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Charge transport plays a crucial role in manifold potential applications of two-dimensional materials, in-
cluding field-effect transistors, solar cells, and transparent conductors. At most operating temperatures, charge
transport is hindered by scattering of carriers by lattice vibrations. Assessing the intrinsic phonon-limited carrier
mobility is thus of paramount importance to identify promising candidates for next-generation devices. Here
we provide a framework to efficiently compute the drift and Hall carrier mobility of two-dimensional materials
through the Boltzmann transport equation by relying on a Fourier-Wannier interpolation. Building on a recent
formulation of long-range contributions to dynamical matrices and phonon dispersions [Phys. Rev. X 11, 041027
(2021)], we extend the approach to electron-phonon coupling including the effect of dynamical dipoles and
quadrupoles. We identify an unprecedented contribution associated with the Berry connection that is crucial
to preserve the Wannier-gauge covariance of the theory. This contribution is not specific to two-dimensional
crystals, but also concerns the three-dimensional case, as we demonstrate via an application to bulk SrO. We
showcase our method on a wide selection of relevant monolayers ranging from SnS2 to MoS2, graphene, BN,
InSe, and phosphorene. We also discover a nontrivial temperature evolution of the Hall hole mobility in InSe
whereby the mobility increases with temperature above 150 K due to the Mexican-hat electronic structure of
the InSe valence bands. Overall, we find that dynamical quadrupoles are essential and can impact the carrier
mobility in excess of 75%.
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I. INTRODUCTION

Two-dimensional (2D) materials exhibit extraordinary
properties that could lead to manifold technological applica-
tions ranging from heat dissipation and lubricants to electronic
applications and energy storage [1–5]. A family of 2D materi-
als known as transition-metal dichalcogenides (TMDs) are in
the scientific spotlight [6,7]. TMD monolayers are atomically
thin materials of the MX 2 family with a transition metal M
and a chalcogen atom X . They are believed to have potential
technological impact, especially group-VI TMDs (M = Mo,
W) that are semiconducting and exhibit a direct electronic
band gap, which makes them suitable for use in transistors,
photodetectors, and emitters [6,7]. Their lack of inversion
symmetry in the 2H phase and strong SOC makes them
promising candidates for applications in spintronics [8–10]
and valleytronics [11,12]. Overall, TMDs possess relatively
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high carrier mobility compared to other 2D semiconductors
[13,14] and are seen as good candidate materials for electronic
transport.

In an effort to understand the nanoscopic mechanisms
underlying the transport properties of materials, density func-
tional perturbation theory [15–17] provides a powerful tool by
giving access to electron-phonon scattering rates fully from
first principles, which has recently been extended to include
2D materials [18]. In particular, room-temperature resistive
transport calculations based on such scattering rates are of
key technological importance to orient experimental investi-
gations and speed up materials discovery, and have therefore
been widely exploited both in bulk [19–36] and 2D materials
[13,14,19,25,37–47] reaching remarkable accuracy with re-
spect to experiments in prominent cases including graphene
[41,48].

In most cases, to obtain phonon-limited mobilities, first-
principles electron-phonon scattering rates are injected in the
Boltzmann transport equation (BTE), considered as an ap-
proximation to the Kadanoff-Baym equations of motion [49].
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The linearized BTE describes the nonequilibrium steady-state
situation whereby the forces driving the carriers (external
electric and/or magnetic field) are equal to the resistive forces
associated with electron-phonon scattering. The resulting in-
tegrodifferential equation must be solved self-consistently but
various approximations exist to avoid it [50], including the
constant relaxation time approximation, the self-energy re-
laxation time approximation, and the momentum relaxation
time approximation. All have been found to be crude approx-
imations with respect to the exact solution in many materials
[36,51,52], and should thus be avoided in favor of the latter,
especially given the minimal computational overhead needed
to solve iteratively the linearized BTE.

From a technical point of view, the convergence of the
BTE solution requires dense momentum sampling of the
electron-phonon interaction [23]. Although this is in princi-
ple achievable by performing direct calculations, especially
when using nonuniform grids and in 2D owing to the re-
duced number of momentum directions to probe [44], a
significant speedup can be obtained through Fourier inter-
polation [53–58] by using, for example, Wannier functions
[59]. Importantly, this procedure can only be accurate if the
quantities are smooth and localized in real space to pre-
vent Gibbs oscillations. However, atomic motions in bulk
and 2D semiconductors typically generate dynamical dipoles
and quadrupoles [60], so that lattice vibrations are associated
with long-range electrostatic potentials, thus preventing the
desired real-space localization. To overcome this obstacle, the
electron-phonon matrix elements can be decomposed into a
problematic long-range part and a short-range part, which
can be safely interpolated. Indeed, if the long-range part can
be expressed analytically in terms a few easy-to-compute
macroscopic quantities [61,62], then it can be removed from
the computed quantities, leaving only the short-range part to
be interpolated, and then added back to evaluate the overall
electron-phonon coupling at arbitrary transferred momentum.

Although this approach has proved to be very effective
in three-dimensional (3D) systems [31,34,61,62] and accu-
rate calculations of the electron-phonon interactions in 2D
materials can be performed in the correct electrostatic open-
boundary conditions [18], the application to 2D materials has
remained elusive, owing to the complexity of describing, in a
unified way, both the in-plane and out-of-plane electrostatics.
It is the subject of this paper. Continuous efforts [63–65] have
delivered simplified formulations that neglect quadrupoles
and approximate the out-of-plane dipoles. Recently, Royo
and Stengel [66] derived an exact 2D electrostatic frame-
work using an image-charge decomposition for the long- and
short-range contributions, and applied it to the interpolation
of interatomic force constants (IFC). In this paper, we extend
this approach to the electron-phonon matrix elements of 2D
materials. In the process, we discover that including naively
higher-order terms (both in 2D and 3D) introduces a spurious
dependence on the Wannier gauge that can be eliminated by
including a contribution associated with the Berry connection
(i.e., the position operator in the Wannier basis), restoring the
gauge covariance of the method in the long-wavelength limit
[67]. In Sec. II, we first recall the general framework and
then apply it to the 2D electron-phonon coupling and present
various approximations to compute drift and Hall mobility in

2D materials. In Sec. III, we report the numerical parameters
used in this study and we verify the quality of the Wannier
interpolation and phonon dispersion. We then assess the effect
of quadrupoles and approximations on the accuracy of the
deformation potential of SnS2, MoS2, graphene, hexagonal
BN, InSe, and phosphorene. We finish by calculating their
drift and Hall carrier mobility and determining the dominant
scattering mechanisms in these monolayers.

II. THEORY

The key quantity in studies of electron-phonon couplings
is the matrix element

gmnν (k, q) ≡ 〈�mk+q| �qνV |�nk〉 , (1)

which provides information about the probability of an elec-
tron to be excited from a quantum state described by the
wave function �nk to another state �mk+q via scattering with
a phonon of branch ν, wave vector q, and frequency ων (q).
In turn, �qνV is, within a density functional theory (DFT)
framework, the first-order change in the Kohn-Sham potential
induced by the phonon.

In this section, we describe the formalism that we follow in
order to efficiently and accurately obtain the matrix elements
gmnν (k, q) over ultradense grids of k and q points. To this
end, first we write �qνV in terms of the potential induced by
a simpler atomic displacement perturbation, the latter being
the quantity that is actually obtained via density functional
perturbation theory (DFPT) calculations [15,16,68–70]. We
then discuss the difficulties arising in the interpolation of
the first-order potential for the case of semiconductors and
insulators associated with the nonanalytical behavior of the
potential near the Brillouin-zone center. To deal with this
problem, we follow the formalism developed in Ref. [66] to
perform a range separation with the goal of concentrating
all the nonanalyticities in a so-called long-range scattering
potential. Practical formulas for both the long-range potential
and long-range matrix elements, specific to quasi-2D systems,
are subsequently derived in the long-wavelength limit and
expressed in terms of few macroscopic coefficients readily
available within existing public numerical implementations.
Finally, we describe the transport formalism that we use to
obtain the carrier mobilities.

A. Electron-phonon scattering potential

The first-order potential in Eq. (1) can be written in terms
of a phase times a lattice-periodic part [17,31],

�qνV (r, r′) =
[

h̄

2ων (q)

] 1
2 ∑

καp

eκαν (q)√
Mκ

×Vqκα (r, r′)eiq·(r′+Rp), (2)

where eκαν is the phonon eigenvector describing the displace-
ment along the Cartesian direction α of the atom κ in the unit
cell, and Mκ the atomic mass. The lattice-periodic part Vqκα

can be exactly obtained via DFPT by solving the following
self-consistent Sternheimer equation [16,70]:

P̂c
k+q[Ĥk+q − εmk]P̂c

k+q

∣∣uτκα

mkq

〉 = −P̂c
k+qVqκα|umk〉, (3)
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where Pc is the projector on the conduction band manifold,
Ĥ , ε, and u are the ground-state Hamiltonian, Kohn-Sham
energies, and lattice-periodic part of the Bloch functions, re-
spectively. The uτκα are the first-order response functions and
the first-order potential Vqκα is

Vqκα (r, r′) = V nl,τκα

q (r, r′) + δ(r − r′)

× [
V loc,τκα

q (r) + V Hxc,τκα

q (r)
]
, (4)

which includes both local and nonlocal pseudopotential terms
as well as the induced self-consistent field (SCF) potential

V Hxc,τκα

q (r) =
∫

uc
d3r′Kq(r, r′)nτκα

q (r′), (5)

where nτκα
q (r) = e−iq·rnτκα (r) is the cell-periodic part of the

electron density response and the integral is performed over
the unit-cell volume. The kernel in Eq. (5) includes both
Coulomb and exchange-correlation interactions,

K (r, r′) = e2v(r, r′) + f xc(r, r′), (6)

where e is the electronic charge and the cell-periodic Kq(r, r′)
is obtained from the above all-space kernel by means of the
Fourier transforms described in Appendix A. In the context
of DFT, Eq. (4) is the first-order perturbation from the Kohn-
Sham potential

V KS(r, r′) = V nl(r, r′) + δ(r − r′)[V loc(r) + V Hxc(r)]. (7)

In principle, Eq. (3) can be solved at any value of q.
However, such process is time consuming and the exact
DFPT potentials are, in practice, only obtained for a set of
symmetry-compliant q points building a coarse grid which
is subsequently used to Fourier interpolate the potentials, or
the ensuing matrix elements, over much denser grids. The
bare Fourier interpolation procedure consists in, first, cal-
culating the real-space representation of the potential using
the transformations shown in Appendix A for the local- and
nonlocal-like contributions. Then, if the real-space potential
turns out to decay fast enough so that it vanishes at the bound-
aries of the supercell, one can safely convert it back at any
arbitrary q point.

B. Range separation

In the case of semiconductors and insulators, the direct
Fourier interpolation of Vqκα is thwarted in the long-
wavelength limit by the presence of electrostatic fields that
decay slowly with the distance. These long-range fields arise
from the nonanalytic behavior of the Coulomb potential for
q → 0 and need to be treated separately. To this end, it is
common to carry out a range separation of the Coulomb kernel
into a short- and long-range part

vq(r, r′) = vS
q (r, r′) + vL

q (r, r′), (8)

where the short-range Coulomb kernel is analytic in q and
describes the so-called local fields, whereas the long-range
part ideally acts on a smaller space and includes the nonan-
alyticities of the total kernel. Correspondingly, the scattering
potential can be separated into short- and long-range contribu-
tions stemming from the underlying splitting in the Coulomb

kernel,

Vqκα (r, r′) = V S
qκα (r, r′) + δ(r − r′)V L

qκα (r), (9)

where the local dependence on the spatial coordinate adopted
for the long-range potential is based on the short-range char-
acter of the nonlocal pseudopotential term [15] [see Eq. (4)].

In a DFPT framework, V S
qκα can be obtained by solving the

Sternheimer Eq. (3) with a short-range self-consistent field
kernel. The latter has the same structure as Eq. (6) but the
total Coulomb interaction is replaced with the short-range one
vS

q . Since the exchange-correlation interaction is a smooth
function of q in both the local and semilocal flavors of DFT,
the resulting SCF kernel is short ranged. The short-range
character of V S

qκα ensures its correct Fourier interpolation.
The interpolation of the long-range part of the poten-

tial V L
qκα is the main challenge. To deal with it, we follow

Ref. [66] and assume that the long-range part of the cell-
periodic Coulomb kernel can be written in a separable form
as follows:

vL
q (r, r′) =

∑
NN ′

′
ϕqN (r)ṽL

q (N, N ′)(ϕqN ′ (r′))†, (10)

where N = (G, l ) is a combined index consisting in a
reciprocal-space Bravais lattice vector G and another index
l that characterizes the basis functions along nonperiodic
directions in finite systems, and where the basis functions
ϕqN (r) are macroscopic. This means that they are smooth
over the primitive cell volume, analytical in q, and that they
span a reduced space, indicated with a prime over the sum,
that we call small space [66,71]. We use a tilde to identify
small-space quantities. Using this small-space representation,
the cell-periodic part of the long-range scattering potential can
be expressed as [66]

V L
qκα (r) = −e

∑
NN ′

′
ϕS

qN (r)W̃ L
q (N, N ′)ρ̃S

qκα (N ′), (11)

where we have explicitly indicated the electron charge −e
to emphasize the nature of V L

qκα (r) as an electron poten-
tial energy, ϕS

qN (r) is the dressed basis function, ρ̃S
qκα (N ′)

the charge-density response to an atomic displacement, and
W̃ L

q (N, N ′) the long-range screened Coulomb interaction. The
latter can be written in terms of the long-range Coulomb oper-
ator and the short-range polarizability χ̃S

q (N, N ′) as follows:

W̃ L
q = (

I − e2ṽL
q χ̃S

q

)−1
ṽL

q , (12)

where I is the identity matrix and the elements of ε̃Lq =
I − e2ṽL

q χ̃S
q constitute a long-range dielectric matrix. The

derivation of Eq. (11) can be found in Eq. (20) of Ref. [66],
while the derivation of Eq. (12) is given in Eqs. (8) and (19)
as well as in Eqs. (A1) and (A2) of Ref. [66].

