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The interplay between the Kondo screening of quantum impurities (by the electronic channels to which
they couple) and the interimpurity RKKY interactions (mediated by the same channels) has been extensively
studied. However, the effect of unidirectional channels (e.g., chiral or helical edge modes of 2D topological
materials) which greatly restrict the mediated interimpurity interactions, has only more recently come under
scrutiny, and it can drastically alter the physics. Here we take Wilson’s numerical renormalization group
(NRG), the most established numerical method for treating quantum impurity models, and extend it to systems
consisting of two impurities coupled at different locations to unidirectional channel(s). This is challenging
due to the incompatibility of unidirectionality with one of the main ingredients in NRG—the mapping of the
channel(s) to a Wilson chain—a tight-binding chain with the impurity at one end and hopping amplitudes which
decay exponentially with the distance. We bridge this gap by introducing a “Wilson ladder” consisting of two
coupled Wilson chains, and demonstrate that this construction successfully captures the unidirectionality of the
channel(s), as well as the distance between the two impurities. We use this mapping in order to study two Kondo
impurities coupled to a single chiral channel, showing that all local properties and thermodynamic quantities are
indifferent to the interimpurity distance, and correspond to two separate single-impurity models. Extensions to
more impurities and/or helical channels are possible.

DOI: 10.1103/PhysRevB.107.155417

I. INTRODUCTION

Two-dimensional topological materials exhibit the remark-
able property of edge modes in which electrons of a given
species can propagate only in one direction [1,2]. Thus, in-
trachannel backscattering is forbidden, resulting in channels
which remain ballistic over large distances. Coupling such
channels, or baths, to quantum impurities, i.e., impurities
with an internal degree of freedom (for example, a localized
spin), taps onto the exotic world of Kondo physics [3,4], in
which the bath electrons form a coherent manybody screening
cloud around the impurity. When considering single-impurity
physics, the unidirectionality of the channel(s) does not have
significant consequences. This is illustrated in Fig. 1(a): Gen-
erally one can choose a basis of the bidirectional channel
modes such that the impurity is coupled to the end of the
channel, and then “unfold” the channel by interpreting the
outgoing (backscattered) modes of the bidirectional channel
as the forward-scattered modes of a unidirectional channel.
Indeed, a variety of methods for solving quantum impurity
problems explicitly rely on this mapping [5–9]. However,
clearly such a mapping cannot be generalized to multiple
impurities, where the uni- or bidirectionality of the chan-
nel(s) becomes important. The interplay between impurities
coupled to bidirectional channels typically gives rise to effec-
tive RKKY [10–12] interactions, K �Sm · �Sm′ , between impurity
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spins. This results in the transition of the Kondo lattice from
a Kondo-screened (heavy-fermion) phase to a magnetically
ordered phase [13], and has been extensively studied by
considering two-impurity models [14–22]. However, if the
impurities are coupled to unidirectional channels, the picture
is more complicated.

Assuming spinful channels, we have two natural scenar-
ios. The first is helical channels, meaning that the two spin
species propagate in opposite directions, as in the quantum
spin Hall effect [23,24], so that electrons can only backscat-
ter into the opposite spin channel, flipping the impurity spin
in the process. As a result, the z component of the RKKY
interaction is forbidden, but the transverse components are
still allowed [25]. Taking into account Rashba couplings,
intrachannel interactions, and bulk effects further compli-
cates the resulting RKKY structure and its interplay with the
Kondo physics [26–28]. This leads to dramatic consequences
on transport properties, and is suspected to be responsible
for the breaking of quantized conductance in quantum spin
Hall systems [29–31]. The second scenario is chiral chan-
nels, meaning that both spin species propagate in the same
direction, as in the integer quantum Hall effect [32], so that
backscattering is completely forbidden, and RKKY interac-
tions cannot be generated. This has far reaching implications
when combined with the multichannel Kondo effect, which is
known (in the single-impurity case) to give rise to fraction-
alized quasiparticles due to frustration. These quasiparticles
come with a fractional residual entropy [33], reminiscent of
a single non-Abelian anyon, the exotic quasiparticles lying
at the heart of topological quantum computing [34,35]. In
the multi-impurity case, the emergent RKKY interactions
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FIG. 1. (a) For a single impurity the coupling to a bidirectional
channel can be mapped to a unidirectional channel. (b) For two
impurities coupled to a bidirectional channel, after going to an even-
odd basis each impurity couples to a separate channel which can be
mapped onto a tight-binding (Wilson) chain. (c) However, for two
impurities coupled to a unidirectional channel, this mapping is not
possible, and instead, we map the channel onto two coupled Wilson
chains, or a Wilson ladder.

lift the frustration, thus avoiding fractionalization, but recent
proposals try to circumvent this [36,37]. As chirality elim-
inates the RKKY interactions, the decoupled non-Abelian
anyons are expected to survive [37–39]. Recently the two-
and three-channel Kondo effects have been demonstrated for
a single quantum dot coupled to (multiple) integer quantum
Hall (chiral) edge modes [40,41], with clear signatures of the
fractionalization [42–45]. Likewise, similar devices realizing
two impurities have been studied [46]. Thus, one can expect
that extending this setup to multiple impurities coupled by
unidirectional chiral modes will enable experimental obser-
vation of decoupled anyons. We note that such an extension
is more realistic with a partially connected scenario, where in
one of the spin species the impurities are coupled to the same
unidirectional channel, while in the other spin species each
impurity is coupled to a separate channel.

It would therefore be useful to have a generic method
for analyzing multiple quantum impurities coupled to the
same unidirectional channel(s). For this we turn to Wilson’s
numerical renormalization group (NRG) [47,48], one of the
most generic and reliable tools for studying quantum impu-
rity models. A key part in (standard) NRG is mapping the
electronic bath to a so-called Wilson chain—a tight-binding
chain with the impurity at one end and hopping amplitudes de-
caying exponentially with the distance. Over the years, NRG
has also been applied to two-impurity systems in different
scenarios [15,19,21,49–55] but always under the assumption
of bidirectional channels, which enables mapping the bath to
two separate Wilson chains, as illustrated in Fig. 1(b). Such
a mapping is not possible for unidirectional channels, as a
nearest-neighbor tight-binding chain has no notion of direc-
tionality.

Here we overcome this obstacle by mapping the bath
to two coupled Wilson chains, or a Wilson ladder, as de-
picted in Fig. 1(c). We note that the resulting structure is
formally a particular case of a channel mixing bath [56].
However, due to oscillatory terms which typically arise in
two-impurity systems, the procedure introduced in Ref. [56]

would face technical difficulties for a two-impurity problem.
Similar problems are also expected for a derivation based on
open Wilson chains [57]. In this work, we therefore introduce
an alternative derivation of the Wilson ladder. By exploiting
PT (inversion + time reversal) symmetry, we enforce a real
Hamiltonian, and together with particle-hole symmetry in the
bath, we can nullify both onsite energies and crosslinks in the
ladder. We then demonstrate that the Wilson-ladder structure
correctly captures the distance between the two impurities,
with a transition from two weakly coupled chains at high
energies (or short wavelengths), to an effective single chain at
low energies (or long wavelengths). Considering each ladder
level as an enlarged effective site along a Wilson chain, we
can proceed with iterative diagonalization by standard NRG
procedure.

We test the mapping on two resonant levels coupled at
different locations to a spinless chiral channel. Such a nonin-
teracting system can be solved exactly both in the continuum
limit (of the chiral channel) and after discretization, and
so serves as an excellent benchmark for the method. We
find that thermodynamic quantities are accurately captured at
all temperatures, and that most features of zero-temperature
spectral properties are also captured. However, some of the
(exact) spectral quantities exhibit oscillations at a frequency
corresponding to the interimpurity distance, which by con-
struction cannot be captured by a logarithmic discretization
procedure. Still, we find that we do successfully reproduce
the envelope of the oscillations. This implies that static
temperature-dependent correlation functions are successfully
captured at low temperatures, while at high temperatures, for
which the correlations should drop to zero exponentially, we
get artificial oscillations around zero.

We then turn to study a single-channel chiral two-impurity
Anderson model (in the local-moment limit). We find that by
looking only at local impurity quantities, e.g., the impurity
entropy and magnetic susceptibly, one cannot discern the dif-
ference between the chiral system and two separate copies of a
single-impurity problem. Thus, at high temperatures, we have
a free spin at each impurity, and at low temperatures both spins
are fully screened, with the crossover (Kondo) temperature TK

independent of the distance between the impurities. This is ac-
tually consistent with the Bethe-ansatz solution of the Kondo
problem [5,6], which has also been applied to multiple impuri-
ties coupled to a chiral channel. It can also be explained by the
following intuitive argument: Due to the absence of backscat-
tering, the first impurity cannot “know” about the second,
and thus “behaves” as in the single-impurity case. Applying
a PT transformation, the same holds for the second (last)
impurity. We point out that both in our solution, and implicitly
in the Bethe-ansatz solution, one assumes some (possibly
small) separation between the impurities. Thus, neither so-
lution is applicable to two impurities exactly at the same
point, but such a case is trivial, corresponding to an enlarged
single-impurity problem, and is not the focus of this work.
Looking at static impurity-impurity correlations, we find that
they do depend on the interimpurity distance, and are nonzero
at low temperatures. This is, however, expected—even in a
trivial noninteracting chiral bath we have spatial correlations,
and once the impurities are in the strongly-coupled regime,
these correlations are reflected by the impurity-impurity
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correlations. Such static correlations do not affect the local
impurity physics, and we demonstrate that a local perturbation
at one impurity does not affect the local physics of the other,
i.e., response functions (retarded correlations) are chiral.

The remainder of this paper will be ordered as follows: In
Sec. II, we derive the Wilson ladder and comment about the
NRG implementation, leaving some of the technical details
to Appendices A and B. In Sec. III, we test the quality of
this mapping on a noninteracting system, demonstrating its
advantages and limitations; some technical details are rele-
gated to Appendix C. We then apply the method to a spinful
chiral channel coupled to two Kondo impurities in Sec. IV
and analyze the results. Finally, we conclude in Sec. V and
comment on possible applications of the presented method.

II. THE WILSON LADDER

We start this section by formally defining the problem we
wish to address, pointing out where previous solutions break
down, and setting the stage for the derivation of the Wilson
ladder, which will then be outlined in the subsections. The
Hamiltonian of a generic quantum impurity problem can be
written as

H = Himp + Hcoupling + Hbath, (1)

where Hbath describes a quadratic (noninteracting) fermionic
bath, Himp describes the (typically interacting) impurity de-
grees of freedom, and Hcoupling couples the bath to the
impurity(ies). In this section we will assume an Anderson
impurity model, for which Hcoupling is also quadratic. Wilson’s
NRG can be decomposed into three stages:

(A) Logarithmic discretization, or coarse graining, of the
bath Hamiltonian.

(B) Tridiagonalization of the discrete bath Hamiltonian to
a tight-binding (Wilson) chain with the impurity at one end.

