L + 1), which is a scaling
behavior that is universal across cNHSE models.

While the 1/(L + 1) exponential scaling behavior holds
generally for the ratio |βM/βM+1|, it can apply to |βM | or
|βM+1| individually if they are related in special ways. In
Fig. 4, we show the numerically extracted |β2| and |β3| at
two special values of arg(β ), where |β2| ≈ 1/|β3| in Fig. 4(a)
and |β2| is constant in Fig. 4(b). As such, |β2/β3| ≈ |β2|2 ≈
|β3|−2 in Fig. 4(a) and |β2/β3| ∝ |β3|−1 in Fig. 4(b), hence
allowing for |β3| to be fitted to an exponential form

|β3| = a + b
1

L+1 , (28)

where the parameters a, b ∈ R, b > 0, and |a|  1  |b|. In
general, this exponential relation fits the numerically obtained
|β|s very well for sufficiently large L, as demonstrated in
Fig. 4. The actual values of fitting parameters a and b are
shown in Fig. 5 as functions of the onsite energy V [Figs. 5(a)
and 5(b)] and arg(β ) [Figs. 5(c) and 5(d)]. It is found that
both a and b are monotonically increasing functions of the
onsite energy V at arg(β ) = π

2 [Figs. 5(a) and 5(b)]. Also, in
the range of arg(β ) ∈ [π

4 , π
2 ] for V = 0.5, a is a monotoni-

cally increasing function of arg(β ), but b is a monotonically
decreasing function of arg(β ). We see that the condition
|a|  |b| is always satisfied with different onsite energy V and
arg(β ).

The correctness of our exponential fit can be checked by
comparing against analytic results involving the model param-
eters. From Eq. (26), we see that in the case of |β2| ≈ 1/|β3|,
the parameter b in the exponential scaling relation is approxi-
mately given by

b ≈ ∣∣(t+
a t−

b −t−
a t+

b )2f∞(E∞)t2
0

∣∣−1/2
. (29)

As shown in Fig. 5(b), both the analytical and numerical
results agree well with each other when the onsite energy V
is smaller than 0.2, where the |β2| ≈ 1/|β3| approximation
accurately holds. For different fixed arg(β ), EOBC would be
different, leading to different values of b. Indeed, as evident in
Fig. 3(b), the convergence behavior of |β| and hence b varies
significantly with arg(β ) [Fig. 5(d)].

FIG. 5. (a), (b) Exponential scaling parameters a and b [Eq. (28)]
of |β3| as a function of V at arg(β ) = π

2 . Their numerical values are
extracted from the plot of |β3| against L, which is computed from the
numerical EOBC data. In (b), this numerically obtained b is shown
to be well predicted from the model parameters through the ana-
lytic result (29), which is derived under the small-V approximation.
(c), (d) Show the numerically obtained a and b as a function of
arg(β ), at fixed V = 0.5. Parameters are t0 = 0.01, t1 = 0.75, and
δa = −δb = 0.25, the same as those in Fig. 1.
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FIG. 6. (a) Critical system size Lc versus V at arg(EOBC) = π

2 .
The analytical result given by Eq. (30) (blue) agrees reasonably
well with numerical results (red stars) estimated by the threshold
system size L = Lc, below which the spectrum is unaffected by L.
We observe that Lc increases with V , confirming the intuition that
the interchain energy offset V obstructs critical NHSE hybridization.
(b) Absolute value of the maximal imaginary part of the eigenvalues
|Im(EOBC)max| as a function of the system size L, also at arg(EOBC) =
π

2 . The onset of complex EOBC typically occurs at Lc, except for small
systems (L = 10), where the nonzero V offset can give rise to com-
plex energies [see Fig. 2(b)]. Parameters are t0 = 0.01, t1 = 0.75, and
δa = −δb = 0.25, the same as those in Fig. 1.

B. Lower critical system size for the cNHSE

As seen in Fig. 4, the scaling of the GBZ parameters |βM |
and |βM+1| (M = 2 here) is only exponential and described
by Eq. (28) above a certain lower critical system size Lc.
Below that, they remain effectively constant, indicative of the
absence of the cNHSE. The reason is that the spatial skin
decay lengths −1/ ln |βM | and −1/ ln |βM+1| cannot be faster
than that of the physical NHSE chains in the cNHSE model.
In our model, noting that |β3| > |β2|, we must have |β3c| =√

t+
a /t−

a and |β2c| =
√

t+
b /t−

b , corresponding to the |β|s of the
individual Hatano-Nelson chains.

Substituting |β2/β3| with |β2c/β3c| in Eq. (26), we obtain
the critical system size Lc of our coupled Hatano-Nelson
model as

Lc ≈ 2 ln
∣∣(t+

a t−
b − t−

a t+
b )2 f∞(E∞)t2

0

∣∣
ln |t+

b t−
a /(t−

b t+
a )| − 1. (30)

As shown in Fig. 6(a) for arg(EOBC) = π
2 , this analytic ex-

pression [Eq. (30)] for Lc (blue curve) agrees rather well with
its numerical determination (red stars), i.e., from plots such
as Fig. 4. Not surprisingly, it increases monotonically with
the interchain energy offset V since the offset impedes energy
matching and acts as an obstruction to the critical coupling
between the Hatano-Nelson chains.

Lc can also be thought of as the lower critical length
above which the interchain coupling t0 is “switched on” to
cause the cNHSE. As seen in Fig. 6(b), the energy spectrum
becomes complex precisely above Lc. Since our OBC Hatano-
Nelson chains have real spectra when uncoupled, it means that
they become effective coupled only when L � Lc. Naively,
we would expect small t0 to continuously give rise to small
imaginary energies; yet, in reality, there exists a sharp real-
to-complex spectral transition [113,127] controlled by Lc. We
note that Lc → ∞ as t0 → 0, consistent with the expectation
that uncoupled chains will never experience the cNHSE.

FIG. 7. Topologically coupled two-chain model [Eq. (33)] with
crisscrossing interchain nonreciprocal couplings ±δab and asymmet-
ric hoppings t±

a = t1 ± δa and t±
b = t1 ± δb in chains A and B. The

chains are given energy offsets of ±V .

IV. TOPOLOGICALLY COUPLED CHAIN MODEL

To complement the exposition of our coupled Hatano-
Nelson cNHSE model above, we next consider more so-
phisticated interchain couplings which lead to size-controlled
topological states, as first designed in [113]. In the basis
Ck = (ck,A, ck,B)T , it is given by

Htop(z) =
(

t+
a z + t−

a /z + V δab(z + 1/z)
−δab(z + 1/z) t+

b z + t−
b /z − V

)
, (31)

where t±
a = t1 ± δa, t±

b = t1 ± δb, and z = eik . Here, the sim-
ple interchain couplings t0 of the coupled Hatano-Nelson
model are replaced by crisscrossing interchain couplings ±δab

which can potentially introduce topological flux [140]. Under
PBCs, the energy eigenvalues can be simply obtained from the
Hamiltonian (31) as

E (±)
PBC(k)=2t1 cos k + i(δa + δb) sin k

±
√

[i(δa − δb) sin k+V ]2−4δ2
ab cos2 k (32)

with k = −i ln z ∈ R and t±
a = t1 ± δa, t±

b = t1 ± δb. By
Fourier transformation, one obtains the real-space tight-
binding Hamiltonian (Fig. 7)

Ht =
∑

n

(t+
a c†

n,Acn+1,A + t−
a c†

n+1,Acn,A + δabc†
n,Acn+1,B

− δabc†
n+1,Bcn,A + t+

b c†
n,Bcn+1,B + t−

b c†
n+1,Bcn,B

+ δabc†
n+1,Acn,B − δabc†

n,Bcn+1,A + V c†
n,Acn,A

− V c†
n,Bcn,B), (33)

where cn,α (c†
n,α) is the annihilation (creation) operator on site

α (α = A, B) in cell n.
Following the similar derivations as Eq. (23), we can obtain

the characteristic energy dispersion equation(
t+
a t+

b + δ2
ab

)
β2 + [−(t+

a + t+
b )EOBC − (t+

a − t+
b )V ]β

+(t+
a t−

b + t−
a t+

b + 2δ2
ab + E2

OBC − V 2
)

+[−(t−
a + t−

b )EOBC − (t−
a − t−

b )V ]β−1

+(t−
a t−

b + δ2
ab

)
β−2 = 0. (34)

Similarly as before, we can compute the OBC energy spectra
and the GBZ of the topological coupled chain model Hamil-
tonian (33) at different finite system sizes L = 10, 30, 50,
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FIG. 8. OBC energy spectra of the topologically coupled chain
model Hamiltonian (33) with (a) V = 0 and (b) V = 0.5 at different
system sizes L = 10 (black), 30 (blue), 50 (red), 100 (yellow), ∞
(green). Notably, topological zero modes (circled) appear at E =
0 in the point gap only at sufficiently large system sizes of L =
50, 100. The other parameters are δab = 0.5 × 10−3, t1 = 0.75, and
δa = −δb = 0.25.

