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Theory of Caroli–de Gennes–Matricon analogs in full-shell hybrid nanowires
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Full-shell nanowires are hybrid nanostructures consisting of a semiconducting core encapsulated in an
epitaxial superconducting shell. When subject to an external magnetic flux, they exhibit the Little-Parks (LP)
phenomenon of flux-modulated superconductivity, an effect connected to the physics of Abrikosov vortex lines
in type-II superconductors. We show theoretically that full-shell nanowires can host subgap states that are a
variant of the Caroli–de Gennes–Matricon (CdGM) states in vortices. These CdGM analogs are shell-induced
Van Hove singularities in propagating core subbands. We elucidate their structure, parameter dependence, and
behavior in tunneling spectroscopy through a series of models of growing complexity. Using microscopic
numerical simulations, we show that CdGM analogs exhibit a characteristic skewness towards higher flux values
inside nonzero LP lobes resulting from the interplay of three ingredients. First, the orbital coupling to the field
shifts the energy of the CdGM analogs proportionally to the flux and to their generalized angular momentum.
Second, CdGM analogs coalesce into degeneracy points at flux values for which their corresponding radial
wavefunctions are threaded by an integer multiple of the flux quantum. And third, the average radii of all
CdGM-analog wavefunctions inside the core are approximately equal for realistic parameters and are controlled
by the electrostatic band bending at the core/shell interface. As the average radius moves away from the
interface, the degeneracy points shift towards larger fluxes from the center of the LP lobes, causing the skewness.
This analysis provides a transparent interpretation of the nanowire spectrum that allows to extract microscopic
information by measuring the number and skewness of CdGM analogs. Moreover, it allows to derive an efficient
Hamiltonian of the full-shell nanowire in terms of a modified hollow-core model at the average radius.
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I. INTRODUCTION

Full-shell nanowires comprised of semiconducting
nanowires fully encapsulated in a thin superconducting
layer, or shell, have been recently introduced in the context of
topological superconductivity [1,2]. These wires offer several
advantages for the generation and detection of Majorana
bound states (MBSs) as compared to partial-shell ones, where
the superconducting coating is limited to some facets of
the nanowire [3–7]. In the full-shell case, the trigger of the
topological phase transition is the magnetic flux threading
the nanowire produced by an external axial magnetic field,
whereas in the partial-shell devices following the original
proposal [8,9], it is the Zeeman effect. Partial-shell nanowires,
sometimes dubbed Majorana nanowires, have been exhaus-
tively analyzed since 2010, whereas the full-shell variant has
only more recently begun being explored [1,2,10–13].

The interest of full-shell hybrid nanowires, however,
extends beyond their possible relevance for topological
superconductivity. The doubly connected geometry of the su-
perconducting shell introduces very rich physics [11,13–19].
In the presence of a magnetic flux � through the section of
the hybrid nanowire, the system exhibits the so-called Little-
Parks (LP) effect [20,21]. In the LP effect, the flux causes
the superconducting phase in the shell to acquire a quantized
winding around the nanowire axis. The winding number n
is an integer, also known as fluxoid number [22–24], that
increases in jumps as � grows continuously. Winding jumps
are accompanied by a repeated suppression and recovery

of the superconducting gap, forming LP lobes associated with
each n. The LP effect has been demonstrated experimentally
in various regimes [11,25,26], and has been shown to be
accurately described by theory based on the Ginzburg-Landau
formalism [23,24,27–30].

Furthermore, the superconducting boundary condition im-
posed by the shell gives rise to a special type of fermionic
subgap state through a combination of normal and An-
dreev reflection at the core/shell interface. These states are
hybrid-nanowire analogs of the celebrated Caroli–de Gennes–
Matricon (CdGM) states in Abrikosov vortex lines of type-II
superconductors [23,31–33]. We call them analogs because
both are subgap states within superconducting boundaries,
bound to a region with suppressed pairing and threaded by
a magnetic flux. However, several important differences ex-
ist between them. Some of these were analyzed recently in
Refs. [12,34,35], although these states have remained rela-
tively unexplored.

In bulk type-II superconductors [see Figs. 1(a) and 1(b)],
CdGM states are low-energy excitations bound to the center of
each vortex core, i.e., to the region of radius r � ξ (with ξ the
bulk superconducting coherence length) [31]. Each vortex is
threaded by a single flux quantum, which produces a localized
suppression of the superconducting order parameter �(�r) at
the vortex core �r = 0, and a quantized winding of its phase in
the polar angle ϕ around the vortex,

�(�r) = �(r)einϕ. (1)
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FIG. 1. (a) Schematic of Abrikosov vortex lines in a bulk type-II
superconductor. The magnetic flux of the external magnetic field �B
inside each vortex is quantized to the superconducting flux quan-
tum �0. (b) Pairing amplitude �(r) (blue), electrostatic potential
energy U (r) (green), and lowest-energy CdGM wavefunction density
|�(r)|2 (yellow) as a function of radial coordinate r with respect
to the vortex center. (c) Schematic of a full-shell hybrid nanowire
in a cylindrical approximation. The semiconducting core of radius
Rcore (yellow) is fully covered by an s-wave superconducting shell of
thickness dshell = Rshell − Rcore (blue). The magnetic flux � due to the
field �B threading the wire is not quantized and the pairing amplitude
inside the shell is modulated with � following the Little-Parks (LP)
effect. (d) Same as (b) but for the full-shell wire. The conduction-
band bottom inside the semiconductor exhibits a domelike radial
profile with maximum value at the center, Umax, and minimum value
at the superconductor/semiconductor interface, Umin. The electro-
static potential of the metallic shell is |Ushell| � |Umin|.

Here �(r) = |�(�r)| denotes the pairing amplitude, with
�(0) = 0, and the winding is n = 1.

In full-shell nanowires, on the contrary, the total flux
through the core is typically not quantized due to the thinness
of the shell [see Fig. 1(c)]. In this case, both the pairing
amplitude and the superconducting gap, dubbed � from here
on, are modulated with flux resulting in a series of LP lobes,
as mentioned earlier. However, the winding n of the super-
conducting phase around the shell remains quantized with
increasing values in each lobe, making the full-shell wire
a multifluxoid version of the Abrikosov vortex line [36].
Moreover, the confinement of CdGM states inside the type-
II superconductor core is dominated by Andreev reflection
off the surrounding bulk superconductor, which results in a
vanishing group velocity along the vortex line (here the z
direction; see Fig. 1). In contrast, in full-shell nanowires the
materials of the shell and the core are different, one being a
metal with large Fermi energy and the other a semiconductor
with a small Fermi energy. Even though the shell is epitaxially
grown with high quality around the core, the unavoidable
velocity mismatch between the two materials produces an
abrupt decay of �(r) at the interface [see Fig. 1(d)], as well as
an enhanced normal reflection for electrons in its interior. As a
result, CdGM analogs in the core have a large Fermi velocity

along the wire axis, as also noted by Kopasov and Mel’nikov
[34], and form dispersive quasi-one-dimensional subbands (as
opposed to the nondispersive CdGM states that are confined
inside vortices by strong Andreev reflection).

Another important consequence of the difference in shell
and core materials is the band alignment due to their work-
function difference, which in InAs produces a significant
semiconductor band bending of the Ohmic type at the in-
terface [37,38]. The conduction-band bending, shown as
a domelike profile of the electrostatic potential U (r) in
Fig. 1(d), creates a quantum well at the core/shell interface
and thus an accumulation of charge in that region. As a
result, the CdGM analogs are typically localized close to
the core/shell interface in the radial direction, unlike the
CdGM states in Abrikosov vortices [39] [compare |�(r)|2 in
Figs. 1(b) and 1(d)].

In this work we study the structure and properties of CdGM
analogs in realistic full-shell wires, and the information these
states can provide about key nanowire aspects through local
measurements. We identify the CdGM analogs as Van Hove
singularities of the n-dependent, quasi-one-dimensional, tra-
verse subbands propagating along the axis of the proximitized
nanowire core. We use a cylindrical model to describe the
hybrid wire, although this approximation is not critical to our
findings. Subbands are thus characterized by an angular mo-
mentum quantum number, mL, much like the original CdGM
sates. They are also characterized by a good radial quantum
number (for typical nanowire radii only one or a few radial
modes are occupied, in contrast to the many modes occupied
in vortices).