(C) Numerical iterative diagonalization of the full Hamil-
tonian, probing ever shrinking energy scales with each
iteration.

The first two steps are indifferent to the interaction U
within the impurity sites [see Eq. (30) below]. Therefore, we
set the impurity Hamiltonian to zero, perform the mapping,
and reintroduce it only for the iterative diagonalization. As-
suming the bath and coupling Hamiltonians are diagonal in
spin and flavor indices, we can apply the mapping to a single
flavor of spinless fermions, and then duplicate the resulting
structure. Thus, for the derivation of the Wilson ladder, we
will consider a single channel of noninteracting spinless right-
moving fermions coupled to two impurities at ±R/2:

Himp = 0, (2a)

Hbath =
∫ ∞

−∞
ψ†(−ivF ∂x )ψdx, (2b)

Hcoupling = t̃0d†
1 ψ

(−R
2

) + t̃0d†
2 ψ

(+R
2

) + H.c., (2c)

where h̄=1 throughout, vF is the Fermi velocity, and we
have assumed both impurities couple only locally and with
equal real amplitude t̃0 (but this can be generalized to
more complicated setups). The fermionic field and im-
purity operators satisfy {ψ (x), ψ†(x′)} = 2πδ(x − x′) and
{dm, d†

m′ } = δmm′ , respectively. Observe that Eq. (2) conserves

total charge, and is invariant under the following transforma-
tions:

particle-hole : ψ (x) → ψ†(x), dm → −d†
m, (3a)

PT : x → −x, i → −i, d1 ↔ d2, (3b)

but not under inversion or time reversal individually.
In order to point out where previous NRG approaches

break down, we will consider the impurities’ retarded Green
function, which can be written as a 2 × 2 matrix

GR(ω) = [ω1 − h − �R(ω)]−1, (4)

with 1 the identity matrix, h the (single-particle) impurity
Hamiltonian, which in our case is zero, and

�R(ω) = t̃2
0

2ivF

(
1 2eiωR/vF

0 1

)
, (5)

the retarded self-energy contribution due to hybridization with
the bath. The zero element below the diagonal of �R is the
formal manifestation of chirality, which implies that a retarded
quantity at −R/2 cannot depend on anything that happens at
+R/2. This immediately carries on to GR(ω), as the inverse of
an upper-triangular matrix is an upper-triangular matrix, and
is not affected by the introduction of local potentials at the
impurities or asymmetric couplings,

h →
(

μ1 0
0 μ2

)
, �R(ω)→ 1

2ivF

(|t̃1|2 2t̃1t̃∗
2 eiωR/vF

0 |t̃2|2
)

. (6)

We define the impurity spectral function

A(ω) = − 1

2π i
[GR(ω) − GA(ω)], (7)

with GA = GR†. In Sec. III, we will test the quality of the
discretization scheme by how well it reproduces A(ω). An
important consequence of the upper-triangular structure of
GR(ω) is that the diagonal elements of the spectral function
are equal to those of a single impurity with the corresponding
local potential and coupling. It is convenient to also define the
hybridization function

�(ω) = − 1

2i
[�R(ω) − �A(ω)] = �

(
1 eiωR/vF

e−iωR/vF 1

)
,

(8)

where in the last form we returned to the case of symmet-

rically coupled impurities, and defined � ≡ t̃2
0

2vF
. As �(ω)

encodes all the information about the bath, any bath which
reproduces this hybridization function will result in the same
impurity physics. NRG relies precisely on this property in
order to replace the bath by a Wilson chain, to which we can
apply iterative diagonalization.

Observe that �(ω) cannot be diagonalized by a frequency-
independent transformation. This is the key difference be-
tween the unidirectional channel two-impurity models studied
in this paper, and most bidirectional channel two-impurity
models previously studied with NRG [15,19,21,49–55]. For
the latter, choosing an even-odd impurity basis diagonalizes
the hybridization function, resulting in the impurities coupling
to two separate channels, each of which can be mapped to
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a separate Wilson chain.1 In our case, transforming to an
even-odd (PT-symmetric) impurity basis

d+ = 1√
2

(d1 + d2), d− = i√
2

(d1 − d2), (9)

results in a real hybridization function

�(ω) → �

(
1 + cos

(
ωR
vF

) − sin
(

ωR
vF

)
− sin

(
ωR
vF

)
1 − cos

(
ωR
vF

)
)

. (10)

This guarantees a (numerically more stable and efficient)
real representation for the discretized bath Hamiltonian, but
clearly does not diagonalize �(ω). When the hybridization
function cannot be diagonalized (by a frequency indepen-
dent transformation), one can still take the approach by Liu
et al. [56] and arrive at a generalized Wilson chain structure
consisting of coupled chains. Introducing a 2-vector notation,
d ≡(d+

d−

)
, fn≡

( fn+
fn−

)
, with fn± a discrete set of fermionic bath

operators, our goal will be to write the coupling and bath
Hamiltonians as

Hcoupling = d†T0f0 + H.c., (11a)

Hbath =
2N∑

n=0

f†
n Enfn +

2N−1∑
n=0

f†
n Tn+1fn+1 + H.c., (11b)

where En and Tn are 2 × 2 coefficient matrices. Equa-
tions (11) resemble the expressions obtained in the standard
Wilson chain scheme for a single impurity [48]. The differ-
ence is that fermionic operators are promoted to 2-vectors of
operators, and scalar coefficients are promoted to 2 × 2 matri-
ces. We will demonstrate that due to particle-hole symmetry
in the bath, we can nullify the off-diagonal elements of Tn and
the diagonal elements of En, resulting in a ladder structure, as
depicted in Fig. 2(f).

In order to arrive at these expressions, we will first need to
logarithmically discretize the Hamiltonian, bringing it into the
so-called star geometry:

Hcoupling =
±N∑

n=±1

d†Vncn + H.c., (12a)

Hbath =
±N∑

n=±1

c†
nEncn, (12b)

with cn being 2-vectors of fermionic operators, Vn and En

coefficient matrices, and 4N the number of discrete modes.
Note that apart from the introduction of a high-energy cutoff,
Eq. (12a) will be exact, while writing the bath Hamilto-
nian as in Eq. (12b) is the main approximation in NRG.
The discretization scheme used in Ref. [56] in order to ob-
tain En relies on separately diagonalizing the hybridization
function �(ω) for each frequency and then proceeding as

1The mapping of the bath onto two separate Wilson chains is
possible as long as the impurities couple to two bath modes which
are invariant under inversion x → −x. This holds for typical bidi-
rectional channels, but inherently breaks down in the unidirectional
case.

in Refs. [58,59] to numerically solve a differential equa-
tion containing an integral over the diagonalized hybridization
function. Due to the highly oscillatory structure of �(ω), we
found this scheme to be ill suited for our case, and in Sec. II A,
we will present an alternative (more traditional) discretization
scheme which circumvents this. In Sec. II B, we will apply
a generalized tridiagonalization procedure and arrive at the
Wilson ladder of Eqs. (11), explicitly exploiting particle-hole
symmetry. Finally, in Sec. II C, we will comment on several
implementation details for the iterative diagonalization.

A. Logarithmic discretization

We will now outline a discretization procedure in terms of
a general matrix hybridization function �(ω), with the goal of
plugging Eq. (10) into the obtained expressions. However, one
can equivalently discretize at the level of a specific continuous
Hamiltonian, which for the chiral Hamiltonian in Eqs. (2) is
very convenient. In Appendix A, we take this approach, as it
allows for a clearer comparison with traditional discretization
schemes, and specifically the derivation in Ref. [50], which we
here generalize to a matrix hybridization. In order to discretize
the bath, we must first introduce a UV (high energy/short
wavelength) cutoff D, typically related to the half-bandwidth.
For a chiral model, e.g., an integer quantum Hall edge state,
D is related to the bulk gap, and so D/vF ≡ kmax should not
be associated with the Fermi wavevector kF or an underly-
ing lattice spacing. We point out that introducing this sharp
cutoff, which is required for the numerics, breaks chirality,
e.g., leading to a loss of orthogonality [which decays as
sinc(DR/vF ) ≡ sin(DR/vF )

DR/vF
—see Appendix A] between the two

bath modes coupling to the real-space impurities d1 and d2.
We thus wish to stay in the large-bandwidth limit, i.e., D much
larger than any relevant energy scale, so that the breaking of
chirality is negligible. We can further negate these effects,
improving numerical stability, by taking the cutoff to be com-
mensurate with R, i.e.,

DR/vF = kmaxR = π l; l ∈ N. (13)

We then introduce a logarithmic discretization grid

εz
1 = D, εz

n>1 = D	2−n−z, εz
n<0 = −εz

−n, (14)

where 	>1 controls the logarithmic level spacing and
z∈ (0, 1] shifts the levels, upon which we define intervals

Iz
n>0 = [

εz
n+1, ε

z
n

]
, Iz

n<0 = [−εz
−n,−εz

−n−1

]
. (15)

In order to keep the notation compact, in what follows we
will drop the z index, but remember it is implied whenever
n appears. Each impurity couples to a single mode in each
interval. These two modes are generally not orthogonal with
respect to each other, and in the continuum limit 	 → 1 they
actually coincide. However, for a finite 	 we can always
choose linear combinations of the two which are orthonormal,
to which we will refer as cn=

(cn+
cn−

)
. The coupling to these

modes can be obtained by integrating over the hybridization
function

[Vn]2 = 1

π

∫
In

�(ω)dω. (16)
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As �(ω) is a Hermitian positive matrix for each ω, so is its
integral, which can thus be expressed as the square of some
(Hermitian) matrix. Hence, its matrix square root Vn and its
inverse V−1

n are both well defined (and can be chosen to be
Hermitian). Projecting the bath Hamiltonian onto the modes
cn, we obtain the coefficient matrix

Enaive
n = π

∫
In

dω ωV−1
n �(ω)V−1

n . (17)

As cn are not bath eigenmodes, this is where the main ap-
proximation in NRG enters.2 Eqs. (16) and (17) generalize
the standard (naive) single-impurity discretization used in
NRG [48] to a matrix hybridization. Following the notation
of Ref. [59],3 one can immediately write the matrix general-
ization of the scheme by Campo and Oliveira [50] as

ECO
n =

[
π

∫
In

dω

ω
V−1

n �(ω)V−1
n

]−1

. (18)

In Appendix A, we formulate the derivation of Vn,Enaive
n

and ECO
n (up to a unitary rotation) for our specific model in

the language used in Ref. [50], explicitly demonstrating the
source of the obtained expression. We point out that for the
PT-symmetric hybridization function of Eq. (10), the coef-
ficient matrices are all real, and for positive and negative n
(regardless of the discretization scheme) are related by

V−n = σzV+nσz; E−n = −σzE+nσz, (19)

with σz = (1 0
0 −1

)
. This is a manifestation of particle-hole

symmetry and will be exploited in the next section.