100, ∞ as shown in Figs. 8 and 9, respectively. We find that
they are qualitatively similar to those of the coupled Hatano-
Nelson model, except that there is a topological zero mode
at E = 0 (dirty red and yellow). These topological modes
also correspond to isolated solutions in the GBZ plot (Fig. 9),
although they are exempted from the finite-size scaling behav-
ior. It is found that the topological zero modes appear at E = 0
in the point gap only at sufficiently large system sizes as
shown in Fig. 8. The reason is that the GBZ depends strongly
on the system size as shown in Fig. 9, and so does the OBC
spectrum as shown in Fig. 8. When we tune the system size L
(regarding L as a parameter), the OBC spectrum changes. At a
critical L, the OBC spectrum’s gap closes and, after that, topo-
logical zero modes appear, as shown in Fig. 13 in Appendix F.
Different from the famous single-chain Su-Schrieffer-Heeger
model [141–146], our topologically coupled chain model has
two coupled chains, i.e., the coupling between these two
chains plays an important role here. In the topologically cou-
pled chain model, the competition between the coupling of the
two chains and the finite system size determines the existence
or absence of the topological zero modes. This conclusion can
be found by calculating the topological phase diagram of the

FIG. 9. GBZ of the topologically coupled chain model Hamilto-
nian (33) at different finite system sizes L = 10 (black), 20 (blue),
50 (red), 100 (yellow), ∞ (green) with (a) V = 0 and (b) V = 0.5.
Parameters are δab = 0.5 × 10−3, t1 = 0.75, and δa = −δb = 0.25,
the same as those in Fig. 8. The GBZ is qualitatively similar to that
in Fig. 3, apart from the isolated topological modes (dirty red and
yellow) which by definition do not belong to any continuum of states.

topologically coupled chain model as shown in Fig. 4(d) in a
previous work [113]. Therefore, the strength of the coupling
of the two chains determines the threshold system size which
is required for the topological modes.

By enforcing OBCs in the real-space Hamiltonian, we ar-
rive at [

Z (b)
1,4Z (a)

2,3(β1β4)L+1+Z (a)
1,4Z (b)

2,3(β2β3)L+1
]

−[Z (b)
1,3Z (a)

2,4(β1β3)L+1+Z (a)
1,3Z (b)

2,4(β2β4)L+1
]

+[Z (b)
1,2Z (a)

3,4(β1β2)L+1+Z (a)
1,2Z (b)

3,4(β3β4)L+1]=0, (35)

where dispersion relation solutions β j ( j = 1, 2, 3, 4) are
arranged so that |β1| � |β2| � |β3| � |β4|, and Z (c)

i, j (i, j =
1, 2, 3, 4; c = a, b) are defined as

Z (c)
i, j = X (c)

i Y (c)
j − X (c)

j Y (c)
i . (36)

Here, X (c)
j and Y (c)

j are defined as

X (a)
j = EOBC−(t+

a −t−
a )β j − V, (37)

Y (a)
j = EOBC−(t+

b −t−
b )β j + V, (38)
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FIG. 10. The GBZ radii |β2| and |β3| of the topologically coupled chain model Hamiltonian (33) versus the system size L at (a) arg(β ) =
π

2 and (b) arg(β ) = π

4 . The exponential fits of |β3| correspond to scaling parameters a[arg(β ) = π

2 ] ≈ 0.0520, b[arg(β ) = π

2 ] ≈ 1476.563,
a[arg(β ) = π

4 ] ≈ −0.0607, and b[arg(β ) = π

4 ] ≈ 8791.616. The cNHSE scaling is frozen below L = Lc ≈ 23, but at arg(β ) = π

4 , |β2| remains
constant across all L. Here, V = 0.5 and the other parameters δab = 0.5 × 10−3, t1 = 0.75, and δa = −δb = 0.25 are the same as those in Fig. 9.

X (b)
j = EOBC+(t+

a −t−
a )β−1

j − V, (39)

Y (b)
j = EOBC+(t+

b −t−
b )β−1

j + V. (40)

The corresponding derivation of Eq. (35) is given in
Appendix G.

To deal with Eq. (35), we only consider the two dominant
terms −Z (a)

1,3Z (b)
2,4(β2β4)L+1 and Z (a)

1,2Z (b)
3,4(β3β4)L+1 on the left-

hand side. In this case, by substituting the solutions of the
characteristic equation (34) into this approximated boundary
equation, we can approximate Eq. (35) as

∣∣∣∣β2

β3

∣∣∣∣ �
∣∣∣∣∣Z

(a)
1,2Z (b)

3,4

Z (a)
1,3Z (b)

2,4

∣∣∣∣∣
1

L+1

EOBC=E∞

≈
∣∣∣∣∣ 	a(E∞−V +	a)	b(E∞+V +	b)

2t+
a t−

b

[
V 2−E2∞+2(t+

a t−
b +t+

b t−
a )+	a	b

]
∣∣∣∣∣

1
L+1

, (41)

where 	a = √(E∞ − V )2 − 4t+
a t−

a , 	b =√
(E∞ + V )2 − 4t+

b t−
b , and we have used the approximation

δab → 0 under the condition of weak interchain couplings.
Notice that E∞ in Eq. (41) depends on δab. Therefore, we
can also follow Eq. (28) and postulate an exponential fitting
ansatz of |β3| as

|β3| = a + b
1

L+1 , (42)

for cases where |β2| ≈ 1/|β3|. The scaling behavior of a and b
in Eq. (42) can be extracted or estimated from the asymptotic
result (41) with the model parameters.

In Figs. 10(a) and 10(b), we show |β2| and |β3| for the topo-
logically coupled chain model Hamiltonian (33) as a function
of the system size L both from the exponential formula in
Eq. (42) and from numerical diagonalization. We observe an
exponential scaling behavior qualitatively similar to that of the
coupled Hatano-Nelson model, which should also universally
hold for other cNHSE models.

V. ROBUST SPECTRAL SCALING BEHAVIOR
UNDER DISORDER

In this section, we check the robustness of the scaling
behavior of the OBC spectra in the presence of uniformly
distributed onsite disorder

Hdis =
∑
n,α

w̃(n, α)c†
n,αcn,α (43)

with random number w̃ ∈ [−w/2,w/2] and α = A, B are the
site indices in the cell n. Since the GBZ is directly determined
through the OBC spectrum, robustness in the scaling behavior
in the spectrum would also imply similar robustness in the
GBZ.

In Fig. 11, we plot the absolute value of the maxi-
mal imaginary part of the eigenenergies |Im(EOBC)max| as a

FIG. 11. Absolute value of the maximal imaginary part of the
eigenvalues |Im(EOBC)max| for different system sizes L, which is
satisfied for the eigenenergy with arg(EOBC) = π

2 . In both (a) the
coupled Hatano-Nelson model [Eq. (18)] and (b) the topologically
coupled chain model [Eq. (33)], the spectral scaling behavior is very
robust up to disorder strength w = 0.2, as defined in Eq. (43). Even
at much larger disorder w = 0.5, the same qualitative spectral scal-
ing prevails. Here, V = 0.5 and the other parameters are t0 = 0.01,
δab = 0.5 × 10−3, t1 = 0.75, and δa = −δb = 0.25, the same as those
in previous figures on these respective models.
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function of the system size L under different disorder
strengths from w = 0 to 0.5. |Im(EOBC)max| determines the
“width” of the spectrum in the imaginary direction and can
be used as a measure of how the shape of the spectrum
is deformed under disorder. For our models, |Im(EOBC)max|
usually occurs when arg(EOBC) = π

2 , but that is not neces-
sarily universal. From Fig. 11, we find that relatively weak
disorder (w < 0.2) affects the spectrum negligibly, but mod-
erately large disorder (w = 0.5) gives rise to visible spectral
perturbations. However, the qualitative spectral scaling behav-
ior remains very robust, which indicates that the cNHSE is
strongly robust against onsite disorder. This is not surprising
given that the cNHSE arises from the competition between
different NHSE channels, and should not be affected too much
by the onsite energy landscape. It has to be noted that hopping
disorder, however, can affect the long-time state dynamics
and hence significantly modify the overall energy spectrum
[126,147–150].

VI. DISCUSSION

Systems experiencing the critical non-Hermitian skin ef-
fect (cNHSE) are particularly sensitive to the system size,
exhibiting qualitatively different spectra and spatial eigen-
state behavior at different sizes L. How the cNHSE scaling
is exactly described by the GBZ, particularly for a system
of finite size, is an open question. As we already know, the
GBZ can be used to restore the BBC in the thermodynamic
limit. But for a system of finite size, can GBZ still be a valid
theoretical framework? Using the GBZ as a tool to investigate

the cNHSE scaling behavior provides an effective way to
understand the physical picture of the finite-size effect on the
competing NHSE tendencies between small and large size
limits.