We study the energy dispersion of CdGM analogs
with magnetic flux inside each n-lobe. We compute both
local density of states (LDOS) at the end of a semi-
infinite wire, and differential conductance (dI/dV ) through
a normal/superconducting junction. The states with mL > 0
(mL < 0) disperse with a positive (negative) slope versus �.
This is due to an orbital coupling inside the core of the form
∼mL�. In a simplified hollow-core model for the hybrid wire
[1], where the semiconductor wavefunction is assumed to be
confined to an infinitesimal layer at the core/shell interface,
the CdGM analogs disperse with flux symmetrically with re-
spect to the lobe centers, where they coalesce into degeneracy
points. Meanwhile, realistic solid-core wires, characterized
by a potential profile like the one shown in Fig. 1(d), dis-
play CdGM analogs with skewed dispersion. Indeed, subgap
tunneling dI/dV features in full-shell wires were recently
found experimentally to skew towards higher fields within
each lobe [1]. We find that the spectrum and its skewness
can be explained by the shift of the degeneracy point towards
higher flux � relative to the center of each LP lobe for n > 0.

The flux displacement of the degeneracy points is a cru-
cial quantity to understand the subgap spectrum of full-shell
nanowires. It is directly related to the spatial wavefunction
distribution of the CdGM analogs, or, more specifically, to
their average radius Rav inside the core. As we will see,
the degeneracy points occur at magnetic fields such that the
flux inside Rav is an integer multiple of the superconduct-
ing flux quantum. We perform numerical simulations for
Al/InAs full-shell models to show how Rav, and hence the
CdGM spectrum within each lobe, is affected by the different
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materials of the Al shell and the InAs core and the appearance
of a charge accumulation layer close to the interface. By
direct inspection of the number of subgap states and their
skewness, it is possible to determine the effective doping and
wavefunction distribution in the hybrid wire, which in turn
give an approximate measure of the potential profile U (r)
inside the semiconductor [see Fig. 1(d) (shaded in green)].
This provides an indirect but powerful tool to characterize
the screened and otherwise inaccessible interior of full-shell
devices. Finally, we discuss a modified hollow-core model for
the full-shell wire, conveniently tailored to account for the
degeneracy-point skewness. We show that it provides very
similar results to the full solid-core simulations in the pres-
ence of U (r), but at a considerably reduced computational
cost.

In most of this work we neglect Zeeman and spin-orbit
coupling (SOC) inside the semiconductor since they have a
minor effect on the CdGM analogs. Spin is therefore dropped
as an inert degree of freedom. The Zeeman effect merely
produces small splittings inside small-n LP lobes in the oth-
erwise spin-degenerate subgap spectrum. The SOC, on the
other hand, is of course essential for the existence of the topo-
logical phase and the emergence of MBSs. As we will show,
however, it leaves the rest of the subgap spectrum practically
unaffected.

This paper is organized as follows. In Sec. II we summarize
the physics of the LP effect of the shell, deferring the technical
details to Appendixes A and B. In Sec. III we characterize the
band structure, LDOS, and quantum numbers of the nanowire
modes using the simplified, hollow-core approximation to
the full-shell nanowire. We show how the proximity effect
induced by the shell gives rise to Van Hove singularities that
become degenerate at special points. In Sec. IV we generalize
the model to a finite semiconducting layer thickness, dubbed
the tubular-nanowire model, which results in a reduction
of the average wavefunction radius of each mode. This leads
to a shift of the degeneracy points towards higher fields and
the skewness of the CdGM analogs. Further details on the
degeneracy point are given in Appendix C. In Sec. V (and Ap-
pendix D) we connect to the experimentally relevant model of
a solid-core nanowire with a finite band-bending electrostatic
potential profile in the core. We compute the LDOS at one
end of the wire and show how it is related to the tunneling dif-
ferential conductance of current experiments [1,16]. We also
develop the modified hollow-core description and compare it
to the solid-core model. In Sec. VI we discuss the effect of
including Zeeman and SOC to our models. Finally, in Sec. VII
we summarize our main findings and conclude.

II. THE LITTLE-PARKS EFFECT OF THE SHELL

We start by describing the effect of the threading flux �

on the superconducting shell alone, i.e., the blue region in
Fig. 1(c). Consider a hollow superconducting cylinder along
the ẑ direction, of thickness dshell, outer radius Rshell, and
inner radius Rcore = Rshell − dshell. A magnetic field �B = Bzẑ
is applied along its axis. In the symmetric gauge, the vector
potential for �B reads �A = 1

2 ( �B × �r) = (−y, x, 0)Bz/2 = Aϕϕ̂,
where Aϕ = Br/2. Here r is the radial coordinate and ϕ de-
notes the azimuthal angle around ẑ. The magnetic field threads

a flux through the cylinder, defined as

� = πR2
LPBz,

RLP = Rshell + Rcore

2
. (2)

Note that � is taken at the mean radius RLP of the shell.
In superconductors under magnetic fields, a useful quantity

related to � is the fluxoid �′, which is quantized in units of
�0 = h/2e, the superconducting flux quantum [40–42]. This
was established by London [22], who defined the fluxoid �′
as the sum of the magnetic flux � and an extra term involving
the superconducting order parameter �(�r), and representing
the circulation of persistent supercurrents that arise in re-
sponse to the magnetic flux. In our hollow cylinder under
an axial flux, these supercurrents flow in the ϕ direction,
around the cylinder. If dshell is much greater than the London
penetration depth [43,44], λL, the persistent supercurrent term
vanishes deep inside the superconductor, and thus the mag-
netic flux � is also quantized at large distances, � = �′. This
is the case also in vortices inside bulk superconductors. How-
ever, for thin superconducting shells as the ones considered
here, the Meissner [45,46] expulsion of the magnetic flux is
negligible and thus the magnetic field in the superconductor,
as well as in its interior, is essentially the same as the applied
one (and is hence not quantized). In this case, the second term
involving the screening supercurrents oscillates with flux as
the fluxoid increases in units of �0, which in turn leads to a
modulation of the pairing amplitude �, superconducting gap
�, and critical temperature Tc with a period �0. This is known
as the LP effect [20,21,47–49].

From a complementary point of view, the flux modulation
of the superconducting properties is a consequence of the pair-
breaking effect of the magnetic field on the Cooper pairs in the
superconductor. This pair-breaking effect is minimal at integer
values of �/�0, where � and � reach a maximum, and
strongest at half-integer values, where they are minimized.
Shells with a finite (zero) � at this point are said to be in
the nondestructive (destructive) regime (see Fig. 2). In the
nondestructive case the fluxoid number n and other physical
observables undergo an abrupt, first-order transition at lobe
boundaries.

Alternatively to the London theory, the quantization of the
fluxoid can also be established within the Ginzburg-Landau
formalism [27,50] for the complex superconducting order pa-
rameter �(�r) = �(r, ϕ) (we ignore any z dependence). Since
this is a single-valued complex quantity, its phase must change
by an integer multiple of 2π , n ∈ Z, when completing a closed
path around the cylinder, ϕ → ϕ + 2π . This winding number
is in fact the fluxoid number n = �′/�0. One can thus write
�(�r) as in Eq. (1) for arbitrary n.

In this work we are interested in the regime dshell � λL,
so that the pairing amplitude is constant, �(r) = �. In a
ballistic model for the shell, the pairing amplitude � turns
out to be equal to the superconducting gap �. This is also the
case for a time-reversal-symmetric superconductor in the dirty
limit according to Anderson’s theorem [23,24]. The shells we
consider here are approximated as dirty superconductors, as
also done in previous works [1,19]. This approximation is
reasonable since carriers in experimental shells experience
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FIG. 2. Little-Parks (LP) variation of (a) the shell gap � and
(b) pairing amplitude � with applied axial flux � (normalized to
the superconducting flux quantum �0 = h/2e) of a superconducting
cylindrical shell of thickness dshell, diffusive coherence length ξ = 80
nm, and varying internal radii Rcore. n = 0, ±1, ±2 label the different
LP lobes. [(c), (d)] Same as (a) and (b) but for fixed internal shell
radius Rcore and varying dshell.

substantial scattering from the typical oxidation layer that de-
velops on the outer surface [51], domain walls, impurities, and
even inhomogeneous strains. In the presence of pair-breaking
perturbations, like magnetic impurities or (as in our case)
magnetic fields in a diffusive superconductor, � is different
from �. This was originally described by Abrikosov and
Gor’kov [52,53], whose theory was later applied to the LP
effect. The technical details and relevant equations are given
in Appendix A.