B. Tridiagonalization

In the single-impurity case, one has N positive-energy
modes, N negative-energy modes, and one impurity mode,
so that the single-particle Hamiltonian can be written as a
(2N + 1) × (2N + 1) matrix. One can then numerically find
a unitary transformation which brings it into tridiagonal form,
e.g., by the Lanczos or Householder algorithms. This scheme
can be readily generalized to the two-impurity case [56]:
We now have 2N positive-energy modes, 2N negative-energy
modes, and 2 impurity modes, so that the single-particle
Hamiltonian can be written as a (4N + 2) × (4N + 2) ma-
trix, or as a (2N + 1) × (2N + 1) block matrix with 2 × 2
elements Vn and En, as shown in Fig. 2(a). One can then apply
a generalized Lanczos or Householder procedure in order to
bring it to a block-tridiagonal form, as shown in Fig. 2(b). The

2This procedure can be understood as the expansion of the hy-
bridization function in each interval In as a continued fraction, which
is then truncated after one step, with the remaining continuum of
states in the interval discarded following standard Wilsonian philos-
ophy. See Ref. [57] for an outline of how to write down such an
expansion for a hybridization function supported on some arbitrary
interval, and specifically Appendix B therein, which demonstrates
how to do so for a matrix hybridization function. Note a factor of π

difference in the definition of our �(ω) with respect to Ref. [57].
3See end of Appendix A for an explicit comparison with the nota-

tion of Ref. [59].

Hamiltonian is thus given by Eqs. (11), which are rewritten
here for the sake of clarity,

Hcoupling = d†T0f0 + H.c., (20a)

Hbath =
2N∑

n=0

f†
n Enfn +

2N−1∑
n=0

f†
n Tn+1fn+1 + H.c., (20b)

with general matrices Tn and Hermitian matrices En. Since
the coefficient matrices Vn and En obtained in the previous
section (for a PT-symmetric hybridization) were all real, Tn

(En) can be written as real (and symmetric) matrices. One still
has the freedom to apply arbitrary unitary transformations to
the 2 × 2 blocks. In the presence of particle-hole symmetry,
these transformations can be used to nullify the diagonal
terms in En and the off-diagonal terms in Tn, bringing us
to the Wilson ladder structure shown in Fig. 2(f). This is
a generalization to the zero onsite energies in the ordinary
(single-impurity) Wilson chain in the presence of particle-hole
symmetry. Here we present an alternative tridiagonalization
procedure which exploits particle-hole symmetry, and thus by
construction enforces the ladder structure.

The modes cn=
(cn+

cn−

)
do not respect particle-hole symmetry,

meaning a particle-hole transformation mixes different such
modes cn → σz[c

†
−n]T . However, we can take linear combina-

tions an+ and an− (introducing 4-vector notation),

(
an+
an−

)
= 1√

2

(
1 σz

1 −σz

)(
cn

c−n

)
, (21)

which transform as an± → ±[a†
n±]T and thus respect this

symmetry. Together with the symmetry condition of Eq. (19),
the bath and coupling Hamiltonians obtain the form

Hcoupling =
N∑

n=1

(
d†

+ d†
−
)√

2

(
vn+ 0 0

0 0 vn−

)(
an+
an−

)
+ H.c.,

(22a)

Hbath =
N∑

n=1

(
a†

n+ a†
n−

) (
0 En

En 0

)(
an+
an−

)
, (22b)

where vn+ and vn− are, respectively, the top and bottom rows
of Vn = (vn+

vn−

)
.

We can now embed Eq. (22) into a single-particle Hamil-
tonian. We choose a seemingly peculiar order of rows (and
columns): The first row corresponds to the odd impurity mode
d−, rows 2 → 2N + 1 correspond to the particle-hole even
bath modes an+, row 2N + 2 corresponds to the even impu-
rity mode d+, and rows 2N + 3 → 4N + 2 correspond to the
particle-hole odd bath modes an−. Thus, the single-particle
Hamiltonian has the following structure:

H =
(

O M
M† O

)
, M =

⎛
⎜⎜⎜⎜⎝

0 v1− · · · vN−
v†

1+ E1 0 ··· 0
. . .

...
0...

. . .0
...

. . .
0 ··· 0v†

N+ EN

⎞
⎟⎟⎟⎟⎠, (23)

155417-5



LOTEM, SELA, AND GOLDSTEIN PHYSICAL REVIEW B 107, 155417 (2023)

FIG. 2. (a) Block structure of the discretized Hamiltonian, corresponding to Eq. (12), with two positive and two negative energy intervals.
White tiles are zero, and so are the black tiles, which indicate the location of the even (+) and odd (−) impurity modes. (b) Applying block
tridiagonalization, one arrives at the generalized Wilson chain structure in Eqs. (20) [or Eqs. (11)]. White and black tiles are zero, and in
the presence of particle-hole symmetry, the gray tiles can also be nullified, resulting in a Wilson ladder structure. (c) Transforming to a
particle-hole symmetric basis, we get the structure in Eq. (23). Color-coding relates tiles of equal value between (a) and (c). Note that the
indices of the even and odd impurity modes have changed. (d) Applying nonsymmetric tridiagonalization to the upper-right and lower-left
quarters of (c) brings them to tridiagonal form. Color-coding relates tiles of equal value between (b) and (d). Note the alternating relation to
even and odd hopping-amplitudes. (e) Hopping amplitudes along the Wilson ladder for an example case with 	 = 9, z = 1, R/vF = 2π	2/D,
t0 = 0.05D (2vF /R ≈ � ≈ 0.004D), with the different scales indicated on the graph by horizontal dashed lines. The vertical dashed line
indicates the change in the qualitative behavior, which occurs when the hopping amplitudes cross the energy scale vF /R. (f) Wilson ladder
with link widths proportional to the value of the rescaled hopping amplitudes tn±	n/2 and ηn	

n/2+1/4. The dashed line indicates the change
from two weakly coupled chains to a single snaking chain.

as shown in Fig. 2(c), with M a (2N + 1) × (2N + 1) matrix
and O a zeros matrix of the same dimension. M is not a
Hermitian (symmetric, assuming real coefficients) matrix, but
can still be brought to tridiagonal form by applying different
unitary (orthogonal) transformations from the left and right

M = U+MU †
− =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 t0− 0 · · · 0
t0+ η1 t1+ ...

0 t1− η2 t2− 0
... t2+ η3

. . .

0 · · · 0 . . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

, (24)

with the labels of the matrix elements explained below. Then,
specifying the unitary transformation U = (U+ 0

0 U−), we can
transform H into

UHU† =
(

O M
M† O

)
, (25)

as shown in Fig. 2(d). In the transformed Hamiltonian, rows
1 and 2N + 2 still correspond to d− and d+, respectively.
If we identify rows

{n + 2 even n
n + 3 + 2N odd n with fn+ and rows{n + 3 + 2N even n

n + 2 odd n with fn−, we find that the elements of M
in Eq. (24) give us Tn = (tn+ 0

0 tn−

)
and En = ( 0 ηn

η∗
n 0

)
. Thus,

we indeed get the ladder structure as advertised.

Let us study the obtained hopping amplitudes, which are
plotted for an example case in Fig. 2(e). Without loss of gen-
erality we can choose real and positive ladder-rail amplitudes
tn±, and let any required phase fall on the rung amplitudes
ηn. The latter are also real [due to the real coefficients in
Eq. (12)], and so this phase amounts at most to a sign. Observe
that the hopping amplitudes fall into two distinct regimes,
separated by the energy scale corresponding to the interimpu-
rity distance, vF /R. This distinction is further emphasized in
Fig. 2(f), in which the width of the different links corresponds
to the hopping amplitudes when rescaled by 	−n/2.

Small values of n correspond to wavelengths shorter than
the distance between the impurities, or conversely, impurities
which are very far apart with respect to the wavelengths con-
sidered, so that we expect them to hardly affect each other. We
indeed observe that the rail amplitudes decay exponentially
tn± ∼ 	−n/2, with tn+ and tn− of the same order for a given
n, leading to two well-defined Wilson chains, while the rung
amplitudes ηn ≈ vF /R are constant and small, resulting in
weak coupling between the chains, as depicted in the left part
of Fig. 2(f). Thus, in the limit of extremely distant impurities
R → ∞, the chains completely decouple, as expected.

Large n correspond to wavelengths larger than the distance
between the impurities, or conversely, impurities which are
very close to each other. In the limit R → 0, we expect both
impurities to couple to the same bath mode, resulting in a
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single Wilson chain.4 Indeed, we observe that both the rail and
the rung amplitudes decay exponentially ∼	−n/2, but we have
alternating weak rail amplitudes, and rung amplitudes which
are of order of the strong rail, as depicted in the right part of
Fig. 2(f). This corresponds to a single Wilson chain snaking
through the ladder, with small next-next-nearest-neighbor cor-
rections. Note that this snaking chain has two sites for each
n. Thus, renumbering the sites along the snake by index m,
we see that the hopping amplitudes decay along the effective

chain as ∼√
	

−m/2
, which can be interpreted as an effec-

tive smaller logarithmic discretization parameter
√

	 in this
regime. Note also that although this has no consequences, one
can get a slightly cleaner picture by transferring the alternating
signs of the rung amplitudes to the weak links, so that all
weak links are negative, and the snaking chain has positive
amplitudes.

Before moving on, we return to shortly discuss the freedom
of applying arbitrary 2 × 2 unitary rotations un between the
two modes at each level of the ladder (defining f−1 ≡ d as the
impurity modes)

fn → u†
nfn, En → u†

nEnun, Tn → u†
n−1Tnun. (26)

Setting En = ηnσx and Tn = tn++tn−
2 1 + tn+−tn−

2 σz with real co-
efficients, we have fully utilized this freedom (up to signs),
and this comes naturally in the construction of Eq. (22b)
[or Figs. 2(c) and 2(d)]. However, we can return to the
block-tridiagonal structure in Fig. 2(b) and play with the un

rotations, investigating their effect on the Wilson ladder. An
immediate observation is that if we wish to retain zero onsite
energies, we can modify the phases of the ladder rungs, but
not their amplitudes. We can also take the impurities back
to the real-space basis by inverting Eq. (9), i.e., choosing
u−1 = u ≡ 1√

2

(1 1
i −i

)
:

d =
(

d+
d−

)
→ u†d = 1√

2

(
1 −i
1 i

)(
d+
d−

)
=

(
d1

d2

)
. (27)

This comes at the cost of a nondiagonal and complex T0,
compromising the ladder structure. However, we can pro-
ceed to choose u0 = u, transforming the first ladder sites f0

to the real-space basis, resulting in purely imaginary rung
hopping amplitudes (of magnitude η0), and, assuming equal
rails t0+ = t0−, regaining the diagonal structure of T0. Now
the next level has cross terms, but as long as we have equal
rails, tn+ = tn−, i.e., at the earlier levels of the ladder, as
demonstrated in Fig. 2(e), sequentially applying un = u will
preserve the ladder structure (with purely imaginary rungs).
Once we arrive at the snaking regime, where tn+ = tn−, such
transformations will start compromising the ladder structure.
However, in that regime, it is indeed more natural to remain
in the even-odd basis, with both impurities coupling to the

4One has to be careful with the order of limits with respect to the
high-energy cutoff D. We assume R � vF /D, which even in the limit
of small R (and D → ∞) retains a finite short chiral wire segment
between the two impurities, such that inversion and time reversal
symmetry remain independently broken (but PT is conserved). This
assumption is also implied, although not explicitly stated, in the
multi-impurity Bethe-ansatz solution.

even mode, and the odd mode (approximately) decoupling,
resulting in a single chain.