In this work, we considered a generic two-component
cNHSE ansatz model with two competing NHSE channels,
and provided detailed studies of two paradigmatic models,
of which the minimal model studied by Ref. [127] is a spe-
cial case. We find that our effective finite-size GBZ obeys
a universal exponential scaling law, with exponent inversely
proportional to the system size, and scaling rate b expressible
in term of the model parameters in certain cases. Based on
this, we provide detailed and empirically verified estimates of
the critical system size Lc where such a scaling relation begins
to hold both analytically and numerically.

Such cNHSE phenomena can be readily experimentally
demonstrated in non-Hermitian metamaterials with well-
controlled gain and loss and effective couplings, such as
photonic crystal arrays and electrical circuits. Since the nonre-
ciprocity from different NHSE can cancel, the setup may not
even require physical asymmetric couplings, such as in the re-
cent experiment [52]. Moving forward, it would be immensely
interesting to explore the interplay of cNHSE and many-body
interactions in emerging and rapidly progressing platforms
such as ultracold atomic arrays and quantum circuits.
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APPENDIX A: DERIVATION OF THE DETERMINANT FORM OF THE OBC CONSTRAINTS
FOR A TWO-BAND cNHSE MODEL [EQ. (8)]

From the bulk eigenequation in Eq. (6), we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎣ n+∑

n=−n−

haa
n (β j )

n−EOBC

⎤
⎦φ

( j)
A +

n+∑
n=−n−

hab
n (β j )

nφ
( j)
B =0,

φ
( j)
B

φ
( j)
A

= EOBC−∑n+
n=−n− haa

n (β j )n∑n+
n=−n− hab

n (β j )n
,

n+∑
n=−n−

hba
n (β j )

nφ
( j)
A +

⎡
⎣ n+∑

n=−n−

hbb
n (β j )

n−EOBC

⎤
⎦φ

( j)
B =0,

φ
( j)
B

φ
( j)
A

=
∑n+

n=−n− hba
n (β j )n

EOBC −∑n+
n=−n− hbb

n (β j )n
,

(A1)

i.e.,
φ

( j)
B

φ
( j)
A

= EOBC −∑n+
n=−n− haa

n (β j )n∑n+
n=−n− hab

n (β j )n
=

∑n+
n=−n− hba

n (β j )n

EOBC −∑n+
n=−n− hbb

n (β j )n
= f j, (A2)

⎡
⎣ n+∑

n=−n−

hab
n (β j )

n

⎤
⎦
⎡
⎣ n+∑

n=−n−

hba
n (β j )

n

⎤
⎦ =

⎡
⎣EOBC −

n+∑
n=−n−

haa
n (β j )

n

⎤
⎦
⎡
⎣EOBC −

n+∑
n=−n−

hbb
n (β j )

n

⎤
⎦, (A3)

φ
( j)
B = f jφ

( j)
A , (A4)

which also relates EOBC with β j solutions.
Substituting these real-space eigenequations under the OBC constraints ψ−n−,α = · · · = ψ−1,α = ψ0,α = ψL+1,α = ψL+2,α =

· · · = ψL+n+,α = 0 (α = A, B; 1 � n± � L/2) into the real-space Schrödinger equation Hgr |ψ〉 = EOBC|ψ〉 [where Hgr is the

155430-11



QIN, MA, SHEN, AND LEE PHYSICAL REVIEW B 107, 155430 (2023)

Hamiltonian matrix of Hgr in the basis (C1,C2, · · · ,CL )T ], we can get

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n+∑
n=0

haa
n ψ1+n,A +

n+∑
n=0

hab
n ψ1+n,B =EOBCψ1,A,

n+∑
n=0

hba
n ψ1+n,A +

n+∑
n=0

hbb
n ψ1+n,B =EOBCψ1,B,

n+∑
n=−1

haa
n ψ2+n,A +

n+∑
n=−1

hab
n ψ2+n,B =EOBCψ2,A,

n+∑
n=−1

hba
n ψ2+n,A +

n+∑
n=−1

hbb
n ψ2+n,B =EOBCψ2,B,

...

n+∑
n=−(n+−1)

haa
n ψn++n,A +

n+∑
n=−(n+−1)

hab
n ψn++n,B =EOBCψn+,A, 1 � 2n+ � L, 1 � n+ � L/2

n+∑
n=−(n+−1)

hba
n ψn++n,A +

n+∑
n=−(n+−1)

hbb
n ψn++n,B =EOBCψn+,B, 1 � 2n+ � L, 1 � n+ � L/2

n−−1∑
n=−n−

haa
n ψL−(n−−1)+n,A +

n−−1∑
n=−n−

hab
n ψL−(n−−1)+n,B =EOBCψL−(n−−1),A, 1 � L−2n−+1 � L

n−−1∑
n=−n−

hba
n ψL−(n−−1)+n,A +

n−−1∑
n=−n−

hbb
n ψL−(n−−1)+n,B =EOBCψL−(n−−1),B, 1 � n− � L/2

...

1∑
n=−n−

haa
n ψL−1+n,A +

1∑
n=−n−

hab
n ψL−1+n,B =EOBCψL−1,A,

1∑
n=−n−

hba
n ψL−1+n,A +

1∑
n=−n−

hbb
n ψL−1+n,B =EOBCψL−1,B,

0∑
n=−n−

haa
n ψL+n,A +

0∑
n=−n−

hab
n ψL+n,B =EOBCψL,A, 1 � L − n− � L, 0 � n− � L − 1

0∑
n=−n−

hba
n ψL+n,A +

0∑
n=−n−

hbb
n ψL+n,B =EOBCψL,B, 1 � L − n− � L, 0 � n− � L − 1.

(A5)
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Invoking the non-Bloch ansatz (ψn,A, ψn,B)T =∑2M
j=1(β j )n(φ( j)

A , φ
( j)
B )T (M = n− + n+) into the above equations (A5), we

have, generalizing [89],

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2M∑
j=1

n+∑
n=0

haa
n (β j )

1+nφ
( j)
A +

2M∑
j=1

n+∑
n=0

hab
n (β j )

1+nφ
( j)
B =EOBC

2M∑
j=1

(β j )φ
( j)
A ,

2M∑
j=1

n+∑
n=0

hba
n (β j )

1+nφ
( j)
A +

2M∑
j=1

n+∑
n=0

hbb
n (β j )

1+nφ
( j)
B =EOBC

2M∑
j=1

(β j )φ
( j)
B ,

2M∑
j=1

n+∑
n=−1

haa
n (β j )

2+nφ
( j)
A +

2M∑
j=1

n+∑
n=−1

hab
n (β j )

2+nψ
( j)
B =EOBC

2M∑
j=1

(β j )
2φ

( j)
A ,

2M∑
j=1

n+∑
n=−1

hba
n (β j )

2+nφ
( j)
A +

2M∑
j=1

n+∑
n=−1

hbb
n (β j )

2+nφ
( j)
B =EOBC

2M∑
j=1

(β j )
2φ

( j)
B ,

...

2M∑
j=1

n+∑
n=−(n+−1)

haa
n (β j )

n++nφ
( j)
A +

2M∑
j=1

n+∑
n=−(n+−1)

hab
n (β j )

n++nφ
( j)
B =EOBC

2M∑
j=1

(β j )
n+φ

( j)
A ,

2M∑
j=1

n+∑
n=−(n+−1)

hba
n (β j )

n++nφ
( j)
A +

2M∑
j=1

n+∑
n=−(n+−1)

hbb
n (β j )

n++nφ
( j)
B =EOBC

2M∑
j=1

(β j )
n+φ

( j)
B ,

2M∑
j=1

n−−1∑
n=−n−

haa
n (β j )

L−(n−−1)+nφ
( j)
A +

2M∑
j=1

n−−1∑
n=−n−

hab
n (β j )

L−(n−−1)+nφ
( j)
B =EOBC

2M∑
j=1

(β j )
L−(n−−1)φ

( j)
A ,

2M∑
j=1

n−−1∑
n=−n−

hba
n (β j )

L−(n−−1)+nφ
( j)
A +

2M∑
j=1

n−−1∑
n=−n−

hbb
n (β j )

L−(n−−1)+nφ
( j)
B =EOBC

2M∑
j=1

(β j )
L−(n−−1)φ

( j)
B ,

...