From Eqs. (11) and (12), we conclude that the long-range
scattering potential is constructed from a mathematical object,
the long-range Coulomb operator, and three short-range and
material-specific quantities. In order to obtain them, it is use-
ful to define the perturbation

�qNV ext (r) = VqNϕqN (r)eiq·r, (13)
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which is due to a scalar function from the basis set ϕqN (r)
modulated at some wave vector q, with VqN being the per-
turbation parameter. Then, the relevant response functions
can be obtained via DFPT, while employing the afore-
mentioned short-range SCF kernel, as follows. On the one
hand, the charge-density response to an atomic displacement
and the polarizability are obtained as second-order derivatives
of the total energy,

ρ̃S
qκα (N ) = −e

∂2E

∂[VqN ]∗∂τqκα

, (14)

χ̃S
q (N, N ′) = ∂2E

∂[VqN ]∗∂VqN ′
, (15)

where τqκα in an atomic displacement in the unit cell mod-
ulated by the wave vector q. On the other hand, the dressed
basis function can be obtained by adding the first-order poten-
tial response to the perturbation,

ϕS
qN (r) = ϕqN (r) + e−iq·r ∂V Hxc(r)

∂VqN
. (16)

At this point, it is important to observe that all the objects
entering the definition of the long-range potential in Eq. (11),
except the long-range Coulomb potential ṽL

q , are analytic
functions of q. This means that such quantities, once obtained
via the aforementioned DFPT scheme on the coarse grid of q
points, can be efficiently interpolated over the whole Brillouin
zone. This fact can be therefore exploited to obtain the exact
V L

qκα (r) at any arbitrary value of q. Despite the apparent ap-
peal of such strategy, in the context of this work we use the
approximate method described in Sec. II D since its imple-
mentation requires less modifications to the existing codes.
Yet, this exact approach might represent a secure fallback
to use in systems where the interpolation of the long-range
electrostatic fields becomes problematic [72].

C. Long-range Coulomb in two dimensions

As stated in the previous section, the core of our formal-
ism rests on a proper separation into short- and long-range
Coulomb operators. This separation is nonunique, but needs to
satisfy two main conditions: (i) the long-range kernel vL must
reproduce the entire nonanalytic behavior of the full kernel,
thereby yielding a strictly short ranged vS ; and (ii), vL must
be smooth in real space, consistent with its macroscopic na-
ture. In the following paragraphs we discuss conditions (i)–(ii)
in a 2D context, thereby providing an alternative justification
to the image-charge construction of Ref. [66]. We first use
the all-space representation in our derivations, and switch to
the cell-periodic convention in Sec. II D (see Appendix A for
details about the notation).

In 2D, the bare Coulomb kernel reads as

v(Kz, K′z′) ≡ v̄(K, z − z′)δ(2)(K − K′), (17)

v̄(K, z) = 2π

K
e−K|z|. (18)

Here δ(2) is the two-dimensional Dirac delta function, K and
K′ are in-plane wave vectors in reciprocal space, z denotes
the out-of-plane direction in real space, and K = |K|. Our

goal in the following consists in separating v̄(K, z) into two
parts: one that is nonanalytic with respect to the parameter
K in the vicinity of K = 0, and a remainder that is strictly
analytic in K. We note that the Taylor expansion of v̄(K, z) at
small K contains a nonanalytic leading 2π/K divergence and
an infinite number of terms involving odd powers of K , which
are also nonanalytic. Based on this observation, one would be
tempted to separate the kernel as follows:

v̄(K, z) = 2π

K
[cosh(Kz) − sinh(K|z|)]. (19)

Here cosh(Kz)/K contains all the K-odd, and hence non-
analytic, contributions to v̄(K, z), while the remainder
sinh (K|z|)/K is analytic in K . The obvious nonanalyticity in
z of the latter is irrelevant to our present purposes. While the
long-range kernel resulting from Eq. (19) complies with con-
dition (i) above, it clearly violates (ii): cosh(Kz)/K diverges
exponentially as a function of K , which implies that its Fourier
transform to real space is not smooth.

To move forward, we shall consider a more general sepa-
ration by allowing an arbitrary analytic piece to be transferred
between the first and second terms on the right-hand side of
Eq. (19). More specifically, we define

v̄L(K, z) = 2π

K
cosh(Kz) + �v̄(K, z), (20)

where �v̄(K, z) is an arbitrary analytic function of K. Such
form of v̄L still satisfies (i) as it reproduces the nonanalytici-
ties of the full kernel by construction. However, the freedom
in the additional �v̄(K, z) term can now be exploited to take
care of (ii). We find it convenient at this stage to introduce
a range-separation function f (K ), and use it to write the
long-range kernel as

v̄(K, z) = 2π

K
f (K ) cosh(Kz), (21)

which corresponds to setting �v̄(K, z) = 2π[ f (K ) − 1]
cosh(Kz)/K in Eq. (20). The two requirements (i) and (ii)
on v̄L can now be both satisfied provided that f (K ) vanishes
exponentially fast for large K , and it linearly approaches unity
for small K . The latter property is essential to ensure that
[ f (K ) − 1]/K , and hence �v̄(K, z), is analytic. This implies
that

v̄S (K, z) = 2π

K
sinh(K|z|) − �v̄(K, z)

= v̄(K, z) − v̄L(K, z) (22)

is strictly short ranged after a Fourier transformation to real
space.

The nonunique separation into short- and long-range
contributions to the Coulomb kernel is thus reflected in the ar-
bitrariness of the range separation function f (K ). In Ref. [66],
a convenient form has been obtained using an image-charge
construction that leads to the following expression:

f (K ) = 1 − tanh

[
KL

2

]
, (23)

with L being the parameter that defines the length scale of the
range separation: the long-range kernel is restricted to only
those K vectors with magnitude sufficiently smaller than 2/L.
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It is important to stress that a real-space representation of the
long-range kernel is restricted to |z| < L/2, for which Eq. (20)
decays exponentially with K and the Fourier transform can be
performed. Hereafter, we use the same expression for f (K ),
which has been shown to perform well in the practical inter-
polation of long-range IFCs [66].

D. Long-wavelength approximation of the two-dimensional
long-range potential

In Sec. II B, we have demonstrated that the response func-
tions building the long-range scattering potential, Eq. (11), are
analytic in the wave vector q. This fact implies that one can
describe them near the Brillouin-zone center via a long-wave
expansion. It is therefore possible to reach an approximate
expression for the potential written in terms of few macro-
scopic properties of the system (typically dielectric constants
and Born effective charges) as long as a truly macroscopic
small space is used to expand the long-range Coulomb op-
erator. In this work we describe and use this approach for
the specific case of quasi-2D materials since its application
to bulk 3D systems has been carried out in earlier studies
[31,32,34,36,61,62].

We start by introducing the small-space representation of
the long-range Coulomb operator [66] using the choice moti-
vated in Sec. II C and here expressed in a cell-periodic form:

ṽL
q (N = Gl, N ′ = G′l ′)

≡ δG,G′δll ′ (−1)l+1 2π f (|G + q|)
|G + q| , (24)

where G and q are assumed to be in plane and where l = 1, 2
is the index for the basis function in the out-of-plane direction.
Accordingly, the basis functions are chosen as

ϕqN (r) ≡ 1√
S

eiG·rφqN (z), (25)

where the 2D plane waves (S is the unit-cell area) form a com-
plete orthonormal set on the Hilbert space of the cell-periodic
functions, and φqN (z) introduce an explicit dependence on the
out-of-plane coordinate z via two hyperbolic functions:

φqN (z) =
{

cosh (|G + q|z) l = 1,

sinh (|G + q|z) l = 2.
(26)

As discussed in Ref. [66], the even (odd) symmetry of the
cosh (sinh) functions with respect to an out-of-plane reflection
implies that the cosh and sinh, respectively, mediate in-plane
and out-of-plane electrostatic interactions.

We shall now assume a large enough value of the range-
separation parameter L such that f (|G + q|) vanishes except
for G = 0. This leaves us with a single q dependence for
the quantities entering the long-range scattering potential
in Eq. (11) and a small space of dimension 2 spanned by
the two G = 0 components of the basis functions given in
Eqs. (25) and (26). In such a regime, one can proceed to write
the small-space response functions in terms of few macro-
scopic coefficients by expanding them in a long-wave series

as [66]

lim
q→0

e2χ̃S
q (1, 1) = −q · α‖ · q + O(q4), (27)

lim
q→0

e2χ̃S
q (2, 2) = |q|2α⊥ + O(q4), (28)

where the round-bracketed indices refer to values of l and l ′
in which we neglect the cross terms (1,2) and where the in-
plane and out-of-plane macroscopic polarizabilities are given
by [66]

α‖ = (ε̆αβ − δαβ )
c

4π
, (29)

α⊥ = (
1 − ε̆−1

zz

) c

4π
, (30)

where ε̆αβ and ε̆zz are the macroscopic in-plane and out-of-
plane dielectric constants computed over a unit cell with size
c along the out-of-plane direction. The breve indicates that
the dielectric constants depend on the vacuum size dimen-
sion, i.e., on c, while the polarizabilities do not. We note that
when assuming the use of the 2D Coulomb truncation scheme
from Ref. [18], which effectively multiplies the out-of-plane
macroscopic polarizability by ε̆zz, then Eq. (30) becomes
α⊥ = (ε̆zz − 1) c

4π
.

The dressed charge-response functions, in turn, are ex-
panded as [66]

lim
q→0

ρ̃S
qκα (1) = −

∑
β

iqβ√
S

e−iq·τκZ‖
κα (q), (31)

lim
q→0

ρ̃S
qκα (2) = |q|√

S
e−iq·τκZ⊥

κα (q), (32)

where τκα is the atomic displacement of atom κ in the Carte-
sian direction α and Z are the dipolar expansion defined as

Z‖
κα(q) ≡ Zκαβ − i

∑
γ

qγ

2
(Qκαβγ −δβγ Qκαzz ) +· · · , (33)

Z⊥
κα (q) ≡ Zκαz−i

∑
β

qβQκαzβ + · · · , (34)

where Zκαβ is the dynamical in-plane Born effective charge
tensor corresponding to the polarization response along the di-
rection β to an atomic displacement of atom κ in the Cartesian
direction α; Zκαz is the dynamical out-of-plane Born effective
charge equivalent. The Qκαβγ are the dynamical quadrupoles,
which describe the polarization response along the direction
β to a gradient in the Cartesian direction γ of an atomic dis-
placement of atom κ in the Cartesian direction α. Both dipoles
and quadrupoles are here expressed in open-circuit electrical
boundary conditions as done for example in Appendix B of
Ref. [66]. We note that in some first-principles software the
momentum q is expressed in units of 2π/a. In such cases, one
needs to be careful as Eqs. (31) and (32) assume the q wave
vector to be in inverse length units.

Next, we consider the expansion in q of the dressed ba-
sis functions ϕS

ql (r), which specifically enter the long-range
scattering potential and were not elaborated in Ref. [66].
To this end, we start by performing the long-wave expan-
sion of the hyperbolic functions of Eq. (26) as cosh(qz) =
1 + q2z2/2 + · · · and sinh(qz) = qz + q3z3/6 + · · · , while
retaining the first-order term only. Then, recalling Eq. (16) and
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considering the macroscopic limit (G = 0), the perturbation
from the basis function reduces to a scalar-field-like (l = 1)
or electric-field-like (l = 2) potential as

lim
q→0

ϕS
q1(r) = 1√

S

[
1 + i

∑
α

qα

V Hxc,Eα (r)

e
+ O(q2)

]
, (35)

lim
q→0

ϕS
q2(r) = |q|√

S

[
z + V Hxc,Ez (r)

e
+ O(q1)

]
, (36)

where one can notice the unusual units due to the normal-
ization factors in Eq. (25), and where V Hxc,Eα/z (r) is the
self-consistent potential (including the Hartree and exchange-
correlation terms) induced by an in-plane (Eα) or an out-of-
plane (Ez) uniform electric-field perturbation interacting at the
level of a short-range kernel. Notice that V Hxc,Ez (r) has to
be calculated in open-circuit electrical boundary conditions
along the out-of-plane direction or, in other words, as the
response to an electric displacement field (Dz). Equations (35)
and (36) can be derived by noting that, to lowest order in
q, Eq. (13) reduces to �q1V ext (r) = Vq1[1 + iq · r]/

√
S and

�q2V ext (r) = Vq2|q|z/√S. Since there is no response to a uni-
form scalar potential, we can further simplify �q1V ext (r) =
Vq1iq · r/

√
S, so that both cases can be related to uniform

electric-field perturbations �V ext
E (r) = eE · r and the deriva-

tives in Eq. (16) can be written as ∂/∂Vq1 = iqα/(e
√

S)∂/∂Eα

and ∂/∂Vq2 = |q|/(e
√

S)∂/∂Ez.
Finally, by plugging the above expansions into Eq. (11) one

obtains a formula for the long-range scattering potential which
is valid at any order in q. In the context of the calculations re-
ported in this work, we truncate the expansion of the potential
at order O(q), which yields the practical formula

V L
qκα (r) = πe

S

f (|q|)
|q| e−iq·τκ

[
1

ε̃‖(q)
{2iq · Zκα + q · q · Qκα

− |q|2Qκαzz − 2q · Zκαq · V Hxc,E (r)/e}

+ 1

ε̃⊥(q)
{2|q|2Zκαz[z + V Hxc,Ez (r)/e]}

]
, (37)

where the dielectric functions appearing at the denominators
are

ε̃‖(q) = 1 + 2π f (|q|)
|q| q · α‖ · q, (38)

ε̃⊥(q) = 1 − 2π |q| f (|q|) α⊥. (39)

Similarly to the long-range IFC of Ref. [66], which are
reproduced in Appendix B for completeness, here we end
up with two differential contributions, one mirror even (‖)
and a another mirror odd (⊥), which respectively describe
the in-plane and out-of-plane interactions. However, each one
of these two contributions is here shown to incorporate, apart
from a macroscopic constant term similar to the ones observed
in the IFC formula, an additional local-fields term with the
self-consistent potential induced by an electric field. These
quadrupolar terms, which enter as second order in q at the
numerators, are the 2D generalization of equivalent contri-
butions previously elaborated for the 3D case in Ref. [60]
and Refs. [31,32] via alternative approaches. The latter are
recovered with the present formalism based on Eq. (11) when
applied to a 3D crystal, which is demonstrated in Appendix C.