As a final note, we mention that the entire procedure is
quite sensitive to the oscillations in the hybridization function,
and in order to retain double-precision (∼10−16) accuracy
in the Wilson ladder couplings, we had to resort to higher
precision arithmetics (with ∼10−32 accuracy), both in the dis-
cretization, i.e., in the evaluation of Eqs. (16)–(18), as well as
in the tridiagonalization. Once the Wilson ladder is obtained,
the couplings can be cast back to double precision, with the
numerical iterative diagonalization performed at that level.

C. Iterative diagonalization

In Sec. IV, we will reintroduce interactions at the im-
purities, so that the system can no longer be solved in the
single-particle basis. Thus, we will need to proceed with it-
erative diagonalization. As this is standard NRG procedure,
we only give a quick overview for completeness, and refer the
reader to Refs. [48,60] for further details. We then comment
on several points which proved important in the implementa-
tion for our specific problem.

The challenge which the iterative diagonalization proce-
dure comes to address is the exponential scaling of the Hilbert
space size with the number of bath (and impurity) modes, so
that full exact diagonalization is feasible only for very small
systems. However, thanks to the logarithmic discretization,
we can use the low-energy spectrum of a finite Wilson chain
(or ladder) of length n′ in order to calculate the low-energy
spectrum of a chain (or ladder) of length n′ + 1. Thus, we start
with a short chain, which we can fully diagonalize, (i) keep
only a fixed number NK of low-energy states, (ii) add a new
site, enlarging the considered Hilbert space, (iii) diagonalize
the new Hamiltonian, and return to step (i), proceeding itera-
tively to construct a chain of any desired length, while for each
chain length we have only a fixed number NK of low-energy
states. The reason this works is the exponential decay of the
hopping amplitudes along the chain, which induces energy
scale separation, i.e., the coupling of site n′ + 1 to site n′
serves only as a small perturbation to a chain of length n′.
Thus, it can only mix states of similar energy, implying that
the NK low-energy states of a chain of length n′ + 1 indeed
only depend on states already contained in the NK low-energy
states of the chain of length n′. We therefore obtain an ef-
fective low-energy Hamiltonian for any desired energy scale
(or chain length), and the iterative diagonalization is really
a numerical implementation of a renormalization group flow
from high to low energies (or temperatures). We can then track
the changes in the effective Hamiltonians in order to identify
fixed points and also extract thermodynamic and (zero or finite
temperature) static and dynamical quantities.

When dealing with two-impurity problems (also in the
bidirectional case), each channel is mapped to two effective
channels (odd and even). As the computational cost of NRG,
i.e., the required number of kept states, NK , for a desired pre-
cision, scales exponentially with the number of channels, this
proves a major challenge. When the different channels are de-
coupled, as in single-impurity-multichannel or two-impurity-
bidirectional-channel calculations, one can interleave the
different channels [61,62], introducing each new site channel
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by channel, and reducing the number of states back to NK after
each channel. In order to preserve energy scale separation
after the introduction of each channel, the different channels
must be shifted with respect to each other by a channel-
dependent z shift. However, once the channels are coupled, as
in our case, it is not clear how to introduce this shift. Thus, in
each iteration, we must introduce the even and odd channels,
i.e., the two ladder sites at the new level, together.

The computational cost can also be reduced signifi-
cantly by exploiting different symmetries. The interacting
model considered in this paper (in Sec. IV) exhibits
SU(2)charge ⊗ SU(2)spin symmetry, with the former due to
charge conservation together with particle-hole symmetry. As
we use the contemporary formulation of NRG as a matrix-
product-state algorithm [60], exploiting these symmetries
can be delegated to the underlying tensor-network library,
in our case QSPACE [60,63,64], which treats Abelian and
non-Abelian symmetries on equal footing. This requires for-
mulating the problem (e.g., the Hamiltonian) in terms of
operators which respect the symmetry. It is usually straight-
forward, but in our case incurs several technical issues, which
are addressed in Appendix B. The considered model is also
PT symmetric, and so when written in terms of PT-symmetric
fermionic operators (as discussed in the Sec. II B for the
Wilson ladder and in Appendix B for the interaction terms),
must have real coefficients. As the fermionic operators them-
selves can also be written as real tensors, we can resort to
real (double-precision) arithmetics, which result in a factor
of ∼4 speedup with respect to complex (double-precision)
arithmetics.

III. NONINTERACTING BENCHMARK

We can now test the quality of the presented mapping by
looking at how well it reproduces the chiral behavior in the
exactly solvable noninteracting case. Note that the tridiago-
nalization procedure in Sec. II B is exact, and the iterative
diagonalization in Sec. II C can in principle be brought to any
desired accuracy. Thus, we are only testing the quality of the
discretization presented in Sec. II A, and calculate all quan-
tities from the single-particle Hamiltonian (see Appendix C).
However, the results have a clearer interpretation when con-
sidering the structure of the Wilson ladder. Assuming the large
bandwidth limit, i.e., the high-energy cutoff D much larger
than all other scales, we are left with two characteristic en-
ergy scales in the problem: the inverse interimpurity distance

vF /R, and � = t̃2
0

2vF
= πt2

0
2D , which quantifies the hybridization

strength, and plays the role of the Kondo temperature in the
noninteracting limit.

We start by comparing the continuum-limit expression for
the impurity spectral function with its discrete version. In the
limit D → ∞ (while keeping � and vF /R finite), the spectral
function is given by Eq. (7), with its components rewritten
here explicitly

A11(ω) = A22(ω) = �/π

ω2 + �2
, (28a)

A12(ω) = A∗
21(ω) = �/π

ω2 + �2

ω − i�

ω + i�
eiωR/vF . (28b)

Observe that the diagonal elements (which are real by con-
struction) are equal, A11(ω) = A22(ω), independent of R, and
equal to the spectral function of a single-impurity resonant-
level model (i.e., the R → ∞ limit). This is a key signature of
chirality, and any local perturbation, e.g., an onsite potential or
different coupling t0, at either of the impurities will not affect
the other impurity [i.e., its spectral function—see discussion
around Eq. (6)]. The discrete version of the spectral function
can be evaluated at the single-particle eigenenergies, with its
different unique components plotted in Figs. 3(a) and 3(b) for
vF /R � � and vF /R � �, respectively. The diagonal (local)
elements are correctly captured at all energy scales, as indi-
cated by the circles. The off-diagonal elements are trickier:
Their magnitude follows the same Lorentzian as the diagonal
terms and is correctly captured at all scales, but they also have
a phase, which for ω < vF /R is correctly captured, but for
ω � vF /R is highly oscillatory, and thus cannot be captured
by the logarithmic discretization.

We then turn to consider the impurity contribution to the
entropy Simp ≡ S − S0, defined as the difference between S ,
the entropy of the full system, and S0, the entropy of the
bath when decoupled from the impurity. In Fig. 3(c), we
plot Simp as a function of temperature (taking kB = 1) for
different interimpurity distances R. Let us first examine the
R → ∞ limit (gray), which corresponds to two copies of
single-impurity models, so that the impurity entropy is addi-
tive. At high temperatures the two impurities are effectively
decoupled from the system, so that each can be either full
or empty, yielding four possible impurity configurations, re-
sulting in Simp = ln 4. At low temperatures each impurity is
strongly coupled to the bath, so that there are no free impurity
degrees of freedom and we have Simp = 0. The transition be-
tween the two regimes naturally occurs at the scale �. Going
to finite R, with vF /R larger (solid purple), smaller (dotted
orange), and of order (dashed green) of �, we observe that
as long as vF /R is far below the cutoff, Simp is completely
independent of R. Thus, the R → ∞ behavior in fact holds for
arbitrary distances between the impurities, and we expect it to
apply for any (global) impurity thermodynamic property. Note
that for vF /R < �, a kink appears in the entropy at T ∼ vF /R,
as shown in the inset. However, this kink, which will also
appear in the interacting case when vF /R < TK , is a numerical
artifact and disappears upon shrinking 	.

Lastly we turn to consider the thermal correlation functions
between the impurities’ fermionic operators:

〈d†
m′dm〉T = 1

β

∑
iνl

Gmm′ (iνl )e
iνl 0+

(29)

=
∫ ∞

−∞
A(T =0)

mm′ (ω) fFD(ω; T )dω,

where G(iνl ) = {GR (iνl ) νl > 0
GA(iνl ) νl < 0 is the Matsubara Green func-

tion, with νl = (2l + 1)π/β the fermionic Matsubara fre-
quencies and GR = GA† given by Eq. (4). In the second line, A
is the zero temperature spectral function, and the temperature
dependence enters only through the Fermi-Dirac distribution,
fFD. From symmetry considerations, we expect both impuri-
ties to be at half-filling, i.e., 〈d†

mdm〉T = 1
2 for all temperatures,

and this is indeed reproduced (not shown). Thus, the only
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FIG. 3. Comparison of the Wilson-ladder numerical discretization (with 	 = 3) and the analytical continuum limit for a noninteracting
two-impurity model. (a,b) The elements of the impurity spectral function matrix for 3.3 × 10−8D = vF /R � � = 1.5 × 10−4D and 2.2 ×
10−4D = vF /R � � = 3.9 × 10−7D, respectively, taking z = 1. The continuum limit result according to Eq. (28) is indicated by solid (dotted)
lines for positive (negative) values, and discrete system results are indicated by the different markers. (c) The impurity entropy is plotted as
a function of temperature for fixed � ≈ 4 × 10−5D (t0 = 0.005D) and various finite distances R (with vF /R indicated by circles) as well as
R → ∞ (shaded gray), averaged over four z shifts. The inset demonstrates the elimination of a numerical artifact at vF /R � � upon reducing
the logarithmic discretization parameter 	 = 9, 6, 4, 3, 2. (d) Imaginary part of the temperature-dependent static impurity-impurity correlator
for the same parameters as in (c), calculated after discretization. The continuum limit results (shaded gray) for the same distances are plotted
as a reference.

relevant information appears in the off-diagonal terms, which
are evaluated numerically both in the continuum limit and for
the discrete system. We find that at temperatures T < vF /R
the correlations are captured correctly by the discrete system.
However, as is evident from the second line of Eq. (29), the os-
cillations in the spectral function impair the high-temperature
results, which should fall exponentially, but instead oscillate
around zero, decaying at a slower rate.