The magnetic flux � produces the LP modulation of the
shell gap �(�) [Eq. (A5)] and pairing amplitude �(�)
[Eq. (A4)], which exhibit reemergent lobes centered around
integer n = �/�0 as pointed out in the Introduction, each
of them characterized by a different fluxoid number n. The
precise �(�) and �(�) profiles depend on the geometric
parameters of the shell, and on the superconducting diffusive
coherence length ξ [see Eq. (A6) in Appendix A]. Figure 2
shows these results for typical nanowire shell parameters.

III. HOLLOW-CORE NANOWIRE

Following Ref. [1], we consider a basic model of a cylin-
drically symmetric full-shell wire that combines (i) the effect
of the magnetic flux on the superconducting shell (the LP
effect), (ii) the proximity effect on the core subbands with

well-defined angular momentum, and (iii) the effect of the
magnetic flux on the core subbands.

Point (i) is summarized in the preceding section. Regarding
(ii), the hybrid wire consists of a semiconducting core with ef-
fective mass m∗ and radius Rcore covered by a superconducting
shell of thickness dshell = Rshell − Rcore. Given a Hamiltonian
Hcore for the normal core electrons, we wish to write an effec-
tive Hamiltonian H in the presence of the shell by integrating
out the shell degrees of freedom. This procedure introduces
a self-energy 
shell into the Green’s function G(ω) = [ω −
Hcore − 
shell(ω)]−1. The effective Bogoliubov–de Gennes
(BdG) Hamiltonian for the system is then defined as H ≡ ω −
G−1(ω) = Hcore + 
shell(ω), which is in general frequency
dependent. Note that we use h̄ = 1 throughout, so that ω has
units of energy. In the next section we define the minimal
model that captures also point (iii). We call it the hollow-core
approximation.

A. Model

In the Nambu basis � = (ψ↑, ψ↓, ψ
†
↓,−ψ

†
↑ ), the effective

BdG Hamiltonian for the proximitized nanowire then reads

H =
[

(pϕ + eAϕτz )2 + p2
z

2m∗ − μ

]
τz + 
shell(ω, ϕ), (3)

where pϕ = − 1
r i∂ϕ , pz = −i∂z are the momentum operators

for electrons, μ is the semiconductor chemical potential, e >

0 is the unitary charge, and τi are Pauli matrices for the
electron/hole degree of freedom. The nanowire is subject to a
magnetic field as described in Sec. II. Note that both Aϕ and pϕ

should be evaluated on the hollow-core surface at r = Rcore.
In the expression above, and in general in the rest of

this work, we neglect nonlocal self-energy components (a
valid approximation for disordered shells [1]) and also any
nonuniformity of the self-energy along the wire length, so that

shell depends only on frequency and the angle ϕ around the
cylinder axis, 
shell(ω, ϕ). As discussed in Appendix B, the
form of 
shell for a diffusive shell is expressed in terms of
a normal decay rate �N from the core into the shell and a
function u(ω) given by Eq. (A2) in Appendix A,


shell(ω, ϕ) = �N
cos(nϕ)τx + sin(nϕ)τy − u(ω)τ0√

1 − u(ω)2
. (4)

Note that u(ω) depends on the flux � and the fluxoid number
n through Eq. (A6).

1. Quantum numbers

The hollow-core model in Eq. (3) exhibits three symme-
tries that can be used to classify its eigenstates [1]. First, H
commutes with the electron spin along any direction, so its
projection sz = ± 1

2 along z in particular is a good quantum
number. Since both values are degenerate we neglect spin
until Sec. VI. Second, in the limit of infinite wire, the trans-
lation symmetry along z leads to a good kz quantum number.
Third, the Hamiltonian exhibits cylindrical symmetry. In the
presence of a winding in the pairing �(r, ϕ), the Hamiltonian
becomes ϕ dependent, which no longer commutes with the
conventional angular momentum lz = −i∂ϕ . The generalized
angular momentum Lz = −i∂ϕ + 1

2 nτz does commute with H ,
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[Lz, H] = 0, so that the eigenvalues mL of Lz are good quan-
tum numbers of the eigenstates of H . The possible eigenvalues
mL of Lz are [54]

mL =
{
Z if n is even
Z + 1

2 if n is odd,
(5)

which points to qualitative differences between the spectrum
in even and odd LP lobes, as shown in Sec. III C. The canon-
ical transformation U = e−i(mL− 1

2 nτz )ϕ−ikzz then reduces H to
a ϕ-independent 4 × 4 effective Hamiltonian H̃ = UHU†,
where

H̃ =
⎡
⎣(

mL − 1
2 nτz + 1

2
�
�0

τz
)2

2m∗R2
core

+ k2
z

2m∗ − μ

⎤
⎦τz

+
shell (ω, 0). (6)

The self-energy has here the simpler expression


shell(ω, 0) = �N
τx − u(ω)τ0√

1 − u(ω)2
. (7)

The eigenstates �̃mL,kz,sz of H̃ are related to the orig-
inal eigenstates �mL,kz,sz (ϕ, z) of H by �mL,kz,sz (ϕ, z) =
U†(ϕ, z)�̃mL,kz,sz .

In the absence of proximity effect (that is, for �N = 0),
the decoupled (normal) core Hamiltonian commutes with the
conventional angular momentum lz = −i∂ϕ , so that its eigen-
states can be classified in terms of the integer eigenvalues of
lz, denoted by

ml = Z, (8)

together with kz and sz. In the normal case, then, the canonical
transformation that diagonalizes the Hamiltonian is simply
U = e−iml ϕ−ikzz.

B. Van Hove singularities and degeneracy points

We next analyze the Nambu band structure of the hollow-
core nanowire model in two different configurations: �N = 0
(isolated core) and �N > 0 (proximitized core). In the latter
case we use 
shell(ω, ϕ) evaluated at fixed ω = 0. The u(ω)
solution obeys u(ω → 0) = 0, so that 
shell(0, ϕ) becomes a
simple pairing amplitude on the core surface [see Eq. (B5)].
The resulting band structures, for four different flux values
(two in the n = 0 lobe and two in the n = 1 lobe), are shown in
Fig. 3. For simplicity we take Rshell = Rcore = RLP in the def-
inition of the flux, Eq. (2). Thin lines are for �N = 0 Nambu
subbands [i.e., normal electron (solid) and hole (dashed)
bands]. These are colored according to their corresponding ml

quantum number. Thick lines correspond to finite �N, and are
labeled by the corresponding mL quantum number.

The key feature to note in the finite �N bands is the
appearance of avoided crossings between normal electron
and hole subbands with ml differing by the fluxoid number
n. The avoided crossings are due to Andreev reflection at
the core/shell interface, and result in Van Hove singularities
(black dots) in the LDOS that move in energy with �. These
Van Hove singularities are the full-shell analogs of CdGM
states in type-II superconductors.

FIG. 3. (a) Bogoliubov–de Gennes band structure of an infinitely
long hollow-core nanowire of radius Rcore = Rshell, as a function of
longitudinal momentum kz at the center of the n = 0 LP lobe (zero
flux). Thin solid (dashed) lines correspond to the normal electron
(hole) subbands, with shell/core coupling �N = 0, whereas thick
lines correspond to the superconducting state, with �N 
= 0 [see
Eq. (B5)]. The number of occupied subbands depends on the filling
μ. Different colors signal different (generalized) angular momentum
number ml (mL) for the normal (superconducting) subbands. Both ml

and mL are integers in the n = 0 lobe (see legend). The shell-induced
superconducting pairing turns the finite-momentum electron-hole
crossings with equal mL into anticrossings, with Van Hove singular-
ities arising at the edges of the corresponding gaps (see black dots).
In the absence of applied flux, � = 0, all anticrossings are equal in
magnitude and centered at zero energy. As a result, all Van Hove
singularities are degenerate. (b) Same as (a) but for �/�0 = 0.49,
close to the edge of the n = 0 lobe. The previously degenerate Van
Hove singularities split in energy due to the different dispersion with
flux of electron and hole mL subbands. (c) Same as (b) but for �

close to the lower edge of the n = 1 lobe. The normal bands are
very similar to (b), but the anticrossing pattern has changed, as the
pairing only couples electrons and holes with mL differing by n.
The superconducting subband colors represent half-integer mL quan-
tum numbers. (d) Same as (c) but at the center of the n = 1 lobe
where the hollow core is threaded by one flux quantum. The Van
Hove–singularity degeneracies of different subbands are recovered.