2M∑
j=1

1∑
n=−n−

haa
n (β j )

L−1+nφ
( j)
A +

2M∑
j=1

1∑
n=−n−

hab
n (β j )

L−1+nφ
( j)
B =EOBC

2M∑
j=1

(β j )
L−1φ

( j)
A ,

2M∑
j=1

1∑
n=−n−

hba
n (β j )

L−1+nφ
( j)
A +

2M∑
j=1

1∑
n=−n−

hbb
n (β j )

L−1+nφ
( j)
B =EOBC

2M∑
j=1

(β j )
L−1φ

( j)
B ,

2M∑
j=1

0∑
n=−n−

haa
n (β j )

L+nφ
( j)
A +

2M∑
j=1

0∑
n=−n−

hab
n (β j )

L+nφ
( j)
B =EOBC

2M∑
j=1

(β j )
Lφ

( j)
A ,

2M∑
j=1

0∑
n=−n−

hba
n (β j )

L+nφ
( j)
A +

2M∑
j=1

0∑
n=−n−

hbb
n (β j )

L+nφ
( j)
B =EOBC

2M∑
j=1

(β j )
Lφ

( j)
B .

(A6)
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Substituting Eq. (A4), i.e., φ
( j)
B = f jφ

( j)
A , into the above equations (A6) such as to eliminate the φ

( j)
B , we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2M∑
j=1

[
n+∑

n=0

(
haa

n + f jh
ab
n

)
(β j )

n − EOBC

]
(β j )φ

( j)
A =0,

2M∑
j=1

[
n+∑

n=0

(
hba

n + f jh
bb
n

)
(β j )

n − f jEOBC

]
(β j )φ

( j)
A =0,

2M∑
j=1

⎡
⎣ n+∑

n=−1

(
haa

n + f jh
ab
n

)
(β j )

n − EOBC

⎤
⎦(β j )

2φ
( j)
A =0,

2M∑
j=1

⎡
⎣ n+∑

n=−1

(
hba

n + f jh
bb
n

)
(β j )

n − f jEOBC

⎤
⎦(β j )

2φ
( j)
A =0,

...

2M∑
j=1

⎡
⎣ n+∑

n=−(n+−1)

(
haa

n + f jh
ab
n

)
(β j )

n − EOBC

⎤
⎦(β j )

n+φ
( j)
A =0,

2M∑
j=1

⎡
⎣ n+∑

n=−(n+−1)

(
hba

n + f jh
bb
n

)
(β j )

n − f jEOBC

⎤
⎦(β j )

n+φ
( j)
A =0,

2M∑
j=1

⎡
⎣ n−−1∑

n=−n−

(
haa

n + f jh
ab
n

)
(β j )

n − EOBC

⎤
⎦(β j )

L−(n−−1)φ
( j)
A =0,

2M∑
j=1

⎡
⎣ n−−1∑

n=−n−

(
hba

n + f jh
bb
n

)
(β j )

n − f jEOBC

⎤
⎦(β j )

L−(n−−1)φ
( j)
A =0,

...

2M∑
j=1

⎡
⎣ 1∑

n=−n−

(
haa

n + f jh
ab
n

)
(β j )

n − EOBC

⎤
⎦(β j )

L−1φ
( j)
A =0,

2M∑
j=1

⎡
⎣ 1∑

n=−n−

(
hba

n + f jh
bb
n

)
(β j )

n − f jEOBC

⎤
⎦(β j )

L−1φ
( j)
A =0,

2M∑
j=1

⎡
⎣ 0∑

n=−n−

(
haa

n + f jh
ab
n

)
(β j )

n − EOBC

⎤
⎦(β j )

Lφ
( j)
A =0,

2M∑
j=1

⎡
⎣ 0∑

n=−n−

(
hba

n + f jh
bb
n

)
(β j )

n − f jEOBC

⎤
⎦(β j )

Lφ
( j)
A =0.

(A7)
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We can express Eq. (A7) in more compact notation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2M∑
j=1

F (a,1)
j β jφ

( j)
A = 0,

2M∑
j=1

F (b,1)
j β jφ

( j)
A = 0,

...

2M∑
j=1

F (a,n+ )
j (β j )

n+φ
( j)
A = 0,

2M∑
j=1

F (b,n+ )
j (β j )

n+φ
( j)
A = 0,

2M∑
j=1

G(a,1)
j (β j )

L−(n−−1)φ
( j)
A = 0,

2M∑
j=1

G(b,1)
j (β j )

L−(n−−1)φ
( j)
A = 0,

...

2M∑
j=1

G(a,n− )
j (β j )

Lφ
( j)
A = 0,

2M∑
j=1

G(b,n− )
j (β j )

Lφ
( j)
A = 0,

(A8)

where

F (a,i)
j =

n+∑
n=−(i−1)

(
haa

n + f jh
ab
n

)
(β j )

n − EOBC, (A9)

F (b,i)
j =

n+∑
n=−(i−1)

(
hba

n + f jh
bb
n

)
(β j )

n − f jEOBC, (A10)

G(a,i)
j =

n−−i∑
n=−n−

(
haa

n + f jh
ab
n

)
(β j )

n − EOBC, (A11)

G(b,i)
j =

n−−i∑
n=−n−

(
hba

n + f jh
bb
n

)
(β j )

n − f jEOBC. (A12)

For a nontrivial state φ
( j)
A ( j = 1, 2, . . . , 2M ) that does not vanish, we hence require the vanishing determinant∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

F (a,1)
1 β1 F (a,1)

2 β2 · · · F (a,1)
2M β2M

F (b,1)
1 β1 F (b,1)

2 β2 · · · F (b,1)
2M β2M

...
...

...
...

F (a,n+ )
1 (β1)n+ F (a,n+ )

2 (β2)n+ · · · F (a,n+ )
2M (β2M )n+

F (b,n+ )
1 (β1)n+ F (b,n+ )

2 (β2)n+ · · · F (b,n+ )
2M (β2M )n+

G(a,1)
1 (β1)L−(n−−1) G(a,1)

2 (β2)L−(n−−1) · · · G(a,1)
2M (β2M )L−(n−−1)

G(b,1)
1 (β1)L−(n−−1) G(b,1)

2 (β2)L−(n−−1) · · · G(b,1)
2M (β2M )L−(n−−1)

...
...

...
...

G(a,n− )
1 (β1)L G(a,n− )

2 (β2)L · · · G(a,n− )
2M (β2M )L

G(b,n− )
1 (β1)L G(b,n− )

2 (β2)L · · · G(b,n− )
2M (β2M )L

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0. (A13)
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APPENDIX B: DERIVATION OF THE DETERMINANT FORM OF THE OBC CONSTRAINTS
FOR A GENERAL MULTIBAND MODEL

Here, we generalize the above derivation to a general multiband model, and show that the OBC constraints result in
an analogous vanishing determinant expression. In momentum space, an N-band model Hamiltonian in the basis Ck =
(ck,1, ck,2, . . . , ck,N )T is given by

Hmb(z)=
n+∑

n=−n−

⎛
⎜⎜⎜⎝

h11
n h12

n · · · h1N
n

h21
n h22

n · · · h2N
n

...
...

...
...

hN1
n hN2

n · · · hNN
n

⎞
⎟⎟⎟⎠zn, (B1)

where N is the number of bands, which we set to be an even number.
By Fourier transformation, one obtains the real-space tight-binding Hamiltonian of this system as

Hmbr =
L∑

j=1

n+∑
n=−n−

C†
j

⎛
⎜⎜⎜⎝

h11
n h12

n · · · h1N
n

h21
n h22

n · · · h2N
n

...
...

...
...

hN1
n hN2

n · · · hNN
n

⎞
⎟⎟⎟⎠Cj+n, (B2)

where Cj = (c j,1, c j,2, . . . , c j,N )T .
With |ψ〉 = (ψ1,1, ψ1,2, . . . , ψ1,N , ψ2,1, ψ2,2, . . . , ψ2,N , . . . , ψL,1, ψL,2, . . . , ψL,N )T, the solutions of the real-space

Schrödinger equation Hmbr |ψ〉 = EOBC|ψ〉 [where Hmbr is the Hamiltonian matrix of Hmbr in the basis (C1,C2, · · · ,CL )T ] can
be given by

⎛
⎜⎜⎝

ψn,1

ψn,2
...

ψn,N

⎞
⎟⎟⎠ =

2M∑
j=1

(β j )
n

⎛
⎜⎜⎜⎜⎝

φ
( j)
1

φ
( j)
2
...

φ
( j)
N

⎞
⎟⎟⎟⎟⎠, (B3)

where 2M = N × (n− + n+) and β = β j are the solutions of the characteristic equation

Det[Hmb(β ) − EOBC] = 0, (B4)

where Hmb(β ) is the non-Bloch matrix [127] as

Hmb(β )=
n+∑

n=−n−

⎛
⎜⎜⎜⎝

h11
n h12

n · · · h1N
n

h21
n h22

n · · · h2N
n

...
...