E. Comparison with existing formalism

In this section, we shall formally compare our Eq. (37)
with the long-range potential equation extracted from
Refs. [63,64]. The 2D long-range scattering potential was
there developed up to the dipole level while neglecting both
the out-of-plane (mirror-odd) electrostatic fields and the local-
fields potentials. The ensuing long-range scattering potential
can be written as

V L,eDS
qκα (r) = 2πe

S

g(|q|)
|q|

iq · Zκα

ε2D(|q|)e−iq·τκ , (40)

where g(|q|) = e−|q|2/4�2
plays the role of the range-

separation function where � is chosen to be large enough
for the long-range potential to be truly macroscopic. The
corresponding 2D screening is given, to linear order in q, by
[64]

ε2D(q) = εext + q · reff · q
|q|2 |q|, (41)

where εext is the external dielectric constant which in the
case of an isolated monolayer in vacuum is εext = 1. Using
classical electrostatics in the limit of vanishing monolayer
thickness, the effective screening length is given by

reff
αβ = (ε̆∞

αβ − δαβ )
c

2
= 2πα

‖
αβ, (42)

where ε̆αβ is the in-plane high-frequency dielectric constant
computed over a unit cell with size c along the out-of-plane
direction. The breve indicates that the dielectric constant de-
pends on the vacuum size dimension, i.e., on c.

Equation (40) can be directly compared with our mirror-
even term in Eq. (37). Apart from the lack of any quadrupolar
contribution, the main difference comes from the distinct
range-separation function. Both g(|q|) and f (|q|) tend to unity
in the q → 0 limit. However, the Gaussian function of Sohier
et al. is reminiscent of the Ewald summation approach in 3D
[73] and does so quadratically. Conversely, our f (|q|) directly
emerges from the analytical derivations of vL with a linear
behavior at small q. The latter property is crucial to correctly
reproduce the nonanalytic behavior of the Coulomb kernel, as
we demonstrated in Sec. II C. Another difference lies in the
fact that, within our formalism, the range-separation function
also enters the definition of the dielectric functions given in
Eq. (38). The advantages of this improved description of the
in-plane screening were already demonstrated in the context
of phonon frequencies interpolation [66]. In Sec. III, we assess
its role for the specific case of interpolating electron-phonon
scattering quantities.

Three alternative formalisms have been more recently re-
ported. The first one from Deng et al. [65] introduces an
out-of-plane dipolar interaction, which has been understood
[66] as a dynamical BEC contribution to the Qκαzz quadrupole,
and impacts the in-plane fields in Eq. (31). The second one,
from Sio and Giustino [47], proposes a unified long-range
description that allows to go smoothly from bulk, to multi-
layers, to monolayers. However, such formalism treats LO
modes, neglects quadrupoles, and recovers the approximate
2D limit of Refs. [63,64]. The last one, from Zhang et al.
[74,75], follows the same strategy as this work by building
on the formalism developed in Ref. [66] but neglects the
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self-consistent potential and misses the Berry connection term
discussed in Sec. II F.

F. Two-dimensional long-range electron-phonon
matrix elements

Although we have shown that the problematic long-range
fields are deeply rooted at the level of the scattering potential
V L

q,κα , our implementation is based on the direct interpola-
tion of the electron-phonon matrix elements by exploiting the
Wannierization of the electronic wave functions [59]. To this
end, we make use of an equivalent range separation for the
matrix elements via the incorporation of Eq. (9) into Eqs. (2)
and (1). It is convenient to operate a rotation to the Wannier
gauge to guarantee a smooth behavior as a function of q by
writing the cell-periodic part of the Bloch eigenstates |unk〉 =
e−ik·r |�nk〉 = ∑

p U ∗
npk |uW

pk〉, so that

gLmn,κα (k, q) =
∑

sp

Umsk+q
〈
uW

sk+q

∣∣V L
qκα

∣∣uW
pk

〉
U †

pnk, (43)

where Umsk are the Wannier rotation matrices and V L
qκα is

given by Eq. (37).
While the Umnk matrices can be obtained at arbitrary

wave vectors by diagonalizing the Hamiltonian in the Wan-
nier basis [59], the problem of interpolating the matrix
element gLmn,κα (k, q) thus relies on obtaining the correct long-
wavelength nonanalytic behavior of 〈uW

sk+q|V L
qκα|uW

pk〉, which
we obtain using Eqs. (35) and (36) as

〈
uW

sk+q

∣∣V L
qκα

∣∣uW
pk

〉 = 2πe f (q)

S|q| e−iq·τκ

[
iq · Z‖

κα (q)

ε̃‖(q)

× 〈
uW

sk+q

∣∣ϕS
q1(r)

∣∣uW
pk

〉
+ qZ⊥

κα

ε̃⊥(q)

〈
uW

sk+q

∣∣ϕS
q2(r)

∣∣uW
pk

〉]
. (44)

In addition to the q → 0 limit of the potential in Eq. (37),
we also need the expansion to first order

〈
uW

sk+q

∣∣ = 〈
uW

sk

∣∣ +
∑

α

qα

〈
∂uW

sk

∂kα

∣∣∣∣ + · · · , (45)

where we have exploited that the Wannier gauge is smooth
everywhere in the Brillouin zone. By introducing the Berry

connection AW
spk,α ≡ −i〈 ∂uW

sk
∂kα

|uW
pk〉, we obtain〈

uW
sk+q

∣∣ϕS
q1(r)

∣∣uW
pk

〉
= δsp + iq ·

[
AW

spk + 〈
uW

sk

∣∣V Hxc,E (r)

e

∣∣uW
pk

〉]
, (46)

〈
uW

sk+q

∣∣ϕS
q2(r)

∣∣uW
pk

〉
= qAW

spk,z + q
〈
uW

sk

∣∣V Hxc,Ez (r)

e

∣∣uW
pk

〉
. (47)

We note that the current state-of-the art is to take the first order
only: 〈

uW
sk+q

∣∣ϕS
q1(r)

∣∣uW
pk

〉 = δsp, (48)〈
uW

sk+q

∣∣ϕS
q2(r)

∣∣uW
pk

〉 = 0. (49)

In practice, AW
spk can be obtained via the Fourier transform of

the position operator rsp,R in the Wannier basis as

AW
spk =

∑
R

eik·Rrsp,R. (50)

Here it is crucial that the position operator be Hermitian, i.e.,
rsp,R = r∗

ps,−R, and translationally invariant. These conditions
are typically not met in discretized forms on the coarse grid
[76], but alternative invariant formulations exist such as the
one recently implemented by Lihm in the WANNIERBERRI soft-
ware [77] starting from the expression for Wannier centers by
Stengel and Spaldin [78]:

rsp,R =
⎧⎨
⎩

−∑
b wbb

∑
k

e−ik·R
Nk

Im ln
[ ∑

nm U †
snkMnm(k, b)Umpk+b

] = rs for s = p and R = 0,

i
∑

b wbbeib·( rs+rp−R
2 ) ∑

k
e−ik·R

Nk

∑
nm U †

snkMnm(k, b)Umpk+b otherwise,
(51)

where rs and rp are the Wannier centers and Mnm(k, b) =
〈unk|umk+b〉 is the overlap matrix between the cell-periodic
Bloch eigenstates at neighboring points k and k+b.

Interestingly, the inclusion of the second term in Eq. (45)
for the ‖ part allows to write both in-plane (α = x, y) and out-
of-plane (α = z) components in Eq. (46) in a similar way in
terms of the matrix element between Wannier functions |pR〉
of the total (bare+induced) electric-field perturbation

eAW
spk,α + 〈

uW
sk

∣∣V Hxc,Eα (r)
∣∣uW

pk

〉
=

∑
R

eik·R 〈s0| [erα + V Hxc,Eα (r)] |pR〉 . (52)

The corrections associated with Aspk and V Hxc,E in Eq. (46)
are necessary to capture the full nonanalytic behavior of
gLmn,κα up to (and including) the first order in q, going beyond
the current approaches based on dipoles only [61,62]. Even

more compelling, by setting Aspk = 0, as typically done also
in 3D [62], the long-range contribution (43) depends on the
specific Wannier gauge adopted in the calculation through
the Umnk rotation matrices. Indeed, even fixing the gauge of
the Bloch eigenstates, and thus of gLmn,κα (k, q), and restricting
to maximally localized Wannier functions, there are multiple
Wannier gauge choices available, associated with rotation ma-
trices Ũnpk that differ by a right multiplication by a smooth
k-dependent unitary matrix Wl pk that relates the two Wannier
gauges, i.e., Ũnpk = UnlkWl pk with |ũW

pk〉 = ∑
p Wl pk |uW

lk〉. In
current implementations, this leads to an explicit dependence
on Wl pk and thus inconsistently different long-range expres-
sions depending on the specific Wannier gauge. The terms
associated Aspk instead restore a Wannier gauge independence
to lowest order in q.

In addition, the Aspk term also improves interpolation qual-
ity of the deformation potential at quadrupolar order. We show
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FIG. 1. Deformation potential, Eq. (64), for a specific state and
phonon mode as a function of q along high-symmetry directions
of (a) hexagonal BN monolayer and (b) InSe monolayer. Results
computed using DFPT with electrostatic open-boundary conditions
[18] (black empty circles) are compared with Fourier interpola-
tion where the long-range part of the dynamical matrix (D) and
electron-phonon matrix elements (G) includes dipole-dipole (DD),
dipole-quadrupole (DQ), quadrupole-quadrupole (QQ), monopole-
dipole (eD), and monopole-quadrupole (eQ). Adding the new Berry
connection term AW

spk (dashed black line) improves the interpola-
tion quality compared to the result without (red line). The potential
change V Hxc,E has been added as well (dashed black line) but has a
negligible effect (not visible).

in Fig. 1 two such examples in the hexagonal BN and InSe
monolayers cases. Note, however, that the oscillations in the
case of BN [Fig. 1(a)] are mild and, as it will be shown in
Sec. III, the quality of the interpolation is excellent in most
cases without taking the Aspk and V Hxc,E terms into account.
If not explicitly stated in the following, we neglect gauge
consistency and V Hxc,E .

G. Carrier mobility

Finally, once the matrix elements have been obtained on
ultradense grids, we can compute the hollow transverse low-
field phonon-limited carrier mobility in the presence of a small
finite magnetic field B [49],

μT
αβ (Bγ ) = −1

Snc

∑
kn

wkvnkα[∂Eβ
fnk(Bγ ) − ∂Eβ

fnk], (53)

where wk is the k-point weight in the first Brillouin zone
surface, vnkα the band velocity for the eigenstate εnk, and nc

the carrier concentration. The linear variation of the electronic
occupation ∂Eβ

fnk(Bγ ) due to an electric field E and in the
presence of a magnetic field B can be obtained by solving the

Boltzmann transport equation (BTE) [22,36,49][
1 − e

h̄
τnk(vnk × B) · ∇k

]
∂Eβ

fnk(B)

= evnkβ

∂ f 0
nk

∂εnk
τnk + 2πτnk

h̄

∑
qmν

wq∂Eβ
fmk+q(B)|gmnν (k, q)|2

×[(
nqν + 1 − f 0

nk

)
δ(εnk − εmk+q + h̄ωqν )

+ (
nqν + f 0

nk

)
δ(εnk − εmk+q − h̄ωqν )

]
, (54)

with τnk being the total scattering lifetime and the inverse τ−1
nk

is the scattering rate given by

τ−1
nk = 2π

h̄

∑
qmν

wq|gmnν (k, q)|2

× [(
nqν + 1 − f 0

mk+q

)
δ(εnk − εmk+q − h̄ωqν )

+ (
nqν + f 0

mk+q

)
δ(εnk − εmk+q + h̄ωqν )

]
, (55)

where f 0
nk is the Fermi-Dirac occupation function at equilib-

rium (in the absence of fields) and nqν is the Bose-Einstein
equilibrium distribution function. Finally, we obtain the drift
mobility as

μdrift
αβ = −1

Snc

∑
kn

wkvnkα∂Eβ
fnk, (56)

where ∂Eβ
fnk is obtained by solving Eq. (54) without B.

From this we can define the dimensionless Hall tensor,
which is defined as the ratio between the mobility with and
without magnetic field as [79,80]

rαβ (B̂) ≡ lim
B→0

∑
δε

[
μdrift

αδ

]−1
μT

δε (B)
[
μdrift

εβ

]−1

|B| , (57)

where B̂ is the direction of the magnetic field and Eq. (57) is
the tensorial generalization of Ref. [79]. The Hall mobility is
computed as

μHall
αβ (B̂) =

∑
γ

μdrift
αγ rγ β (B̂). (58)

A common approximation to Eq. (56) is called the self-
energy relaxation time approximation (SERTA) [23] and
consists in neglecting the second term in the right-hand side of
Eq. (54) which therefore does not need to be solved iteratively
and yields

μSERTA
αβ = −e

Snc

∑
kn

wk
∂ f 0

nk

∂εnk
vnkαvnkβτnk. (59)

III. RESULTS

In this work, we have decided to study six monolayers
(SnS2, BN, MoS2, InSe, phosphorene, and graphene) that
represent various cases, from polar to nonpolar materials,
semiconductors and semimetals, to highlight the accuracy of
the electron-phonon matrix element interpolation presented
in the theory section II. More specifically, we study SnS2

and hexagonal BN monolayers, for which phonon dispersions
including the effect of quadrupoles have already been studied
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in Ref. [66], as validation of our theory and implementation.
We then choose MoS2, InSe, graphene, and phosphorene for
their technological relevance and richness, and their extensive
investigations available in the literature. Finally, we study
bulk SrO where the quadrupole tensor is null by symmetry
to highlight the importance of the Berry connection term. We
note that dynamical quadrupoles are zero in centrosymmetric
crystals where all the atoms are placed in centrosymmetric
sites, which are fairly common [52].