The energies of the Van Hove singularities for different
mL’s become degenerate at certain values of magnetic flux
[see Figs. 3(a) and 3(d)]. These special values of � correspond
to integer multiples of �0, when the flux � is computed as
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� = πR2
coreBz, which in the thin-shell limit (RLP = Rcore) co-

incides with Eq. (2). Thus, for thin shells and hollow cores, the
proximity-induced Van Hove singularities become degenerate
at the center of each lobe.

C. Local density of states

The Van Hove singularities and their degeneracies can also
be visualized in terms of the LDOS at the end of a semi-
infinite hollow-core nanowire, given by

ρ(ω) = − 1

π

∑
mL

Im Tr G0
mL

(ω). (9)

Here, the retarded Green’s function G0
mL

(ω) may be com-
puted by discretizing the rotated Hamiltonian H̃ in a
one-dimensional lattice along z, with lattice constant a0, and
using standard methods of scattering theory [55] to obtain
G0

mL
(ω) in the first unit cell. The superscript 0 here stands for

the first site of the semi-infinite chain. The trace Tr is taken
over the remaining electron/hole degree of freedom. Here, and
in the rest of this work, we restore the full ω dependence of

shell.

In Fig. 4 we show the calculated LDOS ρ(ω) as a function
of energy ω and normalized flux �/�0, for different values of
core/shell coupling �N. This coupling controls the magnitude
of the induced gap �∗(�), which is smaller than the gap
in the shell, �(�). The energy of the coalescing van Hove
singularities at zero flux is �∗(0).

In the LDOS simulation of Fig. 4 we have focused on the
nondestructive LP regime with dshell ≈ 0, so that the gap edge
has the same shape in all lobes. The (spin-degenerate) Van
Hove singularities, visible as sharp, flux-dependent subgap
features in each lobe, are labeled with their corresponding mL

quantum numbers. Note that each CdGM analog at any given
� consists of both the Van Hove singularity itself (seen with
a bright orange color in Fig. 4) and a tail extending above or
below it in ω till the parent gap edge ±�(�). It is important
to note that only the shell-induced Van Hove singularities
(dots in Fig. 3) appearing at finite momentum kz have a good
visibility in the LDOS. In contrast, kz = 0 Van Hoves, includ-
ing those already present in the normal bands, are essentially
invisible in the LDOS due to the vanishing slope of their
electron wavefunction at the end of the nanowire [56,57].

The number of singularities depends on μ and is different
in even and odd lobes. Since mL is an integer in even lobes
(including 0), these contain an odd number of Van Hove pairs.
Odd lobes, in contrast, have half-integer mL [see Eq. (5)], so
they contain an even number of Van Hove pairs (see Fig. 4).

We saw in the band structures of Fig. 3 how Van Hove
singularities become degenerate at the center of each lobe. In
the LDOS this is visible as coalescing singularities, forming a
characteristic fountainlike pattern around degeneracy points,
and symmetrically around ω = 0. The slope with which the
singularities disperse with flux away from the degeneracy
points is proportional to mL. This is ultimately due to the
orbital coupling term,

1

2m∗R2
LP

�

�0
mLτz = ωLmLτz, (10)

FIG. 4. Local density of states (LDOS) at the end of a semi-
infinite hollow-core nanowire (in arbitrary units) as a function of
energy ω and applied normalized flux �/�0, displaying half of the
n = 0 lobe, and the full n = 1 and n = 2 lobes. CdGM analogs
appear as subgap features below the LP shell gap �(�), together
with their generalized angular momentum mL . From top to bottom:
(a) weak superconductor/semiconductor coupling, �N = 0.1 �(0);
(b) intermediate coupling, �N = 0.8 �(0); and (c) strong coupling,
�N = 3 �(0). Degeneracy points (where all CdGM analogs cross)
happen at the center of each lobe (where the normalized flux �/�0

is an integer); see arrows in (c). The lowest subgap level is dubbed
the induced gap �∗(�). Parameters: Rcore = Rshell = 70 nm, �(0) =
�(0) = 0.23 meV, μ ≈ 1 meV, ξ = 70 nm, m∗ = 0.023me, and
a0 = 5 nm.

that is present in Eq. (6) after expanding the square. Here,
ωL = eBz/2m∗ is the Larmor frequency [32]. The slope is not
constant, however, as the spectral density at the band edge in

shell repels the CdGM analogs as they approach �(�).

IV. TUBULAR-CORE NANOWIRE

To continue building towards the more realistic nanowire
model discussed in Sec. V, we next generalize the hollow-core
model by giving a finite thickness dcore = Rcore − Rinner to
the semiconductor, so that it spans a finite range of radii
r ∈ [Rinner, Rcore] [see Fig. 5(a)], while keeping the potential
in the core r independent. We dub this the tubular-core
nanowire model.
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FIG. 5. (a) Schematics of the full-shell nanowire cross section for a tubular semiconducting core with inner Rinner and outer Rcore radii. The
outer shell radius is Rshell. [(b)–(i)] LDOS in arbitrary units versus energy ω and normalized flux �/�0 for increasing tubular-core thickness
dcore = Rcore − Rinner, from the hollow-core approximation in (b) to the solid-core case in (i). The corresponding values of Rinner are displayed
in (a). As the core thickness increases, the degeneracy points shift to larger flux within each n 
= 0 LP lobe, skewing the CdGM analogs and
shifting the gap �∗ below them. The electrostatic potential inside the semiconductor is uniform, and is adjusted in each panel to yield 13
(spin-degenerate) mL subbands occupied at zero flux. The superconductor/semiconductor coupling �N is adjusted to have �∗(0) ≈ 0.2 meV.
Other parameters: a0 = 5 nm, Rcore = Rshell = 70 nm, �(0) = 0.23 meV, and ξ = 70 nm.

A. Model

The tubular-core generalization introduces radial kinetic
energy into the model, and consequently radially quantized
modes. The corresponding effective BdG Hamiltonian reads

H =
[

(pϕ + eAϕ (r)τz )2 + p2
r + p2

z

2m∗ − μ

]
τz + 
shell(ω, ϕ),

(11)

where p2
r = − 1

r ∂r (r∂r ). Note that we have also restored the
radial dependence of Aϕ (r) = Bzr/2. The same canonical
transformation U as for Eq. (6) reduces the above to

H̃ =
⎡
⎣

(
mL − 1

2 nτz + 1
2

�
�0

r2

R2
LP

τz
)2

2m∗r2
+ k2

z + p2
r

2m∗ − μ

⎤
⎦τz

+
shell (ω, 0). (12)

To find the eigenstates �̃(r) of H̃ we follow the dis-
crete Liouville like finite-differences method (DLL-FDM)
scheme of Ref. [58]. We first discretize the radial coor-
dinate r with a lattice spacing a0, replacing derivatives
with finite differences in the differential eigenvalue equa-
tion H̃ψ (r) = ε�̃(r). We then absorb the Jacobian J = r of
the cylindrical coordinates into modified discrete eigenstates
F (ri ) = �̃(ri )

√
ri and into the corresponding Hamiltonian

H ′ = r1/2H̃r−1/2. With this we arrive at a discrete eigenvalue
problem

∑
i′ H ′

ii′F (ri′ ) = εF (ri) with a Hermitian Hamil-
tonian matrix H ′

ii′ , whose discrete eigenstates are, by
virtue of their definition, trivially orthonormal without J ,∑

i F ∗
α (ri)Fβ (ri) = δαβ . The kinetic energy τz p2

r/m in H ′
transforms, in the discrete H ′

ii′ , into an on-site term oi = 2t0τz

plus a radial hopping tii′ = −t0τzr/
√

riri′ between the nearest
neighbors, where t0 = 1/(2m∗a2

0). Note that the r/
√

riri′ fac-
tor directly stems from the cylindrical Jacobian, but does not
break the symmetry tii′ = ti′i. Also, when applying the above
DLL-FDM scheme to systems including the origin r = 0, the
correct boundary condition must be implemented there. This
is done by excluding the r = 0 site and multiplying oi at the
r = a0 site by 3/4 [58].