...
...

hN1
n hN2

n · · · hNN
n

⎞
⎟⎟⎟⎠βn. (B5)

In general, the characteristic equation (B4) has 2M solutions for β, where M = N × (n− + n+)/2 is an integer and N is an even
number. We label these solutions such that |β1| � |β2| � · · · � |β2M |.

From the eigenequations, we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n+∑
n=−n−

h11
n (β j )

nφ
( j)
1 +

n+∑
n=−n−

h12
n (β j )

nφ
( j)
2 +· · ·+

n+∑
n=−n−

h1N
n (β j )

nφ
( j)
N =EOBCφ

( j)
1 ,

n+∑
n=−n−

h21
n (β j )

nφ
( j)
1 +

n+∑
n=−n−

h22
n (β j )

nφ
( j)
2 +· · ·+

n+∑
n=−n−

h2N
n (β j )

nφ
( j)
N =EOBCφ

( j)
2 ,

...
n+∑

n=−n−

hN1
n (β j )

nφ
( j)
1 +

n+∑
n=−n−

hN2
n (β j )

nφ
( j)
2 +· · ·+

n+∑
n=−n−

hNN
n (β j )

nφ
( j)
N =EOBCφ

( j)
N ,

(B6)
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i.e., ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎣ n+∑

n=−n−

h11
n (β j )

n−EOBC

⎤
⎦φ

( j)
1 +

n+∑
n=−n−

h12
n (β j )

nφ
( j)
2 +· · ·+

n+∑
n=−n−

h1N
n (β j )

nφ
( j)
N =0,

n+∑
n=−n−

h21
n (β j )

nφ
( j)
1 +

⎡
⎣ n+∑

n=−n−

h22
n (β j )

n−EOBC

⎤
⎦φ

( j)
2 +· · ·+

n+∑
n=−n−

h2N
n (β j )

nφ
( j)
N =0,

...

n+∑
n=−n−

hN1
n (β j )

nφ
( j)
1 +

n+∑
n=−n−

hN2
n (β j )

nφ
( j)
2 +· · ·+

⎡
⎣ n+∑

n=−n−

hNN
n (β j )

n−EOBC

⎤
⎦φ

( j)
N =0,

(B7)

i.e., ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎣ n+∑

n=−n−

h11
n (β j )

n−EOBC

⎤
⎦φ

( j)
1 +

n+∑
n=−n−

h12
n (β j )

n f (2)
j φ

( j)
1 +· · ·+

n+∑
n=−n−

h1N
n (β j )

n f (N )
j φ

( j)
1 =0,

n+∑
n=−n−

h21
n (β j )

nφ
( j)
1 +

⎡
⎣ n+∑

n=−n−

h22
n (β j )

n−EOBC

⎤
⎦ f (2)

j φ
( j)
1 +· · ·+

n+∑
n=−n−

h2N
n (β j )

n f (N )
j φ

( j)
1 =0,

...

n+∑
n=−n−

hN1
n (β j )

nφ
( j)
1 +

n+∑
n=−n−

hN2
n (β j )

n f (2)
j φ

( j)
1 +· · ·+

⎡
⎣ n+∑

n=−n−

hNN
n (β j )

n−EOBC

⎤
⎦ f (N )

j φ
( j)
1 =0,

(B8)

where f (α)
j = φ

( j)
α /φ

( j)
1 with α = 1, 2, . . . , N , i.e.,

φ( j)
α = f (α)

j φ
( j)
1 , (B9)

where α = 1, 2, . . . , N .
As we know, Eq. (B3) has 2M × N unknown coefficients, but with the real-space Schrödinger equation Hmbr |ψ〉 = EOBC|ψ〉

and an additional 2M boundary conditions, the 2M × N coefficients can be reduced to 2M-independent coefficients. By rewriting
the coupling constraints in terms of φ

( j)
1 ( j = 1, 2, . . . , 2M ), which should have nonzero values, we have, analogously as before,∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

F̃ (1,1)
1 β1 F̃ (1,1)

2 β2 · · · F̃ (1,1)
2M β2M

F̃ (2,1)
1 β1 F̃ (2,1)

2 β2 · · · F̃ (2,1)
2M β2M

...
...

...
...

F̃ (N,1)
1 β1 F̃ (N,1)

2 β2 · · · F̃ (N,1)
2M β2M

...
...

...
...

F̃ (1,n+ )
1 (β1)n+ F̃ (1,n+ )

2 (β2)n+ · · · F̃ (1,n+ )
2M (β2M )n+

F̃ (2,n+ )
1 (β1)n+ F̃ (2,n+ )

2 (β2)n+ · · · F̃ (2,n+ )
2M (β2M )n+

...
...

...
...

F̃ (N,n+ )
1 (β1)n+ F̃ (N,n+ )

2 (β2)n+ · · · F̃ (N,n+ )
2M (β2M )n+

G̃(1,1)
1 (β1)L−(n−−1) G̃(1,1)

2 (β2)L−(n−−1) · · · G̃(1,1)
2M (β2M )L−(n−−1)

G̃(2,1)
1 (β1)L−(n−−1) G̃(2,1)

2 (β2)L−(n−−1) · · · G̃(2,1)
2M (β2M )L−(n−−1)

...
...

...
...

G̃(N,1)
1 (β1)L−(n−−1) G̃(N,1)

2 (β2)L−(n−−1) · · · G̃(N,1)
2M (β2M )L−(n−−1)

...
...

...
...

G̃(1,n− )
1 (β1)L G̃(1,n− )

2 (β2)L · · · G̃(1,n− )
2M (β2M )L

G̃(2,n− )
1 (β1)L G̃(2,n− )

2 (β2)L · · · G̃(2,n− )
2M (β2M )L

...
...

...
...

G̃(N,n− )
1 (β1)L G̃(N,n− )

2 (β2)L · · · G̃(N,n− )
2M (β2M )L

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, (B10)
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where

F̃ (1,i)
j =

n+∑
n=−(i−1)

(
h11

n + f (2)
j h12

n + · · · + f (N )
j h1N

n

)
(β j )

n − EOBC, (B11)

F̃ (2,i)
j =

n+∑
n=−(i−1)

(
h21

n + f (2)
j h22

n + · · · + f (N )
j h2N

n

)
(β j )

n − f (2)
j EOBC, (B12)

...

F̃ (N,i)
j =

n+∑
n=−(i−1)

(
hN1

n + f (2)
j hN2

n + · · · + f (N )
j hNN

n

)
(β j )

n − f (N )
j EOBC, (B13)

G̃(1,i)
j =

n−−i∑
n=−n−

(
h11

n + f (2)
j h12

n + · · · + f (N )
j h1N

n

)
(β j )

n − EOBC, (B14)

G̃(2,i)
j =

n−−i∑
n=−n−

(
h12

n + f (2)
j h22

n + · · · + f (N )
j h2N

n

)
(β j )

n − f (2)
j EOBC, (B15)

...

G̃(N,i)
j =

n−−i∑
n=−n−

(
hN1

n + f (2)
j hN2

n + · · · + f (N )
j hNN

n

)
(β j )

n − f (N )
j EOBC. (B16)

We can collect the terms and express Eq. (B10) as a multivariate polynomial of the form

∑
P,Q

J̃ (βi∈P, β j∈Q, EOBC)

[∏
i∈P

(βi )
k

]⎡
⎣∏

j∈Q

(β j )
k′

⎤
⎦=0, (B17)

where k = 1, . . . , n+, k′ = L−(n−−1), . . . , L, the sets P and Q are two disjoint subsets of the set {1, 2, . . . , 2M} with M
elements, respectively.

By setting n+ = n−, Eq. (B17) can be reduced to

∑
P,Q

J̃ (βi∈P, β j∈Q, EOBC)

[∏
i∈P

(βi )
L+1

]
=0. (B18)

In Eq. (B18), there are two leading terms proportional to (βMβM+2βM+3 . . . β2M )L+1 and (βM+1βM+2βM+3 . . . β2M )L+1. There-
fore, in the limit of large system size L, we can reduce (B18), which solves the characteristic dispersion equation (B4) and open
boundary conditions, to the familiar form∣∣∣∣ βM

βM+1

∣∣∣∣ �
∣∣∣∣− J̃ (βi∈P1 , β j∈Q1 , EOBC)

J̃ (βi∈P2 , β j∈Q2 , EOBC)

∣∣∣∣
1

L+1

EOBC=E∞

, (B19)

where P1 = {M + 1, M + 2, M + 3, . . . , 2M}, Q1 = {1, 2, 3, . . . , M}, P2 = {M, M + 2, M + 3, . . . , 2M}, Q2 = {1, 2, . . . , M −
2, M − 1, M + 1}, and L is the system size with L → ∞. For large L, the right-hand side tends towards unity, and hence |βM | ≈
|βM+1| for the OBC eigenfunctions in the thermodynamic limit (in practice, L � 20 is usually sufficient large when the cNHSE
is absent).