A. Computational details

In the practical interpolation of gLmnν , we shall follow the
common practice [31,62] of extending Eqs. (37) and (43) to
finite G vectors by incorporating a sum over G and replacing
every occurrence of q by G + q. This replacement emulates
the periodic nature of the potential and should be seen as a
model which numerically improves the quality of the inter-
polation of the matrix elements beyond the long-wavelength
limit. The Cartesian short-range matrix elements in real space
gSmnκα (Rp, Rp′ ) are Fourier interpolated in Bloch space and the
long-range contribution is added:

gmn,κα (k, q) = gSmn,κα (k, q) +
∑

G �=−q

∑
sp

Umsk+q+G

× 〈
uW

sk+q+G

∣∣V L
q+Gκα

∣∣uW
pk

〉
U †

pnk. (60)

Finally, the interpolated electron-phonon matrix element is
rotated in the mode basis to recover Eq. (1):

gmnν (k, q) =
[

h̄

2ων (q)

] 1
2 ∑

κα

eκαν (q)√
Mκ

gmn,κα (k, q). (61)

We further obtain the long-range matrix elements in the mode
basis from the rotation of Eq. (43) as

gLmnν (k, q) =
[

h̄

2ων (q)

] 1
2 ∑

κα

eκαν (q)√
Mκ

gLmn,κα (k, q), (62)

where we define the monopole-dipole contribution gL,eD
mnν by

setting Q = 0 in Eq. (37) and the monopole-quadrupole one
gL,eQ

mnν by setting Z = 0 in Eq. (37).
We illustrate the effect of summing gL over the grid of G

vectors in Fig. 2 for the case of SnS2 which shows a small
improvement. Therefore, instead of using the purposely large
value of L assumed in deriving Eq. (37), in our calculations
we shall choose an optimal value of L such that not all the
G �= 0 contributions are filtered out. To this end, we follow
the approach successfully employed in Ref. [66] to interpolate
the IFC, which consists in taking the value of L that minimizes
the sum of the real-space short-range IFC (�S ):

d (L) = 1

N

∗∑
κκ ′l

∑
αβ

∣∣�S
κα,κ ′β (0, l )

∣∣, (63)

where the asterisk indicates that the κ = κ ′ terms are excluded
in the reference unit cell (l = 0) and N is the number of
cells in the real-space supercell. The optimal values of the L
parameter using Eq. (63) are shown in Fig. 3 for the materials
studied in this paper. We also proceed following Ref. [66] to

FIG. 2. Comparison between the deformation potential (64) of
the conduction band of SnS2 where the initial state is k = � along
high-symmetry lines interpolated using Eq. (60) with (dashed red
line) and without (orange line) the sum over G vector. We used
16×16×1 coarse k-point and q-point grids. The interpolation of the
LA mode is slightly improved with the sum over G vector. The LO2

mode occurs at higher deformation potential and is not shown.

interpolate the phonon frequencies and eigenvectors with the
formulas reported in Appendix B.

We perform all calculations within density functional the-
ory (DFT) and density functional perturbation theory (DFPT)
[15,16] using the QUANTUM ESPRESSO (QE) [81,82] and
ABINIT [56,57,83,84] suites of codes, with plane-wave ba-
sis sets and pseudopotentials to include the effects of core

FIG. 3. Average and normalized short-range interatomic force
constant as a function of the L parameter using Eq. (63). They have
been divided by their value at the minimum to be able to compare
them.

155424-9



SAMUEL PONCÉ et al. PHYSICAL REVIEW B 107, 155424 (2023)

TABLE I. Cartesian components of the dynamical dipole Z (e) and quadrupole Q (ebohrs), separation length L (bohrs), dielectric and
polarizability tensors in atomic units for SnS2, MoS2, BN, InSe, and P monolayer. Only independent components are shown.

Sn S1 Mo S1 B N In1 Se2 P

Zκxx 4.813 −2.407 −0.988 0.494 2.685 −2.685 2.444 −2.444 0.000
Zκyz – – – – – – – – 0.011
Zκzy – – – – – – – – 0.351
Zκzz 0.343 −0.172 −0.070 0.035 0.246 −0.246 0.169 −0.169 0.000
Qκxxy – 3.699 −5.533 −0.391 4.261 0.384 −7.158 −1.547 −1.732
Qκxxz – – – – – – −1.042 0.450 0.206
Qκyxx – 3.699 −5.533 −0.391 4.261 0.384 −7.158 −1.547 −15.68
Qκyyy – −3.699 5.533 0.391 −4.261 −0.384 7.158 1.547 −2.256
Qκyzz – – – – – – – – 0.238
Qκyyz – −0.298 – −0.174 – – −1.042 0.450 0.213
Qκzxx – −2.932 – 7.858 – – −7.116 −1.167 −8.970
Qκzyy – – – – – – −7.116 −1.167 1.448
Qκzzz – 0.230 – −0.297 – – −0.369 0.395 0.341
Qκzyz – – – – – – – – 0.429
ε‖

xx 3.079 6.105 1.591 3.777 3.838
ε‖

yy 3.079 6.105 1.591 3.777 4.898
ε⊥ 1.226 1.299 1.098 1.342 1.215
α‖

xx 6.632 13.050 1.881 9.043 9.036
α‖

yy 6.632 13.050 1.881 9.043 12.40
α⊥ 0.720 0.765 0.310 1.088 0.683
L 9.0 10.5 5.1 9.3 28.0

electrons. In QE we introduce a cutoff on Coulomb inter-
actions [18] to prevent spurious interactions with artificial
periodic replicas of the monolayers in the vertical direction.
The macroscopic dielectric tensor and dynamical Born effec-
tive charges are computed within QE, while the dynamical
quadrupoles are computed using the linear response imple-
mentation in ABINIT. In the latter case, the same computational
parameters as in QE are considered, including the same pseu-
dopotentials, although without nonlinear core corrections and
without spin-orbit coupling. All resulting material parameters
are summarized in Table I. First-principles results for elec-
tronic eigenvalues, phonon frequencies, and electron-phonon
matrix elements are interpolated on ultradense Brillouin-zone
grids using a generalized Wannier-Fourier approach [53,54]
using EPW [55] and WANNIER90 [85]. Details about the Wan-
nier functions used in this study for interpolation as well
as interpolated electronic band structures are presented in
Appendix D, while here we provide a brief description of
the systems investigated and the corresponding parameters
adopted in the QE simulations.

SnS2 crystallizes in the trigonal P3̄m1 [164] space group
with point group 3̄m. For better comparison with Ref. [66], we
use the same lattice parameter of 6.837 bohrs with 40 bohrs of
vacuum and the two sulfur atoms positioned 2.774 bohrs away
from the Sn layer. We also use the same norm-conserving
pseudopotential [86] from PSEUDODOJO [87] within the local
density approximation (LDA) [88]. A plane-wave cutoff of
160 Ry and a 16×16×1 k-point grid is adopted. DFPT cal-
culations are performed on a 16×16×1 q point with a tight
10−24 threshold on the perturbed wave function. The resulting
in-plane and out-of-plane dielectric tensor and Born effective
charges are given in Table I. As in the original publication
[66], we neglect spin-orbit coupling (SOC) in SnS2.

We consider also monolayer hexagonal BN (h-BN), both to
compare our results with the phonon frequencies of Ref. [66]
but also because h-BN has attracted much attention in recent
years due to its high dielectric constant, wide band gap, chem-
ical inertness, flexibility, and good mechanical strength [89].
It is also seen as one of the best dielectric interface materi-
als for novel electronics. We use the same lattice parameter
as Ref. [66] of 4.689 bohrs with 40 bohrs vacuum and the
same scalar relativistic norm-conserving LDA pseudopoten-
tial without SOC. We choose a 160-Ry plane-wave energy
cutoff with 16×16×1 k-point and q-point grids and a tight
10−20 threshold on the perturbed wave function.

Next, we study the prototypical TMD monolayer MoS2 for
its technological relevance and because many theoretical and
experimental data exist for this material. MoS2 is a piezoelec-
tric material with an experimental relaxed-ion piezoelectric
coefficients of 2.9 ×10−10 C/m [90]. The primitive cell con-
tains three atoms with broken inversion symmetry and space
group P6̄m2. In crystal coordinates, the Mo atom occupies
the [ 1

3 , 2
3 , 0] position while the two S atoms have [ 2

3 , 1
3 ,±z]

coordinate. We use fully relativistic norm-conserving Perdew-
Burke-Ernzerhof (PBE) [91] pseudopotentials that allow to
introduce SOC effects self-consistently in the calculations
and that have been generated using the ONCVPSP code [86]
and optimized via the PSEUDODOJO initiative [87], taking the
4s2, 4p6, 4d5, 5s1 as valence states for Mo and 3s2, 3p4

as valence states for S. The electron wave functions are ex-
panded in a plane-wave basis set with kinetic energy cutoff
of 140 Ry. We perform response calculations using DFPT
on 18×18×1 electron and 18×18×1 phonon grids to ensure
good convergence of the dielectric properties. After structural
relaxation, we obtain a lattice parameter of 6.020 bohrs with
a 5.907-bohrs atomic distance between the two sulfur atoms
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FIG. 4. Comparison between the electronic band structure of SnS2, MoS2, graphene, hexagonal BN, InSe, and phosphorene between a
direct density functional theory calculation (gray lines) and the Wannier interpolated bands along high-symmetry directions. In some case, we
use a different set of Wannier functions for the valence (blue) and conduction (red) bands. The zero in the energy axis is aligned to be at the
valence band maximum.

in the out-of plane direction with a direct DFT band gap at K
of 1.60 eV and large spin-orbit splitting of 148 meV of the
valence band maximum, while the conduction band minimum
has a much smaller 3-meV splitting. The momentum-averaged
electron and hole effective masses at the band edges are
0.42 me and 0.52 me, respectively. These values are in
agreement with previous theoretical and experimental works
[40,92].

We study also monolayer InSe, which is a piezoelectric
material with a calculated piezoelectric coefficient of 0.57
×10−10 C/m [93]. Due to its high carrier mobility [94–97],
it is considered a good candidate for post-silicon electronics.
Also in this case, we use fully relativistic norm-conserving
PBE pseudopotentials [87], which include 4d10, 5s2, and 5p1

as valence states for In and 3d10, 4s2, and 4p4 as valence
states for Se. The electron wave functions are expanded in
a plane-wave basis set with kinetic energy cutoff of 160 Ry.
For the response calculations, we use 16×16×1 electron and
16×16×1 phonon grids to ensure good convergence of the
dielectric properties. After structural optimization, we obtain
a lattice parameter of 7.721 bohrs, in close agreement with
prior studies that found values ranging from 7.46 to 7.728
bohrs [98–102]. We also find an In-In bond length of 5.333
bohrs and an In-Se bond length of 4.978 bohrs.

We also examine graphene, being the seminal nonpolar 2D
material [103], whose transport properties are well studied
[104]. It therefore serves as a reference test case to ensure
our scheme works also in (semi)metals, where screening plays
a relevant role but the presence of long-range contributions
cannot be discarded a priori. In contrast to Ref. [27] that
focuses on doped graphene, here we compute the intrinsic
carrier mobility, i.e., assuming the Fermi level to be at the
Dirac point, with electrons and holes being purely generated
by thermal effects and not by doping. We use a relativistic
norm-conserving PBE pseudopotential with a 100-Ry plane-
wave energy cutoff, a cold smearing [105] of 7.5 mRy, and
a dense 96×96×1 k-point grid coupled with a 18×18×1 q-
point grid for the response calculations. The computed relaxed

lattice parameter is 4.661 bohrs, close to the experimental one
of 4.648 bohrs [106].

The last material that we investigate in this work is phos-
phorene, an elemental group-V 2D material, which displays
a buckled orthorhombic structure with four atoms per unit
cell and space group Pmna, a direct band gap promising
for optoelectronic applications [107], and large mobility and
on/off ratios in field-effect transistors [108–111]. We adopt
a relativistic norm-conserving PBE pseudopotential with a
160-Ry plane-wave energy cutoff and a 16×16×1 k-point
grid coupled with a 16×16×1 q-point grid for the response
calculations. A denser 32×24×2 k-point grid is considered
for the ABINIT dynamical quadrupole calculation. The calcu-
lated lattice parameters of phosphorene are a = 6.242 bohrs
and b = 8.741 bohrs and an out-of-plane buckling distance of
3.986 bohrs.

Finally, we report for each material the choice of initial
projections for the Wannier functions in Appendix D and
show in Fig. 4 that interpolated electronic band structures
reproduce perfectly the direct DFT calculations.

B. Phonon dispersion

We now analyze the effect of the out-of-plane electrostat-
ics, dipoles, and quadrupoles on the phonon dispersion of
all the materials along high-symmetry lines of the Brillouin
zone. We compare in Fig. 5 the phonon dispersion of BN
monolayer calculated with direct DFPT (black empty circles)
with a Fourier interpolation where the long-range dynami-
cal matrix includes either dipoles only D(DD) [Eq. (B3)] or
dipole-dipole, dipole-quadrupole, and quadrupole-quadrupole
contributions D(DD+DQ+QQ) [Eqs. (B3)–(B5)]. We also
show the results obtained using the 2D approach for dipole-
dipole interactions of Ref. [64], D(DDS) using Eq. (B6). In the
case of BN, the phonon frequencies with or without dynamical
quadrupoles are numerically the same. This was also observed
in the case of many bulk materials [36] but we stress that even
in these cases, the eigenvectors associated with these phonon
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FIG. 5. Phonon dispersion of BN monolayer calculated with direct density functional perturbation theory calculations (black empty circles)
compared with Fourier interpolation where the long-range part of the dynamical matrix (D) includes dipole-dipole with the scheme of
Refs. [63,64] [DDS, Eq. (B6)], dipole-dipole [DD, Eq. (B3)], dipole-quadrupole [DQ, Eq. (B4)], and quadrupole-quadrupole [QQ, Eq. (B5)].
(b), (c) Energy and momentum magnification.

modes are not the same, yielding, for example, different de-
formation potentials.

However, this finding is not general. For example, in the
case of the TO1 and TO2 modes of SnS2, a clear difference
is observed between the phonon frequencies with and without
quadrupoles around the zone center, as shown in Fig. 15 in
Appendix E. A similar observation can be made for InSe
in Fig. 15, where the TA, LA, and LO3 modes show small
differences. This has been observed before [66] and confirmed
here. We also mention that in piezoelectric bulk materials, the
quality of the phonon interpolation can be improved by using
quadrupoles [72].

Coming back to the case of BN, we observe an important
difference between the DDS approximation and the DD case
for the ZO branch interpolation close to �. While the DDS
solution approaches the zone center quadratically, the DFPT
results display linearity and a derivative discontinuity at �.
This behavior of the DDS approach is due to the neglect of
the out-of-plane electrostatics given by the second term in
Eq. (B3). Interestingly, in the case of MoS2 and phosphorene
shown in Figs. 15 and 16 there are no visible differences in the
phonon dispersion between the three approaches. We nonethe-
less mention that a 3D long-range scheme would instead fail
[64].