B. Degeneracy point shifts and skewness

The evolution of the subgap Van Hove singularities as
we go from the hollow-core to the tubular-core nanowire of
decreasing Rinner is shown in Fig. 5, all the way to Rinner = 0.
Note that in this model the electrostatic potential across the
tubular core is kept uniform for simplicity. The most im-
mediate effect of gradually reducing Rinner is a shift of the
degeneracy points (originally located at the center of each
LP lobe in the hollow-core nanowire) towards higher fields
for n > 0 [see, e.g., the difference between Fig. 5(b) and

155423-7
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FIG. 6. (a) LDOS in arbitrary units as a function of energy ω and normalized flux �/�0 for a full-shell tubular-core nanowire with
Rinner = 50 nm and Rcore = Rshell = 70 nm, a0 = 5 nm, and core/shell coupling �N = 250 �(0), which yields �∗(0) ≈ 0.2 meV. The LP
gap is forced to be flux independent (ξ → 0). The degeneracy point in the n = 1 lobe shifts to the right by a quantity δndp with respect
to the n = 1 lobe center. (b) Same as (a) but for Rshell = 90 nm, which shifts the degeneracy point even further. The positive-energy part
of the n = 2 lobe, enclosed by a white dashed box, has been artificially forced to maintain an n = 1 fluxoid to reveal the position of the
metastable n = 1 degeneracy point. [(c), (d)] Same as (a) and (b) but including the LP gap modulation with flux that corresponds to a shell
coherence length ξ = 140 nm. (e) Wavefunction modulus (|�(r)| = |�̃(r)|) of the lowest excitation at kz = 0 in the normal state (�N = 0) as
a function of radial coordinate r for a tubular-core semiconducting nanowire of external radius Rcore = 70 nm and different thicknesses, from
dcore = Rcore − Rinner = 10 nm at the top to 70 nm (solid core) at the bottom. Different (normal) angular momentum subbands ml are indicated
with different colors. (f) Same as (e) but for a solid-core semiconducting nanowire with a domelike potential profile U (r) [see Eq. (14)].
Different values of Umax − Umin from top to bottom are indicated (with Umax = 0 and exponent ν = 2). Other parameters like in Fig. 5.

Fig. 5(c)]. The shift can cause the degeneracy points, together
with the diamond-shaped gap below them, to exit the n 
= 0
lobes altogether [see Figs. 5(e)–5(g)]. In the process, the
CdGM analogs become skewed towards higher fields relative
to the center of the LP lobes [see Figs. 5(d)–5(f)]. For suf-
ficiently small Rinner, however, the skewness is inverted [see
Figs. 5(g)–5(i)]. This inversion happens sooner at higher LP
lobes. The skewness of CdGM analogs is thus found to be a di-
rect consequence of the shift of the degeneracy points, which
becomes the central concept in understanding the tubular-core
nanowire.

The shift of degeneracy points can be readily understood
in terms of the radial wavefunction profile of modes inside
the core. In the hollow-core case we showed that degeneracy
points appeared at integer normalized flux, as experienced
by core states. The fact that this condition matched the in-
teger normalized flux as experienced by the shell (center of
LP lobes) was a consequence of the simplifying assump-
tion that Rcore = Rshell = RLP, since then the area spanned by
the superconductor and core states coincided. Now, in the
tubular-core model, as the core wavefunctions are allowed
to spread inwards within the interval r ∈ [Rinner, Rcore] [see
Fig. 6(e)], the flux they experience at a given magnetic field
decreases with respect to the LP flux � through the shell.
This shifts the degeneracy points towards higher magnetic
fields.

An approximate analytical expression for the shift can be
derived by considering that the flux experienced by the spread-
out wavefunction is the same as if it were concentrated at its

average radius Rav = 〈r〉. The flux at which the degeneracy
point happens in the n = 1 lobe, �dp = πR2

LPBdp
z , then

becomes

�dp/�0 = (1 + δndp) = R2
LP

R2
av

. (13)

We analyze the validity of this approximation in Fig. 6. Taking
Fig. 5(d) as a starting point, which corresponds to a tubular
nanowire with Rinner = 50 nm and Rcore = 70 nm, we show
in Figs. 6(a) and 6(b) the change in the dimensionless shift
δndp for two different values of Rshell (and thus of RLP/Rav).
For clarity, we have fixed the shell gap �(�) to a constant
�(0) = 0.23 meV, so that the LP modulation does not obscure
the degeneracy point shift. This is done taking ξ → 0 in
Eq. (A6), which results in a self-energy given by Eq. (B6).
The corresponding LDOS with a flux-dependent �(�) in
the destructive regime is shown in Figs. 6(c) and 6(d) with
ξ = 140 nm for comparison [59]. It is clear from Eq. (13) that
for Rav <

√
2/3RLP we have δndp > 1/2, which pushes the

degeneracy point out of the n = 1 LP lobe. This is the case of
Fig. 6(b), where RLP is increased by setting Rshell = 90 nm. In
this situation, the n = 1 degeneracy point does not correspond
anymore to a stable configuration for any value of magnetic
field, since the fluxoid number in the ground state changes
from n = 1 to n = 2 already at �/�0 = 3/2 < 1 + δndp. In-
stead, the degeneracy point can be found in a metastable
configuration of the n > 1 LP lobe, represented inside the
dashed white square of Fig. 6(b). Note, however, that the
skewness of the n = 1 CdGM analogs does not depend on
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FIG. 7. (a) Schematics of a solid-core, full-shell, semi-infinite nanowire with semiconductor electrostatic potential U (r) in its interior. [(b),
(c)] LDOS in arbitrary units as a function of energy ω and normalized flux �/�0 for an Rcore = 70 nm, Rshell = 80 nm nanowire with shell
coherence length ξ = 70 nm, core potential maximum Umax = 0, and different values of Umin, from a (b) shallow to a (d) deep domelike profile.
(e) Schematics of a full-shell nanowire-based normal-superconductor tunnel junction. The potential-barrier profile Ub(z) in the uncovered
semiconductor region between the normal metal (N) and the full-shell wire (S) only depends on z. [(f)–(h)] Differential conductance dI/dV
(in units of the conductance quantum G0) versus normalized flux for the same full-shell nanowires as in (b)–(d), and for a sharp tunnel barrier
of width 50 nm and height (f) 60 meV, (g) 110 meV, and (h) 170 meV. [(i)–(l)] Same as (e)–(l) but for a longer tunnel junction; width 150 nm
and heights (j) 25 meV, (k) 50 meV, and (l) 110 meV. Parameters: Column 2 [(b), (f), (j)] has �N = 90�(0); column 3 [(c), (g), (k)] has
�N = 30�(0); and column 4 [(d), (h), (l)] has �N = 20�(0). Other parameters like in Fig. 5.

whether the degeneracy point is in a stable or metastable
configuration.

In principle one needs to know the wavefunction profile
to compute its Rav = 〈r〉 in order to use Eq. (13). However,
in the case of a uniform electrostatic potential, the wavefunc-
tion is approximately symmetric around the geometric mean
radius (Rinner + Rcore )/2 of the core for all ml , as long as
Rinner/Rcore � 0.5, so that the effect of the Jacobian is small.
This is shown in Fig. 6(e). Hence, we can use the approxima-
tion Rav ≈ (Rinner + Rcore )/2 in Eq. (13). This yields δndp =
0.36 for the parameters of Fig. 5(a), which is very close to the
numerical result of 0.40 observed in that figure. The same hap-
pens for Fig. 5(b), where the analytical solution is δndp = 0.78
and the numerical one is 0.83. Therefore, we find that taking
Rav as the average core radius and using it for the purpose
of determining the flux that threads the wavefunction is a
good approximation in the tubular-core model. Deviations are
expected only when the wavefunction spreads substantially
away from the core/shell interface. In this case different ml

exhibit different 〈r〉, and the (metastable) degeneracy point
becomes blurred and is no longer well defined. In Appendix C
we discuss this effect in more detail.