APPENDIX C: NUMERICAL CONFIRMATION OF THE VALIDITY
OF THE GBZ UPON EXTRAPOLATING TO FINITE-SIZE SYSTEMS

Here in Fig. 12, we numerically confirm that for our coupled Hatano-Nelson model, the GBZ solutions βM = β2 and βM+1 =
β3 still largely determine the eigensolution decay rates down to small system sizes.

APPENDIX D: DERIVATION OF EQ. (24) FOR THE OBC CONSTRAINTS OF THE COUPLED HATANO-NELSON MODEL

From the real-space eigenequations (20) subjected to OBCs ψ0,α = ψL+1,α = 0 (α = A, B), we have⎧⎪⎪⎪⎨
⎪⎪⎪⎩

t0ψ1,B + t+
a ψ2,A + V ψ1,A = EOBCψ1,A,

t0ψ1,A + t+
b ψ2,B − V ψ1,B = EOBCψ1,B,

t−
a ψL−1,A + t0ψL,B + V ψL,A = EOBCψL,A,

t−
b ψL−1,B + t0ψL,A − V ψL,B = EOBCψL,B.

(D1)
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FIG. 12. Spatial decay of eigenstates and how they are determined by βM and βM+1 (M = 2). Plotted are the ln[|ψ (x)|] of two representative
eigenstates with different left and right localizations (red stars and blue disks), at different finite system sizes L = 10, 20, 30, 40 (a)–(d).
Compared against them are the decay profiles corresponding to the four κ = − ln |β| solutions. We see that |β2| = e−κ2 and |β3| = e−κ3

controls the eigenstate decay rate very well down to L = 20, even though, in principle, they rigorously determine the decay rate only in the
thermodynamic limit. (a) The eigenstates correspond to arg(EOBC) = 0 and Max[Re(EOBC)]. (b)–(d) The eigenstates correspond to arg(EOBC) =
π

2 . Here, V = 0.5 and the other parameters are t0 = 0.01, t1 = 0.75, and δa = −δb = 0.25, which are the same as those in Fig. 1 of the main
text.

By substituting the ansatz (ψn,A, ψn,B)T =∑4
j=1 βn

j (φ( j)
A , φ

( j)
B )T into Eq. (D1), we can get⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t0

4∑
j=1

β jφ
( j)
B + t+

a

4∑
j=1

β2
j φ

( j)
A + V

4∑
j=1

β jφ
( j)
A = EOBC

4∑
j=1

β jφ
( j)
A ,

t0

4∑
j=1

β jφ
( j)
A + t+

b

4∑
j=1

β2
j φ

( j)
B − V

4∑
j=1

β jφ
( j)
B = EOBC

4∑
j=1

β jφ
( j)
B ,

t−
a

4∑
j=1

βL−1
j φ

( j)
A + t0

4∑
j=1

βL
j φ

( j)
B + V

4∑
j=1

βL
j φ

( j)
A = EOBC

4∑
j=1

βL
j φ

( j)
A ,

t−
b

4∑
j=1

βL−1
j φ

( j)
B + t0

4∑
j=1

βL
j φ

( j)
A − V

4∑
j=1

βL
j φ

( j)
B = EOBC

4∑
j=1

βL
j φ

( j)
B .

(D2)

Furthermore, by using the bulk eigenequation in Eq. (22),⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(t+
a β + t−

a β−1 + V − EOBC)φA + t0φB = 0,
φB

φA
= − (t+

a β + t−
a β−1 + V − EOBC)

t0
,

t0φA + (t+
b β + t−

b β−1 − V − EOBC)φB = 0,
φB

φA
= − t0

(t+
b β + t−

b β−1 − V − EOBC)
,

(D3)

i.e.,

φ
( j)
B

φ
( j)
A

=
(
EOBC − t+

a β j − t−
a β−1

j − V
)

t0
= t0(

EOBC − t+
b β j − t−

b β−1
j + V

) = f j, (D4)

t2
0 = (EOBC − t+

a β j − t−
a β−1

j − V
)(

EOBC − t+
b β j − t−

b β−1
j + V

)
, (D5)

φ
( j)
B = f jφ

( j)
A , (D6)

we have ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t0

4∑
j=1

β j f jφ
( j)
A + t+

a

4∑
j=1

β2
j φ

( j)
A + V

4∑
j=1

β jφ
( j)
A = EOBC

4∑
j=1

β jφ
( j)
A ,

t0

4∑
j=1

β jφ
( j)
A + t+

b

4∑
j=1

β2
j f jφ

( j)
A − V

4∑
j=1

β j f jφ
( j)
A = EOBC

4∑
j=1

β j f jφ
( j)
A ,

t−
a

4∑
j=1

βL−1
j φ

( j)
A + t0

4∑
j=1

βL
j f jφ

( j)
A + V

4∑
j=1

βL
j φ

( j)
A = EOBC

4∑
j=1

βL
j φ

( j)
A ,

t−
b

4∑
j=1

βL−1
j f jφ

( j)
A + t0

4∑
j=1

βL
j φ

( j)
A − V

4∑
j=1

βL
j f jφ

( j)
A = EOBC

4∑
j=1

βL
j f jφ

( j)
A ,

(D7)
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4∑
j=1

(
EOBC − t+

a β j − t−
a β−1

j − V
)
β jφ

( j)
A + t+

a

4∑
j=1

β2
j φ

( j)
A + V

4∑
j=1

β jφ
( j)
A = EOBC

4∑
j=1

β jφ
( j)
A ,

t0

4∑
j=1

β jφ
( j)
A +

4∑
j=1

(
t+
b β j − V − EOBC

)
β j f jφ

( j)
A = 0,

t−
a

4∑
j=1

βL−1
j φ

( j)
A +

4∑
j=1

(
EOBC − t+

a β j − t−
a β−1

j − V
)
βL

j φ
( j)
A + V

4∑
j=1

βL
j φ

( j)
A = EOBC

4∑
j=1

βL
j φ

( j)
A ,

4∑
j=1

(
t−
b β−1

j − V − EOBC
)
βL

j f jφ
( j)
A + t0

4∑
j=1

βL
j φ

( j)
A = 0,

(D8)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4∑
j=1

(−t−
a β−1

j

)
β jφ

( j)
A = 0,

4∑
j=1

β jφ
( j)
A +

4∑
j=1

(
t+
b β j − V − EOBC

)
(
EOBC − t+

b β j − t−
b β−1

j + V
)β jφ

( j)
A = 0,

4∑
j=1

(−t+
a β j )β

L
j φ

( j)
A = 0,

4∑
j=1

(
t−
b β−1

j − V − EOBC
)

(
EOBC − t+

b β j − t−
b β−1

j + V
)βL

j φ
( j)
A +

4∑
j=1

βL
j φ

( j)
A = 0,

(D9)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4∑
j=1

φ
( j)
A = 0,

4∑
j=1

1(
EOBC − t+

b β j − t−
b β−1

j + V
)φ( j)

A = 0,

4∑
j=1

φ
( j)
A =

4∑
j=1

(
EOBC − t+

a β j − t−
a β−1

j − V
)
φ

( j)
A = 0,

4∑
j=1

βL+1
j φ

( j)
A = 0,

4∑
j=1

1(
EOBC − t+

b β j − t−
b β−1

j + V
)βL+1

j φ
( j)
A = 0,

4∑
j=1

(
EOBC − t+

a β j − t−
a β−1

j − V
)
βL+1

j φ
( j)
A = 0,

(D10)

where we have used the characteristic dispersion equation

1(
EOBC − t+

b β j − t−
b β−1

j + V
) =

(
EOBC − t+

a β j − t−
a β−1

j − V
)

t2
0

. (D11)

Imposing the condition that φ
( j)
A ( j = 1, 2, 3, 4) do not vanish, we must have the vanishing determinant:∣∣∣∣∣∣∣∣∣

1 1 1 1
X1 X2 X3 X4

βL+1
1 βL+1

2 βL+1
3 βL+1

4

X1β
L+1
1 X2β

L+1
2 X3β

L+1
3 X4β

L+1
4

∣∣∣∣∣∣∣∣∣
= 0, (D12)

where |β1| � |β2| � |β3| � |β4|. Here, Xj ( j = 1, 2, 3, 4) are defined as

Xj ≡ EOBC − t+
a β j − t−

a β−1
j − V ( j = 1, 2, 3, 4). (D13)

Simplifying, we obtain the boundary equation (24) from Eq. (D12):