Before moving to the interacting case, we draw the main
conclusions from this section. Our scheme reliably repro-
duces the thermodynamics, as well as local dynamics, but
its validity regarding interimpurity properties depends on the
interimpurity distance. As one would have expected, the dis-
cretized NRG scheme does not reproduce the fast oscillations
at energies exceeding vF /R. However, these high-energy dis-
crepancies are washed out as one looks at low energies, where
the spectral functions are accurately reproduced. Most im-
portantly, these discrepancies do not compromise chirality,
which is preserved on all energy scales, as demonstrated by
the distance independence of the thermodynamic and local
spectral quantities at all energy scales.

IV. CHIRAL TWO-IMPURITY KONDO MODEL

We are now ready to proceed to a spinful system and
introduce local Coulomb interactions at each impurity. We
start with a two-impurity Anderson model

Himp =
∑

m=1,2

[εd (nm↑ + nm↓) + Unm↑nm↓], (30)

where nmσ = d†
mσ dmσ is the occupation operators of impurity

m, and Hcoupling and Hbath are as in Eq. (2) with the introduction
of spin indices. In order to restrict the parameter space, in
this work, we focus on the particle-hole symmetric regime,
εd = −U/2, and take the local-moment limit U � �. Thus,
each impurity retains a spin-half degree of freedom �Sm, and,
employing a Schrieffer-Wolff transformation [65], we arrive
at the two-impurity chiral Kondo model, with Hbath as before

and

Himp + Hcoupling = J �S1 · �s
(−R

2

) + J �S2 · �s
(+R

2

)
, (31)

where �s(x) = 1
2

∑
σσ ′ ψ†

σ (x)�σσσ ′ψσ ′ (x) is the bath spin op-
erator at position x, �σ = (σx, σy, σz ) are the Pauli matrices,
and J = 16

π
D�/U = 8t2

0 /U is the Kondo coupling.5 Hbath is
unaffected by the Schrieffer-Wolff transformation and can
still be mapped to the Wilson ladder in Eq. (11b). Note that
the interaction terms of both models, as defined above, are
invariant under both inversion and time reversal, and so the
full Hamiltonian is still PT symmetric.

As a baseline we consider infinitely spaced impurities, i.e.,
R → ∞, in which case the system corresponds to two separate
copies of a single-impurity Kondo (or Anderson) model. Each
copy undergoes a regular Kondo effect, with each spin fully
screened at temperatures below the Kondo temperature

TK = D
√

ρJ exp

(
− 1

ρJ

)
, (32)

where ρ = 1
2D is the local bath density of states (at the Fermi

energy). Thus, whenever we refer to the R → ∞ limit, we ac-
tually run a standard NRG calculation for the single-impurity
problem, and multiply results by 2 (due to the two impurities)
when necessary. In what follows, we then hold the single-
impurity Kondo temperature TK fixed, and introduce a finite
interimpurity separation R.

We start with global thermodynamic quantities: The
magnetic susceptibility χimp ≡ χ − χ0 (multiplied by temper-
ature) in Fig. 4(a) and the impurity entropy Simp ≡ S − S0 in
Fig. 4(b), both defined as the difference between the thermo-
dynamic quantity of the full system (S or χ ) and that of a
decoupled bath (S0 or χ0). Observe that for all R they follow

5In practice we employ a useful NRG trick: Instead of im-
plementing the (two-impurity) Kondo Hamiltonian, we use the
(two-impurity) Anderson Hamiltonian, setting U � � � D, which
numerically implements the Schrieffer-Wolf transformation.
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FIG. 4. Distance independence of thermodynamic properties of the chiral two-impurity Kondo model. The Kondo coupling J is fixed,
with the corresponding TK indicated by a dashed line. The interimpurity distance is taken at three typical values DR/vF = 2π	4 (purple)
2π	8 (green), 2π	15 (orange) and in the R → ∞ separate-impurities limit (shaded gray), with 	 = 3, up to 5000 kept multiplets, and a
single z-shift z = 1. (a) Impurity magnetic susceptibility multiplied by temperature and (b) Impurity entropy with equal couplings J/D = 0.2;
(c) Impurity entropy with impurity-dependent couplings J1/D = 0.15 and J2/D = 0.3; (d) Impurity entropy with equal couplings J/D = 0.15
and a magnetic field B = 1000TK only at the second impurity.

the universal curve of the single-impurity spin- 1
2 Kondo effect

(for each impurity, so multiplied by 2 for both, in shaded
gray): At high temperatures, we have a free spin at each im-
purity, resulting in Simp = ln 4 entropy and T χ → 1

2 (Simp =
ln 2 and T χ → 1

4 per impurity), while at low temperatures
we go to the strong coupling fixed point, where the spins are
fully screened, with no residual impurity degrees of freedom,
resulting in zero entropy and T χ → 0. We can further probe
the additivity of global quantitates by breaking the symmetry
between the impurities, so that each is expected to contribute
differently to the global quantities. In Fig. 4(c), we introduce
impurity-dependent Kondo couplings J1 and J2, breaking only
PT symmetry but retaining all other symmetries. In Fig. 4(d),
we retain equal couplings but introduce a magnetic field B
at one impurity (results are indifferent to which impurity),
thus breaking both SU(2)spin and PT symmetry. In both cases,
the resulting impurity entropy is simply the sum of two
single-impurity models (shaded gray), either with different
couplings, or with different magnetic fields (0 and B). We
thus arrive at the conclusion that the local physics of each
impurity is indifferent to the distance between the impurities
(also for T � vF /R), and each undergoes a single-impurity
Kondo effect. Although initially surprising, this is consistent
with the Bethe ansatz [5],6 which also accounts for multiple
impurities connected to a chiral channel, and actually has
an intuitive explanation: Due to chirality, electrons cannot
backscatter, and thus can only forward scatter first off the first
impurity and then off the second, at most acquiring a phase
shift at each impurity. However, nothing in this description
depends on the distance between the impurities, and so each
impurity contributes a π/2 phase shift just as in the R → ∞
limit, resulting in a global π phase shift, regardless of the
distance. In a more colloquial language, the first impurity
does not “know” about the second impurity, so that from its

6The interimpurity distance does not appear explicitly in the
Bethe-ansatz solution, but finite separation between the impurities
is assumed implicitly by taking the large bandwidth (or continuous
channel) limit.

perspective this is a single-impurity problem, and from PT
symmetry the same holds for the second (last) impurity.

In order to appreciate these results, we first recall the
paradigmatic Doniach [13] scenario for the bidirectional case.
There, for finite separation between the impurities, the bath
can mediate effective RKKY [10–12] interactions between the
two impurities, i.e., K (R)�S1 · �S2, which can be either ferro-
magnetic (K<0) or antiferromagnetic (K>0), driving the two
impurities towards an impurity-impurity triplet or singlet, re-
spectively. This competes with the Kondo effect, which drives
each impurity towards a singlet with a collective bath mode
in its vicinity. Due to the finite distance between the impuri-
ties, a single bath generically provides two effective Kondo
screening channels, e.g., even and odd. Thus, in the case of
ferromagnetic interaction (or weak enough antiferromagnetic
interaction), one gets a fully Kondo-screened triplet, while for
strong antiferromagnetic interaction one gets a self-screened
interimpurity singlet, which requires no further Kondo screen-
ing [15,21].7 The two-impurity chiral model, however, clearly
does not adhere to this picture, as demonstrated, e.g., by the
impurity entropy in Fig. 4, which shows that:

(i) The two impurities are fully screened, as ST →0
imp → 0.

(ii) The screening mechanism is of Kondo nature, as it
occurs at TK for all interimpurity distances.

7There are exceptions to this rule, e.g., if one of the screening
channels decouples (at low or all temperatures), so that for ferro-
magnetic RKKY we are left with an under-screened triplet. One
such example is in the limit of vanishing interimpurity distance
R � vF /D = 1/kmax (for an arbitrary dispersion), so that the two
impurities are effectively at the same site, and thus couple to the same
single (even) screening channel. Another example is a 1D bidirec-
tional channel with interimpurity distances R that are commensurate
with the high-energy cutoff, i.e., integer kmaxR/π [53], which for a
linearized dispersion at half-filling (so that kmax = kF ) corresponds to
impurities that are separated by an even number of lattice spacings.
Note that this condition differs from the one in Eq. (13), since for
a chiral channel kmax is not associated with kF and the underlying
lattice spacing.
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FIG. 5. Static temperature-dependent correlations for the chiral two-impurity Kondo model with the same parameters as in Fig. 4 (unless
stated otherwise), and averaged over four z shifts: (a) temperature-dependent impurity-impurity correlations; (b) T → 0 impurity-impurity
correlations for different Kondo couplings J as a function of the interimpurity distance R rescaled by the Kondo length scale ξK ≡ vF /TK ; and
(c) temperature-dependent chiral correlations which violate both inversion and time reversal symmetry, but not their product PT symmetry.

Point (i) rules out an interimpurity triplet, as, in contrast
to a bidirectional channel, a chiral channel cannot provide
two independent screening channels; hence, if a triplet were
to form, it would remain underscreened. The antiferromag-
netic interimpurity correlations (to be discussed below) in
Fig. 5(a) also contradict such a triplet. Point (ii) rules out
a self-screened RKKY singlet, which would be expected to
form at the RKKY energy scale K (R). The absence of any
distance-related scale in all local quantities suggests that such
effective interactions indeed do not emerge. However, this is
to be expected, as chirality prevents the emergence of RKKY
interactions.

We are thus left with the question: What are the conse-
quences of both impurities being coupled to the same (chiral)
bath? In order to address it, we need to consider nonlocal
quantities, and thus turn to static temperature-dependent cor-
relations between the impurities, starting with 〈�S1 · �S2〉T in
Fig. 5(a). At high temperatures we observe only numerical
noise, which is both positive and negative. However, once
we reach temperatures T < vF /R, antiferromagnetic (nega-
tive) correlations set in. Observe that the magnitude of the
correlations becomes substantial (with respect to its T → 0
value) once T < TK , i.e., in the strong coupling regime. The
T → 0 value of these correlations is plotted in Fig. 5(b) as
a function of the interimpurity distance R and for different
Kondo couplings J . We find it to be a function of a single
parameter R/ξK , with ξK ≡ vF /TK the single-impurity Kondo
length scale (which is inevitable, as this is the only remaining
scale in the regime T → 0, TK , vF /R � J, D). For large sep-
aration, the correlations decay as R−2, while for interimpurity
distance smaller than ξK they saturate to a constant, which,
curiously, appears to be −1/4, the strongest possible corre-
lation in the absence of interimpurity entanglement (meaning
the two-impurity density matrix remains separable [66]). In
Fig. 5(c), we plot a chiral correlation 〈(�S1 × �S2) · �s〉T with
�s = �s(−R/2) + �s(+R/2), which follows a similar trend to
〈�S1 · �S2〉T . The interesting property of this quantity is that its
average usually must vanish, as it breaks both inversion and
time reversal symmetry separately. However, it does not break
the product of the two symmetries, i.e., PT symmetry, and is
thus allowed to be finite in the chiral case.