Finally, the case of the phonon dispersion of graphene
is shown in Fig. 16 of Appendix E where we do not use
any long-range treatment due to the semimetallic nature of
graphene. The agreement with direct DFPT is excellent and
the parabolicity of the flexural ZA mode is recovered.

Overall, we can thus conclude that, although some differ-
ences can be observed between DFPT results and interpolated

phonon dispersions without quadrupole effects, they are
always quite small. This is, however, not the case for the scat-
tering potential where much bigger discrepancies are found
and the effect of dynamical quadrupoles becomes crucial.

C. Deformation potential

We now turn to the assessment of the accuracy of the
various interpolation schemes for the scattering potential
presented in this work. For an easier comparison of the
electron-phonon coupling, we compute the total deformation
potential [61,112]:

Dν (k, q) = 1

h̄Nw

[
2ρSh̄ων (q)

∑
mn

|gmnν (k, q)|2
]1/2

, (64)

where the sum over bands is carried over the Nw states of the
Wannier manifold (or a subset), and ρ is the mass density
of the crystal. Equation (64) has the advantage to factor out
the contribution from the phonon frequency ων (q) and to sum
multiple electronic bands at once.

We start by presenting in Fig. 6 the deformation poten-
tial of the conduction band of SnS2 where the initial state
is located at k = � and the final state spans high-symmetry
directions. The first striking feature is that, differently to what
typically happens in 3D systems, the coupling to the longi-
tudinal optical LO2 mode, also called Fröhlich mode, goes
to a finite value with a cusp in the long-wavelength (q → 0)
limit [63]. The finite value can be computed analytically from
the knowledge of the Born effective charges and macroscopic
dielectric function only by considering the q → 0 limit of
Eq. (37) without quadrupole. We verify that this limit is the
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FIG. 6. (a) Deformation potential showing all phonon modes along high-symmetry lines and computed at k = � for the conduction band
of SnS2 monolayer calculated with direct density functional perturbation theory (black empty circles) compared with Fourier interpolation
where the long-range part of the dynamical matrix (D) and electron-phonon matrix elements (G) includes dipole-dipole (DDS) and monopole-
dipole (eDS) with the scheme of Ref. [63], dipole-dipole (DD), dipole-quadrupole (DQ), quadrupole-quadrupole (QQ), monopole-dipole
[eD, Eqs. (62), (43), and (37) with Q = 0], and monopole-quadrupole [eQ, Eqs. (62), (43), and (37) with Z = 0], all with a 40-Å vacuum.
(b) Momentum and deformation potential range zoom of (a). (c) Comparison of the deformation potential between a 3D long-range scheme
with quadrupoles for vacuum sizes ranging from 40 to 80 Å with the deformation potential with the 2D long-range scheme and dynamical
quadrupoles. (d) Deformation potential range zoom of (c). (e)–(h) Show the deformation potential of InSe where (f) is a momentum and
deformation potential range zoom of (e); (g) is a deformation potential range zoom of (f) where the results with quadrupoles are compared
with and without the Berry connection term A; and (h) is a comparison of the deformation potential in the quadrupole case for different coarse
k-point and q-point grids with quadrupoles but without the A term.

same as the dipole approximation of Eq. (40). This is a general
feature of all 2D polar materials.

In contrast, in the case of bulk materials the polar Fröhlich
interaction diverges as 1/|q| in the long-wavelength limit as
can be seen with the dipole term of Eq. (C10). It has been
suggested in the past [25] that a good approximation to the 2D
deformation potential could be obtained by using the 3D long-
range formulation and increasing the vacuum space. However,
as seen in Figs. 6(c) and 6(d), the deformation potential con-
verges slowly with the vacuum distance making it a difficult
approach in practice.

If we now focus on the low region of the deformation
potential close to the zone center of SnS2 [Fig. 6(b)], we can
see that the D(DDS)+G(eDS) in-plane dipole of Eqs. (B6)
and (40) is a good approximation to the D(DD)+G(eD)
dipole approach of Eqs. (B3) and (60) with Q = 0. Still,
both approaches fail to reproduce correctly the DFTP results,
especially for the TO1 and ZO1 modes, both quantitatively and
qualitatively. Adding the contribution of quadrupoles through
Eqs. (B4), (B5), and (60) allows to recover the first-principles
results, showing that including dynamical quadrupoles is
therefore crucial to accurately describe the scattering potential
in SnS2 monolayer.

Another case in which the quadrupoles have a significant
impact is InSe monolayer, shown in Figs. 6(e)–6(h). In InSe,
there are two mirror-even A′ out-of-plane modes, the ZO1

and ZO3 modes, which are depicted in a schematic way in
Fig. 6(f). Both contribute to the deformation potential and
are strongly affected by quadrupole corrections. In contrast,
the ZO2 mode is mirror odd with respect to the z = 0 plane
and of symmetry A′′ which means that its contribution to the

deformation potential is forbidden in this case. However, even
with quadrupoles the LA mode still oscillates significantly. In
Fig. 6(g) we show that including the new Berry connection
term AW

spk yields a much better interpolation of the LA mode.
and that correct interpolation cannot be achieved without it
by brute force coarse grid convergence as shown in Fig. 6(h).
Also here, we verified that the V Hxc,E (r) term in Eq. (43) was
negligible.

The deformation potentials for MoS2, h-BN, phosphorene,
and graphene are instead reported in Fig. 7. In the case of
MoS2 shown in Figs. 7(a) and 7(b), only the ZO1 and LO2

modes strongly couple to the electrons in the long-wavelength
limit. For the ZO1 mode, the DFPT coupling approaches a
constant value at � linearly in q with a significant quadratic
component that becomes dominant already at small wave
vectors. When only dipole contributions are retained, the in-
terpolated deformation potential is purely linear for q → 0,
and the inclusion of quadrupoles is essential to recover the
quadratic correction. We also notice a small improvement in
the LA mode when quadrupoles are added. The effect of the
Berry connection term to restore gauge covariance to lowest
order in q under Wannier gauge transformations in MoS2 is
discussed in our joint paper [67]. Interestingly, in the case
of h-BN in Figs. 7(c)–7(e), the inclusion of 2D quadrupoles
has little effect because the out-of-plane mode is forbidden
by symmetry. As for the case of InSe, we observe a slow
convergence of the LA mode with coarse grids density in
BN. Moreover, in Fig. 7(f) we show the deformation potential
of phosphorene. This is an interesting case because it has
no polar Fröhlich component since the in-plane Born effec-
tive charges vanish, although the out-of-plane Born effective
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FIG. 7. (a), (b) Comparison of the deformation potential of the conduction band of MoS2 monolayer at the k = K point with the three
schemes to treat the long-range interaction during interpolation, as well as with the Berry connection term (dashed black line), compared with
direct DFPT calculation (black empty circles). (c)–(e) Deformation potential of the valence bands of h-BN at the k = K point for the same
comparison as in (a) and (b). (f) Deformation potential of the conduction bands of phosphorene at the k = � point. (g) Deformation potential
of graphene at the Dirac point (DP) with no long-range treatment for two coarse grids compared with DFPT references (black empty circles).

charge is 0.351 as reported in Table I. Remarkably, phospho-
rene has instead very large quadrupoles that strongly impact
the scattering potential, especially for the ZO1, ZO2, and TO2

modes that are finite in the long-wavelength limit. We note
that the coupling to the ZO1 mode is suppressed by symmetry
along the �-X high-symmetry direction. We report the case of
graphene in Fig. 7(g), which is semimetallic and calculations
do not include any long-range treatment. We find that the
interpolation of the deformation potential is excellent without
long-range treatment and therefore proceeds as such.

D. The 3D case

Finally, we decide to revisit the case of bulk SrO that
we studied in Ref. [36]. Indeed, the symmetry in SrO yields
a null dynamical quadrupole tensor such that the poor in-
terpolation quality in Ref. [36] could not be improved by
including multipolar terms beyond dipoles and should there-
fore be an ideal platform to test the importance of the new
Berry connection term. We performed the same calculation
as in Ref. [36] but without SOC and with a 20×20×20
coarse k-point and q-point grids. We here only consider the
Wannierization of the highest three valence bands with three
Wannier functions of p character and centered around the
oxygen atom. In Figs. 8(a)–8(c), 8(g)–8(i), and 8(m)–8(o)
we present the direct DFPT calculation of all the zone-
centered nonzero electron-phonon matrix elements along a
high-symmetry line, rotated in the smooth Wannier gauge

and summed over all the Wannier functions. The real part
is discontinuous at q=� and the imaginary part diverges,
preventing accurate interpolation. To overcome this problem,
we remove the long-range part using Eq. (43) and compare
the resulting short-range solution with and without the Berry
connection AW

spk and the V Hxc,E terms. We find the latter to
be negligible while the Berry connection term is crucial for
a smooth real part of the matrix elements. Importantly, and
in analogy with the 2D case, we tune the range-separation
parameter L2 in Eq. (C5) and we determine that a value of
L2 = 4 bohrs2 is optimal. In Fig. 8 we can see that the absolute
value of the matrix elements is the same for strontium and
oxygen displacements while their imaginary parts are almost
opposite. Interestingly, we find that neglecting the Berry con-
nection term has a larger impact on the imaginary part of
the short-range term in the case of oxygen, Fig. 8(k), than
strontium, Fig. 8(e). We also find that along the �-X high-
symmetry direction, Figs. 8(m)–8(r), the short-range matrix
elements are compressed closer to the zone center due to the
finite mesh. We therefore expect a lower interpolation quality
along that direction that can be improved with a denser coarse
grid or a gauge restoration to higher order in q.

Importantly, the Berry connection term has two effects: (i)
it improves the interpolation quality by removing long-range
effects at quadrupolar order [see Eqs. (46) and (47)], and (ii)
it restores gauge independence to lowest order in q.

We first show point (i) in Fig. 9 where the improvement
in interpolation quality resulting from the use of the Berry
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FIG. 8. Real, imaginary, and absolute values of the electron-phonon matrix element g as a function of phonon momentum q of bulk
SrO where we perform a sum over all Wannier functions in the calculation which describes the valence band at the k=� point and for the
displacement of the Sr atom (a)–(f), O atom (g)–(l) in the y Cartesian direction, O atom (m)–(r) in the direction of the X point, respectively.
The other displacements are null along the �L line. (a)–(c), (g)–(i) Direct DFPT results in the smooth Wannier gauge as well as the short-range
component (d)–(f), (j)–(l) with the new gauge restoring term A and the local field’s response to an electric field V E as well as without each
term separately.

connection term is striking. The spurious oscillations are re-
moved and the interpolation quality systematically improves
and is excellent for all modes except for the TO modes close
to the zone center where a smooth overestimation is observed.
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FIG. 9. Comparison of the deformation potential of the valence
band of SrO at the k = � point with the long-range interaction
including or not the Berry connection term AW

spk during interpolation,
and compared with direct DFPT calculation (black empty circles).

We attribute this overestimation to the sharply varying short
range shown in Figs. 8(m)–8(r) in the X and K directions.
Regardless, the improvement is clear and showcases the im-
portance and applicability of our findings about the Berry
connection term in 2D and 3D materials.

To highlight the point (ii), we show in Fig. 10 the real part
of the electron-phonon matrix element g along the X q-point
direction where we perform a sum over all Wannier functions
in the calculation which describes the valence band at the
k=� point and for the displacement of the oxygen atom in the
y Cartesian direction. Explicitly, the green dots in Figs. 10(a)
and 10(c) are obtained via direct DFPT calculations of the real
part of the electron-phonon matrix elements in the Wannier
basis while the dots and diamonds in Figs. 10(b) and 10(d) are
the corresponding short-range components with and without
the new Berry connection term A [see Eqs. (1) and (2) of the
Supplemental Material of our companion paper [67] for more
details]. We show in Fig. 10 that the Berry connection term
ensures smoothness of the real part of the electron-phonon
matrix element which is also preserved if we shift all the
Wannier centers by a lattice vector. Moreover, it preserves,
to lowest order in q, the gauge covariance when the Wannier
centers are translated. The gauge covariance is demonstrated
by multiplying the short range obtained with and without
AW

spk by the gauge transformation Wspk = e−ik·R and shown in
Fig. 10(d) with dashed and plain gray lines, respectively. As
can be seen, only the case with the Berry connection recovers
the results obtained by the gauge transformation, validating
gauge covariance for q → 0. Even stronger, we compare our
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FIG. 10. Real part of the electron-phonon matrix element g as
a function of phonon momentum q of bulk SrO where we have
performed a sum over all Wannier functions in the calculation which
describe the valence band at the k=� point and for the displacement
of the oxygen in the y Cartesian direction. We show in (a) the
direct DFPT results in the smooth Wannier gauge where the Wannier
centers are located in the primitive cell as well as (b) the short-range
component gS with and without the new Berry connection term A as
well as an exact overlap reference using Eq. (65). In (c) and (d), we
show the same results but where all the Wannier centers are located
one lattice site away in the X direction. In both (c) and (d) we show
gauge covariance by multiplying (a) and (b) with the corresponding
gauge transformation.

results to lowest order in q with the exact overlap solution by
directly computing the wave-function overlap instead of using
Eq. (46), which gives in the bulk case

〈
uW

sk+q

∣∣V L
qκα

∣∣uW
pk

〉 = 4πe f (q)

�|q|2ε̃(q)
e−iq·τκ iq · Z‖

κα (q)

× 〈
uW

sk+q

∣∣uW
pk

〉
. (65)

As seen with a pink line in Fig. 10(d), the short-range
matrix element recovers the exact overlap results in a large
momentum region close to the zone center. However, in con-
trast to the position operator for the Berry connection, the
exact overlap cannot be easily interpolated but we see in
Figs. 10(b) and 10(d) that the Berry connection term makes
the short-range matrix element close to the exact overlap
solution.

E. Carrier mobility

Now that we have validated and assessed the quality of
the 2D deformation potentials in Sec. III C, we proceed to
study the intrinsic drift and Hall carrier mobility of the six
monolayers considered here using Eqs. (56) and (58).