X1,4X2,3[(β1β4)L+1 + (β2β3)L+1] − X1,3X2,4[(β1β3)L+1 + (β2β4)L+1] + X1,2X3,4[(β1β2)L+1 + (β3β4)L+1] = 0, (D14)
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where Xi, j (i, j = 1, 2, 3, 4) are defined as

Xi, j ≡ Xi − Xj = t+
a (β j − βi ) + t−

a

(
β−1

j − β−1
i

)
(i, j = 1, 2, 3, 4). (D15)

APPENDIX E: DERIVATION OF EQ. (26)

We start from the characteristic equation of our coupled Hatano-Nelson model with offset:

t+
a t+

b β2 + [−(t+
a + t+

b )EOBC − (t+
a − t+

b )V ]β + (t+
a t−

b + t−
a t+

b + E2
OBC − t2

0 − V 2
)

+[−(t−
a + t−

b )EOBC − (t−
a − t−

b )V ]β−1 + t−
a t−

b β−2 = 0. (E1)

We consider a perturbative solution up to the second order in t0 by first expanding in terms of the βs:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

β1 � x(a)
− + y(a)

− t2
0 ,

β2 � x(a)
+ + y(a)

+ t2
0 ,

β3 � x(b)
− + y(b)

− t2
0 ,

β4 � x(b)
+ + y(b)

+ t2
0 ,

(E2)

where t+
a > t−

a , t+
b < t−

b , t+
a > t+

b , V > 0, |β1| � |β2| � |β3| � |β4|,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(a)
± = 1

2t+
a

(EOBC − V ± 	a),

x(b)
± = 1

2t+
b

(EOBC + V ± 	b),

y(a)
± = −[E2

OBC − 2t+
a t−

a + V (V ∓ 	a) − (2V ∓ 	a)EOBC
]

g(a)
±

,

y(b)
± =

[
E2

OBC − 2t+
b t−

b + V (V ± 	b) + (2V ± 	b)EOBC
]

g(b)
±

,

(E3)

and

	a =
√

(EOBC − V )2 − 4t+
a t−

a , (E4)

	b =
√

(EOBC + V )2 − 4t+
b t−

b , (E5)

g(a)
± = E3

OBC(t+
a − t+

b ) − 4t+
a t−

a (t+
a + t+

b )V + (t+
a + t+

b )V 3 ∓ 2t+
a (t+

a t−
b − t−

a t+
b )	a

∓ (t+
a + t+

b )	aV
2 + E2

OBC[(3t+
b − t+

a )V ± (t+
a − t+

b )	a]

+ EOBC[−4t+
a t−

a (t+
a − t+

b ) − (t+
a + 3t+

b )V 2 ± 2t+
b 	aV ], (E6)

g(b)
± = E3

OBC(t+
a − t+

b ) − 4t+
b t−

b (t+
a + t+

b )V + (t+
a + t+

b )V 3 ∓ 2t+
b (t+

a t−
b − t−

a t+
b )	b

± (t+
a + t+

b )	bV
2 + E2

OBC[(3t+
a − t+

b )V ± (t+
a − t+

b )	b]

+ EOBC[−4t+
b t−

b (t+
a − t+

b ) + (t+
b + 3t+

a )V 2 ± 2t+
a 	bV ]. (E7)

With Eqs. (E2) and (D13), we can get⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X1,2 = (t+
a t−

b − t−
a t+

b )	at2
0

E2
OBC(t−

a − t−
b )(t+

a − t+
b ) + (t+

a t−
b − t−

a t+
b )2 + 2EOBCV (t+

a t−
a − t+

b t−
b ) + (t−

a + t−
b )(t+

a + t+
b )V 2

+ O
(
t4
0

)
,

X3,4 =
(

t+
a

t+
b

− t−
a

t−
b

)
	b + O

(
t2
0

)
,

X1,3 = 1

2

[
t+
a

t+
b

(EOBC + V − 	b) − (EOBC − V − 	a)

]
+
[

2t+
b t−

a

EOBC + V − 	b
− 2t+

a t−
a

EOBC − V − 	a

]
+ O

(
t2
0

)
,

X2,4 = 1

2

[
t+
a

t+
b

(EOBC + V + 	b) − (EOBC − V + 	a)

]
+
[

2t+
b t−

a

EOBC + V + 	b
− 2t+

a t−
a

EOBC − V + 	a

]
+ O

(
t2
0

)
.

(E8)

We can obtain Eq. (26) by substituting Eq. (E8) into X1,2X3,4/(X1,3X2,4) and expanding up to the second order in t0.
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FIG. 13. OBC energy spectra of the topologically coupled chain model Hamiltonian (33) with V = 0 at different system sizes (a) L = 10,
(b) L = 30, (c) L = 32, (d) L = 35, (e) L = 40, (f) L = 50. Notably, topological zero modes appear at E = 0 in the point gap only at sufficiently
large system sizes of L = 35, 40, 50. The other parameters are δab = 0.5 × 10−3, t1 = 0.75, and δa = −δb = 0.25.

APPENDIX F: OBC SPECTRA FOR TOPOLOGICALLY COUPLED CHAIN MODEL

In this Appendix, in order to understand why the topological zero modes appear at E = 0 in the point gap only at sufficiently
large system sizes, we show the OBC energy spectra of the topologically coupled chain model (33) with V = 0 for various
system sizes.

It is indicated from Fig. 13 that, when we tune the system size L (regarding L as a parameter), the OBC spectrum changes. At
a critical L, the OBC spectrum’s gap closes and, after that, topological zero modes appear.

APPENDIX G: DERIVATION OF EQ. (35)

In this Appendix, we describe the derivation of Eq. (35), which expresses the OBC constraint of our coupled topological
model. Under OBCs, we can write the real-space Schrödinger equation Ht|ψ〉 = EOBC|ψ〉 [where Ht is the Hamiltonian matrix
of Ht in the basis (C1,C2, · · · ,CL )T ], where |ψ〉 = (ψ1,A, ψ1,B, ψ2,A, ψ2,B, . . . , ψn,A, ψn,B, . . . )T, as

{
t−
a ψn−1,A + δabψn−1,B + V ψn,A + t+

a ψn+1,A + δabψn+1,B = EOBCψn,A,

t−
b ψn−1,B − δabψn−1,A − V ψn,B + t+

b ψn+1,B − δabψn+1,A = EOBCψn,B.
(G1)

According to the theory of linear difference equations, we can take as an ansatz for the eigenstates the linear combination

(
ψn,A

ψn,B

)
=

4∑
j=1

βn
j

(
φ

( j)
A

φ
( j)
B

)
. (G2)

Hence, Eq. (G1) can be rewritten as(
t+
a β + t−

a β−1 + V δab(β + β−1)
−δab(β + β−1) t+

b β + t−
b β−1 − V

)(
φA

φB

)
= EOBC

(
φA

φB

)
. (G3)

From the real-space eigenequation in Eq. (G1) and the open boundary conditions ψ0,α = ψL+1,α = 0 (α = A, B), we can get the
equations for the eigenstates in real space as⎧⎪⎪⎪⎨

⎪⎪⎪⎩
δabψ2,B + t+

a ψ2,A + V ψ1,A = EOBCψ1,A,

−δabψ2,A + t+
b ψ2,B − V ψ1,B = EOBCψ1,B,

t−
a ψL−1,A + δabψL−1,B + V ψL,A = EOBCψL,A,

t−
b ψL−1,B − δabψL−1,A − V ψL,B = EOBCψL,B.

(G4)
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Now, Eq. (G4) can be rewritten into coupled equations for the coefficients φ
( j)
α (α = A, B; j = 1, 2, 3, 4) by substituting the

general solution (ψn,A, ψn,B)T =∑4
j=1 βn

j (φ( j)
A , φ

( j)
B )T as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δab

4∑
j=1

β2
j φ

( j)
B + t+

a

4∑
j=1

β2
j φ

( j)
A + V

4∑
j=1

β jφ
( j)
A = EOBC

4∑
j=1

β jφ
( j)
A ,

−δab

4∑
j=1

β2
j φ

( j)
A + t+

b

4∑
j=1

β2
j φ

( j)
B − V

4∑
j=1

β jφ
( j)
B = EOBC

4∑
j=1

β jφ
( j)
B ,

t−
a

4∑
j=1

βL−1
j φ

( j)
A + δab

4∑
j=1

βL−1
j φ

( j)
B + V

4∑
j=1

βL
j φ

( j)
A = EOBC

4∑
j=1

βL
j φ

( j)
A ,

t−
b

4∑
j=1

βL−1
j φ

( j)
B − δab

4∑
j=1

βL−1
j φ

( j)
A − V

4∑
j=1

βL
j φ

( j)
B = EOBC

4∑
j=1

βL
j φ

( j)
B .