It should be stressed that the observed correlations do
not imply effective interactions, nor bidirectional causality
between the impurities. Indeed, for temperatures lower than
vF /R a (noninteracting) chiral channel exhibits static cor-
relations between ψ (−R/2) and ψ (+R/2), even though an
event at +R/2 cannot affect ψ (−R/2) [see the chiral structure
of �R(ω) in Eq. (5)]. These correlations decay as ∼R−1,
resulting in ∼R−2 decay of the bath spin-spin correlations.
Once the Kondo effect sets in, the impurity spins fuse into
the bath, so that the bath correlations are reflected onto the
impurity-impurity correlations. This onset of the correlations
at TK is clearly demonstrated in Fig. 5(a), and the ∼R−2 decay
of their T → 0 value in Fig. 5(b) matches that of the bath. The
saturation to the constant −1/4 at short distances can also be
understood in this picture: The collective bath spins to which
the impurities fuse have a finite size, ξK , and so for distances
R < ξK , they are highly correlated, resulting in the two im-
purity spins also becoming maximally correlated. However,
had the correlations exceed −1/4, this would have implied
entanglement between the impurities, so that a measurement
of each would affect the other, in violation of chirality. Finally,
in order to establish that despite the observed correlations,
the local dynamics of the impurities are independent of the
distance, we turn to the (retarded) spin-spin correlator and its
corresponding spectral function AS (ω) [defined analogously
to Eq. (7)]

〈〈S+
m ; S−

m′ 〉〉ω = −i
∫ ∞

−∞
�(t )〈[S+

m (t ), S−
m′ (0)]〉T →0eiωt dt,

(33a)

AS
mm′ (ω) = − 1

2π i
(〈〈S+

m ; S−
m′ 〉〉ω − 〈〈S+

m′ ; S−
m 〉〉∗ω ). (33b)

In NRG we naturally obtain AS (ω) from the Lehman rep-
resentation, and plot its diagonal elements − 1

π
Im〈〈S+

m; S−
m〉〉ω

and (the envelope of its) off-diagonal elements in Figs. 6(a)
and 6(b), respectively. Observe that for both impurities
the local correlations [in Fig. 6(a)] coincide with the
single-impurity (or R → ∞, in shaded gray) results at all
frequencies, displaying no signatures of the finite distance.
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FIG. 6. Dynamic zero-temperature spin-spin correlations, for the same parameters as in Fig. 4 and averaged over four z shifts.8 (a) Diagonal
(local) AS

mm(ω) = − 1
π

Im〈〈S+
m ; S−

m 〉〉ω, and (b) the envelope of the off-diagonal |AS
12(ω)| = |AS∗

21 (ω)|, spin spectral function, both calculated for
equal couplings J/D = 0.2. [(c) and (d)] Response of the local spin spectral function to the breaking of impurity symmetry, either (c) by
impurity-dependent couplings J1 and J2, or (d) by taking equal coupling and introducing a magnetic field at the second impurity. The spectral
function belonging to each impurity is labeled accordingly, and flipping between the couplings or magnetic fields returns the same result with
flipped labels.

The envelope of the off-diagonal elements [in Fig. 6(b)]
coincides with the diagonal elements for ω < vF /R, as in
the noninteracting case, while for higher frequencies it is
noisy, which is unavoidable for a logarithmic discretization,
and decays rapidly. Due to chirality, we expect the retarded
correlator to be upper-triangular,9 i.e., 〈〈S+

2 ; S−
1 〉〉ω = 0, im-

plying no response at the first impurity to an event at the
second impurity. Explicitly showing this requires numerically
applying a Hilbert transform to AS (ω), which is infeasible
due to the noise in the off-diagonal terms. However, we can
still observe signatures of this chiral property directly in the
spectral function by breaking the symmetry between the two
impurities, i.e., by introducing impurity dependent couplings
or magnetic fields, as shown in Figs. 6(c) and 6(d), respec-
tively. For a chiral (i.e., upper-triangular) retarded correlator,
the local (i.e., diagonal) elements of the corresponding spec-
tral function should only depend on the local coupling and
magnetic field [in analogy to hopping and chemical potential
in the noninteracting case—see discussion around Eq. (6)].
This is indeed what we observe, conclusively demonstrating
the effectiveness of our chiral NRG scheme in capturing chiral
behavior, and showing that the local physics of each impurity
are simply the single-impurity Kondo physics of separate im-
purities.

8The discretization can impair chirality, leaving signatures on the
spectral function for individual z shifts. These are typically washed
out after z averaging or by taking smaller 	, as these are better
approximations for the (chiral) continuum limit. The smallest R
(in purple) turns out to be most sensitive to this, and thus require
cranking up the NRG parameters: In Fig. 6(d) taking 	 = 2.5 (with
7000 kept multiplets) suffices, while in Fig. 6(c), we also linearly
extrapolate to the continuum limit in 	 = 3, 2 → 1 (with 8000 kept
multiplets for 	 = 2).

9This chirality of the retarded correlators, i.e., upper-triangular
structure, also in the presence of interactions, could be shown order-
by-order in Keldysh perturbation theory, in a similar way to showing
that the retardedness is preserved [67].

V. SUMMARY AND OUTLOOK

In this paper, we have introduced an extension of Wilson’s
NRG for two impurities coupled to unidirectional channel(s)
at a finite separation R. It is based on mapping each bath
(channel) onto two coupled tight-binding Wilson chains, or
a Wilson ladder, with the impurities coupled to one end of
the ladder. As in a Wilson chain, the energy scales along the
Wilson ladder decay exponentially with the distance from the
impurities. We find that in the vicinity of the impurities, corre-
sponding to high energies or short wavelengths with respect to
R, the two chains are only weakly coupled. On the other hand,
at low energies or long wavelengths with respect to the inter-
impurity separation, we effectively get a single Wilson chain
(with small next-next nearest neighbor corrections), which
corresponds to the impurities being coupled to the bath at
almost the same point. However, it should be stressed that the
impurities are never exactly at the same point, and we always
retain the notion of some finite separation, which ensures the
unidirectionality of the channel. In this work we restricted our-
selves to two impurities, but in principle the same procedure
should apply to an arbitrary number of impurities, resulting
in a Wilson chain for each impurity, which is then coupled
to the other chains. We have also restricted ourselves to a
featureless bath density of states, corresponding to a linear
chiral dispersion, but the presented method can be applied to
arbitrary chiral or helical dispersion.

We demonstrated the power of the mapping to the Wil-
son ladder on a spinless noninteracting (analytically solvable)
system consisting of two resonant levels coupled to a sin-
gle unidirectional channel. We showed that local impurity
properties and thermodynamic quantities are indifferent to the
distance between the impurities, and are thus equal to those
of two infinitely spaced, i.e., independent, impurity models.
This is a key signature of chirality. We also successfully
captured interimpurity correlations at low energies, while at
high energies, for which the correlations are highly oscillatory
(and decay), we only captured noise (albeit around zero). In-
troducing spin and interactions, we applied the method to two
impurities coupled antiferromagnetically to a single spinful
chiral channel. Similarly to the noninteracting test case, we
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found that all considered local and thermodynamic quantities
are independent of the interimpurity distance, and thus follow
the universal curves (of two copies) of the single-impurity
Kondo effect. Again, interimpurity correlations were success-
fully captured at low energies while oscillatory around zero at
high energies. The key observation is that although such static
correlations exist, they are not due to effective (e.g., RKKY)
interactions between the impurities, which are forbidden due
to chirality. Hence, interimpurity response functions (retarded
correlations) remain chiral, and the system locally behaves
like two separate single-impurity problems, regardless of the
finite distance between the two impurities.

Our goal in this paper was to demonstrate how NRG can be
applied to unidirectional channels. Once we have established
this, there are many prospective applications. One interesting
direction is to look at helical systems, even in the single
channel case. Such systems were explored analytically in
different limits [25–28], but the presented method enables a
quantitative study of the transition between an RKKY phase
and a Kondo-screened phase. Another direction relates to
our initial motivation for this work—studying multi-impurity
chiral multichannel Kondo systems. In Ref. [39], we studied
such a system, demonstrating the emergence of decoupled
non-Abelian anyons, for which the fusion channel could be
measured by looking at interimpurity spin correlations. There
we relied on arguments for interimpurity distance indepen-
dence in order to simplify the problem by taking the limit
R → 0+. In this work, we support these arguments with
numerical results for a single-channel model but also demon-
strate that the distance does enter in nonuniversal quantities
such as zero-temperature value of the interimpurity correla-
tions. Thus, it would be interesting to study the correlations in
the multichannel case with the help of the Wilson ladder, in
order to discern between the nonuniversal distant-dependent
properties, and the universal properties related to the measure-
ment of the fusion channel.

Note added. Recently, we were made aware of a related
work by Ferrer et al. [69], dealing with multiple impurities
on a helical edge, and agreed on a synchronized preprint
submission.
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APPENDIX A: DISCRETIZATION FOLLOWING Ref. [50]

In this appendix, we will derive explicit expressions for the
coefficient matrices Vn and En in the spirit of the discretiza-

tion procedure by Campo and Oliveira [50]. The obtained
expressions will differ from those in Sec. II A by a unitary
rotation of each set of modes cn [see Eq. (A10)]. At the end of
the appendix, we also compare with the notation of Ref. [59].

We start this derivation by Fourier transforming to k-
space, in which the bath Hamiltonian is diagonal, and there
we introduce the high-energy cutoff D = vF kmax, where, as
mentioned, for a chiral system kmax should not be associ-
ated with the Fermi wavevector kF or an underlying lattice
spacing:

Hbath =
∫ kmax

−kmax

dk

2π
vF kc†

kck, (A1a)

ψ (x) =
∫ kmax

−kmax

dk

2π
eikxck ≡

√
kmax

π
ψ̃ (x). (A1b)

The fermionic operators ck and ψ̃ (x) satisfy
{ck, c†

k′ }=2πδ(k−k′) and {ψ̃ (x), ψ̃†(x)}=1, respectively.
Note that the cutoff impairs the orthogonality relations of the
field operators at the impurities {ψ̃ (−R/2), ψ̃†(+R/2)} =
sinc(kmaxR), but this can be amended by choosing the cutoff
to be commensurate with R as in Eq. (13).