To be clear, in all calculations the intrinsic carrier mobility
is obtained by placing the Fermi level in the band gap and
then determining the position of the Fermi level such that

the tail of the Fermi-Dirac distribution, for a given temper-
ature, gives a fixed carrier concentration. Here we choose
a carrier concentration of 1010 cm−2 and we verified that
the mobilities are independent of that value. In the case of
graphene, the Fermi level is placed at the Dirac point and the
carrier concentration is computed accordingly and reported.
For each material, a convergence study is performed to find
the smallest energy window required to compute the mobility
and Hall factors. The values of the resulting energy windows
are reported for each material in Table II. In all mobility
calculations, if not otherwise stated, we include the effect
of dynamical quadrupoles for the interpolation of electron-
phonon matrix elements and dynamical matrices. We use an
adaptive smearing in all calculations as described in Ref. [36].
The used coarse k-point and q-point grids are also reported in
Table II for each material. Finally, band velocities are obtained
by direct evaluation of the nonlocal part of the pseudopotential
[see Eq. (24) of Ref. [36] for example].

We start by looking at the electron mobility of SnS2 as a
function of fine momentum grids. As explained in Ref. [36],
the carrier mobility and Hall factor converge linearly as a
function of inverse fine grid density. One can therefore ex-
trapolate the results to the theoretical infinite grid density
as shown in Table II for all materials. In the case of SnS2,
we obtain a room-temperature electron drift mobility in the
SERTA of 16.5 cm2/Vs, which increases to 23.4 cm2/Vs if
the BTE is solved self-consistently. If we account for the Hall
factor, the electron Hall mobility is 23.9 cm2/Vs. However,
as it can be seen in Table II, the extrapolated values are
usually quite close to their high-density grid values. For sim-
plicity we therefore report the carrier mobility as a function
of temperature and spectral decomposition results at finite
(although very fine) grid density. In the case of SnS2, the
temperature dependence of electron mobility and Hall factor
computed with a 600×600×1 fine k- and q-point grids is
shown in Fig. 11(a) where one can see, despite differences
in deformation potential, that there is almost no visible effect
of including quadrupoles on the mobility and Hall factor. As
seen in Table III, the only important effect is when we neglect
long-range treatments entirely, which yields 31 cm2/Vs. In
all cases, the room-temperature values that we report here
are in stark contrast with the only prior computed electron
mobility of 756.6 cm2/Vs using deformation potential the-
ory which only accounts for acoustic scattering [113]. This
difference can be explained by looking at the spectral de-
composition of the electron scattering rate of SnS2 shown in
Fig. 12(a) where most of the scattering comes from the optical
modes at 35 meV associated with the LO2 and ZO1 phonons.
Experimentally, a field-effect mobility of 0.04 cm2/Vs was
reported for SnS2 obtained with exfoliation and characterized
via a field-effect transistor with a high-κ dielectric screening
[114], 18 cm2/Vs for SnS2 bulk crystals [115], 50 cm2/Vs
for SnS2 monolayer field-effect transistors grown with chem-
ical vapor deposition [116], 230 cm2/Vs for a thin SnS2

field-effect transistor screened by a high-κ dielectric consist-
ing of deionized water [117], and 330 cm2/Vs was reported
for vertical SnS2 nanoflakes [118]. Given the range of ex-
perimental measurements available, the precise experimental
intrinsic electron mobility of SnS2 monolayer remains an open
question.

155424-16



LONG-RANGE ELECTROSTATIC CONTRIBUTION TO … PHYSICAL REVIEW B 107, 155424 (2023)

TABLE II. Room-temperature fine grid convergence of drift and Hall mobility using adaptive smearing and dipole velocity. The symbol
∞ for the fine grids means that the value is obtained by extrapolating the linear dependence on inverse grid size as explained in Ref. [36].
SERTA mobility refers to the mobility in the self-energy relaxation time approximation. The “-e” or “-h” suffix after the material’s name refers
to electron or hole mobility, respectively. In all cases we report the mobility including quadrupoles, except for graphene. For phosphorene,
results along the two principal directions (xx and yy) are reported separately.

Window Coarse grids Fine grids SERTA mobility BTE mobility BTE Hall Hall mobility
Material (eV) (k/q) (k/q) (cm2/Vs) (cm2/Vs) factor (cm2/Vs)

SnS2-e 0.3 162 3002 16.79 23.52 0.979 23.03
4002 16.78 23.58 0.992 23.39
5002 16.68 23.45 0.999 23.43
6002 16.69 23.49 1.000 23.49
7002 16.62 23.42 1.004 23.51
∞ 16.53 23.38 1.023 23.92

MoS2-e 0.2 182 3002 116.66 134.39 1.066 143.26
4002 114.81 131.09 1.069 140.14
5002 115.95 132.37 1.069 141.50
6002 117.39 133.19 1.072 142.78
8002 116.84 132.75 1.074 142.57
∞ 117.20 131.78 1.078 142.06

MoS2-h 0.25 182 3002 60.04 72.70 1.576 114.58
4002 60.35 73.18 1.588 116.21
5002 60.55 73.33 1.594 116.89
6002 61.16 73.41 1.604 117.75
∞ 61.97 74.14 1.629 120.77

BN-e 0.4 162 2002 131.87 141.18 0.912 128.76
3002 130.64 143.28 0.903 129.38
4002 128.06 139.26 0.912 127.01
5002 127.27 138.87 0.909 126.23
6002 126.42 138.10 0.911 125.81
∞ 124.06 137.08 0.909 124.61

BN-h 0.4 162 2002 539.45 665.66 0.990 659.00
3002 501.15 641.54 1.016 651.80
4002 495.52 650.36 1.016 660.77
5002 485.26 640.82 1.015 650.43
6002 480.64 638.16 1.017 649.01
∞ 447.65 626.50 1.017 637.15

InSe-e 0.3 162 2002 68.90 122.20 1.085 132.59
3002 64.03 115.28 1.127 129.92
4002 63.05 113.07 1.132 128.00
5002 62.21 111.18 1.136 126.30
6002 61.67 110.26 1.139 125.59
8002 61.38 110.09 1.144 125.94
∞ 59.70 106.34 1.153 122.61

InSe-h 0.3 162 1002 0.42 0.56 1.534 0.86
2002 0.42 0.56 1.432 0.80
3002 0.42 0.56 1.420 0.80
4002 0.42 0.56 1.417 0.79
∞ 0.42 0.56 1.400 0.78

P-e (xx) 0.2 162 2002 31.58 31.44 1.172 36.85
3002 31.63 32.26 1.187 38.29
4002 31.69 32.25 1.193 38.47
5002 31.57 32.23 1.194 38.48
6002 31.62 32.22 1.197 38.57
∞ 31.64 32.18 1.206 38.81

P-e (yy) 0.2 162 2002 251.93 252.68 1.172 296.14
3002 249.18 254.97 1.187 302.65
4002 249.58 254.28 1.193 303.36
5002 247.70 253.73 1.194 302.95
6002 248.59 253.80 1.197 303.80
∞ 247.23 252.41 1.206 304.41
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TABLE II. (Continued.)

Window Coarse grids Fine grids SERTA mobility BTE mobility BTE Hall Hall mobility
Material (eV) (k/q) (k/q) (cm2/Vs) (cm2/Vs) factor (cm2/Vs)

P-h (xx) 0.3 162 2002 21.36 26.57 1.107 29.41
3002 21.40 26.39 1.108 29.24
4002 21.34 26.40 1.127 29.75
5002 21.21 26.27 1.147 30.13
6002 21.15 26.20 1.148 30.08
∞ 20.92 26.05 1.194 31.10

P-h (yy) 0.3 162 2002 553.77 504.52 1.107 558.50
3002 525.16 491.12 1.108 544.16
4002 511.78 480.22 1.127 541.21
5002 494.05 465.65 1.147 534.10
6002 494.57 464.75 1.148 533.53
7002 490.12 460.06 1.156 531.83
∞ 461.40 435.64 1.193 519.72

Graphene-e+h 0.5 122 10002 1437330 1224730 3.019 3697460
16002 1371750 1160470 3.423 3972289
20002 1366710 1174670 4.005 4704553
24002 1308210 1091250 3.820 4168575

∞ 1249560 1051630 4.549 4783865

FIG. 11. Electron and hole carrier drift BTE mobility including dipole-dipole (DD) in the long-range part of the dynamical matrix (D)
as well as the monopole-dipole (eD) in the electron-phonon matrix elements (G) (plain salmon line), compared with also adding the dipole-
quadrupole (DQ) and quadrupole-quadrupole (QQ) term in D as well as monopole-quadrupoles (eQ) in the G (plain mauve line). The dashed
light green line are the Hall factor including dipoles and the dashed dark green line the same with also quadrupole contributions.
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TABLE III. Room-temperature drift and Hall mobility using adaptive smearing and dipole velocity with and without spin-orbit coupling
(SOC) included. SERTA mobility refers to the mobility in the self-energy relaxation time approximation, while BTE refers to the mobility
calculated using the iterative solution of the Boltzmann transport equation. The “-e” or “-h” suffix after the material’s name refers to electron
or hole mobility, respectively. The (k/q)-point grids reported in parentheses refer to the coarse and fine electron and phonon momentum
grids, respectively. We compare various long-range treatments where the long-range part of the dynamical matrix (D) and electron-phonon
matrix elements (G) includes dipole-dipole (DDS) and monopole-dipole (eDS) with the scheme of Refs. [63,64], dipole-dipole (DD), dipole-
quadrupole (DQ), quadrupole-quadrupole (QQ), monopole-dipole (eD), and monopole-quadrupole (eQ). We also report if the pseudopotential
includes nonlinear core corrections (NLCC) or not.

No SOC SOC

Drift mobility Hall mobility Drift mobility Hall mobility

Long-range SERTA BTE SERTA BTE SERTA BTE SERTA BTE
Material treatment (cm2/Vs) (cm2/Vs) (cm2/Vs) (cm2/Vs) (cm2/Vs) (cm2/Vs) (cm2/Vs) (cm2/Vs)

SnS2-e No long range 31.97 29.74 33.18 31.00
(162 k/q) D(DDS)+G(eDS) 16.35 23.28 17.59 23.38
(6002 k/q) D(DD)+G(eD) 16.70 23.49 17.98 23.56
without NLCC D(DD+DQ+QQ)+G(eD) 16.70 23.49 17.98 23.57

D(DD)+G(eD+eQ) 16.68 23.49 17.95 23.51
D(DD+DQ+QQ)+G(eD+eQ) 16.69 23.49 17.95 23.51

MoS2-e No long range 178.18 159.67 200.41 175.30 183.13 163.82 212.73 185.26
(182 k/q) D(DDS)+G(eDS) 157.58 152.71 178.53 166.51 160.76 163.55 187.41 189.14
(5002 k/q) D(DD)+G(eD) 158.52 153.03 179.49 166.88 161.75 156.35 188.48 175.08
with NLCC D(DD+DQ+QQ)+G(eD) 158.70 153.19 179.70 167.09 160.73 155.27 186.42 173.70

D(DD)+G(eD+eQ) 113.78 129.90 119.90 136.51 115.98 132.40 124.33 141.58
D(DD+DQ+QQ)+G(eD+eQ) 114.24 130.22 120.44 136.90 115.95 132.37 124.37 141.57

MoS2-h No long range 14.38 14.18 34.52 32.65 119.03 108.08 431.59 345.76
(182 k/q) D(DDS)+G(eDS) 13.90 13.98 31.97 30.51 97.80 96.22 229.36 203.17
(5002 k/q) D(DD)+G(eD) 13.92 13.99 32.08 30.60 98.54 96.60 233.18 205.61
with NLCC D(DD+DQ+QQ)+G(eD) 13.95 14.02 32.07 30.60 98.90 96.48 231.06 203.24

D(DD)+G(eD+eQ) 11.63 13.07 22.10 22.54 59.84 72.45 94.22 94.437
D(DD+DQ+QQ)+G(eD+eQ) 11.62 13.06 22.19 22.64 60.55 73.33 96.49 117.42

BN-e
(162 k/q) D(DDS)+G(eDS) 96.94 61.86 166.26 175.55
(5002 k/q) D(DD)+G(eD) 98.32 62.88 168.55 178.98
without NLCC D(DD+DQ+QQ)+G(eD) 127.27 138.87 100.87 126.20

BN-h
(162 k/q) D(DDS)+G(eDS) 303.17 861.28 299.22 969.31
(5002 k/q) D(DD)+G(eD) 308.31 878.68 303.40 984.70
without NLCC D(DD+DQ+QQ)+G(eD+eQ) 485.26 640.82 472.67 650.22

BN-e No long range 148.07 168.58 313.96 405.16 148.06 168.57 313.94 405.14
(162 k/q) D(DDS)+G(eDS) 49.48 96.73 61.10 132.94 49.48 96.73 61.10 132.94
(5002 k/q) D(DD)+G(eD) 50.64 98.49 62.52 137.16 50.64 98.49 62.52 137.15
with NLCC D(DD+DQ+QQ)+G(eD) 53.25 97.08 65.66 133.33 53.25 65.66 97.08 133.32

D(DD)+G(eD+eQ) 100.50 151.81 120.67 206.72 100.50 151.80 120.66 206.70
D(DD+DQ+QQ)+G(eD+eQ) 101.38 128.89 153.62 235.15 101.38 128.88 153.62 235.13

BN-h No long range 1619.14 1369.60 1777.93 1469.98 1619.14 1369.60 1777.93 1469.98
(162 k/q) D(DDS)+G(eDS) 255.05 866.39 254.10 968.47 255.05 866.39 254.10 968.47
(5002 k/q) D(DD)+G(eD) 262.21 893.49 260.09 997.86 262.21 893.48 260.09 997.85
with NLCC D(DD+DQ+QQ)+G(eD) 276.68 903.90 273.30 1020.49 276.68 903.90 273.30 1020.49

D(DD)+G(eD+eQ) 613.67 596.56 738.28 745.53 613.67 596.56 738.28 745.53
D(DD+DQ+QQ)+G(eD+eQ) 636.38 837.63 617.34 847.13 636.38 837.62 617.34 847.12

InSe-e
(162 k/q) D(DDS)+G(eDS) 56.44 100.58 71.02 112.47 57.25 101.95 72.25 114.28
(6002 k/q) D(DD)+G(eD) 58.64 103.50 73.89 115.69 59.49 104.94 75.10 117.52
with NLCC D(DD+DQ+QQ)+G(eD+eQ) 60.88 108.95 78.85 123.86 61.67 110.28 79.96 125.53

InSe-h
(162 k/q) D(DDS)+G(eDS) 0.27 0.16 0.28 0.14 0.41 0.55 0.43 0.79
(4002 k/q) D(DD)+G(eD) 0.45 0.36 0.59 0.69 0.42 0.55 0.44 0.80
with NLCC D(DD+DQ+QQ)+G(eD+eQ) 0.46 0.36 0.59 0.69 0.42 0.56 0.44 0.80

155424-19



SAMUEL PONCÉ et al. PHYSICAL REVIEW B 107, 155424 (2023)

FIG. 12. Spectral decomposition of the electron (orange) and hole (green) scattering rates as a function of phonon energy at 300 K. The
rates are calculated as angular averages for carriers at an energy of 3 kBT/2 = 39 meV away from the band edges. The dashed lines represent
the cumulative integrals of the calculated rates, and add up to the carrier scattering rate τ−1

3/2kBT . The percentage indicates the contributions from
acoustic modes.