V. SOLID-CORE NANOWIRE

A. Model

The development of the nanowire model culminates
in this section, in which we consider a more accurate

approximation to the actual full-shell wires studied in recent
experiments [1,16,18,19]. These are all solid-core nanowires
with Rinner = 0. We keep the cylindrical approximation, since
we find that a more complicated hexagonal wire cross section,
which is computationally much more expensive, does not
significantly affect the skewness and overall properties of the
CdGM analogs (not shown here). We include, however, an
extra crucial ingredient in the solid-core model: the nonho-
mogeneous electrostatic potential U (r) inside the core. This
potential is a consequence of the band bending imposed by
the epitaxial core/shell Ohmic contact, which in turn stems
from the difference of the Al work function and the InAs
electron affinity [37]. We note that the degree of band bend-
ing and precise shape of U (r) depend on the microscopic
details of the interface and the self-consistent electrostatic
screening. In keeping with our conceptual approach up to
this point, we consider a simple model for U (r) of the
form

U (r) = Umin + (Umax − Umin)

(
r

Rcore

)ν

(14)

[see illustrations in Figs. 1(d) and 7(a)]. We specialize our
simulations for ν = 2, Umax = 0, and Umin ranging from −140
to −40 meV, as suggested by microscopic calculations [1,37].
An equivalent analysis for Umax < 0 is given in Appendix D.
The effective BdG Hamiltonian for the solid-core nanowire in
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the mL, kz-rotated basis then reads

H̃ =
⎡
⎣

(
mL − 1

2 nτz + 1
2

�
�0

r2

R2
LP

τz
)2

2m∗r2
+ k2

z + p2
r

2m∗ + U (r)

⎤
⎦τz

+
shell(ω, 0). (15)

B. LDOS and transport

Even though Rinner = 0 in the solid-core model, we find
that the LDOS dependence with � for Rcore = 70 nm, shown
in Figs. 7(b)–7(d) for three values of Umin, is rather similar
to that of tubular-core nanowires with Rcore = 70 nm and
Rinner = 30–50 nm [Figs. 5(d)–5(f)]. The reason is that the
potential U (r) concentrates the wavefunction of the various
modes to a region close to the core/shell interface. Indeed, we
find that the wavefunction profiles for the different ml normal
modes, depicted in Fig. 6(f) for various values of Umin, are
very similar to those found for the tubular-core wire with vary-
ing semiconducting tube thicknesses, Fig. 6(e). Furthermore,
the shape of the wavefunction in the solid-core model depends
only weakly on the potential U (r) for realistic values Umin <

−40 meV. The main effect of increasing the band bending
(taking more negative Umin values) is increasing the number of
occupied ml modes, and hence the number of CdGM analogs
visible within each lobe [compare Fig. 7(b) to Fig. 7(d)].

In a typical experiment, the local subgap spectral structure
in hybrid wires is measured via tunneling-transport spec-
troscopy. The technique measures the differential conductance
dI/dV between a normal probe at bias V and a grounded
wire, across a gate-tunable barrier. For high and sharp barriers,
it was shown that the dI/dV becomes proportional to the
BdG LDOS at the contact [60,61], hence the name tunnel-
ing spectroscopy. We confirm this by computing dI/dV in
the noninteracting Green’s function formalism across a sharp
Lb = 50-nm-long Gaussian Ub(z) barrier, with a normal probe
defined using the same model as the solid-core nanowire but
without the shell-induced 
shell. The resulting dI/dV indeed
matches the LDOS closely [see Figs. 7(f)–7(h)], with three
notable differences that can be attributed to the small but
finite Lb. First, Van Hove singularities appear much sharper
in the dI/dV than in the LDOS, resembling discrete subgap
levels. Second, a small particle-hole V → −V asymmetry is
visible in dI/dV , whereas the BdG LDOS is symmetric by
definition. Last, and most significant, the small but finite Lb

makes transport more sensitive to modes with smaller |mL|
values [see mL labels in Fig. 8(c), showing a case similar
to Fig. 7(c)]. For smaller (larger) values of |mL|, different
subbands are deeper (shallower) in kz space, which translates
into a slower (faster) evanescent decay inside the barrier. This
makes the transmission probability through the barrier acquire
a strong mL dependence as barrier length increases [60]. As a
result, Van Hove singularities with larger |mL| appear much
fainter in the dI/dV , or they may even become undetectable.

Finally, Fig. 8(b) shows the radially resolved LDOS in the
middle of the n = 1 lobe. This is closely related to the profile
of the core wavefunctions that were shown in Fig. 6(f), but
this time including their coupling to the shell. We confirm that
most of the subgap states remain concentrated around a certain
Rav inside the core [see dashed line in Fig. 8(b)]. We can see
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FIG. 8. (a) Nanowire similar to that of Fig. 7(c), but with a0 = 2
nm and �N = 600 �(0). (b) Square root of the LDOS at the end of
the nanowire as a function of energy ω and radial coordinate r for flux
� = �0 (white dashed line) in (a). The black dashed line in (b) corre-
sponds to the average radius Rav ≈ 56 nm. [(c), (d)] Same as (a) and
(b) for a modified hollow-core model with the same form of the
shell-induced self-energy as in (a) and (b) but with �N = 4.3 �(0).
The solid core is replaced by a hollow cylinder of radius Rav, with
filling μ adjusted to keep the same number of occupied subbands
(here μ = 12.7 meV with a0 = 2 nm). Fractions in white denote mL

for CdGM analogs in the first lobe. Note that the CdGM spectrum
of the modified hollow-core model matches qualitatively that of the
solid-core model, while being much more efficient to compute.

that, except for states close to the gap edge, there is a rather
small leakage of core states into the shell, even for a strong
proximity effect [�∗(0) ≈ �(0), perfect epitaxial contact].
Notice also the existence of other fainter modes, particularly
at low energy, with maxima away from Rav and closer to the
nanowire axis. These correspond to Van Hove singularities
in higher radial-momentum subbands, which may become
populated in the low-|mL| sectors for dense enough and/or
thick enough nanowires.

The concentration of all the lowest radial subbands around
a common Rav supports our interpretation of the consistent
skewness of the CdGM analogs with flux. It also points to an
interesting simplification of our solid-core model, which we
dub the modified hollow-core model, identical to the original
hollow-core model in Sec. III, but with Rcore replaced by Rav.
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The U -transformed H̃ thus reads

H̃ =
⎡
⎣

(
mL − 1

2 nτz + 1
2

�
�0

R2
av

R2
LP

τz
)2

2m∗R2
av

+ k2
z

2m∗ − μ

⎤
⎦τz

+
shell(ω, 0). (16)

The self-energy 
shell is kept the same as in the solid-core
model, with the same dependence on dshell and RLP [see
Eq. (A6)]. The value of �N in Eq. (7), however, needs to be
adjusted to keep �∗(0) as in the solid-core case. The definition
of � and the LP lobes remain unchanged. The factor R2

av/R2
LP

in the angular kinetic energy produces the required shift δndp

of the degeneracy points. The resulting modified hollow-core
model above is almost trivial to solve numerically when com-
pared to the solid core, and exhibits a similar phenomenology,
as shown in the comparison of Fig. 8.

It should be noted, nevertheless, that the modified hollow-
core model is valid as long as the degeneracy point is well
defined. In this case, all CdGM analogs from different mL

sectors have approximately the same Rav. When that is not the
case (see Appendix C for a discussion), this simple Hamil-
tonian ceases to be valid and a calculation with the full
solid-core model is necessary.

VI. ROLE OF SPIN-ORBIT COUPLING
AND ZEEMAN SPLITTING

Up to this point, we have neglected SOC and Zeeman
splitting in our models. In the context of topological super-
conductivity, SOC is a crucial ingredient as it controls the
magnitude of the topological gap and localizes the Majorana
zero modes in these systems. However, as we show in this sec-
tion, the SOC does not have a significant effect on the rest of
the subgap spectrum, whereas the Zeeman coupling produces
only a small splitting of otherwise degenerate CdGM analog
states.

The generalization of the Hamiltonian in Eq. (15) to in-
clude SOC was discussed in Ref. [1]. It involves writing the
canonical transformation U in terms of the eigenvalues mJ of
the total generalized angular momentum, Jz = −i∂ϕ + 1

2σz +
1
2 nτz (instead of the mL eigenvalues of the generalized orbital
momentum Lz used so far). In the presence of a radial SOC,
the mJ ’s are good quantum numbers of the Hamiltonian eigen-
states even with Zeeman. Note that now mJ is a half integer
(an integer) in the even (odd) lobes. The Zeeman effect can be
included in the BdG Hamiltonian H̃ by adding the term

VZ = 1
2 gμBBzσz, (17)

where μB is the Bohr magneton and g is the nanowire Landé
g factor. Following this scheme, we computed the LDOS of a
solid-core nanowire with and without Zeeman and SOC. We
use g = 12 for our simulations and a SOC of the form α(r)r̂ ·
(σ × p). Here α(r) is written, using a standard approximation
from the eight-band model [62], in terms of the radial potential
gradient ∂rU (r),

α(r) = α0∂rU (r) = P2

3

[
1

�2
g

− 1

(�soff + �g)2

]
∂rU (r).

(18)

(a)

(b)

(c)

(d)

FIG. 9. [(a), (b)] LDOS at the end of a semi-infinite nanowire
in arbitrary units versus energy ω and normalized flux �/�0 at
two different values of Umin = −40 meV and Umin = −35 meV,
respectively, with no SOC (α) or Zeeman (g). [(c), (d)] The same
configuration with a finite SOC and Zeeman coupling (see Sec. VI),
which correspond to (c) a nontopological phase and (d) a topological
phase with a Majorana zero mode, respectively. All other parameters
like the first row of Fig. 7.