We then write the normalized combinations of bath modes
to which the impurity modes d+ and d− [defined in Eq. (9)]
couple:

f0+ =
∫ kmax

−kmax

dk

2π

√
2π

kmax
cos (kR/2)ck, (A2a)

f0− =
∫ kmax

−kmax

dk

2π

√
2π

kmax
sin (kR/2)ck . (A2b)

Switching to 2-vector notation, we can write the coupling
Hamiltonian as

Hcoupling = d†T0f0 + H.c., (A3a)

T0 =
(

t0 0
0 t0

)
, t0 =

√
kmax

π
t̃0 =

√
2D�

π
. (A3b)

Note that taking a cutoff which is not commensurate with R
only affects the normalization of the even-odd modes f0, but
by construction they are still orthogonal. Thus, introducing
normalization constants N± = 1 ± sinc(kmaxR), we get

f0 →
(√

N+ 0
0

√
N−

)−1

f0, T0 →
(√

N+ 0
0

√
N−

)
T0,

(A4)

which leaves the product T0f0 unchanged. As this does not
affect the rest of the discretization procedure in any way,
i.e., the expressions for Vn and En remain unchanged, and
the modified T0 is automatically obtained from the numerical
tridiagonalization, we can forget about it for the rest of the
derivation.

Exploiting particle-hole symmetry [see Eq. (3a), which
translates to invariance under ck → c†

−k, dm → −d†
m], we can

restrict the discretization procedure to positive k, and obtain
the negative k coefficients by symmetry. We redefine the dis-
cretization gridpoints to k-space (focusing on positive k and
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n)

kz
1 = kmax, kz

n>1 = kmax	
2−n−z, (A5)

and the intervals Iz
n = [kz

n+1, kz
n], denoting their width and

midpoints

�kz
n ≡ kz

n − kz
n+1, k̄z

n ≡ kz
n + kz

n+1

2
. (A6)

For conciseness, we now drop the z index, but it is implied
whenever n appears.

In each interval, each impurity is coupled only to a sin-
gle mode, defined by limiting the support of the integrals in
Eq. (A2) to In. These modes are generally not orthogonal
with respect to each other, but we can always choose linear
combinations of the two which are orthonormal, for example,

cn± =
∫

In

dk

2π
ϕn±(k)ck, (A7a)

ϕn+(k) =
√

4π

�kn

cos[(k − k̄n)R/2]√
1 + sinc(�knR/2)

, (A7b)

ϕn−(k) =
√

4π

�kn

sin[(k − k̄n)R/2]√
1 − sinc(�knR/2)

, (A7c)

with their coupling to the impurities given by the product of a
rotation matrix and a rescaling matrix

Vn = t0

√
�kn

2kmax
RnSn,

Rn =
(

cos(k̄nR/2) − sin(k̄nR/2)

+ sin(k̄nR/2) cos(k̄nR/2)

)
, (A8)

Sn =

⎛
⎜⎝

√
1 + sinc

(
�knR

2

)
0

0
√

1 − sinc
(

�knR
2

)
⎞
⎟⎠.

Observe that the chosen cn are PT symmetric, which, as
expected, results in real Vn. The hybridization function of
Eq. (10) is given by

�(ω) = �
�kn

2π
RnSn

(
ϕ2

n+(k) ϕn+(k)ϕn−(k)
ϕn+(k)ϕn−(k) ϕ2

n−(k)

)
SnR†

n,

(A9)

where n and k are chosen such that k = ω/vF ∈ In. It is then
evident that the coefficient matrices and modes cn≡

(cn+
cn−

)
de-

fined in this appendix differ from those in Sec. II A by the
rotation Rn:

cSec.II
n = Rncn, VSec.II

n = VnR†
n, ESec.II

n = RnEnR†
n. (A10)

Vncn and c†
nEncn, however, are unaffected, and Eq. (19) still

relates the negative n coefficient matrices to those with pos-
itive n. With this in hand, one can show that the expressions
below in Eqs. (A14) and (A21) lead to Eqs. (17) and (18),
respectively.

Following in the steps of Ref. [50], we start by extending
the traditional naive discretization scheme (dating back to
Wilson) to the chiral two-impurity scenario. In each interval
In, we define a real orthonormal basis of functions ϕnξ (k)

(to be specified later on), which satisfy the orthogonality
condition ∫

In

dk

2π
ϕnξ (k)ϕnξ ′ (k) = δξξ ′ . (A11)

We then use these functions to define a canonical basis of
fermionic modes

cnξ =
∫

In

dk

2π
ϕnξ (k)ck, (A12a)

ck =
∑

ξ

ϕnξ (k)cnξ ; k ∈ In. (A12b)

Substituting this into the bath Hamiltonian in Eq. (A1a), we
obtain

Hbath =
±N∑

n=±1

∫
In

dk

2π
vF kc†

kck

=
±N∑

n=±1

∑
ξξ ′

[∫
In

dk

2π
vF kϕnξ (k)ϕnξ ′ (k)

]
c†

nξ cnξ ′ . (A13)

We now wish to choose two specific modes (in each interval),
cn1 and cn2, which span the space of modes coupled to the
impurities, i.e., that spanned by cn+ and cn−. We find that
ϕn1(k) ≡ ϕn+(k) and ϕn2(k) ≡ ϕn−(k) [specified in Eq. (A7)]
already satisfy Eq. (A11), and so cn=

(cn+
cn−

)=(cn1
cn2

)
. Thus, pro-

jecting out all other modes (which are never constructed
explicitly) leaves us with the coefficient matrix

Enaive
n =

∫
In

dk

2π
vF k

(
ϕ2

n+(k) ϕn+(k)ϕn−(k)
ϕn+(k)ϕn−(k) ϕ2

n−(k)

)
.

(A14)

We can then solve the integrals explicitly and obtain

Enaive
n = vF k̄n

(
1 αn

αn 1

)
, (A15a)

αn = sinc(�knR/2) − cos (�knR/2)

k̄nR
√

1 − sinc2(�knR/2)
. (A15b)

Observe that the diagonal terms are simply the interval mid-
points, as one would indeed expect from the naive scheme.
At short wavelengths (high energies) the off diagonal terms
are negligible (of order vF /R), corresponding to the picture of
two decoupled chains, while for long wavelengths, they are of
order of (but smaller than) the diagonal terms (for any finite
	), and one can no longer consider the chiral channel as two
separate baths.

We now turn to extend the improved discretization scheme
of Ref. [50] to the chiral two-impurity scenario. We start
by defining a real set of functions ϕ̃nξ (k) (to be specified
later on), which satisfy a weighted orthogonality condition,
but are still normalized with respect to the unweighted inner
product ∫

In

dk

2π

1

k
ϕ̃nξ (k)ϕ̃nξ ′ (k) = δξξ ′

Knξ

, (A16a)

∫
In

dk

2π
ϕ̃nξ (k)ϕ̃nξ ′ (k) = 1, (A16b)
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where Kn is a diagonal matrix (with elements Knξ ) chosen
such that Eq. (A16b) is satisfied. We use these to define a
nonorthogonal (but normalized) basis of modes

c̃nξ =
∫

In

dk

2π
ϕ̃nξ (k)ck, (A17a)

ck =
∑

ξ

Knξ

k
ϕ̃nξ (k)c̃nξ ; k ∈ In. (A17b)

As before, we substitute ck into the bath Hamiltonian, and find
that in our nonorthogonal basis, Hbath is diagonal

Hbath =
±N∑

n=±1

∑
ξ

vFKnξ c̃†
nξ c̃nξ . (A18)

Again we wish to keep only two specific modes, c̃n1 and c̃n2,
which span the space of modes coupled to the impurities. We
are thus looking for modes related to our original cn=

(cn1
cn2

)
by

an orthogonal transformation On:(
c̃n1

c̃n2

)
= On

(
cn1

cn2

)
,

(
ϕ̃n1(k)
ϕ̃n2(k)

)
= On

(
ϕn1(k)
ϕn2(k)

)
, (A19)

such that ϕ̃n1(k) and ϕ̃n2(k) satisfy Eq. (A16), with
ϕn1(k) = ϕn+(k) and ϕn2(k) = ϕn−(k) as specified above. We
find On by diagonalizing the symmetric matrix

K−1
n =

∫
In

dk

2π

1

k

(
ϕ2

n1(k) ϕn1(k)ϕn2(k)
ϕn1(k)ϕn2(k) ϕ2

n2(k)

)
, (A20a)

K−1
n = OnK−1

n O†
n =

(
Kn1 0

0 Kn2

)−1

. (A20b)

We can now discard all modes in Eq. (A18) except c̃n1, c̃n2,
and use On to rewrite Hbath in terms of cn1, cn2, to get
ECO

n = vF Kn (switching notation back to {+,−} = {1, 2}):

ECO
n =

[∫
In

dk

2π

1

vF k

(
ϕ2

n+(k) ϕn+(k)ϕn−(k)
ϕn+(k)ϕn−(k) ϕ2

n−(k)

)]−1

.

(A21)

Note that in practice we only calculate Kn, and never construct
On and Kn.

Solving the integral for K−1
n , we obtain[

K−1
n

]
±± = 1

Nn±
[ln rn ± Cn�Cn ± Sn�Sn], (A22a)

[
K−1

n

]
±∓ = 1√

Nn+Nn−
[Cn�Sn − Sn�Cn], (A22b)

Nn± = �kn(1 ± sinc(�knR/2)), (A22c)

rn = kn/kn+1, Cn = cos(k̄nR), Sn = sin(k̄nR),

(A22d)

�Cn =
∫ knR

kn+1R

cos (x)

x
dx, �Sn=

∫ knR

kn+1R

sin (x)

x
dx. (A22e)

Observe that for short wavelengths (high energies), the
off diagonal terms [K−1

n ]±∓ vanish, corresponding to
two decoupled baths, while the diagonal terms approach
[K−1

n ]±± → lnkn−lnkn+1

kn−kn+1
, so that inverting we get the discrete

energies En±± → 1−	−1

ln	
D	2−n−z expected from the scheme

of Ref. [50] [see Eq. (46) therein]. In the opposite limit of long
wavelengths, the chiral channel can no longer be considered
as two separate baths, and indeed all elements of K−1

n survive.
As a final step, we would like to compare with notation

used in Ref. [59] to describe the discretization scheme of
Ref. [50]. We thus first write the local density of states for
the modes f0 coupled to the impurities

ρ(ω) = πT−1
0 �(ω)T−1

0 , [T0]2 = 1

π

∫ D

−D
�(ω)dω, (A23)

so that
∫ D
−D ρ(ω) = 1. Then Eq. (30) in Ref. [59] takes the

form

f0 =
∑

n

[∫
In

ρ(ω)dω

] 1
2

cn, (A24)

where taking the square root is well defined because ρ(ω) is
positive. We then rewrite Eqs. (17) and (18) as

Enaive
n =

[∫
In

ρ(ω)dω

]− 1
2
[∫

In

ρ(ω)ωdω

][∫
In

ρ(ω)dω

]− 1
2

,

(A25)

ECO
n =

[∫
In

ρ(ω)dω

] 1
2
[∫

In

ρ(ω)
dω

ω

]−1[∫
In

ρ(ω)dω

] 1
2

,

(A26)

which is the matrix generalization of Eqs. (33) and (32) in
Ref. [59], respectively.