Next, we look at the mobility of MoS2 monolayer which
has a rich history. The first reports of high-mobility MoS2

monolayer date from 2011 using a HfO2 gate dielectric and
achieving about 200 cm2/Vs [6], quickly followed by early
first-principles predictions using Monte Carlo simulations and
reporting a mobility of 130 cm2/Vs [38]. Computationally,
the mobility was reported almost exclusively for electrons
with the exception of Ref. [46] which reported a value of
26 cm2/Vs for the hole mobility of MoS2, neglecting SOC,
a number that we confirm in Table III with a value of
23 cm2/Vs in our case. Previous theoretical values ranged
from 320 cm2/Vs to 410 cm2/Vs using LDA in the SERTA
[37,39,40,43], which reduce to 127 cm2/Vs by solving the
BTE iteratively [45]. In addition, theoretical results using the
PBE exchange-correlation functional and the BTE range from
97 to 150 cm2/Vs [19,44–46]. Comparison with experimen-
tal mobilities must be performed with care as many factors
influence the measurements, from the actual thickness of the
system (not necessarily a single layer) to the carrier density
of the material. In particular, exfoliated samples seem to out-
perform the ones grown by chemical vapor deposition (CVD)
with values ranging from 23 to 217 cm2/Vs for the exfoliated
samples [6,119–121] while the CVD ones range from 24 to
60 cm2/Vs [122–125] on various substrate and encapsulation.
One notable experiment is the hole mobility obtained for CVD
sample deposited on an SiO2 substrate and measured with Ag
contacts and four probes which gave a mobility of 76 cm2/Vs
[126].

We also find that MoS2 is a complex material with a
room-temperature electron drift and Hall mobility of 132 and
142 cm2/Vs, respectively. In agreement with experimental re-
ports, we find that the hole drift and Hall mobility are smaller

with values of 74 cm2/Vs and 121 cm2/Vs, respectively. The
temperature dependence of the mobility and Hall factor are
given in Figs. 11(b) and 11(d) and display a significant vari-
ation with temperature. We see that the Hall factor increases
with temperature both for electrons and holes and that the hole
Hall factor is significantly larger than unity, demonstrating
the importance of accounting for it when comparing to Hall
mobility measurements. The comparison with experimental
data as a function of temperature is discussed in our joint
paper [67].

What is particularly remarkable with MoS2 is that the
neglect of quadrupolar interaction during interpolation yields
an overestimation of the electron and hole room-temperature
Hall mobility by 23% and 76%, respectively. The neglect
of quadrupoles therefore leads to a situation where the hole
mobility is actually larger than the electron one, a remarkable
qualitative difference. Another important aspect is that the
neglect of SOC strongly suppresses the Hall hole mobility to
23 cm2/Vs by enhancing intervalley scattering [127], while
leaving the electron mobility almost unaffected (see Table III).
We also find in Table III that the most crucial aspect is to
include quadrupole corrections at the level of the electron-
phonon matrix elements. These results can be compared with
the state-of-the art one from Deng et al. [65] who included
a partial quadrupolar contribution to the in-plane fields and
obtained a room-temperature drift electron mobility in MoS2

of 176.6 cm2/Vs. Since these results are close to our values
with only 2D dipoles, we conclude that the scheme of Deng
et al. [65] misses most of the quadrupolar effects, in agreement
with the authors’ claim of a dipolar effect. Overall we find
that including SOC and dynamical quadrupoles in MoS2 is
also crucial to reproduce the temperature scaling with a T −1.08
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and T −1.46 dependence for electrons and holes, respectively, in
agreement with experiments [120,121,124,126].

Next, we turn to h-BN monolayers which are the second
material in our list to display differences upon quadrupole
inclusion, as seen in Figs. 11(f) and 11(i). h-BN is mostly
used as a support or encapsulation layer for graphene or other
2D materials and therefore its intrinsic mobility is seldom
investigated. In the literature, we found high-temperature hole
mobility reports of 18 cm2/Vs using the Van der Pauw–
Hall method [128] as well as 2 cm2/Vs with h-BN doped
through Mg implantation [129]. Interestingly, the hole mobil-
ity was also obtained by time-of-flight measurement and gave
35.5 cm2/Vs for holes and 34.2 cm2/Vs for electrons [130].
For the electron mobility, typical doping includes silicon or
carbon and gives high-temperature Hall mobility value of 48
cm2/Vs [129]. In addition, in the same experiment they also
measured the Hall hole mobility to about 70 cm2/Vs [129] at
high temperature. Therefore, even if not definitive, it seems
the hole mobility could be larger than the electron one in
h-BN.

We confirm this numerically and obtain a room-
temperature Hall electron and hole mobility of 124.61 and
637.15 cm2/Vs, respectively. The convergence of SERTA and
drift mobilities is reported in Table II. As for the case of
MoS2, the neglect of quadrupoles increases the Hall electron
and hole mobility to 179 and 985 cm2/Vs, respectively. This
is again a significant overestimation caused by the neglect of
quadrupoles which should be accounted for. We can rational-
ize this by noting in Fig. 12 that the materials for which the
effect of quadrupoles is predominant are the materials with
strong acoustic scattering since their piezoelectric constants
are directly related to their dynamical dipoles and quadrupoles
[131]. Such findings make sense as small corrections in the
low-energy region of the deformation potential close to the
zone center, such as the LA mode of h-BN shown in Fig. 7(e),
will have a strong contribution to the acoustic scattering and
hence noticeably reduce the mobility. Note that here we have
used the LDA scalar relativistic pseudopotential without non-
linear core correction (NLCC) for a direct comparison with
Ref. [66].

To assess the effect of exchange-correlation functional and
the effect of NLCC, we recomputed the mobility of h-BN
using a PBE fully relativistic norm-conserving pseudopoten-
tial with NLCC from the PSEUDODOJO table [87]. We use the
same quadrupole tensor, lattice, and convergence parameters
as for the LDA case above. The only difference being that we
used two Wannier functions located on the boron atom and of
initial pz and s characters, instead of six, for the conduction
band manifold. The detailed room-temperature mobilities are
reported in Table III showing an increased Hall mobility to
235 and 847 cm2/Vs for electron and hole, respectively. Inter-
estingly, both the electron and hole mobilities are unaffected
by the inclusion of SOC since the direct band gap is located at
the K point and composed of a single band whose degeneracy
is not lifted by SOC.

We now look at the results for InSe. There is quite a
large variability in the experimental results with values for the
electron mobility ranging from 10 to 1200 cm2/Vs
[94–97,132–135]. From the theoretical side, a study of the
mobility of bulk, few layers, and monolayer InSe [25] reports

a 120-cm2/Vs room-temperature electron and 0.5-cm2/Vs
hole mobility for the monolayer, respectively. However, the
system was treated as bulk with k and q points along the
vacuum directions such that it is worth to revisit this material.
By including the correct electrostatic boundary condition, the
electron mobility was found to be as large as 500 cm2/Vs
[13] (among the largest in 2D materials), an increase that
might also arise from the explicit inclusion of a large carrier
density (1013 cm−2) with the ensuing screening of the Fröh-
lich interaction and with a larger carrier velocity. The GW
effective mass of InSe was studied in Ref. [136] and after
including many-body renormalization effects, the calculated
electron effective masses of InSe are 0.12 and 0.09 in the
in-plane and out-of-plane directions, respectively. Gopalan
et al. [102] studied the BTE mobility of InSe monolayer
using Monte Carlo and found a low-field electron mobil-
ity 110 cm2/Vs at room temperature. Finally, Shi et al.
[137] obtained a room-temperature electron mobility of about
300 cm2/Vs and also discussed its variation with strain. In
general, the lack of horizontal mirror symmetry in materials
such as silicene and germanene yields a strong ZA coupling,
and correspondingly low mobilities. However in the materials
studied here such as InSe, MoS2, and BN, the scattering
potential linked with the flexural displacement is odd under
the mirror symmetry making these flexural modes forbidden
to first order and thus increasing mobility [138]. Interestingly,
we find that SnS2 is an exception to this rule [138] as it does
not have a horizontal mirror plane but still enjoys ZA mode
suppression as the conduction band of SnS2 is dominated
by spherically symmetric s-character orbitals around the Sn
atom, making that electron-phonon coupling inactive by sym-
metry.

Our computed Hall electron mobility is 122.6 cm2/Vs
while the hole mobility is heavily suppressed to 0.78 cm2/Vs
due to the Mexican-hat shape of the valence band, in agree-
ment with prior published values. The good agreement is due
to the fact that quadrupoles have very little impact in InSe
as seen in Figs. 11(g) and 11(j). We also look at the effect
of neglecting SOC, with results summarized in Table III. We
find that also here the electron mobility is weakly affected by
SOC whereas the impact is larger for the hole mobility and in
particular when the dipole of Ref. [63] is used.

What is remarkable is the temperature dependence of the
hole mobility in InSe as seen in Fig. 13(b). Because the drift
mobility in Fig. 11(j) is almost flat above 200 K and the Hall
factor increases with temperature, we have a situation where
the resulting Hall hole mobility, Fig. 13, shows a minimum
at 150 K and then increases with temperature until reaching
a plateau above 500 K. To the authors’ knowledge, such non-
monotonic behavior of the mobility calculated with the BTE
has not been reported before. This behavior can be understood
by looking at the scattering rate as a function of energy from
the valence band maximum shown in Fig. 14. The scatter-
ing shows an unconventional double-peak structure, due to
a “Mexican-hat” shape valence band, which gets accessed
progressively as the temperature increases. In particular, the
first scattering peak is accessed at around 150 K yielding the
mobility minimum while the dip between the two peaks is
accessed around 300 K. We note that the Mexican-hat struc-
ture in InSe has been theoretically predicted [25,139,140]
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FIG. 13. Hole drift and Hall mobility of (a) MoS2 and (b) InSe
including quadrupole contributions. In both cases the Hall factor
strongly increases with temperature, see Figs. 11(d) and 11(j) but
only in the case of InSe does that yield an increase of mobility with
temperature, highlighting the remarkable nature of InSe.

and confirmed by angle-resolved photoemission spectroscopy
[141]. Since similar valence band structures have been pre-
dicted in other materials [142], we do not expect this
unconventional temperature dependence of the Hall hole mo-
bility to be exclusive to InSe.

We also looked at graphene which is the seminal and most
studied semimetal. For suspended graphene, carrier mobilities
over 200 000 cm2/Vs [143–145] have been measured. As it
is not a semiconductor, the mobility is computed using a
slightly different approach. Instead of fixing a low carrier
concentration and computing the concentration-independent
mobility, we place the Fermi level at the Dirac point and
compute the corresponding carrier concentration which is
reported in Fig. 11(e). We compute the electron and hole
mobility separately but do include all interband and intra-

FIG. 14. Scattering rate of InSe for 50, 150, 300, and 800 K for
the top of the valence band (hole) and bottom of the conduction band
(electron). On the top of the image, we are showing the tails of the
Fermi-Dirac distribution which are arbitrarily scaled in the same way
and can therefore be compared with each other.

band transitions within a ±0.5-eV energy window around
the Dirac point. The added electron and hole mobility as
well as Hall factor reported in Fig. 11(c) correspond to the
intrinsic values (only thermal carriers) and result from that
temperature-dependent concentration. We recall that we do
not include long-range contributions in nonpolar graphene.
Moreover, we do not consider temperatures below 250 K due
to the difficulty in sampling accurately the Dirac point at low
temperatures even though we are using ultradense momentum
grids of 2400×2400×1 k- and q-point grids, as reported in
Table II.

We finish our study with the investigation of phosphorene.
This material has four atoms per unit cell with a nonplanar
distorted honeycomb lattice with structural ridges. As a result,
it is the only material in our list which has in-plane anisotropy
with high mobility in the y (armchair) direction and low mo-
bility in the x (zigzag) one. Our computed room-temperature
Hall electron and hole mobility in the y direction is 304 and
520 cm2/Vs, respectively, while the Hall electron and hole
mobility in the x direction is 39 and 31 cm2/Vs, respectively.
Although there are no available experimental values for the
monolayer, few-layer samples have been studied with mo-
bilities decreasing for thinner crystals [108–111], an effect
mainly attributed to sample degradation. In agreement with
our findings, the electron mobility is typically lower than the
hole one, with values up to 6000 and 8400 cm2/Vs at cryo-
genic temperatures [111], respectively. The current was also
found to be strongly anisotropic [108]. For what concerns the-
oretical results, previous calculations for the electron mobility
range between 20 and 738 cm2/Vs in the armchair direction
and 5 to 114 cm2/Vs in the zigzag direction [44,146–150].
For the hole mobility the calculations range from 19 to
460 cm2/Vs in the armchair direction and 2 to 157 cm2/Vs
in the zigzag one [44,146–148,150]. The values reported here
are in close agreement with Ref. [44], despite the different
doping considered in that study. Although several modes have
relatively large electron-phonon coupling [44], most of them
give rise to “side” scattering while only a few, in particular
LA and ZO, to back scattering [44], thus explaining the high
mobility [13]. As shown in Fig. 12(f), the ZO1 peak alone
accounts for 33% of electron scattering and 70% of hole scat-
tering and the ZO2 peak to an additional 16% for electrons.
This assignment seems consistent with the identification of
backscattering modes in Ref. [44]. The differences observed
in Fig. 7(f) for the ZO2 and TO2 modes by including the
effects of quadrupoles have therefore a limited impact on
the mobility and Hall factor of phosphorene, consistent with
Figs. 11(h) and 11(k), apart from a marginal correction for
electrons associated with the contribution of ZO2 phonons.