Using the Kane parameter P = 919.7 meV nm, the semicon-
ductor gap �g = 417 meV, and split-off gap �s = 390 meV,
relevant for InAs, we obtain α0 = 1.19 nm2 (see Ref. [63] for
more elaborate approximations).

The simulations are shown in Figs. 9(a) and 9(b) for g =
α = 0 and in Figs. 9(c) and 9(d) with finite g and α. In the two
rows we choose different values of Umin that result in topolog-
ically trivial and nontrivial phases for the mJ = 0 sector when
SOC is included [see Figs. 9(c) and 9(d), respectively]. Note
that the topological phase diagram of full-shell wires depends
on Umin in a quite complex way (see, for instance, Fig. 4 E
of Ref. [1]). Thus, for some value of Umin the wire may be
topological, while for a relatively similar one it may become
trivial. In experimental hybrid nanowires, Umin depends sensi-
tively on the microscopic details of the interface and can vary
substantially depending on the growth conditions [38]. In the
topological case of Fig. 9(d) the SOC indeed produces a sharp
Majorana zero mode with mJ = 0 throughout the first lobe,
as expected (recall that the nanowire is semi-infinite). More
generally, SOC also introduces a few additional, very sharp
subgap features, while Zeeman produces a small splitting of
each Van Hove peak. Overall, however, the CdGM analog
spectrum remains almost unperturbed. We have checked that
this is also the case for larger values of |Umin|, even though
the magnitude of the SOC is larger according to Eq. (18).
We emphasize that the presence of SOC has profound con-
sequences on this system, in the sense that it can drive the
full-shell nanowire into the topological regime and trigger the
appearance of Majorana bound states, but it otherwise leaves
the rest of the subgap spectrum, i.e., the CdGM analog states,
remarkably unaffected.
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VII. SUMMARY AND CONCLUSIONS

We have shown that full-shell nanowires can host analogs
of the CdGM states in type-II superconductors, which result
from fluxoid quantization in the LP effect. Although the flux
itself is not quantized as in an Abrikosov vortex, the integer
number of superconducting-phase twists in finite-n LP lobes
similarly stabilizes a variety of low-energy subgap states in
the nanowire core. Despite the various differences mentioned
in the Introduction between the original CdGM states and
their full-shell analogs, their essential nature is the same:
they are subgap states resulting from the two-dimensional
confinement of a superconductor with a finite winding in its
phase.

At a more detailed level, however, full-shell CdGM analogs
are Van Hove singularities in propagating core subbands with
a far richer structure. Their ringlike wavefunction within the
wire cross section is maximal around a characteristic radius
Rav that depends on the domelike potential profile within the
semiconductor. This turns out to have important consequences
for their evolution with flux, �.

We found that degeneracy points appear where all Van
Hove singularities coalesce, and which shift toward larger
absolute values of the threading flux � for n 
= 0 lobes, even
disappearing beyond the lobe edge. This shift occurs as Rav is
reduced relative to Rcore, or as RLP increases with respect to
Rcore. The shift leaves behind a bundle of CdGM analogs that
fill the whole LP-modulated parent gap �(�) towards the left
(right) side of each n > 0 (n < 0) lobe, but that tend to leave a
characteristically shifted induced gap �∗(�) on the opposite
side. The degeneracy-point shift is proportional to n, so that
the shifted gap is more visible in the |n| = 1 lobe and tends to
disappear faster with decreasing Rav for |n| � 2.

Furthermore, due to their orbital coupling to the field,
CdGM analogs disperse with � with a positive or negative
slope depending on their angular momentum mL. For ω > 0,
the states with negative mL are pushed toward the parent gap
edge, leaving mostly mL > 0 states below the LP gap edge that
exhibit a systematic skewness towards higher � values within
finite-n LP lobes (see, e.g., Fig. 8). The mL quantum numbers
of these ω > 0 CdGM analogs are ordered from smaller to
larger values from the LP shell gap edge towards zero energy,
while the opposite is true for ω < 0 states. By contrast, this is
the opposite order than CdGM states in type-II vortex cores.

The number, energy, and skewness of the CdGM analogs in
full-shell wires can be accessed experimentally using tunnel-
ing spectroscopy with sufficiently short tunnel barriers. The
measured CdGM spectrum can be used to extract a wealth
of otherwise inaccessible microscopic information about the
electronic structure of the encapsulated nanowire. This in-
cludes details about the electrostatic potential profile inside
the core, the resulting carrier density, its spatial distribution
characterized by Rav, the angular momentum of each mode,
or the transparency of the core/shell interface. The value of
Rav can furthermore be used to define a modified hollow-core
model that qualitatively captures most of the spectral features
of the more complex microscopic model. Our analysis re-
mains robust when introducing additional complexity, such
as SOC, Zeeman splittings, or even noncylindrical nanowire
cross sections.

The CdGM analogs could be measured using tunnel-
ing spectroscopy across a barrier at the end of the hybrid
nanowire. In devices with longer tunneling barriers, we find
that conductance becomes less sensitive to CdGM analogs
with higher angular momentum. In experiments, subgap
states localized at the barrier are sometimes observed. When
present, they are not part of the bulk nanowire spectrum
and should strongly depend on the barrier details. It should
be possible to verify experimentally that a measured sub-
gap feature in the tunneling conductance is indeed a CdGM
analog, and not a barrier-localized state, by checking that its
energy is largely insensitive to changes in the tunnel barrier.
The CdGM analogs, as Van Hove singularities of the nanowire
band structure, are associated to the extended bulk of the
nanowire, not to the local barrier details. Two characteristic
properties of the CdGM analogs are their skewness with flux
and the presence of a shifted gap. Since CdGM analogs are
in fact Van Hove singularities, they are only fully developed
in sufficiently long nanowires. However, they should also be
visible in shorter nanowires of length L as a collection of lon-
gitudinally quantized levels with a level spacing ∼1/L, con-
centrated around the energy of the L → ∞ singularities [18].

All the code used in this paper is available at Zenodo [64].
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APPENDIX A: LITTLE-PARKS EFFECT
OF A DIFFUSIVE SHELL

In this Appendix we summarize standard results for the de-
pendence of the pairing amplitude �(�) and superconductor
energy gap �(�) with flux � in a diffusive superconducting
shell. We follow closely the presentation of Ref. [19].

The Abrikosov-Gor’kov theory [52,53] describes a su-
perconductor in the presence of a uniform concentration of
paramagnetic impurities. When the mean free path is small
enough so that the superconductor is in the diffusive regime,
the quasiclassical retarded Green’s function is given by

gS (ω) = πνF
τx − u(ω)τ0√

1 − u(ω)2
, (A1)

where νF is the density of states at the Fermi level (in the
normal state) and τi are Pauli matrices in Nambu space. The
complex function u(ω) is obtained as the solution of

u(ω) = ω

�(�)
+ �

�(�)

u(ω)√
1 − u(ω)2

. (A2)

It depends on the depairing parameter � introduced by the
spin-polarized impurities and on the pairing amplitude �(�),
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(a)

(d)

(g)

(b)

(e)

(h)

(c)

(f)

(i)

FIG. 10. Evolution of the degeneracy point for decreasing Rav in the tubular core model. This figure is analogous to Fig. 5 save for three
changes: the LP modulation is suppressed (ξ → 0), the fluxoid number is forced to remain at n = 1 for all �, and � reaches up to the third
lobe. The original lobes are delimited by dashed white lines. Decreasing Rav not only shifts the degeneracy point, but also makes it increasingly
smeared, until it eventually dissolves.

which at zero temperature is given by

�(�) = νFVeph

2

∫ ωD

−ωD

dωRe
1√

u(ω)2 − 1
, (A3)

where Re is the real part, Veph is the phonon-mediated effective
electron-electron interaction, and ωD the Debye frequency.
These quantities are related by the BCS relation �(0) =
2ωDe−1/νFVeph . For a given �(�), Eq. (A2) can be expressed
as a fourth-order polynomial with root u(ω) chosen so as to
satisfy the appropriate continuity and asymptotic behaviors
for retarded Green’s functions. This implies, in particular,
u(ω → 0) = 0.