APPENDIX B: EXPLOITING SYMMETRIES

In this appendix, we discuss technical aspects in the ex-
ploitation of symmetries as part of our chiral NRG scheme.
We focus on the SU(2)charge ⊗ SU(2)spin symmetric case, but
the discussion below also applies (with some simplifications)
to the U(1)charge ⊗ SU(2)spin symmetric case, while for the
U(1)charge ⊗ U(1)spin symmetric case it becomes trivial (and
so irrelevant).

We start with a brief overview of the way symmetry-
respecting tensors are formulated in the QSPACE library, with
the full details given in Ref. [63]. Similarly to the decom-
position in the Wigner-Eckart theorem [70], for a general
non-Abelian symmetry, each tensor can be decomposed into
an outer product of (generalized) reduced matrix elements,
and the (generalized) Clebsch-Gordan coefficients. We write
(and track) only the tensors describing the reduced matrix
elements, which limits the operators we can access (to those
respecting the symmetry, which should be all we need). In
the case of SU(2)charge ⊗ SU(2)spin, these are given by (see
Appendix A.9 of Ref. [63])

Fm=

⎛
⎜⎜⎝

(−1)m f †
m↑

fm↓
(−1)m f †

m↓
− fm↑

⎞
⎟⎟⎠, Sm=

⎛
⎜⎝− 1√

2
S+

m

Sz
m

+ 1√
2
S−

m

⎞
⎟⎠, Cm=

⎛
⎜⎝− 1√

2
C+

m

Cz
m

+ 1√
2
C−

m

⎞
⎟⎠,

(B1)

where fmσ are fermionic operators at site m with spin σ , and Si

(Ci) are the spin (charge) SU(2) operators. We then use these
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operators in order to construct operators which are scalars
with respect to the symmetry, with the Hamiltonian being a
sum of such scalars.

The site index m bipartitions the sites according to its parity
(and can, but does not have to, coincide with the fermionic
order for the Jordan-Wigner string). The structure of Eq. (B1)
then allows only purely real (imaginary) hopping terms if m
and m′ have different (same) parity

m+m′ odd : F†
mFm′ =

∑
σ

( f †
mσ fm′σ+ f †

m′σ fmσ ), (B2a)

m+m′ even : iF†
mFm′ = i

∑
σ

( f †
mσ fm′σ− f †

m′σ fmσ ). (B2b)

We recall that the Wilson ladder (in the even-odd
PT-symmetric basis) has only real hopping amplitudes,
and indeed, by choosing m to snake along the lad-
der (d+→d−→ f0−→ f0+→ f1+→ f1−→ f2−→...) all hopping
terms are between sites of opposite parity, as dictated by
symmetry. If we return to the real-space basis, as discussed at
the end of Sec. II B, we will have both purely imaginary and
purely real terms (but no complex terms), and can choose a
different ordering for m such that all terms adhere to Eq. (B2).

We now turn to the interaction terms, which can indeed be
constructed from the operators in Eq. (B1), both for the Kondo
model [Eq. (31)]: S†

mSm′ = �Sm · �Sm′ , and for the Anderson
model [Eq. (30), after taking εd = −U/2]

4
3 C†

mCm = (nm↑ + nm↓ − 1)2

= 2nm↑nm↓ − (nm↑ + nm↓) + 1

= 1 − (nm↑ − nm↓)2 = 1 − 4
3 S†

mSm. (B3)

These (real) terms are defined in the real-space basis, whereas
the Wilson ladder is real in the even-odd PT-symmetric basis.
If we transform the entire (or part of the) Wilson ladder back
to real-space, we will generate imaginary terms. However, as
the interaction terms are invariant under a PT transformation,
if we write them in terms of PT-symmetric fermionic (or
spin) operators, we are guaranteed to have real coefficients.
Thus, the full Hamiltonian is purely real, and we can re-
strict the numerical iterative diagonalization to real (double
precision) arithmetic, which significantly reduces the com-
putational cost. The transforming of the interaction terms to
the PT-symmetric basis is derived in the remainder of this
appendix.

Consider two fermionic sites m ∈ {1, 2} with spinfull oper-
ators fmσ , which correspond, e.g., to the two impurity sites d
or the first two ladder sites f0. We define a basis transformation
with respect to the site index

f̃mσ =
∑

m′
umm′ fm′σ , (B4)

where u is a 2 × 2 unitary matrix, e.g., u = 1√
2

(1 1
i −i

)
for the

transformation to PT-symmetric modes in Eqs. (9) and (A2).
The corresponding operators F1, F2 trivially transform ac-
cordingly, so that we can immediately write them in terms
of the operators F̃1, F̃2, and vice versa. However, it is not a
priory clear how the SU(2) operators, e.g., S1, S2, transform,
and how to write them if we only have access to S̃1, S̃2. Gener-
ically we would like to relate operators which are quadratic in

fmσ and diagonal with respect to m in the original basis, i.e.,
can be written as

Om =
∑
σσ ′

Oσσ ′ f †
mσ fmσ ′ , (B5)

to those which are quadratic in f̃mσ and diagonal with respect
to m in the new basis,

Õm =
∑
σσ ′

Oσσ ′ f̃ †
mσ f̃mσ ′ =

∑
σσ ′

∑
ll ′

Oσσ ′ f †
lσ u†

lmuml ′ fl ′σ ′ . (B6)

If we exploit only Abelian symmetries, we have access to the
individual fermionic operators, and can write the individual
quadratic f †

lσ fl ′σ ′ terms, but for non-Abelian symmetries we
only have access to specific combinations, e.g., only F†

1F2

(and F̃†
1F̃2) in the SU(2)charge ⊗ SU(2)spin case. We would thus

like to directly express Om in terms of Õm, using only the
allowed combinations.

In order to do so, we first observe that if we write each
operator fmσ as a matrix acting on the two-site Hilbert space,
then we have a unitary matrix U acting on the same space such
that

f̃mσ=U † fmσU, U≡ exp

(∑
mm′σ

[ln u]mm′ f †
mσ fm′σ

)
, (B7)

where ln u is the matrix logarithm of the transformation matrix
u. Substituting this into into Eq. (B6) we immediately get

Õm =
∑
σσ ′

Oσσ ′U † f †
mσUU † fmσ ′U = U †OmU . (B8)

For completeness, we prove Eq. (B7). It is convenient to
first diagonalize u, and write U in the basis defined by this
diagonalization

umm′ =
∑

l

s†
ml e

iφl slm′ , f̄mσ =
∑

m′
smm′ fm′σ , (B9a)

U = exp

(
i

∑
lmm′σ

s†
mlφl slm′ f †

mσ fm′σ

)

= exp

(
i
∑
lσ

φl f̄ †
lσ f̄lσ

)
, (B9b)

with s a unitary matrix and φl a phase. Substituting this
into the right-hand side (r.h.s.) of Eq. (B7), we arrive at its
left-hand side (l.h.s.),

U † fmαU = exp

(
−i

∑
aα

φa f̄ †
aα f̄aα

)

×
(∑

lm′
s†

mlslm′ fm′σ

)
exp

⎛
⎝∑

bβ

iφb f̄ †
bβ f̄bβ

⎞
⎠

=
∑

l

s†
mle

−iφl f̄ †
lσ f̄lσ f̄lσ eiφl f̄ †

lσ f̄lσ

=
∑
lm′

s†
mle

iφl slm′ fm′σ =
∑

m′
umm′ fm′σ = f̃mσ .

(B10)

155417-16



CHIRAL NUMERICAL RENORMALIZATION GROUP PHYSICAL REVIEW B 107, 155417 (2023)

We have thus reduced the question to whether for a given
u, we can write U as in Eq. (B7) using only operators re-
spected by the symmetry, i.e., can we write ln u = iασx, and
then U= exp(iαF†

1F2). This is generically not possible, and

in particular not for u = 1√
2

(1 1
i −i

)
. However, we are only

interested in finding a U which transforms quadratic opera-
tors, and do not require it to correctly transform the individual
fermionic operators. As Om and Õm are indifferent to phases
fmσ →eiθm fmσ and f̃mσ →eiθ̃m f̃mσ , if we can find

v =
(

eiθ̃1 0
0 eiθ̃2

)
u

(
e−iθ1 0

0 e−iθ2

)
s.t. ln v = iασx, (B11)

then U= exp(iαF†
1F2) will satisfy Eq. (B8) [although not

Eq. (B7)]. Indeed, in our specific case, we find such a v:

v = 1√
2

(
1 i
i 1

)
= 1√

2

(
1 1
i −i

)(
1 0
0 i

)
, ln v = i

π

4
σx.

(B12)

For the Anderson model, we then transform the operators
S+, S− of the even-odd impurities to those in real-space S1, S2

and use them to write the interaction term. For the Kondo
model, we similarly use the even-odd basis spin operators
at the first ladder sites s0± in order to write those in real
space s(±R/2). We also define S± as the even-odd basis
impurity operators, and these transform trivially to real-space(S1

S2

) = u†
(S+

S−

)
, so that we can write the Kondo term. Assuming

equal Coulomb or Kondo interactions at both impurities, we
thus arrive at a real interaction Hamiltonian.

APPENDIX C: SINGLE-PARTICLE CALCULATIONS

For the noninteracting calculations of the discrete model,
we write the full single-particle Hamiltonian as a matrix H

and the bath single-particle Hamiltonian as a matrix H0 (which
is the same as H , excluding the impurity rows and columns).
We then diagonalize H = UEU † to get single-particle ener-
gies Ea (and E0

α for H0). The impurity entropy as a function of
temperature T is then given by

Simp(T ) = S (T ) − S0(T ), (C1a)

S(0)(T ) = −
∑

α

f (0)
α ln f (0)

α +(
1− f (0)

α

)
ln

(
1− f (0)

α

)
, (C1b)

where f (0)
α ≡ fFD(E (0)

α ; T ) is the occupation of the single-
particle eigenmodes. In order to negate even-odd oscillations,
we also need to average over two z shifts (z = 1

2 , 1).
The impurity spectral function (in the discrete model) is

evaluated at Eα , with proper broadening

[
AT =0

disc (Eα )
]

mm′ = U ∗
mαUm′α

|Eα| ln 	
, (C2)

where the impurity indices m, m′ on the l.h.s. take the values
1,2, and on the r.h.s. select the corresponding rows/columns
in H . The thermal impurity correlations are then evaluated
according to the second row of Eq. (29), replacing the integral
by a discrete sum over the (single-particle) energies

〈d†
m′dm〉T =

∫ ∞

−∞
AT =0

mm′ (ω) fFD(ω)dω →
∑

α

Um′αU ∗
mα

eEα/T +1
. (C3)

In the continuum limit, we already start from an expression for
the impurity spectral function, i.e., Eq. (28), and then obtain
the thermal correlations by numerically solving the integral in
Eq. (29) [Eq. (C3) here].
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