(G5)

Furthermore, by using the bulk eigenequation in Eq. (G3),

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(t+
a β + t−

a β−1 + V − EOBC)φA + δab(β + β−1)φB = 0,
φB

φA
= − (t+

a β + t−
a β−1 + V − EOBC)

δab(β + β−1)
,

−δab(β + β−1)φA + (t+
b β + t−

b β−1 − V − EOBC)φB = 0,
φB

φA
= δab(β + β−1)

(t+
b β + t−

b β−1 − V − EOBC)
,

(G6)

i.e.,

φ
( j)
B

φ
( j)
A

=
(
EOBC − t+

a β j − t−
a β−1

j − V
)

δab(β + β−1)
= −δab(β + β−1)(

EOBC − t+
b β j − t−

b β−1
j + V

) = f j, (G7)

− δ2
ab(β + β−1)2 = (EOBC − t+

a β j − t−
a β−1

j − V
)(

EOBC − t+
b β j − t−

b β−1
j + V

)
, (G8)

φ
( j)
B = f jφ

( j)
A . (G9)

The general solution is written as a linear combination

(
ψn,A

ψn,B

)
= βn

1

(
φ

(1)
A

φ
(1)
B

)
+ βn

2

(
φ

(2)
A

φ
(2)
B

)
+ βn

3

(
φ

(3)
A

φ
(3)
B

)
+ βn

4

(
φ

(4)
A

φ
(4)
B

)
(G10)

which should satisfy the open boundary conditions (G5):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δab

4∑
j=1

β2
j f jφ

( j)
A + t+

a

4∑
j=1

β2
j φ

( j)
A + V

4∑
j=1

β jφ
( j)
A = EOBC

4∑
j=1

β jφ
( j)
A ,

−δab

4∑
j=1

β2
j φ

( j)
A + t+

b

4∑
j=1

β2
j f jφ

( j)
A − V

4∑
j=1

β j f jφ
( j)
A = EOBC

4∑
j=1

β j f jφ
( j)
A ,

t−
a

4∑
j=1

βL−1
j φ

( j)
A + δab

4∑
j=1

βL−1
j f jφ

( j)
A + V

4∑
j=1

βL
j φ

( j)
A = EOBC

4∑
j=1

βL
j φ

( j)
A ,

t−
b

4∑
j=1

βL−1
j f jφ

( j)
A − δab

4∑
j=1

βL−1
j φ

( j)
A − V

4∑
j=1

βL
j f jφ

( j)
A = EOBC

4∑
j=1

βL
j f jφ

( j)
A ,

(G11)
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4∑
j=1

(
EOBC − t+

a β j − t−
a β−1

j − V
)

β j + β−1
j

β2
j φ

( j)
A =

4∑
j=1

(EOBC − t+
a β j − V )β jφ

( j)
A ,

−δab

4∑
j=1

β2
j φ

( j)
A +

4∑
j=1

(
t+
b β j − V − EOBC

)
β j f jφ

( j)
A = 0,

4∑
j=1

(
EOBC − t+

a β j − t−
a β−1

j − V
)

β j + β−1
j

βL−1
j φ

( j)
A =

4∑
j=1

(
EOBC − t−

a β−1
j − V

)
βL

j φ
( j)
A ,

4∑
j=1

(
t−
b β−1

j − V − EOBC
)
βL

j f jφ
( j)
A − δab

4∑
j=1

βL−1
j φ

( j)
A = 0,

(G12)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4∑
j=1

[(
EOBC − t+

a β j − t−
a β−1

j − V
)
β j − (EOBC − t+

a β j − V )
(
β j + β−1

j

)]
β jφ

( j)
A = 0,

4∑
j=1

β2
j φ

( j)
A +

4∑
j=1

(
β j + β−1

j

)(
t+
b β j − V − EOBC

)
(
EOBC − t+

b β j − t−
b β−1

j + V
) β jφ

( j)
A = 0,

4∑
j=1

[(
EOBC − t+

a β j − t−
a β−1

j − V
)
β−1

j − (EOBC − t−
a β−1

j − V
)(

β j + β−1
j

)]
βL

j φ
( j)
A = 0,

4∑
j=1

(
β j + β−1

j

)(
t−
b β−1

j − V − EOBC
)

(
EOBC − t+

b β j − t−
b β−1

j + V
) βL

j φ
( j)
A +

4∑
j=1

βL−1
j φ

( j)
A = 0,

(G13)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4∑
j=1

[−t−
a − (EOBC − t+

a β j − V )β−1
j

]
β jφ

( j)
A = 0,

4∑
j=1

[(
EOBC − t+

b β j − t−
b β−1

j + V
)
β j − (EOBC − t+

b β j + V )
(
β j + β−1

j

)]
β jφ

( j)
A = 0,

4∑
j=1

[−t+
a − (EOBC − t−

a β−1
j − V

)
β j
]
βL

j φ
( j)
A = 0,

4∑
j=1

[(
EOBC − t+

b β j − t−
b β−1

j + V
)
β−1

j − (EOBC − t−
b β−1

j + V )
(
β j + β−1

j

)]
βL

j φ
( j)
A = 0,

(G14)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4∑
j=1

[−t−
a − (EOBC − t+

a β j − V )β−1
j

]
β jφ

( j)
A = 0,

4∑
j=1

[−t−
b − (EOBC − t+

b β j + V )β−1
j

]
β jφ

( j)
A = 0,

4∑
j=1

[−t+
a − (EOBC − t−

a β−1
j − V

)
β j
]
βL

j φ
( j)
A = 0,

4∑
j=1

[−t+
b − (EOBC − t−

b β−1
j + V

)
β j
]
βL

j φ
( j)
A = 0,

(G15)
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4∑
j=1

[EOBC − (t+
a − t−

a )β j − V ]φ( j)
A = 0,

4∑
j=1

[EOBC − (t+
b − t−

b )β j + V ]φ( j)
A = 0,

4∑
j=1

[EOBC + (t+
a − t−

a )β−1
j − V ]βL+1

j φ
( j)
A = 0,

4∑
j=1

[
EOBC + (t+

b − t−
b )β−1

j + V
]
βL+1

j φ
( j)
A = 0.

(G16)

Here, we have obtained the coupled equations in terms of only φ
( j)
A ( j = 1, 2, 3, 4). For φ

( j)
A ( j = 1, 2, 3, 4) to have nonzero

values, the determinant condition is ∣∣∣∣∣∣∣∣∣∣

X (a)
1 X (a)

2 X (a)
3 X (a)

4

Y (a)
1 Y (a)

2 Y (a)
3 Y (a)

4

X (b)
1 βL+1

1 X (b)
2 βL+1

2 X (b)
3 βL+1

3 X (b)
4 βL+1

4

Y (b)
1 βL+1

1 Y (b)
2 βL+1

2 Y (b)
3 βL+1

3 Y (b)
4 βL+1

4

∣∣∣∣∣∣∣∣∣∣
= 0 (G17)

with |β1| � |β2| � |β3| � |β4|. Here, Xj and Yj ( j = 1, . . . , 4) are defined as

X (a)
j = EOBC−(t+

a −t−
a )β j − V = EOBC−2δaβ j − V ( j = 1, . . . , 4), (G18)

Y (a)
j = EOBC−(t+

b −t−
b )β j + V = EOBC−2δbβ j + V ( j = 1, . . . , 4), (G19)

X (b)
j = EOBC+(t+

a −t−
a )β−1

j − V = EOBC+2δaβ
−1
j − V ( j = 1, . . . , 4), (G20)

Y (b)
j = EOBC+(t+

b −t−
b )β−1

j + V = EOBC+2δbβ
−1
j + V ( j = 1, . . . , 4). (G21)

Finally, we can obtain the boundary equation (35) from Eq. (G17) as[
Z (b)

1,4Z (a)
2,3(β1β4)L+1 + Z (a)

1,4Z (b)
2,3(β2β3)L+1

]
−[Z (b)

1,3Z (a)
2,4(β1β3)L+1 + Z (a)

1,3Z (b)
2,4(β2β4)L+1

]
+[Z (b)

1,2Z (a)
3,4(β1β2)L+1 + Z (a)

1,2Z (b)
3,4(β3β4)L+1

] = 0, (G22)

where β j ( j = 1, 2, 3, 4) satisfy |β1| � |β2| � |β3| � |β4|, and Z (c)
i, j (i, j = 1, 2, 3, 4; c = a, b) are defined as

Z (c)
i, j = X (c)

i Y (c)
j − X (c)

j Y (c)
i (G23)

=
{

[(t+
b − t−

b )(EOBC − V ) − (t+
a − t−

a )(EOBC + V )](βi − β j ), c = a
[(t+

b − t−
b )(EOBC − V ) − (t+

a − t−
a )(EOBC + V )]

(
β−1

j − β−1
i

)
, c = b (G24)

where i, j = 1, 2, 3, 4; c = a, b.
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