IV. CONCLUSIONS

We have derived a theory for the long-range scattering po-
tential and corresponding electron-phonon matrix elements in
two-dimensional materials. Equations (43)–(47) are the most
general formulas to quadrupolar order. Together, they form
the main theoretical contribution from this work. Importantly,
the derivation enables the calculation of the long-range part
in terms of a small set of physical parameters, including dy-
namical Born effective charges, dynamical quadrupoles, and
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the macroscopic dielectric tensor, which are all accessible
via first-principles density functional perturbation theory. The
ability to compute the long-range part is crucial to perform
realistic calculations of electron-phonon coupling because it
allows for accurate interpolation of the deformation potential
or the electron-phonon matrix elements. We have discovered
that state-of-the art approaches, when expressing these matrix
elements in a Wannier-based framework, introduce a gauge
dependence that appears at quadrupolar order. Remarkably,
we have identified a previously overlooked Berry connection
term that restores gauge covariance at least in the long-
wavelength limit.

In this paper, we have validated our theory and imple-
mentation by studying six representative monolayer materials
including a semimetal, nonpolar and polar, as well as acoustic
scattering dominated and optical scattering dominated ones.
We included spin-orbit coupling, drift and Hall mobility, elec-
tron and hole carriers, and showed the importance of including
dynamical quadrupoles in MoS2, BN, and to a smaller extent
in phosphorene. The Berry connection term is found to be im-
portant for the interpolation quality of hexagonal BN and InSe
monolayers as well as bulk SrO, demonstrating its relevance.

The materials structures, pseudopotentials, modified soft-
ware, input files and related data in order to reproduce this
study can be found on the Materials Cloud Archive [151].
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APPENDIX A: CELL-PERIODIC AND ALL-SPACE
REPRESENTATIONS

Although we mainly work with the cell-periodic part of
scalar potentials or two-body operators, in the course of our
formal derivations we occasionally resort to the alternative all-
space representation. Both frameworks are characterized by

the basis sets used to represent our mathematical objects. For
a bulk crystal, the all-space representation is spanned by the
basis functions

〈r|K〉 = 1√
(2π )3

eiK·r, (A1)

where both r and K are continuous vectors of, respectively,
the real and reciprocal R3 spaces. In turn, for the cell-periodic
representation we use

〈r|G〉 = 1√
�

eiG·r, (A2)

where, instead, r run over the primitive cell and G are discrete
vectors spanning the reciprocal-space Bravais lattice of the
crystal.

The cell-periodic response functions (denoted with a q
subscript), such as the first-order densities or potentials due to
an atomic displacement perturbation, are then related to their
all-space counterparts as follows:

F τκα (r − Rl ) = �

(2π )3

∫
BZ

d3qF τκα

q (r)eiq·(r−Rl ), (A3)

F τκα

q (r) =
∑

m

F τκα (r − Rm)e−iq·(r−Rm ), (A4)

with Rl being the real-space lattice vector of cell l in the so-
called Born–von Karman supercell. Note that the Brillouin-
zone integral is related with its discretized version as

�

(2π )3

∫
BZ

d3q 
 1

Nq

∑
q

, (A5)

where Nq is the total number of wave vectors in the finite grid
used in the calculation.

We can similarly write the relationships connecting the
two-body operators in both representations as

Wq(r, r′) =
∑

m

W (r, r′ + Rm)eiq·(r′+Rm−r), (A6)

W (r, r′) = �

(2π )3

∫
BZ

d3qWq(r, r′)eiq·(r−r′ ). (A7)

For 2D crystals which are periodic in plane but finite in the
out-of-plane direction z, we use a mixed representation of the
cell-periodic functions and operators via the following basis:

〈r|Gz〉 = 1√
S

eiG·rδ(z − z′), (A8)

where the reciprocal-space wave vectors G and q are only
allowed to have in-plane components. Then, the relations
between the all-space and cell-periodic representations of the
scalar quantities and operators must be revised as follows:

F τκα (r − Rl ) = S

(2π )2

∫
BZ

d2qF τκα

q (r)eiq·(r−Rl ), (A9)

W (r, r′) = S

(2π )2

∫
BZ

d2q eiq·(r−r′ )Wq(r, r′), (A10)

where S is the surface of the primitive 2D cell. The converse
relations remain unaltered with respect to the 3D case, with
the caveat that the Bravais lattice vectors Rl now span a 2D
plane rather than the 3D space.
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APPENDIX B: LONG-RANGE INTERATOMIC FORCE CONSTANTS IN 2D

We first split the dynamical matrix (we have removed the mass factor for clarity) into a short and long range at long-
wavelength part in 2D [66]:

Dκακ ′β (q) = DS
κακ ′β (q) + DL

κακ ′β (q), (B1)

where the nonanalytical, direction-dependent term, is given by the contribution of dipole-dipole, dipole-quadrupole, and
quadrupole-quadrupole terms as [66]

DL
κακ ′β (q) =

∑
G �=q

[
DL,DD

κακ ′β (G + q) + DL,DQ
κακ ′β (G + q) + DL,QQ

κακ ′β (G + q)
]

− δκκ ′
∑

κ ′′,G �=0

[
DL,DD

κακ ′′β (G) + DL,DQ
κακ ′′β (G) + DL,QQ

κακ ′′β (G)
]
, (B2)

where the dipole-dipole contribution is

DL,DD
κακ ′β (q) = 2πe2

S

f (|q|)
|q|

[
(q · Zκα )∗(q · Zκ ′β )

1 + 2π f (|q|)
|q| q · α‖ · q

− (|q|Zκαz )∗(|q|Zκ ′βz )

1 − 2π |q| f (|q|)α⊥

]
e−iq·(τκ′β−τκα ), (B3)

and the dipole-quadrupole one is

DL,DQ
κακ ′β (q) = −2πe2i

S

f (|q|)
|q| e−iq·(τκ′β−τκα )

[
(q · Zκα )∗(q · q · Qκ ′β ) + (q · Zκα )∗(|q|2Qκαzz )

2
[
1 + 2π f (|q|)

|q| q · α‖ · q)
]

− (|q|Zκαz )∗(|q|q · Qκ ′βz )

1 − 2π |q| f (|q|)α⊥ + (κα) ↔ (κ ′β )

]
, (B4)

and the quadrupole-quadrupole term is

DL,QQ
κακ ′β (q) = −2πe2

S

f (|q|)
|q| e−iq·(τκ′β−τκα )

[
(q · q · Qκα )∗(q · q · Qκ ′β ) + (q · q · Qκα )∗(|q|2Qκ ′βzz )

4
[
1 + 2π f (|q|)

|q| q · α‖ · q
]

+ (|q|2Qκαzz )∗(q · q · Qκ ′β ) + (|q|2Qκαzz )∗(|q|2Qκ ′βzz )

4
[
1 + 2π f (|q|)

|q| q · α‖ · q
] − (|q|q · Qκαz )∗(|q|q · Qκ ′βz )

1 − 2π |q| f (|q|)α⊥

]
.

(B5)
The approximated formulation for the dipole-dipole contribution of Eq. (B3) from Ref. [64] is given as

DL,DDS
κακ ′β (q) = e− |q|2

4�2 e−iq·(τκ′β−τκα ) (q · Zκα )∗q · Zκ ′β

|q|ε2D(|q|) . (B6)

APPENDIX C: LONG-RANGE ELECTRON-PHONON
MATRIX ELEMENTS IN 3D

As mentioned in Secs. II B and II C, there is some arbi-
trariness in the separation between a short- and a long-range
kernel. A simple choice available for 3D materials [66] is to
set

vS (r, r′) = erfc(|r − r′|/L)

|r − r′| , (C1)

vL(r, r′) = erf(|r − r′|/L)

|r − r′| , (C2)

where L(= �−1 in Ref. [66]) plays the role of range-
separation parameter. The long-range kernel can be thus
represented in separable form using plane-wave basis func-
tions with wave vector q within the first Brillouin zone and a
reciprocal lattice vector G such that in 3D Eq. (25) is replaced
by

ϕqG(r) ≡ ei(G+q)·r
√

�
, (C3)

where � is the unit-cell volume. The cell-periodic part of
the bare long-range Coulomb potential can then be written
following Eq. (10) as

vL
q (r, r′) =

′∑
GG′

ϕqG(r)ṽL
q (G, G′)ϕ†

qG′ (r′), (C4)

where

ṽL
q (G, G′) = δG,G′

4πe2

|q + G|2 e− |q+G|2L2

4 . (C5)

The representation (C4) can thus be restricted to the small
space spanned by the functions ϕqG(r) with |q + G| not
larger than 1/L and we can interpret the factor f (|q + G|) =
e− |q+G|2L2

4 as the equivalent in 3D of the range-separation func-
tion (23) in 2D. Interestingly, in 3D the range separation
function needs to approach one quadratically in K = |q + G|,
and not linearly, in order to have that [ f (K ) − 1]/K2 be ana-
lytic.
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FIG. 15. Phonon dispersion of (a)–(c) SnS2, (d)–(f) MoS2, and (g)–(j) InSe monolayer calculated with direct density functional perturbation
theory calculations (black empty circles) compared with Fourier interpolation where the long-range part of the dynamical matrix (D) includes
dipole-dipole (DD), dipole-quadrupole (DQ), and quadrupole-quadrupole (QQ) and where the yellow line refers to the scheme of Ref. [64].
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FIG. 16. Phonon dispersion of phosphorene (a)–(c) and graphene (d)–(f) calculated with direct density functional perturbation theory
calculations (black empty circles) compared with Fourier interpolation where the long-range part of the dynamical matrix (D) includes dipole-
dipole (DD), dipole-quadrupole (DQ), and quadrupole-quadrupole (QQ) and where the yellow line refers to the scheme of Ref. [64].

For sufficiently large L, we can limit the sum to G = G′=0,
so that the cell-periodic part of the long-range scattering po-
tential becomes

V L
qκα (r) = −eϕS

q0(r)W̃ L
q (0, 0)ρ̃S

qκα (0), (C6)

where ϕS
qG(r) is given by Eq. (16), W̃ L

q (G, G′) by Eq. (12),
and ρ̃S

qκα (G′) is the 3D charge-response function which takes
the following form in the long-wavelength limit [84]:

lim
q→0

ρ̃S
qκα (G′ = 0)

= e−iq·τκ

√
�

[ ∑
β

iqβZκαβ +
∑

γ

qβqγ

2
Qκαβγ + · · ·

]
, (C7)

while the screened kernel is

W̃ L
q (0, 0) = 4π

|q|2 f (q)

[
1 − 4πe2

|q|2 f (q)χ̃S
q

]−1

, (C8)

where the short-range polarizability is analytic in q and can
be related to the electronic dielectric tensor εαβ in the long-
wavelength limit through

lim
q→0

4πe2χ̃S
q = −

∑
α,β

qα (εαβ − δαβ )qβ + O(q4), (C9)

Following similar steps as in the 2D case, we then get the
final expression

gLmnν (k, q)

=
∑
κα

[
h̄

2Mκων (q)�2

] 1
2 4πe f (|q|)

|q|2ε̃(q)

×e−iq·τκ

[ ∑
β

iqβZκαβ +
∑

γ

qβqγ

2
Qκαβγ

]

× eκαν (q) 〈�mk+q| eiq·r[1 + iqαV Hxc,Eα (r)] |�nk〉 ,

(C10)
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where the effective macroscopic dielectric function reads as

ε̃(q) = q · ε · q
|q|2 f (|q|) + 1 − f (|q|). (C11)

APPENDIX D: WANNIER INTERPOLATION

We now report for each material the choice of initial pro-
jections for the Wannier functions as well as interpolated
electronic band structures compared with direct DFT calcu-
lations.

For SnS2, we choose to focus on the conduction band only
since this band is separated in energy. We perform the interpo-
lation using maximally localized Wannier functions (MLWFs)
[59] as implemented in the WANNIER90 software [85], starting
from an initial projection made on the Sn atom with s char-
acter and yielding an atom-centered Wannier function with
spread 9.32 Å2. The resulting electronic band structure agrees
with the DFT one as seen in Fig. 4(a).

In the case of h-BN, two sets of MLWFs are considered
separately for the valence (blue) and conduction bands (red),
as shown in Fig. 4(d). For the valence bands, the initial projec-
tion is on the N atom with p character and yields two in-plane
Wannier functions with spread 1.02 Å2 and one out-of-plane
with spread 1.35 Å2. For the conduction band, the initial
projections are p orbitals on both B and N atoms, with a
resulting average spread of 5.12 Å2.

For MoS2, we Wannierize together the top two valence
bands and the lowest eight conduction bands by initially pro-
jecting on Mo d orbitals for both spin polarizations, yielding
Wannier functions with spread 4.9, 5.0, and 5.1 Å2. The cor-
responding interpolated band structure is shown in Fig. 4(b).

As far as InSe is concerned, we address separately va-
lence and conduction bands. For the valence bands [blue solid
lines in Fig. 4(e)], the initial projection is on one of the two
Se atoms with pz character and yields two spin-degenerate
Wannier functions with spread 15.79 Å2. For the conduction
bands, the initial projection is an s orbital (for each spin) on
one of the two In atoms and gives two Wannier functions with
spread of 11.37 Å2.

For graphene, a single set of 10 MLWFs is created to
interpolate both valence and conduction bands, as shown in
Fig. 4(c) with blue lines. The initial Wannier projections con-
sist of hybrid sp2 orbitals on one carbon atom and pz orbitals
on both carbon atoms, resulting in six (including spin de-
generacy) MLWFs with spread 0.61 Å2 and four with spread
0.98 Å2.

Finally, for phosphorene we consider valence and con-
duction bands together by constructing 32 (including spin)
MLWFs that accurately reproduce DFT results around the
band gap, as shown in Fig. 4(f). As initial projections on each
of the four P atoms we take p and s orbitals, giving 8 MLWFs
with spread 1.92 Å2, 16 MLWFs with spread 2.06 Å2, and
8 MLWFs with spread 2.36 Å2.

APPENDIX E: ADDITIONAL PHONON DISPERSION
AND MOBILITY RESULTS

For completeness, we report here the figures showing the
DFPT phonon dispersions and their interpolations for SnS2,
MoS2, and InSe in Fig. 15, and for phosphorene and graphene
in Fig. 16. Finally, we give explicit room-temperature mobil-
ity values for various integration fine grids as well as their
extrapolated values for all the materials investigated here in
Table II as well as a comparison between different long-range
treatments in Table III.
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