For finite pair breaking, Abrikosov and Gor’kov found a
closed-form solution for the pairing amplitude,

ln
�(�)

�(0)
= −P

(
�

�(�)

)
,

P(z � 1) = π

4
z,

P(z � 1) = ln(z +
√

z2 − 1) + z

2
arctan

1√
z2 − 1

−
√

z2 − 1

2z
, (A4)

where �(0) is the pairing of the pure (ballistic) supercon-
ductor, i.e., for � = 0. Note that � has energy units and is
bounded by 0 � � � �(0)/2. The equation for �(�) has to
be solved self-consistently.

Subsequently, Skalski et al. [53] found an analytical ex-
pression for the energy gap, defined by the edge of the branch
cut at u(�)2 = 1 in Eq. (A1), and given by

�(�) = (�(�)2/3 − �2/3)3/2. (A5)

Note that the energy gap � is only equal to the pairing am-
plitude � in the absence of depairing effects, and is smaller
otherwise. There even exists a region of � close to �(0)/2
for which the gap in the excitation spectrum is zero even
though the shell is still a superconductor in the sense of having
a nonzero order parameter. This is the regime of so-called
gapless superconductivity.

The problem of a superconductor containing paramagnetic
impurities is very similar to the problem of an ordinary diffu-
sive superconductor in the presence of an external magnetic
field [49,65]. Thus, we can identify the depairing parameter
produced by the magnetic impurities above with an analogous
depairing produced by the magnetic flux, �(�). Assuming
now cylindrical symmetry, a standard Ginzburg-Landau the-
ory of the LP effect [26,28,30,66,67] provides an explicit
connection between flux and depairing,

�(�) = ξ 2kBTc

πR2
LP

[
4

(
n − �

�0

)2

+ d2
shell

R2
LP

(
�2

�2
0

+ n2

3

)]
,

n(�) = ��/�0� = 0,±1,±2, . . . , (A6)

where ξ is the diffusive superconducting coherence length and
Tc is the zero-flux critical temperature. At zero field �(0) = 0,

155423-13



PABLO SAN-JOSE et al. PHYSICAL REVIEW B 107, 155423 (2023)

S

S

N

N

Umax = -20meV(a)

(i)

(e)

(b)

(j)

(f)
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(g)

(d)

(l)

(h)

FIG. 11. Effect of a finite Umax in LDOS and transport. This figure is identical to Fig. 7, save for the value of Umax, which is here −20 meV
instead of zero.

�(0) = �(0), and kBTc ≈ �(0)/1.76, where kB is the Boltz-
mann constant.

The solution for Eqs. (A4)–(A6) is qualitatively different
depending on the ratios RLP/ξ and dshell/RLP. It ranges from
the nondestructive regime (� is nonzero, satisfied for RLP/ξ �
0.6 if dshell → 0) to the destructive regime (� vanishes in
a finite window around odd half-integer �/�0, satisfied for
smaller RLP/ξ ) [29]. The different regimes both for � and
� are represented in Fig. 2. As a guideline, some typical
values representative of recent experiments [11] are ξ ∼ 100
nm, Rcore ∼ 70 nm, dshell ∼ 10 nm, and λL = 150 nm. These
parameters correspond to a superconductor in the dirty limit,
which is the regime where the above theory is applicable, and
the one relevant to current experiments.

APPENDIX B: SELF-ENERGY FROM A DIFFUSIVE SHELL

The proximity effect of the diffusive superconducting shell
described in Appendix A onto the semiconducting core of
the full-shell nanowire can be accounted for by means of a
self-energy 
shell acting on the core’s surface. Using a tight-
binding language where tI is the hopping parameter between
a surface site of the core lattice and the shell, the shell self-
energy reads


shell(ω, ϕ) = t2
I gS (ω, ϕ), (B1)

where gS (ω, ϕ) is the same one of Eq. (A1) but including
now the dependence of the pairing amplitude with the fluxoid
number n and the polar angle ϕ,

gS (ω, ϕ) = πνF
cos(nϕ)τx + sin(nϕ)τy − u(ω)τ0√

1 − u(ω)2
, (B2)

given in the Nambu basis � = (ψ†
↑, ψ

†
↓, ψ↓,−ψ↑). Defining

�N = πνS
F t2

I as the normal decay rate from the core into the

shell, we can write


shell(ω, ϕ) = �N
cos(nϕ)τx − sin(nϕ)τy − u(ω)τ0√

1 − u(ω)2
, (B3)

where u(ω) is given in Eq. (A2).
In the canonical basis where the Hamiltonian transforms

into a ϕ-independent effective Hamiltonian H̃ (see Sec. III A 1
of the main text), the self-energy simplifies to


shell(ω, 0) = �N
τx − u(ω)τ0√

1 − u(ω)2
. (B4)

There are two interesting limits of this self-energy. When
ω → 0, then u(ω) → 0 and thus


shell(0, 0) = �Nτx. (B5)

This ω-independent expression is correct when there is a
tunnel coupling between the superconductor and the semi-
conductor. It has been used to calculate the band structure of
Fig. 3.

On the other hand, when the diffusive coherence length
ξ → 0 or, equivalently, when �(�) = 0 in Eq. (A6), then the
LP modulation is disconnected [see Figs. 6(a), 6(b), and 10].
In this case u(ω) = ω/�(0) in Eq. (A2) and


shell(ω, 0) = �N
�(0)τx − ωτ0√

�(0)2 − ω2
. (B6)

This expression corresponds to the conventional ballistic BCS
self-energy. It has been used in Figs. 6(a) and 6(b) and will be
also used in the next Appendix.

APPENDIX C: DEGENERACY POINT STRUCTURE
FOR DECREASING Rav

We have seen in Sec. IV that the degeneracy point of
the first lobe (where all the CdGM analogs from different
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mL sectors converge) becomes shifted to higher flux as the
average radius Rav decreases, eventually exiting the lobe. In
this Appendix we demonstrate that there is an extra effect that
arises for large shifts: the convergence of the CdGM analogs
becomes increasingly imprecise, leading to a smearing of the
degeneracy point and even to its complete dissolution at small
enough Rav.

The reason for this is simple. As the wavefunction is al-
lowed to spread throughout a larger range of radii away from
the core/shell interface, the assumption that all mL have the
same radial wavefunction profile, and hence share the same
Rav, is no longer a valid approximation [see Figs. 6(e) and
6(f)]. Since the Rav directly controls the flux at which the
degeneracy point appears, each mL reaches the degeneracy
condition (i.e., enclosing a flux quantum �0) at different mag-
netic field values, thus smearing the degeneracy point.

The smearing effect is demonstrated in Fig. 10, which is
similar to Fig. 5, but with the fluxoid number fixed to n = 1
for all �. To clearly follow the evolution of the degeneracy
point we have also fixed the gap � to be � independent like
in Figs. 6(a) and 6(b), and extended the flux range up to the

third lobe. We see how, in addition to the shift to higher flux
values, the degeneracy point becomes blurred for Rav � 55 nm
(Rinner � 40 nm), and is completely dissolved for Rav � 45 nm
(Rinner � 20 nm).

APPENDIX D: SOLID-CORE NANOWIRE RESULTS
FOR Umax < 0

For completeness, we explore in this Appendix the effect
of reducing Umax in the solid-core model to a finite negative
value. This increases the density around the core axis. If we
do not simultaneously decrease Umin, this has the effect of
moving the solid-core system closer to the tubular-core model,
which has a uniform U (r). However, if |Umin| � |Umax|, the
effect of the finite Umax is small. This is showcased in Fig. 11,
which is identical to Fig. 7, but with Umax = −20 meV instead
of 0 meV. We see that in the first column, the subgap spectrum
becomes more similar to Figs. 5(f)–5(i), with states of nega-
tive skewness beginning to appear. However, for larger |Umin|
(second and third columns), the change with respect to Fig. 7
is minor.
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[11] S. Vaitiekėnas, P. Krogstrup, and C. M. Marcus, Phys. Rev. B
101, 060507(R) (2020).

[12] A. A. Kopasov and A. S. Mel’nikov, Phys. Solid State 62, 1592
(2020).

[13] D. Sabonis, O. Erlandsson, A. Kringhøj, B. van Heck, T. W.
Larsen, I. Petkovic, P. Krogstrup, K. D. Petersson, and C. M.
Marcus, Phys. Rev. Lett. 125, 156804 (2020).

[14] A. Kringhøj, G. W. Winkler, T. W. Larsen, D. Sabonis, O.
Erlandsson, P. Krogstrup, B. van Heck, K. D. Petersson,
and C. M. Marcus, Phys. Rev. Lett. 126, 047701
(2021).

[15] A. Vekris, J. C. Estrada Saldaña, J. de Bruijckere, S. Lorić, T.
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